| 1 | /**************************************************************************/ |
| 2 | /* godot_shape_3d.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "godot_shape_3d.h" |
| 32 | |
| 33 | #include "core/io/image.h" |
| 34 | #include "core/math/convex_hull.h" |
| 35 | #include "core/math/geometry_3d.h" |
| 36 | #include "core/templates/sort_array.h" |
| 37 | |
| 38 | // GodotHeightMapShape3D is based on Bullet btHeightfieldTerrainShape. |
| 39 | |
| 40 | /* |
| 41 | Bullet Continuous Collision Detection and Physics Library |
| 42 | Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org |
| 43 | |
| 44 | This software is provided 'as-is', without any express or implied warranty. |
| 45 | In no event will the authors be held liable for any damages arising from the use of this software. |
| 46 | Permission is granted to anyone to use this software for any purpose, |
| 47 | including commercial applications, and to alter it and redistribute it freely, |
| 48 | subject to the following restrictions: |
| 49 | |
| 50 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
| 51 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
| 52 | 3. This notice may not be removed or altered from any source distribution. |
| 53 | */ |
| 54 | |
| 55 | const double edge_support_threshold = 0.99999998; |
| 56 | const double edge_support_threshold_lower = Math::sqrt(1.0 - edge_support_threshold * edge_support_threshold); |
| 57 | // For a unit normal vector n, the horizontality condition |
| 58 | // sqrt(n.x * n.x + n.z * n.z) > edge_support_threshold |
| 59 | // is equivalent to the condition |
| 60 | // abs(n.y) < edge_support_threshold_lower, |
| 61 | // which is cheaper to test. |
| 62 | const double face_support_threshold = 0.9998; |
| 63 | |
| 64 | const double cylinder_edge_support_threshold = 0.999998; |
| 65 | const double cylinder_edge_support_threshold_lower = Math::sqrt(1.0 - cylinder_edge_support_threshold * cylinder_edge_support_threshold); |
| 66 | const double cylinder_face_support_threshold = 0.999; |
| 67 | |
| 68 | void GodotShape3D::configure(const AABB &p_aabb) { |
| 69 | aabb = p_aabb; |
| 70 | configured = true; |
| 71 | for (const KeyValue<GodotShapeOwner3D *, int> &E : owners) { |
| 72 | GodotShapeOwner3D *co = const_cast<GodotShapeOwner3D *>(E.key); |
| 73 | co->_shape_changed(); |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | Vector3 GodotShape3D::get_support(const Vector3 &p_normal) const { |
| 78 | Vector3 res; |
| 79 | int amnt; |
| 80 | FeatureType type; |
| 81 | get_supports(p_normal, 1, &res, amnt, type); |
| 82 | return res; |
| 83 | } |
| 84 | |
| 85 | void GodotShape3D::add_owner(GodotShapeOwner3D *p_owner) { |
| 86 | HashMap<GodotShapeOwner3D *, int>::Iterator E = owners.find(p_owner); |
| 87 | if (E) { |
| 88 | E->value++; |
| 89 | } else { |
| 90 | owners[p_owner] = 1; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | void GodotShape3D::remove_owner(GodotShapeOwner3D *p_owner) { |
| 95 | HashMap<GodotShapeOwner3D *, int>::Iterator E = owners.find(p_owner); |
| 96 | ERR_FAIL_COND(!E); |
| 97 | E->value--; |
| 98 | if (E->value == 0) { |
| 99 | owners.remove(E); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | bool GodotShape3D::is_owner(GodotShapeOwner3D *p_owner) const { |
| 104 | return owners.has(p_owner); |
| 105 | } |
| 106 | |
| 107 | const HashMap<GodotShapeOwner3D *, int> &GodotShape3D::get_owners() const { |
| 108 | return owners; |
| 109 | } |
| 110 | |
| 111 | GodotShape3D::~GodotShape3D() { |
| 112 | ERR_FAIL_COND(owners.size()); |
| 113 | } |
| 114 | |
| 115 | Plane GodotWorldBoundaryShape3D::get_plane() const { |
| 116 | return plane; |
| 117 | } |
| 118 | |
| 119 | void GodotWorldBoundaryShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 120 | // gibberish, a plane is infinity |
| 121 | r_min = -1e7; |
| 122 | r_max = 1e7; |
