1 | /**************************************************************************/ |
2 | /* godot_shape_3d.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "godot_shape_3d.h" |
32 | |
33 | #include "core/io/image.h" |
34 | #include "core/math/convex_hull.h" |
35 | #include "core/math/geometry_3d.h" |
36 | #include "core/templates/sort_array.h" |
37 | |
38 | // GodotHeightMapShape3D is based on Bullet btHeightfieldTerrainShape. |
39 | |
40 | /* |
41 | Bullet Continuous Collision Detection and Physics Library |
42 | Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org |
43 | |
44 | This software is provided 'as-is', without any express or implied warranty. |
45 | In no event will the authors be held liable for any damages arising from the use of this software. |
46 | Permission is granted to anyone to use this software for any purpose, |
47 | including commercial applications, and to alter it and redistribute it freely, |
48 | subject to the following restrictions: |
49 | |
50 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
51 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
52 | 3. This notice may not be removed or altered from any source distribution. |
53 | */ |
54 | |
55 | const double edge_support_threshold = 0.99999998; |
56 | const double edge_support_threshold_lower = Math::sqrt(1.0 - edge_support_threshold * edge_support_threshold); |
57 | // For a unit normal vector n, the horizontality condition |
58 | // sqrt(n.x * n.x + n.z * n.z) > edge_support_threshold |
59 | // is equivalent to the condition |
60 | // abs(n.y) < edge_support_threshold_lower, |
61 | // which is cheaper to test. |
62 | const double face_support_threshold = 0.9998; |
63 | |
64 | const double cylinder_edge_support_threshold = 0.999998; |
65 | const double cylinder_edge_support_threshold_lower = Math::sqrt(1.0 - cylinder_edge_support_threshold * cylinder_edge_support_threshold); |
66 | const double cylinder_face_support_threshold = 0.999; |
67 | |
68 | void GodotShape3D::configure(const AABB &p_aabb) { |
69 | aabb = p_aabb; |
70 | configured = true; |
71 | for (const KeyValue<GodotShapeOwner3D *, int> &E : owners) { |
72 | GodotShapeOwner3D *co = const_cast<GodotShapeOwner3D *>(E.key); |
73 | co->_shape_changed(); |
74 | } |
75 | } |
76 | |
77 | Vector3 GodotShape3D::get_support(const Vector3 &p_normal) const { |
78 | Vector3 res; |
79 | int amnt; |
80 | FeatureType type; |
81 | get_supports(p_normal, 1, &res, amnt, type); |
82 | return res; |
83 | } |
84 | |
85 | void GodotShape3D::add_owner(GodotShapeOwner3D *p_owner) { |
86 | HashMap<GodotShapeOwner3D *, int>::Iterator E = owners.find(p_owner); |
87 | if (E) { |
88 | E->value++; |
89 | } else { |
90 | owners[p_owner] = 1; |
91 | } |
92 | } |
93 | |
94 | void GodotShape3D::remove_owner(GodotShapeOwner3D *p_owner) { |
95 | HashMap<GodotShapeOwner3D *, int>::Iterator E = owners.find(p_owner); |
96 | ERR_FAIL_COND(!E); |
97 | E->value--; |
98 | if (E->value == 0) { |
99 | owners.remove(E); |
100 | } |
101 | } |
102 | |
103 | bool GodotShape3D::is_owner(GodotShapeOwner3D *p_owner) const { |
104 | return owners.has(p_owner); |
105 | } |
106 | |
107 | const HashMap<GodotShapeOwner3D *, int> &GodotShape3D::get_owners() const { |
108 | return owners; |
109 | } |
110 | |
111 | GodotShape3D::~GodotShape3D() { |
112 | ERR_FAIL_COND(owners.size()); |
113 | } |
114 | |
115 | Plane GodotWorldBoundaryShape3D::get_plane() const { |
116 | return plane; |
117 | } |
118 | |
119 | void GodotWorldBoundaryShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
120 | // gibberish, a plane is infinity |
121 | r_min = -1e7; |
122 | r_max = 1e7; |
123 | } |
124 | |
125 | Vector3 GodotWorldBoundaryShape3D::get_support(const Vector3 &p_normal) const { |
126 | return p_normal * 1e15; |
127 | } |
128 | |
129 | bool GodotWorldBoundaryShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
130 | bool inters = plane.intersects_segment(p_begin, p_end, &r_result); |
131 | if (inters) { |
132 | r_normal = plane.normal; |
133 | } |
134 | return inters; |
135 | } |
136 | |
137 | bool GodotWorldBoundaryShape3D::intersect_point(const Vector3 &p_point) const { |
138 | return plane.distance_to(p_point) < 0; |
139 | } |
140 | |
141 | Vector3 GodotWorldBoundaryShape3D::get_closest_point_to(const Vector3 &p_point) const { |
142 | if (plane.is_point_over(p_point)) { |
143 | return plane.project(p_point); |
144 | } else { |
145 | return p_point; |
146 | } |
147 | } |
148 | |
149 | Vector3 GodotWorldBoundaryShape3D::get_moment_of_inertia(real_t p_mass) const { |
150 | return Vector3(); // not applicable. |
151 | } |
152 | |
153 | void GodotWorldBoundaryShape3D::_setup(const Plane &p_plane) { |
154 | plane = p_plane; |
155 | configure(AABB(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2))); |
156 | } |
157 | |
158 | void GodotWorldBoundaryShape3D::set_data(const Variant &p_data) { |
159 | _setup(p_data); |
160 | } |
161 | |
162 | Variant GodotWorldBoundaryShape3D::get_data() const { |
163 | return plane; |
164 | } |
165 | |
166 | GodotWorldBoundaryShape3D::GodotWorldBoundaryShape3D() { |
167 | } |
168 | |
169 | // |
170 | |
171 | real_t GodotSeparationRayShape3D::get_length() const { |
172 | return length; |
173 | } |
174 | |
175 | bool GodotSeparationRayShape3D::get_slide_on_slope() const { |
176 | return slide_on_slope; |
177 | } |
178 | |
179 | void GodotSeparationRayShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
180 | // don't think this will be even used |
181 | r_min = 0; |
182 | r_max = 1; |
183 | } |
184 | |
185 | Vector3 GodotSeparationRayShape3D::get_support(const Vector3 &p_normal) const { |
186 | if (p_normal.z > 0) { |
187 | return Vector3(0, 0, length); |
188 | } else { |
189 | return Vector3(0, 0, 0); |
190 | } |
191 | } |
192 | |
193 | void GodotSeparationRayShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
194 | if (Math::abs(p_normal.z) < edge_support_threshold_lower) { |
195 | r_amount = 2; |
196 | r_type = FEATURE_EDGE; |
197 | r_supports[0] = Vector3(0, 0, 0); |
198 | r_supports[1] = Vector3(0, 0, length); |
199 | } else if (p_normal.z > 0) { |
200 | r_amount = 1; |
201 | r_type = FEATURE_POINT; |
202 | *r_supports = Vector3(0, 0, length); |
203 | } else { |
204 | r_amount = 1; |
205 | r_type = FEATURE_POINT; |
206 | *r_supports = Vector3(0, 0, 0); |
207 | } |
208 | } |
209 | |
210 | bool GodotSeparationRayShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
211 | return false; //simply not possible |
212 | } |
213 | |
214 | bool GodotSeparationRayShape3D::intersect_point(const Vector3 &p_point) const { |
215 | return false; //simply not possible |
216 | } |
217 | |
218 | Vector3 GodotSeparationRayShape3D::get_closest_point_to(const Vector3 &p_point) const { |
219 | Vector3 s[2] = { |
220 | Vector3(0, 0, 0), |
221 | Vector3(0, 0, length) |
222 | }; |
223 | |
224 | return Geometry3D::get_closest_point_to_segment(p_point, s); |
225 | } |
226 | |
227 | Vector3 GodotSeparationRayShape3D::get_moment_of_inertia(real_t p_mass) const { |
228 | return Vector3(); |
229 | } |
230 | |
231 | void GodotSeparationRayShape3D::_setup(real_t p_length, bool p_slide_on_slope) { |
232 | length = p_length; |
233 | slide_on_slope = p_slide_on_slope; |
234 | configure(AABB(Vector3(0, 0, 0), Vector3(0.1, 0.1, length))); |
235 | } |
236 | |
237 | void GodotSeparationRayShape3D::set_data(const Variant &p_data) { |
238 | Dictionary d = p_data; |
239 | _setup(d["length" ], d["slide_on_slope" ]); |
240 | } |
241 | |
242 | Variant GodotSeparationRayShape3D::get_data() const { |
243 | Dictionary d; |
244 | d["length" ] = length; |
245 | d["slide_on_slope" ] = slide_on_slope; |
246 | return d; |
247 | } |
248 | |
249 | GodotSeparationRayShape3D::GodotSeparationRayShape3D() {} |
250 | |
251 | /********** SPHERE *************/ |
252 | |
253 | real_t GodotSphereShape3D::get_radius() const { |
254 | return radius; |
255 | } |
256 | |
257 | void GodotSphereShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
258 | real_t d = p_normal.dot(p_transform.origin); |
259 | |
260 | // figure out scale at point |
261 | Vector3 local_normal = p_transform.basis.xform_inv(p_normal); |
262 | real_t scale = local_normal.length(); |
263 | |
264 | r_min = d - (radius)*scale; |
265 | r_max = d + (radius)*scale; |
266 | } |
267 | |
268 | Vector3 GodotSphereShape3D::get_support(const Vector3 &p_normal) const { |
269 | return p_normal * radius; |
270 | } |
271 | |
272 | void GodotSphereShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
273 | *r_supports = p_normal * radius; |
274 | r_amount = 1; |
275 | r_type = FEATURE_POINT; |
276 | } |
277 | |
278 | bool GodotSphereShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
279 | return Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal); |
280 | } |
281 | |
282 | bool GodotSphereShape3D::intersect_point(const Vector3 &p_point) const { |
283 | return p_point.length() < radius; |
284 | } |
285 | |
286 | Vector3 GodotSphereShape3D::get_closest_point_to(const Vector3 &p_point) const { |
287 | Vector3 p = p_point; |
288 | real_t l = p.length(); |
289 | if (l < radius) { |
290 | return p_point; |
291 | } |
292 | return (p / l) * radius; |
293 | } |
294 | |
295 | Vector3 GodotSphereShape3D::get_moment_of_inertia(real_t p_mass) const { |
296 | real_t s = 0.4 * p_mass * radius * radius; |
297 | return Vector3(s, s, s); |
298 | } |
299 | |
300 | void GodotSphereShape3D::_setup(real_t p_radius) { |
301 | radius = p_radius; |
302 | configure(AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0))); |
303 | } |
304 | |
305 | void GodotSphereShape3D::set_data(const Variant &p_data) { |
306 | _setup(p_data); |
307 | } |
308 | |
309 | Variant GodotSphereShape3D::get_data() const { |
310 | return radius; |
311 | } |
312 | |
313 | GodotSphereShape3D::GodotSphereShape3D() {} |
314 | |
315 | /********** BOX *************/ |
316 | |
317 | void GodotBoxShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
318 | // no matter the angle, the box is mirrored anyway |
319 | Vector3 local_normal = p_transform.basis.xform_inv(p_normal); |
320 | |
321 | real_t length = local_normal.abs().dot(half_extents); |
322 | real_t distance = p_normal.dot(p_transform.origin); |
323 | |
324 | r_min = distance - length; |
325 | r_max = distance + length; |
326 | } |
327 | |
328 | Vector3 GodotBoxShape3D::get_support(const Vector3 &p_normal) const { |
329 | Vector3 point( |
330 | (p_normal.x < 0) ? -half_extents.x : half_extents.x, |
331 | (p_normal.y < 0) ? -half_extents.y : half_extents.y, |
332 | (p_normal.z < 0) ? -half_extents.z : half_extents.z); |
333 | |
334 | return point; |
335 | } |
336 | |
337 | void GodotBoxShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
338 | static const int next[3] = { 1, 2, 0 }; |
339 | static const int next2[3] = { 2, 0, 1 }; |
340 | |
341 | for (int i = 0; i < 3; i++) { |
342 | Vector3 axis; |
343 | axis[i] = 1.0; |
344 | real_t dot = p_normal.dot(axis); |
345 | if (Math::abs(dot) > face_support_threshold) { |
346 | //Vector3 axis_b; |
347 | |
348 | bool neg = dot < 0; |
349 | r_amount = 4; |
350 | r_type = FEATURE_FACE; |
351 | |
352 | Vector3 point; |
353 | point[i] = half_extents[i]; |
354 | |
355 | int i_n = next[i]; |
356 | int i_n2 = next2[i]; |
357 | |
358 | static const real_t sign[4][2] = { |
359 | { -1.0, 1.0 }, |
360 | { 1.0, 1.0 }, |
361 | { 1.0, -1.0 }, |
362 | { -1.0, -1.0 }, |
363 | }; |
364 | |
365 | for (int j = 0; j < 4; j++) { |
366 | point[i_n] = sign[j][0] * half_extents[i_n]; |
367 | point[i_n2] = sign[j][1] * half_extents[i_n2]; |
368 | r_supports[j] = neg ? -point : point; |
369 | } |
370 | |
371 | if (neg) { |
372 | SWAP(r_supports[1], r_supports[2]); |
373 | SWAP(r_supports[0], r_supports[3]); |
374 | } |
375 | |
376 | return; |
377 | } |
378 | |
379 | r_amount = 0; |
380 | } |
381 | |
382 | for (int i = 0; i < 3; i++) { |
383 | Vector3 axis; |
384 | axis[i] = 1.0; |
385 | |
386 | if (Math::abs(p_normal.dot(axis)) < edge_support_threshold_lower) { |
387 | r_amount = 2; |
388 | r_type = FEATURE_EDGE; |
389 | |
390 | int i_n = next[i]; |
391 | int i_n2 = next2[i]; |
392 | |
393 | Vector3 point = half_extents; |
394 | |
395 | if (p_normal[i_n] < 0) { |
396 | point[i_n] = -point[i_n]; |
397 | } |
398 | if (p_normal[i_n2] < 0) { |
399 | point[i_n2] = -point[i_n2]; |
400 | } |
401 | |
402 | r_supports[0] = point; |
403 | point[i] = -point[i]; |
404 | r_supports[1] = point; |
405 | return; |
406 | } |
407 | } |
408 | /* USE POINT */ |
409 | |
410 | Vector3 point( |
411 | (p_normal.x < 0) ? -half_extents.x : half_extents.x, |
412 | (p_normal.y < 0) ? -half_extents.y : half_extents.y, |
413 | (p_normal.z < 0) ? -half_extents.z : half_extents.z); |
414 | |
415 | r_amount = 1; |
416 | r_type = FEATURE_POINT; |
417 | r_supports[0] = point; |
418 | } |
419 | |
420 | bool GodotBoxShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
421 | AABB aabb_ext(-half_extents, half_extents * 2.0); |
422 | |
423 | return aabb_ext.intersects_segment(p_begin, p_end, &r_result, &r_normal); |
424 | } |
425 | |
426 | bool GodotBoxShape3D::intersect_point(const Vector3 &p_point) const { |
427 | return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z); |
428 | } |
429 | |
430 | Vector3 GodotBoxShape3D::get_closest_point_to(const Vector3 &p_point) const { |
431 | int outside = 0; |
432 | Vector3 min_point; |
433 | |
434 | for (int i = 0; i < 3; i++) { |
435 | if (Math::abs(p_point[i]) > half_extents[i]) { |
436 | outside++; |
437 | if (outside == 1) { |
438 | //use plane if only one side matches |
439 | Vector3 n; |
440 | n[i] = SIGN(p_point[i]); |
441 | |
442 | Plane p(n, half_extents[i]); |
443 | min_point = p.project(p_point); |
444 | } |
445 | } |
446 | } |
447 | |
448 | if (!outside) { |
449 | return p_point; //it's inside, don't do anything else |
450 | } |
451 | |
452 | if (outside == 1) { //if only above one plane, this plane clearly wins |
453 | return min_point; |
454 | } |
455 | |
456 | //check segments |
457 | real_t min_distance = 1e20; |
458 | Vector3 closest_vertex = half_extents * p_point.sign(); |
459 | Vector3 s[2] = { |
460 | closest_vertex, |
461 | closest_vertex |
462 | }; |
463 | |
464 | for (int i = 0; i < 3; i++) { |
465 | s[1] = closest_vertex; |
466 | s[1][i] = -s[1][i]; //edge |
467 | |
468 | Vector3 closest_edge = Geometry3D::get_closest_point_to_segment(p_point, s); |
469 | |
470 | real_t d = p_point.distance_to(closest_edge); |
471 | if (d < min_distance) { |
472 | min_point = closest_edge; |
473 | min_distance = d; |
474 | } |
475 | } |
476 | |
477 | return min_point; |
478 | } |
479 | |
480 | Vector3 GodotBoxShape3D::get_moment_of_inertia(real_t p_mass) const { |
481 | real_t lx = half_extents.x; |
482 | real_t ly = half_extents.y; |
483 | real_t lz = half_extents.z; |
484 | |
485 | return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly)); |
486 | } |
487 | |
488 | void GodotBoxShape3D::_setup(const Vector3 &p_half_extents) { |
489 | half_extents = p_half_extents.abs(); |
490 | |
491 | configure(AABB(-half_extents, half_extents * 2)); |
492 | } |
493 | |
494 | void GodotBoxShape3D::set_data(const Variant &p_data) { |
495 | _setup(p_data); |
496 | } |
497 | |
498 | Variant GodotBoxShape3D::get_data() const { |
499 | return half_extents; |
500 | } |
501 | |
502 | GodotBoxShape3D::GodotBoxShape3D() {} |
503 | |
504 | /********** CAPSULE *************/ |
505 | |
506 | void GodotCapsuleShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
507 | Vector3 n = p_transform.basis.xform_inv(p_normal).normalized(); |
508 | real_t h = height * 0.5 - radius; |
509 | |
510 | n *= radius; |
511 | n.y += (n.y > 0) ? h : -h; |
512 | |
513 | r_max = p_normal.dot(p_transform.xform(n)); |
514 | r_min = p_normal.dot(p_transform.xform(-n)); |
515 | } |
516 | |
517 | Vector3 GodotCapsuleShape3D::get_support(const Vector3 &p_normal) const { |
518 | Vector3 n = p_normal; |
519 | |
520 | real_t h = height * 0.5 - radius; |
521 | |
522 | n *= radius; |
523 | n.y += (n.y > 0) ? h : -h; |
524 | return n; |
525 | } |
526 | |
527 | void GodotCapsuleShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
528 | Vector3 n = p_normal; |
529 | |
530 | real_t d = n.y; |
531 | real_t h = height * 0.5 - radius; // half-height of the cylinder part |
532 | |
533 | if (h > 0 && Math::abs(d) < edge_support_threshold_lower) { |
534 | // make it flat |
535 | n.y = 0.0; |
536 | n.normalize(); |
537 | n *= radius; |
538 | |
539 | r_amount = 2; |
540 | r_type = FEATURE_EDGE; |
541 | r_supports[0] = n; |
542 | r_supports[0].y += h; |
543 | r_supports[1] = n; |
544 | r_supports[1].y -= h; |
545 | } else { |
546 | n *= radius; |
547 | n.y += (d > 0) ? h : -h; |
548 | r_amount = 1; |
549 | r_type = FEATURE_POINT; |
550 | *r_supports = n; |
551 | } |
552 | } |
553 | |
554 | bool GodotCapsuleShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
555 | Vector3 norm = (p_end - p_begin).normalized(); |
556 | real_t min_d = 1e20; |
557 | |
558 | Vector3 res, n; |
559 | bool collision = false; |
560 | |
561 | Vector3 auxres, auxn; |
562 | bool collided; |
563 | |
564 | // test against cylinder and spheres :-| |
565 | |
566 | collided = Geometry3D::segment_intersects_cylinder(p_begin, p_end, height - radius * 2.0, radius, &auxres, &auxn, 1); |
567 | |
568 | if (collided) { |
569 | real_t d = norm.dot(auxres); |
570 | if (d < min_d) { |
571 | min_d = d; |
572 | res = auxres; |
573 | n = auxn; |
574 | collision = true; |
575 | } |
576 | } |
577 | |
578 | collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * 0.5 - radius, 0), radius, &auxres, &auxn); |
579 | |
580 | if (collided) { |
581 | real_t d = norm.dot(auxres); |
582 | if (d < min_d) { |
583 | min_d = d; |
584 | res = auxres; |
585 | n = auxn; |
586 | collision = true; |
587 | } |
588 | } |
589 | |
590 | collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * -0.5 + radius, 0), radius, &auxres, &auxn); |
591 | |
592 | if (collided) { |
593 | real_t d = norm.dot(auxres); |
594 | |
595 | if (d < min_d) { |
596 | min_d = d; |
597 | res = auxres; |
598 | n = auxn; |
599 | collision = true; |
600 | } |
601 | } |
602 | |
603 | if (collision) { |
604 | r_result = res; |
605 | r_normal = n; |
606 | } |
607 | return collision; |
608 | } |
609 | |
610 | bool GodotCapsuleShape3D::intersect_point(const Vector3 &p_point) const { |
611 | if (Math::abs(p_point.y) < height * 0.5 - radius) { |
612 | return Vector3(p_point.x, 0, p_point.z).length() < radius; |
613 | } else { |
614 | Vector3 p = p_point; |
615 | p.y = Math::abs(p.y) - height * 0.5 + radius; |
616 | return p.length() < radius; |