| 123 | } |
| 124 | |
| 125 | Vector3 GodotWorldBoundaryShape3D::get_support(const Vector3 &p_normal) const { |
| 126 | return p_normal * 1e15; |
| 127 | } |
| 128 | |
| 129 | bool GodotWorldBoundaryShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 130 | bool inters = plane.intersects_segment(p_begin, p_end, &r_result); |
| 131 | if (inters) { |
| 132 | r_normal = plane.normal; |
| 133 | } |
| 134 | return inters; |
| 135 | } |
| 136 | |
| 137 | bool GodotWorldBoundaryShape3D::intersect_point(const Vector3 &p_point) const { |
| 138 | return plane.distance_to(p_point) < 0; |
| 139 | } |
| 140 | |
| 141 | Vector3 GodotWorldBoundaryShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 142 | if (plane.is_point_over(p_point)) { |
| 143 | return plane.project(p_point); |
| 144 | } else { |
| 145 | return p_point; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | Vector3 GodotWorldBoundaryShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 150 | return Vector3(); // not applicable. |
| 151 | } |
| 152 | |
| 153 | void GodotWorldBoundaryShape3D::_setup(const Plane &p_plane) { |
| 154 | plane = p_plane; |
| 155 | configure(AABB(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2))); |
| 156 | } |
| 157 | |
| 158 | void GodotWorldBoundaryShape3D::set_data(const Variant &p_data) { |
| 159 | _setup(p_data); |
| 160 | } |
| 161 | |
| 162 | Variant GodotWorldBoundaryShape3D::get_data() const { |
| 163 | return plane; |
| 164 | } |
| 165 | |
| 166 | GodotWorldBoundaryShape3D::GodotWorldBoundaryShape3D() { |
| 167 | } |
| 168 | |
| 169 | // |
| 170 | |
| 171 | real_t GodotSeparationRayShape3D::get_length() const { |
| 172 | return length; |
| 173 | } |
| 174 | |
| 175 | bool GodotSeparationRayShape3D::get_slide_on_slope() const { |
| 176 | return slide_on_slope; |
| 177 | } |
| 178 | |
| 179 | void GodotSeparationRayShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 180 | // don't think this will be even used |
| 181 | r_min = 0; |
| 182 | r_max = 1; |
| 183 | } |
| 184 | |
| 185 | Vector3 GodotSeparationRayShape3D::get_support(const Vector3 &p_normal) const { |
| 186 | if (p_normal.z > 0) { |
| 187 | return Vector3(0, 0, length); |
| 188 | } else { |
| 189 | return Vector3(0, 0, 0); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | void GodotSeparationRayShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
| 194 | if (Math::abs(p_normal.z) < edge_support_threshold_lower) { |
| 195 | r_amount = 2; |
| 196 | r_type = FEATURE_EDGE; |
| 197 | r_supports[0] = Vector3(0, 0, 0); |
| 198 | r_supports[1] = Vector3(0, 0, length); |
| 199 | } else if (p_normal.z > 0) { |
| 200 | r_amount = 1; |
| 201 | r_type = FEATURE_POINT; |
| 202 | *r_supports = Vector3(0, 0, length); |
| 203 | } else { |
| 204 | r_amount = 1; |
| 205 | r_type = FEATURE_POINT; |
| 206 | *r_supports = Vector3(0, 0, 0); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | bool GodotSeparationRayShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 211 | return false; //simply not possible |
| 212 | } |
| 213 | |
| 214 | bool GodotSeparationRayShape3D::intersect_point(const Vector3 &p_point) const { |
| 215 | return false; //simply not possible |
| 216 | } |
| 217 | |
| 218 | Vector3 GodotSeparationRayShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 219 | Vector3 s[2] = { |
| 220 | Vector3(0, 0, 0), |
| 221 | Vector3(0, 0, length) |
| 222 | }; |
| 223 | |
| 224 | return Geometry3D::get_closest_point_to_segment(p_point, s); |
| 225 | } |
| 226 | |
| 227 | Vector3 GodotSeparationRayShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 228 | return Vector3(); |
| 229 | } |
| 230 | |
| 231 | void GodotSeparationRayShape3D::_setup(real_t p_length, bool p_slide_on_slope) { |
| 232 | length = p_length; |
| 233 | slide_on_slope = p_slide_on_slope; |
| 234 | configure(AABB(Vector3(0, 0, 0), Vector3(0.1, 0.1, length))); |