617 | } |
618 | } |
619 | |
620 | Vector3 GodotCapsuleShape3D::get_closest_point_to(const Vector3 &p_point) const { |
621 | Vector3 s[2] = { |
622 | Vector3(0, -height * 0.5 + radius, 0), |
623 | Vector3(0, height * 0.5 - radius, 0), |
624 | }; |
625 | |
626 | Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s); |
627 | |
628 | if (p.distance_to(p_point) < radius) { |
629 | return p_point; |
630 | } |
631 | |
632 | return p + (p_point - p).normalized() * radius; |
633 | } |
634 | |
635 | Vector3 GodotCapsuleShape3D::get_moment_of_inertia(real_t p_mass) const { |
636 | // use bad AABB approximation |
637 | Vector3 extents = get_aabb().size * 0.5; |
638 | |
639 | return Vector3( |
640 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
641 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
642 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
643 | } |
644 | |
645 | void GodotCapsuleShape3D::_setup(real_t p_height, real_t p_radius) { |
646 | height = p_height; |
647 | radius = p_radius; |
648 | configure(AABB(Vector3(-radius, -height * 0.5, -radius), Vector3(radius * 2, height, radius * 2))); |
649 | } |
650 | |
651 | void GodotCapsuleShape3D::set_data(const Variant &p_data) { |
652 | Dictionary d = p_data; |
653 | ERR_FAIL_COND(!d.has("radius" )); |
654 | ERR_FAIL_COND(!d.has("height" )); |
655 | _setup(d["height" ], d["radius" ]); |
656 | } |
657 | |
658 | Variant GodotCapsuleShape3D::get_data() const { |
659 | Dictionary d; |
660 | d["radius" ] = radius; |
661 | d["height" ] = height; |
662 | return d; |
663 | } |
664 | |
665 | GodotCapsuleShape3D::GodotCapsuleShape3D() {} |
666 | |
667 | /********** CYLINDER *************/ |
668 | |
669 | void GodotCylinderShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
670 | Vector3 cylinder_axis = p_transform.basis.get_column(1).normalized(); |
671 | real_t axis_dot = cylinder_axis.dot(p_normal); |
672 | |
673 | Vector3 local_normal = p_transform.basis.xform_inv(p_normal); |
674 | real_t scale = local_normal.length(); |
675 | real_t scaled_radius = radius * scale; |
676 | real_t scaled_height = height * scale; |
677 | |
678 | real_t length; |
679 | if (Math::abs(axis_dot) > 1.0) { |
680 | length = scaled_height * 0.5; |
681 | } else { |
682 | length = Math::abs(axis_dot * scaled_height * 0.5) + scaled_radius * Math::sqrt(1.0 - axis_dot * axis_dot); |
683 | } |
684 | |
685 | real_t distance = p_normal.dot(p_transform.origin); |
686 | |
687 | r_min = distance - length; |
688 | r_max = distance + length; |
689 | } |
690 | |
691 | Vector3 GodotCylinderShape3D::get_support(const Vector3 &p_normal) const { |
692 | Vector3 n = p_normal; |
693 | real_t h = (n.y > 0) ? height : -height; |
694 | real_t s = Math::sqrt(n.x * n.x + n.z * n.z); |
695 | if (Math::is_zero_approx(s)) { |
696 | n.x = radius; |
697 | n.y = h * 0.5; |
698 | n.z = 0.0; |
699 | } else { |
700 | real_t d = radius / s; |
701 | n.x = n.x * d; |
702 | n.y = h * 0.5; |
703 | n.z = n.z * d; |
704 | } |
705 | |
706 | return n; |
707 | } |
708 | |
709 | void GodotCylinderShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
710 | real_t d = p_normal.y; |
711 | if (Math::abs(d) > cylinder_face_support_threshold) { |
712 | real_t h = (d > 0) ? height : -height; |
713 | |
714 | Vector3 n = p_normal; |
715 | n.x = 0.0; |
716 | n.z = 0.0; |
717 | n.y = h * 0.5; |
718 | |
719 | r_amount = 3; |
720 | r_type = FEATURE_CIRCLE; |
721 | r_supports[0] = n; |
722 | r_supports[1] = n; |
723 | r_supports[1].x += radius; |
724 | r_supports[2] = n; |
725 | r_supports[2].z += radius; |
726 | } else if (Math::abs(d) < cylinder_edge_support_threshold_lower) { |
727 | // make it flat |
728 | Vector3 n = p_normal; |
729 | n.y = 0.0; |
730 | n.normalize(); |
731 | n *= radius; |
732 | |
733 | r_amount = 2; |
734 | r_type = FEATURE_EDGE; |
735 | r_supports[0] = n; |
736 | r_supports[0].y += height * 0.5; |
737 | r_supports[1] = n; |
738 | r_supports[1].y -= height * 0.5; |
739 | } else { |
740 | r_amount = 1; |
741 | r_type = FEATURE_POINT; |
742 | r_supports[0] = get_support(p_normal); |
743 | } |
744 | } |
745 | |
746 | bool GodotCylinderShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
747 | return Geometry3D::segment_intersects_cylinder(p_begin, p_end, height, radius, &r_result, &r_normal, 1); |
748 | } |
749 | |
750 | bool GodotCylinderShape3D::intersect_point(const Vector3 &p_point) const { |
751 | if (Math::abs(p_point.y) < height * 0.5) { |
752 | return Vector3(p_point.x, 0, p_point.z).length() < radius; |
753 | } |
754 | return false; |
755 | } |
756 | |
757 | Vector3 GodotCylinderShape3D::get_closest_point_to(const Vector3 &p_point) const { |
758 | if (Math::absf(p_point.y) > height * 0.5) { |
759 | // Project point to top disk. |
760 | real_t dir = p_point.y > 0.0 ? 1.0 : -1.0; |
761 | Vector3 circle_pos(0.0, dir * height * 0.5, 0.0); |
762 | Plane circle_plane(Vector3(0.0, dir, 0.0), circle_pos); |
763 | Vector3 proj_point = circle_plane.project(p_point); |
764 | |
765 | // Clip position. |
766 | Vector3 delta_point_1 = proj_point - circle_pos; |
767 | real_t dist_point_1 = delta_point_1.length_squared(); |
768 | if (!Math::is_zero_approx(dist_point_1)) { |
769 | dist_point_1 = Math::sqrt(dist_point_1); |
770 | proj_point = circle_pos + delta_point_1 * MIN(dist_point_1, radius) / dist_point_1; |
771 | } |
772 | |
773 | return proj_point; |
774 | } else { |
775 | Vector3 s[2] = { |
776 | Vector3(0, -height * 0.5, 0), |
777 | Vector3(0, height * 0.5, 0), |
778 | }; |
779 | |
780 | Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s); |
781 | |
782 | if (p.distance_to(p_point) < radius) { |
783 | return p_point; |
784 | } |
785 | |
786 | return p + (p_point - p).normalized() * radius; |
787 | } |
788 | } |
789 | |
790 | Vector3 GodotCylinderShape3D::get_moment_of_inertia(real_t p_mass) const { |
791 | // use bad AABB approximation |
792 | Vector3 extents = get_aabb().size * 0.5; |
793 | |
794 | return Vector3( |
795 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
796 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
797 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
798 | } |
799 | |
800 | void GodotCylinderShape3D::_setup(real_t p_height, real_t p_radius) { |
801 | height = p_height; |
802 | radius = p_radius; |
803 | configure(AABB(Vector3(-radius, -height * 0.5, -radius), Vector3(radius * 2.0, height, radius * 2.0))); |
804 | } |
805 | |
806 | void GodotCylinderShape3D::set_data(const Variant &p_data) { |
807 | Dictionary d = p_data; |
808 | ERR_FAIL_COND(!d.has("radius" )); |
809 | ERR_FAIL_COND(!d.has("height" )); |
810 | _setup(d["height" ], d["radius" ]); |
811 | } |
812 | |
813 | Variant GodotCylinderShape3D::get_data() const { |
814 | Dictionary d; |
815 | d["radius" ] = radius; |
816 | d["height" ] = height; |
817 | return d; |
818 | } |
819 | |
820 | GodotCylinderShape3D::GodotCylinderShape3D() {} |
821 | |
822 | /********** CONVEX POLYGON *************/ |
823 | |
824 | void GodotConvexPolygonShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
825 | uint32_t vertex_count = mesh.vertices.size(); |
826 | if (vertex_count == 0) { |
827 | return; |
828 | } |
829 | |
830 | const Vector3 *vrts = &mesh.vertices[0]; |
831 | |
832 | if (vertex_count > 3 * extreme_vertices.size()) { |
833 | // For a large mesh, two calls to get_support() is faster than a full |
834 | // scan over all vertices. |
835 | |
836 | Vector3 n = p_transform.basis.xform_inv(p_normal).normalized(); |
837 | r_min = p_normal.dot(p_transform.xform(get_support(-n))); |
838 | r_max = p_normal.dot(p_transform.xform(get_support(n))); |
839 | } else { |
840 | for (uint32_t i = 0; i < vertex_count; i++) { |
841 | real_t d = p_normal.dot(p_transform.xform(vrts[i])); |
842 | |
843 | if (i == 0 || d > r_max) { |
844 | r_max = d; |
845 | } |
846 | if (i == 0 || d < r_min) { |
847 | r_min = d; |
848 | } |
849 | } |
850 | } |
851 | } |
852 | |
853 | Vector3 GodotConvexPolygonShape3D::get_support(const Vector3 &p_normal) const { |
854 | // Skip if there are no vertices in the mesh |
855 | if (mesh.vertices.size() == 0) { |
856 | return Vector3(); |
857 | } |
858 | |
859 | // Get the array of vertices |
860 | const Vector3 *const vertices_array = mesh.vertices.ptr(); |
861 | |
862 | // Start with an initial assumption of the first extreme vertex. |
863 | int best_vertex = extreme_vertices[0]; |
864 | real_t max_support = p_normal.dot(vertices_array[best_vertex]); |
865 | |
866 | // Check the remaining extreme vertices for a better vertex. |
867 | for (const int &vert : extreme_vertices) { |
868 | real_t s = p_normal.dot(vertices_array[vert]); |
869 | if (s > max_support) { |
870 | best_vertex = vert; |
871 | max_support = s; |
872 | } |
873 | } |
874 | |
875 | // If we checked all vertices in the mesh then we're done. |
876 | if (extreme_vertices.size() == mesh.vertices.size()) { |
877 | return vertices_array[best_vertex]; |
878 | } |
879 | |
880 | // Move along the surface until we reach the true support vertex. |
881 | int last_vertex = -1; |
882 | while (true) { |
883 | int next_vertex = -1; |
884 | |
885 | // Iterate over all the neighbors checking for a better vertex. |
886 | for (const int &vert : vertex_neighbors[best_vertex]) { |
887 | if (vert != last_vertex) { |
888 | real_t s = p_normal.dot(vertices_array[vert]); |
889 | if (s > max_support) { |
890 | next_vertex = vert; |
891 | max_support = s; |
892 | break; |
893 | } |
894 | } |
895 | } |
896 | |
897 | // No better vertex found, we have the best |
898 | if (next_vertex == -1) { |
899 | return vertices_array[best_vertex]; |
900 | } |
901 | |
902 | // Move to the better vertex and try again |
903 | last_vertex = best_vertex; |
904 | best_vertex = next_vertex; |
905 | } |
906 | } |
907 | |
908 | void GodotConvexPolygonShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
909 | const Geometry3D::MeshData::Face *faces = mesh.faces.ptr(); |
910 | int fc = mesh.faces.size(); |
911 | |
912 | const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr(); |
913 | int ec = mesh.edges.size(); |
914 | |
915 | const Vector3 *vertices = mesh.vertices.ptr(); |
916 | int vc = mesh.vertices.size(); |
917 | |
918 | r_amount = 0; |
919 | ERR_FAIL_COND_MSG(vc == 0, "Convex polygon shape has no vertices." ); |
920 | |
921 | //find vertex first |
922 | real_t max = 0; |
923 | int vtx = 0; |
924 | |
925 | for (int i = 0; i < vc; i++) { |
926 | real_t d = p_normal.dot(vertices[i]); |
927 | |
928 | if (i == 0 || d > max) { |
929 | max = d; |
930 | vtx = i; |
931 | } |
932 | } |
933 | |
934 | for (int i = 0; i < fc; i++) { |
935 | if (faces[i].plane.normal.dot(p_normal) > face_support_threshold) { |
936 | int ic = faces[i].indices.size(); |
937 | const int *ind = faces[i].indices.ptr(); |
938 | |
939 | bool valid = false; |
940 | for (int j = 0; j < ic; j++) { |
941 | if (ind[j] == vtx) { |
942 | valid = true; |
943 | break; |
944 | } |
945 | } |
946 | |
947 | if (!valid) { |
948 | continue; |
949 | } |
950 | |
951 | int m = MIN(p_max, ic); |
952 | for (int j = 0; j < m; j++) { |
953 | r_supports[j] = vertices[ind[j]]; |
954 | } |
955 | r_amount = m; |
956 | r_type = FEATURE_FACE; |
957 | return; |
958 | } |
959 | } |
960 | |
961 | for (int i = 0; i < ec; i++) { |
962 | real_t dot = (vertices[edges[i].vertex_a] - vertices[edges[i].vertex_b]).normalized().dot(p_normal); |
963 | dot = ABS(dot); |
964 | if (dot < edge_support_threshold_lower && (edges[i].vertex_a == vtx || edges[i].vertex_b == vtx)) { |
965 | r_amount = 2; |
966 | r_type = FEATURE_EDGE; |
967 | r_supports[0] = vertices[edges[i].vertex_a]; |
968 | r_supports[1] = vertices[edges[i].vertex_b]; |
969 | return; |
970 | } |
971 | } |
972 | |
973 | r_supports[0] = vertices[vtx]; |
974 | r_amount = 1; |
975 | r_type = FEATURE_POINT; |
976 | } |
977 | |
978 | bool GodotConvexPolygonShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
979 | const Geometry3D::MeshData::Face *faces = mesh.faces.ptr(); |
980 | int fc = mesh.faces.size(); |
981 | |
982 | const Vector3 *vertices = mesh.vertices.ptr(); |
983 | |
984 | Vector3 n = p_end - p_begin; |
985 | real_t min = 1e20; |
986 | bool col = false; |
987 | |
988 | for (int i = 0; i < fc; i++) { |
989 | if (faces[i].plane.normal.dot(n) > 0) { |
990 | continue; //opposing face |
991 | } |
992 | |
993 | int ic = faces[i].indices.size(); |
994 | const int *ind = faces[i].indices.ptr(); |
995 | |
996 | for (int j = 1; j < ic - 1; j++) { |
997 | Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]); |
998 | Vector3 result; |
999 | if (f.intersects_segment(p_begin, p_end, &result)) { |
1000 | real_t d = n.dot(result); |
1001 | if (d < min) { |
1002 | min = d; |
1003 | r_result = result; |
1004 | r_normal = faces[i].plane.normal; |
1005 | col = true; |
1006 | } |
1007 | |
1008 | break; |
1009 | } |
1010 | } |
1011 | } |
1012 | |
1013 | return col; |
1014 | } |
1015 | |
1016 | bool GodotConvexPolygonShape3D::intersect_point(const Vector3 &p_point) const { |
1017 | const Geometry3D::MeshData::Face *faces = mesh.faces.ptr(); |
1018 | int fc = mesh.faces.size(); |
1019 | |
1020 | for (int i = 0; i < fc; i++) { |
1021 | if (faces[i].plane.distance_to(p_point) >= 0) { |
1022 | return false; |
1023 | } |
1024 | } |
1025 | |
1026 | return true; |
1027 | } |
1028 | |
1029 | Vector3 GodotConvexPolygonShape3D::get_closest_point_to(const Vector3 &p_point) const { |
1030 | const Geometry3D::MeshData::Face *faces = mesh.faces.ptr(); |
1031 | int fc = mesh.faces.size(); |
1032 | const Vector3 *vertices = mesh.vertices.ptr(); |
1033 | |
1034 | bool all_inside = true; |
1035 | for (int i = 0; i < fc; i++) { |
1036 | if (!faces[i].plane.is_point_over(p_point)) { |
1037 | continue; |
1038 | } |
1039 | |
1040 | all_inside = false; |
1041 | bool is_inside = true; |
1042 | int ic = faces[i].indices.size(); |
1043 | const int *indices = faces[i].indices.ptr(); |
1044 | |
1045 | for (int j = 0; j < ic; j++) { |
1046 | Vector3 a = vertices[indices[j]]; |
1047 | Vector3 b = vertices[indices[(j + 1) % ic]]; |
1048 | Vector3 n = (a - b).cross(faces[i].plane.normal).normalized(); |
1049 | if (Plane(n, a).is_point_over(p_point)) { |
1050 | is_inside = false; |
1051 | break; |
1052 | } |
1053 | } |
1054 | |
1055 | if (is_inside) { |
1056 | return faces[i].plane.project(p_point); |
1057 | } |
1058 | } |
1059 | |
1060 | if (all_inside) { |
1061 | return p_point; |
1062 | } |
1063 | |
1064 | real_t min_distance = 1e20; |
1065 | Vector3 min_point; |
1066 | |
1067 | //check edges |
1068 | const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr(); |
1069 | int ec = mesh.edges.size(); |
1070 | for (int i = 0; i < ec; i++) { |
1071 | Vector3 s[2] = { |
1072 | vertices[edges[i].vertex_a], |
1073 | vertices[edges[i].vertex_b] |
1074 | }; |
1075 | |
1076 | Vector3 closest = Geometry3D::get_closest_point_to_segment(p_point, s); |
1077 | real_t d = closest.distance_to(p_point); |
1078 | if (d < min_distance) { |
1079 | min_distance = d; |
1080 | min_point = closest; |
1081 | } |
1082 | } |
1083 | |
1084 | return min_point; |
1085 | } |
1086 | |
1087 | Vector3 GodotConvexPolygonShape3D::get_moment_of_inertia(real_t p_mass) const { |
1088 | // use bad AABB approximation |
1089 | Vector3 extents = get_aabb().size * 0.5; |
1090 | |
1091 | return Vector3( |
1092 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
1093 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
1094 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
1095 | } |
1096 | |
1097 | void GodotConvexPolygonShape3D::_setup(const Vector<Vector3> &p_vertices) { |
1098 | Error err = ConvexHullComputer::convex_hull(p_vertices, mesh); |
1099 | if (err != OK) { |
1100 | ERR_PRINT("Failed to build convex hull" ); |
1101 | } |
1102 | extreme_vertices.resize(0); |
1103 | vertex_neighbors.resize(0); |
1104 | |
1105 | AABB _aabb; |
1106 | |
1107 | for (uint32_t i = 0; i < mesh.vertices.size(); i++) { |
1108 | if (i == 0) { |
1109 | _aabb.position = mesh.vertices[i]; |
1110 | } else { |
1111 | _aabb.expand_to(mesh.vertices[i]); |
1112 | } |
1113 | } |
1114 | |
1115 | configure(_aabb); |
1116 | |
1117 | // Pre-compute the extreme vertices in 26 directions. This will be used |
1118 | // to speed up get_support() by letting us quickly get a good guess for |
1119 | // the support vertex. |
1120 | |
1121 | for (int x = -1; x < 2; x++) { |
1122 | for (int y = -1; y < 2; y++) { |
1123 | for (int z = -1; z < 2; z++) { |
1124 | if (x != 0 || y != 0 || z != 0) { |
1125 | Vector3 dir(x, y, z); |
1126 | dir.normalize(); |
1127 | real_t max_support = 0.0; |
1128 | int best_vertex = -1; |
1129 | for (uint32_t i = 0; i < mesh.vertices.size(); i++) { |
1130 | real_t s = dir.dot(mesh.vertices[i]); |
1131 | if (best_vertex == -1 || s > max_support) { |
1132 | best_vertex = i; |
1133 | max_support = s; |
1134 | } |
1135 | } |
1136 | if (extreme_vertices.find(best_vertex) == -1) |
1137 | extreme_vertices.push_back(best_vertex); |
1138 | } |
1139 | } |
1140 | } |
1141 | } |
1142 | |
1143 | // Record all the neighbors of each vertex. This is used in get_support(). |
1144 | |
1145 | if (extreme_vertices.size() < mesh.vertices.size()) { |
1146 | vertex_neighbors.resize(mesh.vertices.size()); |
1147 | for (Geometry3D::MeshData::Edge &edge : mesh.edges) { |
1148 | vertex_neighbors[edge.vertex_a].push_back(edge.vertex_b); |
1149 | vertex_neighbors[edge.vertex_b].push_back(edge.vertex_a); |
1150 | } |
1151 | } |
1152 | } |
1153 | |
1154 | void GodotConvexPolygonShape3D::set_data(const Variant &p_data) { |
1155 | _setup(p_data); |
1156 | } |
1157 | |
1158 | Variant GodotConvexPolygonShape3D::get_data() const { |
1159 | Vector<Vector3> vertices; |
1160 | vertices.resize(mesh.vertices.size()); |
1161 | for (uint32_t i = 0; i < mesh.vertices.size(); i++) { |
1162 | vertices.write[i] = mesh.vertices[i]; |
1163 | } |
1164 | return vertices; |
1165 | } |
1166 | |
1167 | GodotConvexPolygonShape3D::GodotConvexPolygonShape3D() { |
1168 | } |
1169 | |
1170 | /********** FACE POLYGON *************/ |
1171 | |
1172 | void GodotFaceShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
1173 | for (int i = 0; i < 3; i++) { |
1174 | Vector3 v = p_transform.xform(vertex[i]); |
1175 | real_t d = p_normal.dot(v); |
1176 | |
1177 | if (i == 0 || d > r_max) { |
1178 | r_max = d; |
1179 | } |
1180 | |
1181 | if (i == 0 || d < r_min) { |
1182 | r_min = d; |
1183 | } |
1184 | } |
1185 | } |
1186 | |
1187 | Vector3 GodotFaceShape3D::get_support(const Vector3 &p_normal) const { |
1188 | int vert_support_idx = -1; |
1189 | real_t support_max = 0; |
1190 | |
1191 | for (int i = 0; i < 3; i++) { |