| 235 | } |
| 236 | |
| 237 | void GodotSeparationRayShape3D::set_data(const Variant &p_data) { |
| 238 | Dictionary d = p_data; |
| 239 | _setup(d["length" ], d["slide_on_slope" ]); |
| 240 | } |
| 241 | |
| 242 | Variant GodotSeparationRayShape3D::get_data() const { |
| 243 | Dictionary d; |
| 244 | d["length" ] = length; |
| 245 | d["slide_on_slope" ] = slide_on_slope; |
| 246 | return d; |
| 247 | } |
| 248 | |
| 249 | GodotSeparationRayShape3D::GodotSeparationRayShape3D() {} |
| 250 | |
| 251 | /********** SPHERE *************/ |
| 252 | |
| 253 | real_t GodotSphereShape3D::get_radius() const { |
| 254 | return radius; |
| 255 | } |
| 256 | |
| 257 | void GodotSphereShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 258 | real_t d = p_normal.dot(p_transform.origin); |
| 259 | |
| 260 | // figure out scale at point |
| 261 | Vector3 local_normal = p_transform.basis.xform_inv(p_normal); |
| 262 | real_t scale = local_normal.length(); |
| 263 | |
| 264 | r_min = d - (radius)*scale; |
| 265 | r_max = d + (radius)*scale; |
| 266 | } |
| 267 | |
| 268 | Vector3 GodotSphereShape3D::get_support(const Vector3 &p_normal) const { |
| 269 | return p_normal * radius; |
| 270 | } |
| 271 | |
| 272 | void GodotSphereShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
| 273 | *r_supports = p_normal * radius; |
| 274 | r_amount = 1; |
| 275 | r_type = FEATURE_POINT; |
| 276 | } |
| 277 | |
| 278 | bool GodotSphereShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 279 | return Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal); |
| 280 | } |
| 281 | |
| 282 | bool GodotSphereShape3D::intersect_point(const Vector3 &p_point) const { |
| 283 | return p_point.length() < radius; |
| 284 | } |
| 285 | |
| 286 | Vector3 GodotSphereShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 287 | Vector3 p = p_point; |
| 288 | real_t l = p.length(); |
| 289 | if (l < radius) { |
| 290 | return p_point; |
| 291 | } |
| 292 | return (p / l) * radius; |
| 293 | } |
| 294 | |
| 295 | Vector3 GodotSphereShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 296 | real_t s = 0.4 * p_mass * radius * radius; |
| 297 | return Vector3(s, s, s); |
| 298 | } |
| 299 | |
| 300 | void GodotSphereShape3D::_setup(real_t p_radius) { |
| 301 | radius = p_radius; |
| 302 | configure(AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0))); |
| 303 | } |
| 304 | |
| 305 | void GodotSphereShape3D::set_data(const Variant &p_data) { |
| 306 | _setup(p_data); |
| 307 | } |
| 308 | |
| 309 | Variant GodotSphereShape3D::get_data() const { |
| 310 | return radius; |
| 311 | } |
| 312 | |
| 313 | GodotSphereShape3D::GodotSphereShape3D() {} |
| 314 | |
| 315 | /********** BOX *************/ |
| 316 | |
| 317 | void GodotBoxShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 318 | // no matter the angle, the box is mirrored anyway |
| 319 | Vector3 local_normal = p_transform.basis.xform_inv(p_normal); |
| 320 | |
| 321 | real_t length = local_normal.abs().dot(half_extents); |
| 322 | real_t distance = p_normal.dot(p_transform.origin); |
| 323 | |
| 324 | r_min = distance - length; |
| 325 | r_max = distance + length; |
| 326 | } |
| 327 | |
| 328 | Vector3 GodotBoxShape3D::get_support(const Vector3 &p_normal) const { |
| 329 | Vector3 point( |
| 330 | (p_normal.x < 0) ? -half_extents.x : half_extents.x, |
| 331 | (p_normal.y < 0) ? -half_extents.y : half_extents.y, |
| 332 | (p_normal.z < 0) ? -half_extents.z : half_extents.z); |
| 333 | |
| 334 | return point; |
| 335 | } |
| 336 | |
| 337 | void GodotBoxShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
| 338 | static const int next[3] = { 1, 2, 0 }; |
| 339 | static const int next2[3] = { 2, 0, 1 }; |
| 340 | |
| 341 | for (int i = 0; i < 3; i++) { |
| 342 | Vector3 axis; |
| 343 | axis[i] = 1.0; |
| 344 | real_t dot = p_normal.dot(axis); |