1192 | real_t d = p_normal.dot(vertex[i]); |
1193 | |
1194 | if (i == 0 || d > support_max) { |
1195 | support_max = d; |
1196 | vert_support_idx = i; |
1197 | } |
1198 | } |
1199 | |
1200 | return vertex[vert_support_idx]; |
1201 | } |
1202 | |
1203 | void GodotFaceShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
1204 | Vector3 n = p_normal; |
1205 | |
1206 | /** TEST FACE AS SUPPORT **/ |
1207 | if (Math::abs(normal.dot(n)) > face_support_threshold) { |
1208 | r_amount = 3; |
1209 | r_type = FEATURE_FACE; |
1210 | for (int i = 0; i < 3; i++) { |
1211 | r_supports[i] = vertex[i]; |
1212 | } |
1213 | return; |
1214 | } |
1215 | |
1216 | /** FIND SUPPORT VERTEX **/ |
1217 | |
1218 | int vert_support_idx = -1; |
1219 | real_t support_max = 0; |
1220 | |
1221 | for (int i = 0; i < 3; i++) { |
1222 | real_t d = n.dot(vertex[i]); |
1223 | |
1224 | if (i == 0 || d > support_max) { |
1225 | support_max = d; |
1226 | vert_support_idx = i; |
1227 | } |
1228 | } |
1229 | |
1230 | /** TEST EDGES AS SUPPORT **/ |
1231 | |
1232 | for (int i = 0; i < 3; i++) { |
1233 | int nx = (i + 1) % 3; |
1234 | if (i != vert_support_idx && nx != vert_support_idx) { |
1235 | continue; |
1236 | } |
1237 | |
1238 | // check if edge is valid as a support |
1239 | real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n); |
1240 | dot = ABS(dot); |
1241 | if (dot < edge_support_threshold_lower) { |
1242 | r_amount = 2; |
1243 | r_type = FEATURE_EDGE; |
1244 | r_supports[0] = vertex[i]; |
1245 | r_supports[1] = vertex[nx]; |
1246 | return; |
1247 | } |
1248 | } |
1249 | |
1250 | r_amount = 1; |
1251 | r_type = FEATURE_POINT; |
1252 | r_supports[0] = vertex[vert_support_idx]; |
1253 | } |
1254 | |
1255 | bool GodotFaceShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
1256 | bool c = Geometry3D::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result); |
1257 | if (c) { |
1258 | r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal; |
1259 | if (r_normal.dot(p_end - p_begin) > 0) { |
1260 | if (backface_collision && p_hit_back_faces) { |
1261 | r_normal = -r_normal; |
1262 | } else { |
1263 | c = false; |
1264 | } |
1265 | } |
1266 | } |
1267 | |
1268 | return c; |
1269 | } |
1270 | |
1271 | bool GodotFaceShape3D::intersect_point(const Vector3 &p_point) const { |
1272 | return false; //face is flat |
1273 | } |
1274 | |
1275 | Vector3 GodotFaceShape3D::get_closest_point_to(const Vector3 &p_point) const { |
1276 | return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point); |
1277 | } |
1278 | |
1279 | Vector3 GodotFaceShape3D::get_moment_of_inertia(real_t p_mass) const { |
1280 | return Vector3(); // Sorry, but i don't think anyone cares, FaceShape! |
1281 | } |
1282 | |
1283 | GodotFaceShape3D::GodotFaceShape3D() { |
1284 | configure(AABB()); |
1285 | } |
1286 | |
1287 | Vector<Vector3> GodotConcavePolygonShape3D::get_faces() const { |
1288 | Vector<Vector3> rfaces; |
1289 | rfaces.resize(faces.size() * 3); |
1290 | |
1291 | for (int i = 0; i < faces.size(); i++) { |
1292 | Face f = faces.get(i); |
1293 | |
1294 | for (int j = 0; j < 3; j++) { |
1295 | rfaces.set(i * 3 + j, vertices.get(f.indices[j])); |
1296 | } |
1297 | } |
1298 | |
1299 | return rfaces; |
1300 | } |
1301 | |
1302 | void GodotConcavePolygonShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
1303 | int count = vertices.size(); |
1304 | if (count == 0) { |
1305 | r_min = 0; |
1306 | r_max = 0; |
1307 | return; |
1308 | } |
1309 | const Vector3 *vptr = vertices.ptr(); |
1310 | |
1311 | for (int i = 0; i < count; i++) { |
1312 | real_t d = p_normal.dot(p_transform.xform(vptr[i])); |
1313 | |
1314 | if (i == 0 || d > r_max) { |
1315 | r_max = d; |
1316 | } |
1317 | if (i == 0 || d < r_min) { |
1318 | r_min = d; |
1319 | } |
1320 | } |
1321 | } |
1322 | |
1323 | Vector3 GodotConcavePolygonShape3D::get_support(const Vector3 &p_normal) const { |
1324 | int count = vertices.size(); |
1325 | if (count == 0) { |
1326 | return Vector3(); |
1327 | } |
1328 | |
1329 | const Vector3 *vptr = vertices.ptr(); |
1330 | |
1331 | Vector3 n = p_normal; |
1332 | |
1333 | int vert_support_idx = -1; |
1334 | real_t support_max = 0; |
1335 | |
1336 | for (int i = 0; i < count; i++) { |
1337 | real_t d = n.dot(vptr[i]); |
1338 | |
1339 | if (i == 0 || d > support_max) { |
1340 | support_max = d; |
1341 | vert_support_idx = i; |
1342 | } |
1343 | } |
1344 | |
1345 | return vptr[vert_support_idx]; |
1346 | } |
1347 | |
1348 | void GodotConcavePolygonShape3D::_cull_segment(int p_idx, _SegmentCullParams *p_params) const { |
1349 | const BVH *params_bvh = &p_params->bvh[p_idx]; |
1350 | |
1351 | if (!params_bvh->aabb.intersects_segment(p_params->from, p_params->to)) { |
1352 | return; |
1353 | } |
1354 | |
1355 | if (params_bvh->face_index >= 0) { |
1356 | const Face *f = &p_params->faces[params_bvh->face_index]; |
1357 | GodotFaceShape3D *face = p_params->face; |
1358 | face->normal = f->normal; |
1359 | face->vertex[0] = p_params->vertices[f->indices[0]]; |
1360 | face->vertex[1] = p_params->vertices[f->indices[1]]; |
1361 | face->vertex[2] = p_params->vertices[f->indices[2]]; |
1362 | |
1363 | Vector3 res; |
1364 | Vector3 normal; |
1365 | int face_index = params_bvh->face_index; |
1366 | if (face->intersect_segment(p_params->from, p_params->to, res, normal, face_index, true)) { |
1367 | real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from); |
1368 | if ((d > 0) && (d < p_params->min_d)) { |
1369 | p_params->min_d = d; |
1370 | p_params->result = res; |
1371 | p_params->normal = normal; |
1372 | p_params->face_index = face_index; |
1373 | p_params->collisions++; |
1374 | } |
1375 | } |
1376 | } else { |
1377 | if (params_bvh->left >= 0) { |
1378 | _cull_segment(params_bvh->left, p_params); |
1379 | } |
1380 | if (params_bvh->right >= 0) { |
1381 | _cull_segment(params_bvh->right, p_params); |
1382 | } |
1383 | } |
1384 | } |
1385 | |
1386 | bool GodotConcavePolygonShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
1387 | if (faces.size() == 0) { |
1388 | return false; |
1389 | } |
1390 | |
1391 | // unlock data |
1392 | const Face *fr = faces.ptr(); |
1393 | const Vector3 *vr = vertices.ptr(); |
1394 | const BVH *br = bvh.ptr(); |
1395 | |
1396 | GodotFaceShape3D face; |
1397 | face.backface_collision = backface_collision && p_hit_back_faces; |
1398 | |
1399 | _SegmentCullParams params; |
1400 | params.from = p_begin; |
1401 | params.to = p_end; |
1402 | params.dir = (p_end - p_begin).normalized(); |
1403 | |
1404 | params.faces = fr; |
1405 | params.vertices = vr; |
1406 | params.bvh = br; |
1407 | |
1408 | params.face = &face; |
1409 | |
1410 | // cull |
1411 | _cull_segment(0, ¶ms); |
1412 | |
1413 | if (params.collisions > 0) { |
1414 | r_result = params.result; |
1415 | r_normal = params.normal; |
1416 | r_face_index = params.face_index; |
1417 | return true; |
1418 | } else { |
1419 | return false; |
1420 | } |
1421 | } |
1422 | |
1423 | bool GodotConcavePolygonShape3D::intersect_point(const Vector3 &p_point) const { |
1424 | return false; //face is flat |
1425 | } |
1426 | |
1427 | Vector3 GodotConcavePolygonShape3D::get_closest_point_to(const Vector3 &p_point) const { |
1428 | return Vector3(); |
1429 | } |
1430 | |
1431 | bool GodotConcavePolygonShape3D::_cull(int p_idx, _CullParams *p_params) const { |
1432 | const BVH *params_bvh = &p_params->bvh[p_idx]; |
1433 | |
1434 | if (!p_params->aabb.intersects(params_bvh->aabb)) { |
1435 | return false; |
1436 | } |
1437 | |
1438 | if (params_bvh->face_index >= 0) { |
1439 | const Face *f = &p_params->faces[params_bvh->face_index]; |
1440 | GodotFaceShape3D *face = p_params->face; |
1441 | face->normal = f->normal; |
1442 | face->vertex[0] = p_params->vertices[f->indices[0]]; |
1443 | face->vertex[1] = p_params->vertices[f->indices[1]]; |
1444 | face->vertex[2] = p_params->vertices[f->indices[2]]; |
1445 | if (p_params->callback(p_params->userdata, face)) { |
1446 | return true; |
1447 | } |
1448 | } else { |
1449 | if (params_bvh->left >= 0) { |
1450 | if (_cull(params_bvh->left, p_params)) { |
1451 | return true; |
1452 | } |
1453 | } |
1454 | |
1455 | if (params_bvh->right >= 0) { |
1456 | if (_cull(params_bvh->right, p_params)) { |
1457 | return true; |
1458 | } |
1459 | } |
1460 | } |
1461 | |
1462 | return false; |
1463 | } |
1464 | |
1465 | void GodotConcavePolygonShape3D::cull(const AABB &p_local_aabb, QueryCallback p_callback, void *p_userdata, bool p_invert_backface_collision) const { |
1466 | // make matrix local to concave |
1467 | if (faces.size() == 0) { |
1468 | return; |
1469 | } |
1470 | |
1471 | AABB local_aabb = p_local_aabb; |
1472 | |
1473 | // unlock data |
1474 | const Face *fr = faces.ptr(); |
1475 | const Vector3 *vr = vertices.ptr(); |
1476 | const BVH *br = bvh.ptr(); |
1477 | |
1478 | GodotFaceShape3D face; // use this to send in the callback |
1479 | face.backface_collision = backface_collision; |
1480 | face.invert_backface_collision = p_invert_backface_collision; |
1481 | |
1482 | _CullParams params; |
1483 | params.aabb = local_aabb; |
1484 | params.face = &face; |
1485 | params.faces = fr; |
1486 | params.vertices = vr; |
1487 | params.bvh = br; |
1488 | params.callback = p_callback; |
1489 | params.userdata = p_userdata; |
1490 | |
1491 | // cull |
1492 | _cull(0, ¶ms); |
1493 | } |
1494 | |
1495 | Vector3 GodotConcavePolygonShape3D::get_moment_of_inertia(real_t p_mass) const { |
1496 | // use bad AABB approximation |
1497 | Vector3 extents = get_aabb().size * 0.5; |
1498 | |
1499 | return Vector3( |
1500 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
1501 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
1502 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
1503 | } |
1504 | |
1505 | struct _Volume_BVH_Element { |
1506 | AABB aabb; |
1507 | Vector3 center; |
1508 | int face_index = 0; |
1509 | }; |
1510 | |
1511 | struct _Volume_BVH_CompareX { |
1512 | _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const { |
1513 | return a.center.x < b.center.x; |
1514 | } |
1515 | }; |
1516 | |
1517 | struct _Volume_BVH_CompareY { |
1518 | _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const { |
1519 | return a.center.y < b.center.y; |
1520 | } |
1521 | }; |
1522 | |
1523 | struct _Volume_BVH_CompareZ { |
1524 | _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const { |
1525 | return a.center.z < b.center.z; |
1526 | } |
1527 | }; |
1528 | |
1529 | struct _Volume_BVH { |
1530 | AABB aabb; |
1531 | _Volume_BVH *left = nullptr; |
1532 | _Volume_BVH *right = nullptr; |
1533 | |
1534 | int face_index = 0; |
1535 | }; |
1536 | |
1537 | _Volume_BVH *_volume_build_bvh(_Volume_BVH_Element *p_elements, int p_size, int &count) { |
1538 | _Volume_BVH *bvh = memnew(_Volume_BVH); |
1539 | |
1540 | if (p_size == 1) { |
1541 | //leaf |
1542 | bvh->aabb = p_elements[0].aabb; |
1543 | bvh->left = nullptr; |
1544 | bvh->right = nullptr; |
1545 | bvh->face_index = p_elements->face_index; |
1546 | count++; |
1547 | return bvh; |
1548 | } else { |
1549 | bvh->face_index = -1; |
1550 | } |
1551 | |
1552 | AABB aabb; |
1553 | for (int i = 0; i < p_size; i++) { |
1554 | if (i == 0) { |
1555 | aabb = p_elements[i].aabb; |
1556 | } else { |
1557 | aabb.merge_with(p_elements[i].aabb); |
1558 | } |
1559 | } |
1560 | bvh->aabb = aabb; |
1561 | switch (aabb.get_longest_axis_index()) { |
1562 | case 0: { |
1563 | SortArray<_Volume_BVH_Element, _Volume_BVH_CompareX> sort_x; |
1564 | sort_x.sort(p_elements, p_size); |
1565 | |
1566 | } break; |
1567 | case 1: { |
1568 | SortArray<_Volume_BVH_Element, _Volume_BVH_CompareY> sort_y; |
1569 | sort_y.sort(p_elements, p_size); |
1570 | } break; |
1571 | case 2: { |
1572 | SortArray<_Volume_BVH_Element, _Volume_BVH_CompareZ> sort_z; |
1573 | sort_z.sort(p_elements, p_size); |
1574 | } break; |
1575 | } |
1576 | |
1577 | int split = p_size / 2; |
1578 | bvh->left = _volume_build_bvh(p_elements, split, count); |
1579 | bvh->right = _volume_build_bvh(&p_elements[split], p_size - split, count); |
1580 | |
1581 | //printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index); |
1582 | count++; |
1583 | return bvh; |
1584 | } |
1585 | |
1586 | void GodotConcavePolygonShape3D::_fill_bvh(_Volume_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) { |
1587 | int idx = p_idx; |
1588 | |
1589 | p_bvh_array[idx].aabb = p_bvh_tree->aabb; |
1590 | p_bvh_array[idx].face_index = p_bvh_tree->face_index; |
1591 | //printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right); |
1592 | |
1593 | if (p_bvh_tree->left) { |
1594 | p_bvh_array[idx].left = ++p_idx; |
1595 | _fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx); |
1596 | |
1597 | } else { |
1598 | p_bvh_array[p_idx].left = -1; |
1599 | } |
1600 | |
1601 | if (p_bvh_tree->right) { |
1602 | p_bvh_array[idx].right = ++p_idx; |
1603 | _fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx); |
1604 | |
1605 | } else { |
1606 | p_bvh_array[p_idx].right = -1; |
1607 | } |
1608 | |
1609 | memdelete(p_bvh_tree); |
1610 | } |
1611 | |
1612 | void GodotConcavePolygonShape3D::_setup(const Vector<Vector3> &p_faces, bool p_backface_collision) { |
1613 | int src_face_count = p_faces.size(); |
1614 | if (src_face_count == 0) { |
1615 | configure(AABB()); |
1616 | return; |
1617 | } |
1618 | ERR_FAIL_COND(src_face_count % 3); |
1619 | src_face_count /= 3; |
1620 | |
1621 | const Vector3 *facesr = p_faces.ptr(); |
1622 | |
1623 | Vector<_Volume_BVH_Element> bvh_array; |
1624 | bvh_array.resize(src_face_count); |
1625 | |
1626 | _Volume_BVH_Element *bvh_arrayw = bvh_array.ptrw(); |
1627 | |
1628 | faces.resize(src_face_count); |
1629 | Face *facesw = faces.ptrw(); |
1630 | |
1631 | vertices.resize(src_face_count * 3); |
1632 | |
1633 | Vector3 *verticesw = vertices.ptrw(); |
1634 | |
1635 | AABB _aabb; |
1636 | |
1637 | for (int i = 0; i < src_face_count; i++) { |
1638 | Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]); |
1639 | |
1640 | bvh_arrayw[i].aabb = face.get_aabb(); |
1641 | bvh_arrayw[i].center = bvh_arrayw[i].aabb.get_center(); |
1642 | bvh_arrayw[i].face_index = i; |
1643 | facesw[i].indices[0] = i * 3 + 0; |
1644 | facesw[i].indices[1] = i * 3 + 1; |
1645 | facesw[i].indices[2] = i * 3 + 2; |
1646 | facesw[i].normal = face.get_plane().normal; |
1647 | verticesw[i * 3 + 0] = face.vertex[0]; |
1648 | verticesw[i * 3 + 1] = face.vertex[1]; |
1649 | verticesw[i * 3 + 2] = face.vertex[2]; |
1650 | if (i == 0) { |
1651 | _aabb = bvh_arrayw[i].aabb; |
1652 | } else { |
1653 | _aabb.merge_with(bvh_arrayw[i].aabb); |
1654 | } |
1655 | } |
1656 | |
1657 | int count = 0; |
1658 | _Volume_BVH *bvh_tree = _volume_build_bvh(bvh_arrayw, src_face_count, count); |
1659 | |
1660 | bvh.resize(count + 1); |
1661 | |
1662 | BVH *bvh_arrayw2 = bvh.ptrw(); |
1663 | |
1664 | int idx = 0; |
1665 | _fill_bvh(bvh_tree, bvh_arrayw2, idx); |
1666 | |
1667 | backface_collision = p_backface_collision; |
1668 | |
1669 | configure(_aabb); // this type of shape has no margin |
1670 | } |
1671 | |
1672 | void GodotConcavePolygonShape3D::set_data(const Variant &p_data) { |
1673 | Dictionary d = p_data; |
1674 | ERR_FAIL_COND(!d.has("faces" )); |
1675 | |
1676 | _setup(d["faces" ], d["backface_collision" ]); |
1677 | } |
1678 | |
1679 | Variant GodotConcavePolygonShape3D::get_data() const { |
1680 | Dictionary d; |
1681 | d["faces" ] = get_faces(); |
1682 | d["backface_collision" ] = backface_collision; |
1683 | |
1684 | return d; |
1685 | } |
1686 | |
1687 | GodotConcavePolygonShape3D::GodotConcavePolygonShape3D() { |
1688 | } |
1689 | |
1690 | /* HEIGHT MAP SHAPE */ |
1691 | |
1692 | Vector<real_t> GodotHeightMapShape3D::get_heights() const { |
1693 | return heights; |
1694 | } |
1695 | |
1696 | int GodotHeightMapShape3D::get_width() const { |
1697 | return width; |
1698 | } |
1699 | |
1700 | int GodotHeightMapShape3D::get_depth() const { |
1701 | return depth; |
1702 | } |
1703 | |
1704 | void GodotHeightMapShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
1705 | //not very useful, but not very used either |
1706 | p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal), r_min, r_max); |
1707 | } |
1708 | |
1709 | Vector3 GodotHeightMapShape3D::get_support(const Vector3 &p_normal) const { |
1710 | //not very useful, but not very used either |
1711 | return get_aabb().get_support(p_normal); |
1712 | } |
1713 | |
1714 | struct _HeightmapSegmentCullParams { |
1715 | Vector3 from; |
1716 | Vector3 to; |
1717 | Vector3 dir; |
1718 | |
1719 | Vector3 result; |
1720 | Vector3 normal; |
1721 | |
1722 | const GodotHeightMapShape3D *heightmap = nullptr; |
1723 | GodotFaceShape3D *face = nullptr; |
1724 | }; |
1725 | |
1726 | struct _HeightmapGridCullState { |
1727 | real_t length = 0.0; |
1728 | real_t length_flat = 0.0; |
1729 | |
1730 | real_t dist = 0.0; |
1731 | real_t prev_dist = 0.0; |
1732 | |
1733 | int x = 0; |
1734 | int z = 0; |
1735 | }; |
1736 | |
1737 | _FORCE_INLINE_ bool _heightmap_face_cull_segment(_HeightmapSegmentCullParams &p_params) { |
1738 | Vector3 res; |
1739 | Vector3 normal; |
1740 | int fi = -1; |
1741 | if (p_params.face->intersect_segment(p_params.from, p_params.to, res, normal, fi, true)) { |
1742 | p_params.result = res; |
1743 | p_params.normal = normal; |
1744 | |
1745 | return true; |
1746 | } |
1747 | |
1748 | return false; |
1749 | } |
1750 | |
1751 | _FORCE_INLINE_ bool _heightmap_cell_cull_segment(_HeightmapSegmentCullParams &p_params, const _HeightmapGridCullState &p_state) { |
1752 | // First triangle. |
1753 | p_params.heightmap->_get_point(p_state.x, p_state.z, p_params.face->vertex[0]); |
1754 | p_params.heightmap->_get_point(p_state.x + 1, p_state.z, p_params.face->vertex[1]); |
1755 | p_params.heightmap->_get_point(p_state.x, p_state.z + 1, p_params.face->vertex[2]); |
1756 | p_params.face->normal = Plane(p_params.face->vertex[0], p_params.face->vertex[1], p_params.face->vertex[2]).normal; |
1757 | if (_heightmap_face_cull_segment(p_params)) { |
1758 | return true; |
1759 | } |
1760 | |
1761 | // Second triangle. |
1762 | p_params.face->vertex[0] = p_params.face->vertex[1]; |
1763 | p_params.heightmap->_get_point(p_state.x + 1, p_state.z + 1, p_params.face->vertex[1]); |
1764 | p_params.face->normal = Plane(p_params.face->vertex[0], p_params.face->vertex[1], p_params.face->vertex[2]).normal; |
1765 | if (_heightmap_face_cull_segment(p_params)) { |
1766 | return true; |
1767 | } |
1768 | |
1769 | return false; |
1770 | } |
1771 | |
1772 | _FORCE_INLINE_ bool _heightmap_chunk_cull_segment(_HeightmapSegmentCullParams &p_params, const _HeightmapGridCullState &p_state) { |