| 345 | if (Math::abs(dot) > face_support_threshold) { |
| 346 | //Vector3 axis_b; |
| 347 | |
| 348 | bool neg = dot < 0; |
| 349 | r_amount = 4; |
| 350 | r_type = FEATURE_FACE; |
| 351 | |
| 352 | Vector3 point; |
| 353 | point[i] = half_extents[i]; |
| 354 | |
| 355 | int i_n = next[i]; |
| 356 | int i_n2 = next2[i]; |
| 357 | |
| 358 | static const real_t sign[4][2] = { |
| 359 | { -1.0, 1.0 }, |
| 360 | { 1.0, 1.0 }, |
| 361 | { 1.0, -1.0 }, |
| 362 | { -1.0, -1.0 }, |
| 363 | }; |
| 364 | |
| 365 | for (int j = 0; j < 4; j++) { |
| 366 | point[i_n] = sign[j][0] * half_extents[i_n]; |
| 367 | point[i_n2] = sign[j][1] * half_extents[i_n2]; |
| 368 | r_supports[j] = neg ? -point : point; |
| 369 | } |
| 370 | |
| 371 | if (neg) { |
| 372 | SWAP(r_supports[1], r_supports[2]); |
| 373 | SWAP(r_supports[0], r_supports[3]); |
| 374 | } |
| 375 | |
| 376 | return; |
| 377 | } |
| 378 | |
| 379 | r_amount = 0; |
| 380 | } |
| 381 | |
| 382 | for (int i = 0; i < 3; i++) { |
| 383 | Vector3 axis; |
| 384 | axis[i] = 1.0; |
| 385 | |
| 386 | if (Math::abs(p_normal.dot(axis)) < edge_support_threshold_lower) { |
| 387 | r_amount = 2; |
| 388 | r_type = FEATURE_EDGE; |
| 389 | |
| 390 | int i_n = next[i]; |
| 391 | int i_n2 = next2[i]; |
| 392 | |
| 393 | Vector3 point = half_extents; |
| 394 | |
| 395 | if (p_normal[i_n] < 0) { |
| 396 | point[i_n] = -point[i_n]; |
| 397 | } |
| 398 | if (p_normal[i_n2] < 0) { |
| 399 | point[i_n2] = -point[i_n2]; |
| 400 | } |
| 401 | |
| 402 | r_supports[0] = point; |
| 403 | point[i] = -point[i]; |
| 404 | r_supports[1] = point; |
| 405 | return; |
| 406 | } |
| 407 | } |
| 408 | /* USE POINT */ |
| 409 | |
| 410 | Vector3 point( |
| 411 | (p_normal.x < 0) ? -half_extents.x : half_extents.x, |
| 412 | (p_normal.y < 0) ? -half_extents.y : half_extents.y, |
| 413 | (p_normal.z < 0) ? -half_extents.z : half_extents.z); |
| 414 | |
| 415 | r_amount = 1; |
| 416 | r_type = FEATURE_POINT; |
| 417 | r_supports[0] = point; |
| 418 | } |
| 419 | |
| 420 | bool GodotBoxShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 421 | AABB aabb_ext(-half_extents, half_extents * 2.0); |
| 422 | |
| 423 | return aabb_ext.intersects_segment(p_begin, p_end, &r_result, &r_normal); |
| 424 | } |
| 425 | |
| 426 | bool GodotBoxShape3D::intersect_point(const Vector3 &p_point) const { |
| 427 | return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z); |
| 428 | } |
| 429 | |
| 430 | Vector3 GodotBoxShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 431 | int outside = 0; |
| 432 | Vector3 min_point; |
| 433 | |
| 434 | for (int i = 0; i < 3; i++) { |
| 435 | if (Math::abs(p_point[i]) > half_extents[i]) { |
| 436 | outside++; |
| 437 | if (outside == 1) { |
| 438 | //use plane if only one side matches |
| 439 | Vector3 n; |
| 440 | n[i] = SIGN(p_point[i]); |
| 441 | |
| 442 | Plane p(n, half_extents[i]); |
| 443 | min_point = p.project(p_point); |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | if (!outside) { |
| 449 | return p_point; //it's inside, don't do anything else |
| 450 | } |
| 451 | |
| 452 | if (outside == 1) { //if only above one plane, this plane clearly wins |
| 453 | return min_point; |
| 454 | } |
| 455 | |
| 456 | //check segments |
| 457 | real_t min_distance = 1e20; |
| 458 | Vector3 closest_vertex = half_extents * p_point.sign(); |
| 459 | Vector3 s[2] = { |
| 460 | closest_vertex, |
| 461 | closest_vertex |
| 462 | }; |
| 463 | |
| 464 | for (int i = 0; i < 3; i++) { |
| 465 | s[1] = closest_vertex; |
| 466 | s[1][i] = -s[1][i]; //edge |
| 467 | |
| 468 | Vector3 closest_edge = Geometry3D::get_closest_point_to_segment(p_point, s); |
| 469 | |
| 470 | real_t d = p_point.distance_to(closest_edge); |
| 471 | if (d < min_distance) { |
| 472 | min_point = closest_edge; |
| 473 | min_distance = d; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | return min_point; |