1773 | const GodotHeightMapShape3D::Range &chunk = p_params.heightmap->_get_bounds_chunk(p_state.x, p_state.z); |
1774 | |
1775 | Vector3 enter_pos; |
1776 | Vector3 exit_pos; |
1777 | |
1778 | if (p_state.length_flat > CMP_EPSILON) { |
1779 | real_t flat_to_3d = p_state.length / p_state.length_flat; |
1780 | real_t enter_param = p_state.prev_dist * flat_to_3d; |
1781 | real_t exit_param = p_state.dist * flat_to_3d; |
1782 | enter_pos = p_params.from + p_params.dir * enter_param; |
1783 | exit_pos = p_params.from + p_params.dir * exit_param; |
1784 | } else { |
1785 | // Consider the ray vertical. |
1786 | // (though we shouldn't reach this often because there is an early check up-front) |
1787 | enter_pos = p_params.from; |
1788 | exit_pos = p_params.to; |
1789 | } |
1790 | |
1791 | // Transform positions to heightmap space. |
1792 | enter_pos *= GodotHeightMapShape3D::BOUNDS_CHUNK_SIZE; |
1793 | exit_pos *= GodotHeightMapShape3D::BOUNDS_CHUNK_SIZE; |
1794 | |
1795 | // We did enter the flat projection of the AABB, |
1796 | // but we have to check if we intersect it on the vertical axis. |
1797 | if ((enter_pos.y > chunk.max) && (exit_pos.y > chunk.max)) { |
1798 | return false; |
1799 | } |
1800 | if ((enter_pos.y < chunk.min) && (exit_pos.y < chunk.min)) { |
1801 | return false; |
1802 | } |
1803 | |
1804 | return p_params.heightmap->_intersect_grid_segment(_heightmap_cell_cull_segment, enter_pos, exit_pos, p_params.heightmap->width, p_params.heightmap->depth, p_params.heightmap->local_origin, p_params.result, p_params.normal); |
1805 | } |
1806 | |
1807 | template <typename ProcessFunction> |
1808 | bool GodotHeightMapShape3D::_intersect_grid_segment(ProcessFunction &p_process, const Vector3 &p_begin, const Vector3 &p_end, int p_width, int p_depth, const Vector3 &offset, Vector3 &r_point, Vector3 &r_normal) const { |
1809 | Vector3 delta = (p_end - p_begin); |
1810 | real_t length = delta.length(); |
1811 | |
1812 | if (length < CMP_EPSILON) { |
1813 | return false; |
1814 | } |
1815 | |
1816 | Vector3 local_begin = p_begin + offset; |
1817 | |
1818 | GodotFaceShape3D face; |
1819 | face.backface_collision = false; |
1820 | |
1821 | _HeightmapSegmentCullParams params; |
1822 | params.from = p_begin; |
1823 | params.to = p_end; |
1824 | params.dir = delta / length; |
1825 | params.heightmap = this; |
1826 | params.face = &face; |
1827 | |
1828 | _HeightmapGridCullState state; |
1829 | |
1830 | // Perform grid query from projected ray. |
1831 | Vector2 ray_dir_flat(delta.x, delta.z); |
1832 | state.length = length; |
1833 | state.length_flat = ray_dir_flat.length(); |
1834 | |
1835 | if (state.length_flat < CMP_EPSILON) { |
1836 | ray_dir_flat = Vector2(); |
1837 | } else { |
1838 | ray_dir_flat /= state.length_flat; |
1839 | } |
1840 | |
1841 | const int x_step = (ray_dir_flat.x > CMP_EPSILON) ? 1 : ((ray_dir_flat.x < -CMP_EPSILON) ? -1 : 0); |
1842 | const int z_step = (ray_dir_flat.y > CMP_EPSILON) ? 1 : ((ray_dir_flat.y < -CMP_EPSILON) ? -1 : 0); |
1843 | |
1844 | const real_t infinite = 1e20; |
1845 | const real_t delta_x = (x_step != 0) ? 1.f / Math::abs(ray_dir_flat.x) : infinite; |
1846 | const real_t delta_z = (z_step != 0) ? 1.f / Math::abs(ray_dir_flat.y) : infinite; |
1847 | |
1848 | real_t cross_x; // At which value of `param` we will cross a x-axis lane? |
1849 | real_t cross_z; // At which value of `param` we will cross a z-axis lane? |
1850 | |
1851 | // X initialization. |
1852 | if (x_step != 0) { |
1853 | if (x_step == 1) { |
1854 | cross_x = (Math::ceil(local_begin.x) - local_begin.x) * delta_x; |
1855 | } else { |
1856 | cross_x = (local_begin.x - Math::floor(local_begin.x)) * delta_x; |
1857 | } |
1858 | } else { |
1859 | cross_x = infinite; // Will never cross on X. |
1860 | } |
1861 | |
1862 | // Z initialization. |
1863 | if (z_step != 0) { |
1864 | if (z_step == 1) { |
1865 | cross_z = (Math::ceil(local_begin.z) - local_begin.z) * delta_z; |
1866 | } else { |
1867 | cross_z = (local_begin.z - Math::floor(local_begin.z)) * delta_z; |
1868 | } |
1869 | } else { |
1870 | cross_z = infinite; // Will never cross on Z. |
1871 | } |
1872 | |
1873 | int x = Math::floor(local_begin.x); |
1874 | int z = Math::floor(local_begin.z); |
1875 | |
1876 | // Workaround cases where the ray starts at an integer position. |
1877 | if (Math::is_zero_approx(cross_x)) { |
1878 | cross_x += delta_x; |
1879 | // If going backwards, we should ignore the position we would get by the above flooring, |
1880 | // because the ray is not heading in that direction. |
1881 | if (x_step == -1) { |
1882 | x -= 1; |
1883 | } |
1884 | } |
1885 | |
1886 | if (Math::is_zero_approx(cross_z)) { |
1887 | cross_z += delta_z; |
1888 | if (z_step == -1) { |
1889 | z -= 1; |
1890 | } |
1891 | } |
1892 | |
1893 | // Start inside the grid. |
1894 | int x_start = MAX(MIN(x, p_width - 2), 0); |
1895 | int z_start = MAX(MIN(z, p_depth - 2), 0); |
1896 | |
1897 | // Adjust initial cross values. |
1898 | cross_x += delta_x * x_step * (x_start - x); |
1899 | cross_z += delta_z * z_step * (z_start - z); |
1900 | |
1901 | x = x_start; |
1902 | z = z_start; |
1903 | |
1904 | while (true) { |
1905 | state.prev_dist = state.dist; |
1906 | state.x = x; |
1907 | state.z = z; |
1908 | |
1909 | if (cross_x < cross_z) { |
1910 | // X lane. |
1911 | x += x_step; |
1912 | // Assign before advancing the param, |
1913 | // to be in sync with the initialization step. |
1914 | state.dist = cross_x; |
1915 | cross_x += delta_x; |
1916 | } else { |
1917 | // Z lane. |
1918 | z += z_step; |
1919 | state.dist = cross_z; |
1920 | cross_z += delta_z; |
1921 | } |
1922 | |
1923 | if (state.dist > state.length_flat) { |
1924 | state.dist = state.length_flat; |
1925 | if (p_process(params, state)) { |
1926 | r_point = params.result; |
1927 | r_normal = params.normal; |
1928 | return true; |
1929 | } |
1930 | break; |
1931 | } |
1932 | |
1933 | if (p_process(params, state)) { |
1934 | r_point = params.result; |
1935 | r_normal = params.normal; |
1936 | return true; |
1937 | } |
1938 | |
1939 | // Stop when outside the grid. |
1940 | if ((x < 0) || (z < 0) || (x >= p_width - 1) || (z >= p_depth - 1)) { |
1941 | break; |
1942 | } |
1943 | } |
1944 | |
1945 | return false; |
1946 | } |
1947 | |
1948 | bool GodotHeightMapShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
1949 | if (heights.is_empty()) { |
1950 | return false; |
1951 | } |
1952 | |
1953 | Vector3 local_begin = p_begin + local_origin; |
1954 | Vector3 local_end = p_end + local_origin; |
1955 | |
1956 | // Quantize the ray begin/end. |
1957 | int begin_x = Math::floor(local_begin.x); |
1958 | int begin_z = Math::floor(local_begin.z); |
1959 | int end_x = Math::floor(local_end.x); |
1960 | int end_z = Math::floor(local_end.z); |
1961 | |
1962 | if ((begin_x == end_x) && (begin_z == end_z)) { |
1963 | // Simple case for rays that don't traverse the grid horizontally. |
1964 | // Just perform a test on the given cell. |
1965 | GodotFaceShape3D face; |
1966 | face.backface_collision = p_hit_back_faces; |
1967 | |
1968 | _HeightmapSegmentCullParams params; |
1969 | params.from = p_begin; |
1970 | params.to = p_end; |
1971 | params.dir = (p_end - p_begin).normalized(); |
1972 | |
1973 | params.heightmap = this; |
1974 | params.face = &face; |
1975 | |
1976 | _HeightmapGridCullState state; |
1977 | state.x = MAX(MIN(begin_x, width - 2), 0); |
1978 | state.z = MAX(MIN(begin_z, depth - 2), 0); |
1979 | if (_heightmap_cell_cull_segment(params, state)) { |
1980 | r_point = params.result; |
1981 | r_normal = params.normal; |
1982 | return true; |
1983 | } |
1984 | } else if (bounds_grid.is_empty()) { |
1985 | // Process all cells intersecting the flat projection of the ray. |
1986 | return _intersect_grid_segment(_heightmap_cell_cull_segment, p_begin, p_end, width, depth, local_origin, r_point, r_normal); |
1987 | } else { |
1988 | Vector3 ray_diff = (p_end - p_begin); |
1989 | real_t length_flat_sqr = ray_diff.x * ray_diff.x + ray_diff.z * ray_diff.z; |
1990 | if (length_flat_sqr < BOUNDS_CHUNK_SIZE * BOUNDS_CHUNK_SIZE) { |
1991 | // Don't use chunks, the ray is too short in the plane. |
1992 | return _intersect_grid_segment(_heightmap_cell_cull_segment, p_begin, p_end, width, depth, local_origin, r_point, r_normal); |
1993 | } else { |
1994 | // The ray is long, run raycast on a higher-level grid. |
1995 | Vector3 bounds_from = p_begin / BOUNDS_CHUNK_SIZE; |
1996 | Vector3 bounds_to = p_end / BOUNDS_CHUNK_SIZE; |
1997 | Vector3 bounds_offset = local_origin / BOUNDS_CHUNK_SIZE; |
1998 | return _intersect_grid_segment(_heightmap_chunk_cull_segment, bounds_from, bounds_to, bounds_grid_width, bounds_grid_depth, bounds_offset, r_point, r_normal); |
1999 | } |
2000 | } |
2001 | |
2002 | return false; |
2003 | } |
2004 | |
2005 | bool GodotHeightMapShape3D::intersect_point(const Vector3 &p_point) const { |
2006 | return false; |
2007 | } |
2008 | |
2009 | Vector3 GodotHeightMapShape3D::get_closest_point_to(const Vector3 &p_point) const { |
2010 | return Vector3(); |
2011 | } |
2012 | |
2013 | void GodotHeightMapShape3D::_get_cell(const Vector3 &p_point, int &r_x, int &r_y, int &r_z) const { |
2014 | const AABB &shape_aabb = get_aabb(); |
2015 | |
2016 | Vector3 pos_local = shape_aabb.position + local_origin; |
2017 | |
2018 | Vector3 clamped_point(p_point); |
2019 | clamped_point.x = CLAMP(p_point.x, pos_local.x, pos_local.x + shape_aabb.size.x); |
2020 | clamped_point.y = CLAMP(p_point.y, pos_local.y, pos_local.y + shape_aabb.size.y); |
2021 | clamped_point.z = CLAMP(p_point.z, pos_local.z, pos_local.z + shape_aabb.size.z); |
2022 | |
2023 | r_x = (clamped_point.x < 0.0) ? (clamped_point.x - 0.5) : (clamped_point.x + 0.5); |
2024 | r_y = (clamped_point.y < 0.0) ? (clamped_point.y - 0.5) : (clamped_point.y + 0.5); |
2025 | r_z = (clamped_point.z < 0.0) ? (clamped_point.z - 0.5) : (clamped_point.z + 0.5); |
2026 | } |
2027 | |
2028 | void GodotHeightMapShape3D::cull(const AABB &p_local_aabb, QueryCallback p_callback, void *p_userdata, bool p_invert_backface_collision) const { |
2029 | if (heights.is_empty()) { |
2030 | return; |
2031 | } |
2032 | |
2033 | AABB local_aabb = p_local_aabb; |
2034 | local_aabb.position += local_origin; |
2035 | |
2036 | // Quantize the aabb, and adjust the start/end ranges. |
2037 | int aabb_min[3]; |
2038 | int aabb_max[3]; |
2039 | _get_cell(local_aabb.position, aabb_min[0], aabb_min[1], aabb_min[2]); |
2040 | _get_cell(local_aabb.position + local_aabb.size, aabb_max[0], aabb_max[1], aabb_max[2]); |
2041 | |
2042 | // Expand the min/max quantized values. |
2043 | // This is to catch the case where the input aabb falls between grid points. |
2044 | for (int i = 0; i < 3; ++i) { |
2045 | aabb_min[i]--; |
2046 | aabb_max[i]++; |
2047 | } |
2048 | |
2049 | int start_x = MAX(0, aabb_min[0]); |
2050 | int end_x = MIN(width - 1, aabb_max[0]); |
2051 | int start_z = MAX(0, aabb_min[2]); |
2052 | int end_z = MIN(depth - 1, aabb_max[2]); |
2053 | |
2054 | GodotFaceShape3D face; |
2055 | face.backface_collision = !p_invert_backface_collision; |
2056 | face.invert_backface_collision = p_invert_backface_collision; |
2057 | |
2058 | for (int z = start_z; z < end_z; z++) { |
2059 | for (int x = start_x; x < end_x; x++) { |
2060 | // First triangle. |
2061 | _get_point(x, z, face.vertex[0]); |
2062 | _get_point(x + 1, z, face.vertex[1]); |
2063 | _get_point(x, z + 1, face.vertex[2]); |
2064 | face.normal = Plane(face.vertex[0], face.vertex[1], face.vertex[2]).normal; |
2065 | if (p_callback(p_userdata, &face)) { |
2066 | return; |
2067 | } |
2068 | |
2069 | // Second triangle. |
2070 | face.vertex[0] = face.vertex[1]; |
2071 | _get_point(x + 1, z + 1, face.vertex[1]); |
2072 | face.normal = Plane(face.vertex[0], face.vertex[1], face.vertex[2]).normal; |
2073 | if (p_callback(p_userdata, &face)) { |
2074 | return; |
2075 | } |
2076 | } |
2077 | } |
2078 | } |
2079 | |
2080 | Vector3 GodotHeightMapShape3D::get_moment_of_inertia(real_t p_mass) const { |
2081 | // use bad AABB approximation |
2082 | Vector3 extents = get_aabb().size * 0.5; |
2083 | |
2084 | return Vector3( |
2085 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
2086 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
2087 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
2088 | } |
2089 | |
2090 | void GodotHeightMapShape3D::_build_accelerator() { |
2091 | bounds_grid.clear(); |
2092 | |
2093 | bounds_grid_width = width / BOUNDS_CHUNK_SIZE; |
2094 | bounds_grid_depth = depth / BOUNDS_CHUNK_SIZE; |
2095 | |
2096 | if (width % BOUNDS_CHUNK_SIZE > 0) { |
2097 | ++bounds_grid_width; // In case terrain size isn't dividable by chunk size. |
2098 | } |
2099 | |
2100 | if (depth % BOUNDS_CHUNK_SIZE > 0) { |
2101 | ++bounds_grid_depth; |
2102 | } |
2103 | |
2104 | uint32_t bound_grid_size = (uint32_t)(bounds_grid_width * bounds_grid_depth); |
2105 | |
2106 | if (bound_grid_size < 2) { |
2107 | // Grid is empty or just one chunk. |
2108 | return; |
2109 | } |
2110 | |
2111 | bounds_grid.resize(bound_grid_size); |
2112 | |
2113 | // Compute min and max height for all chunks. |
2114 | for (int cz = 0; cz < bounds_grid_depth; ++cz) { |
2115 | int z0 = cz * BOUNDS_CHUNK_SIZE; |
2116 | |
2117 | for (int cx = 0; cx < bounds_grid_width; ++cx) { |
2118 | int x0 = cx * BOUNDS_CHUNK_SIZE; |
2119 | |
2120 | Range r; |
2121 | |
2122 | r.min = _get_height(x0, z0); |
2123 | r.max = r.min; |
2124 | |
2125 | // Compute min and max height for this chunk. |
2126 | // We have to include one extra cell to account for neighbors. |
2127 | // Here is why: |
2128 | // Say we have a flat terrain, and a plateau that fits a chunk perfectly. |
2129 | // |
2130 | // Left Right |
2131 | // 0---0---0---1---1---1 |
2132 | // | | | | | | |
2133 | // 0---0---0---1---1---1 |
2134 | // | | | | | | |
2135 | // 0---0---0---1---1---1 |
2136 | // x |
2137 | // |
2138 | // If the AABB for the Left chunk did not share vertices with the Right, |
2139 | // then we would fail collision tests at x due to a gap. |
2140 | // |
2141 | int z_max = MIN(z0 + BOUNDS_CHUNK_SIZE + 1, depth); |
2142 | int x_max = MIN(x0 + BOUNDS_CHUNK_SIZE + 1, width); |
2143 | for (int z = z0; z < z_max; ++z) { |
2144 | for (int x = x0; x < x_max; ++x) { |
2145 | real_t height = _get_height(x, z); |
2146 | if (height < r.min) { |
2147 | r.min = height; |
2148 | } else if (height > r.max) { |
2149 | r.max = height; |
2150 | } |
2151 | } |
2152 | } |
2153 | |
2154 | bounds_grid[cx + cz * bounds_grid_width] = r; |
2155 | } |
2156 | } |
2157 | } |
2158 | |
2159 | void GodotHeightMapShape3D::_setup(const Vector<real_t> &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) { |
2160 | heights = p_heights; |
2161 | width = p_width; |
2162 | depth = p_depth; |
2163 | |
2164 | // Initialize aabb. |
2165 | AABB aabb_new; |
2166 | aabb_new.position = Vector3(0.0, p_min_height, 0.0); |
2167 | aabb_new.size = Vector3(p_width - 1, p_max_height - p_min_height, p_depth - 1); |
2168 | |
2169 | // Initialize origin as the aabb center. |
2170 | local_origin = aabb_new.position + 0.5 * aabb_new.size; |
2171 | local_origin.y = 0.0; |
2172 | |
2173 | aabb_new.position -= local_origin; |
2174 | |
2175 | _build_accelerator(); |
2176 | |
2177 | configure(aabb_new); |
2178 | } |
2179 | |
2180 | void GodotHeightMapShape3D::set_data(const Variant &p_data) { |
2181 | ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY); |
2182 | |
2183 | Dictionary d = p_data; |
2184 | ERR_FAIL_COND(!d.has("width" )); |
2185 | ERR_FAIL_COND(!d.has("depth" )); |
2186 | ERR_FAIL_COND(!d.has("heights" )); |
2187 | |
2188 | int width_new = d["width" ]; |
2189 | int depth_new = d["depth" ]; |
2190 | |
2191 | ERR_FAIL_COND(width_new <= 0.0); |
2192 | ERR_FAIL_COND(depth_new <= 0.0); |
2193 | |
2194 | Variant heights_variant = d["heights" ]; |
2195 | Vector<real_t> heights_buffer; |
2196 | #ifdef REAL_T_IS_DOUBLE |
2197 | if (heights_variant.get_type() == Variant::PACKED_FLOAT64_ARRAY) { |
2198 | #else |
2199 | if (heights_variant.get_type() == Variant::PACKED_FLOAT32_ARRAY) { |
2200 | #endif |
2201 | // Ready-to-use heights can be passed. |
2202 | heights_buffer = heights_variant; |
2203 | } else if (heights_variant.get_type() == Variant::OBJECT) { |
2204 | // If an image is passed, we have to convert it. |
2205 | // This would be expensive to do with a script, so it's nice to have it here. |
2206 | Ref<Image> image = heights_variant; |
2207 | ERR_FAIL_COND(image.is_null()); |
2208 | ERR_FAIL_COND(image->get_format() != Image::FORMAT_RF); |
2209 | |
2210 | PackedByteArray im_data = image->get_data(); |
2211 | heights_buffer.resize(image->get_width() * image->get_height()); |
2212 | |
2213 | real_t *w = heights_buffer.ptrw(); |
2214 | real_t *rp = (real_t *)im_data.ptr(); |
2215 | for (int i = 0; i < heights_buffer.size(); ++i) { |
2216 | w[i] = rp[i]; |
2217 | } |
2218 | } else { |
2219 | #ifdef REAL_T_IS_DOUBLE |
2220 | ERR_FAIL_MSG("Expected PackedFloat64Array or float Image." ); |
2221 | #else |
2222 | ERR_FAIL_MSG("Expected PackedFloat32Array or float Image." ); |
2223 | #endif |
2224 | } |
2225 | |
2226 | // Compute min and max heights or use precomputed values. |
2227 | real_t min_height = 0.0; |
2228 | real_t max_height = 0.0; |
2229 | if (d.has("min_height" ) && d.has("max_height" )) { |
2230 | min_height = d["min_height" ]; |
2231 | max_height = d["max_height" ]; |
2232 | } else { |
2233 | int heights_size = heights.size(); |
2234 | for (int i = 0; i < heights_size; ++i) { |
2235 | real_t h = heights[i]; |
2236 | if (h < min_height) { |
2237 | min_height = h; |
2238 | } else if (h > max_height) { |
2239 | max_height = h; |
2240 | } |
2241 | } |
2242 | } |
2243 | |
2244 | ERR_FAIL_COND(min_height > max_height); |
2245 | |
2246 | ERR_FAIL_COND(heights_buffer.size() != (width_new * depth_new)); |
2247 | |
2248 | // If specified, min and max height will be used as precomputed values. |
2249 | _setup(heights_buffer, width_new, depth_new, min_height, max_height); |
2250 | } |
2251 | |
2252 | Variant GodotHeightMapShape3D::get_data() const { |
2253 | Dictionary d; |
2254 | d["width" ] = width; |
2255 | d["depth" ] = depth; |
2256 | |
2257 | const AABB &shape_aabb = get_aabb(); |
2258 | d["min_height" ] = shape_aabb.position.y; |
2259 | d["max_height" ] = shape_aabb.position.y + shape_aabb.size.y; |
2260 | |
2261 | d["heights" ] = heights; |
2262 | |
2263 | return d; |
2264 | } |
2265 | |
2266 | GodotHeightMapShape3D::GodotHeightMapShape3D() { |
2267 | } |
2268 | |