| 478 | } |
| 479 | |
| 480 | Vector3 GodotBoxShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 481 | real_t lx = half_extents.x; |
| 482 | real_t ly = half_extents.y; |
| 483 | real_t lz = half_extents.z; |
| 484 | |
| 485 | return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly)); |
| 486 | } |
| 487 | |
| 488 | void GodotBoxShape3D::_setup(const Vector3 &p_half_extents) { |
| 489 | half_extents = p_half_extents.abs(); |
| 490 | |
| 491 | configure(AABB(-half_extents, half_extents * 2)); |
| 492 | } |
| 493 | |
| 494 | void GodotBoxShape3D::set_data(const Variant &p_data) { |
| 495 | _setup(p_data); |
| 496 | } |
| 497 | |
| 498 | Variant GodotBoxShape3D::get_data() const { |
| 499 | return half_extents; |
| 500 | } |
| 501 | |
| 502 | GodotBoxShape3D::GodotBoxShape3D() {} |
| 503 | |
| 504 | /********** CAPSULE *************/ |
| 505 | |
| 506 | void GodotCapsuleShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 507 | Vector3 n = p_transform.basis.xform_inv(p_normal).normalized(); |
| 508 | real_t h = height * 0.5 - radius; |
| 509 | |
| 510 | n *= radius; |
| 511 | n.y += (n.y > 0) ? h : -h; |
| 512 | |
| 513 | r_max = p_normal.dot(p_transform.xform(n)); |
| 514 | r_min = p_normal.dot(p_transform.xform(-n)); |
| 515 | } |
| 516 | |
| 517 | Vector3 GodotCapsuleShape3D::get_support(const Vector3 &p_normal) const { |
| 518 | Vector3 n = p_normal; |
| 519 | |
| 520 | real_t h = height * 0.5 - radius; |
| 521 | |
| 522 | n *= radius; |
| 523 | n.y += (n.y > 0) ? h : -h; |
| 524 | return n; |
| 525 | } |
| 526 | |
| 527 | void GodotCapsuleShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
| 528 | Vector3 n = p_normal; |
| 529 | |
| 530 | real_t d = n.y; |
| 531 | real_t h = height * 0.5 - radius; // half-height of the cylinder part |
| 532 | |
| 533 | if (h > 0 && Math::abs(d) < edge_support_threshold_lower) { |
| 534 | // make it flat |
| 535 | n.y = 0.0; |
| 536 | n.normalize(); |
| 537 | n *= radius; |
| 538 | |
| 539 | r_amount = 2; |
| 540 | r_type = FEATURE_EDGE; |
| 541 | r_supports[0] = n; |
| 542 | r_supports[0].y += h; |
| 543 | r_supports[1] = n; |
| 544 | r_supports[1].y -= h; |
| 545 | } else { |
| 546 | n *= radius; |
| 547 | n.y += (d > 0) ? h : -h; |
| 548 | r_amount = 1; |
| 549 | r_type = FEATURE_POINT; |
| 550 | *r_supports = n; |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | bool GodotCapsuleShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 555 | Vector3 norm = (p_end - p_begin).normalized(); |
| 556 | real_t min_d = 1e20; |
| 557 | |
| 558 | Vector3 res, n; |
| 559 | bool collision = false; |
| 560 | |
| 561 | Vector3 auxres, auxn; |
| 562 | bool collided; |
| 563 | |
| 564 | // test against cylinder and spheres :-| |
| 565 | |
| 566 | collided = Geometry3D::segment_intersects_cylinder(p_begin, p_end, height - radius * 2.0, radius, &auxres, &auxn, 1); |
| 567 | |
| 568 | if (collided) { |
| 569 | real_t d = norm.dot(auxres); |
| 570 | if (d < min_d) { |
| 571 | min_d = d; |
| 572 | res = auxres; |
| 573 | n = auxn; |
| 574 | collision = true; |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * 0.5 - radius, 0), radius, &auxres, &auxn); |
| 579 | |
| 580 | if (collided) { |
| 581 | real_t d = norm.dot(auxres); |
| 582 | if (d < min_d) { |
| 583 | min_d = d; |
| 584 | res = auxres; |
| 585 | n = auxn; |
| 586 | collision = true; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * -0.5 + radius, 0), radius, &auxres, &auxn); |
| 591 | |
| 592 | if (collided) { |
| 593 | real_t d = norm.dot(auxres); |
| 594 | |
| 595 | if (d < min_d) { |
| 596 | min_d = d; |
| 597 | res = auxres; |
| 598 | n = auxn; |
| 599 | collision = true; |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | if (collision) { |
| 604 | r_result = res; |
| 605 | r_normal = n; |
| 606 | } |
| 607 | return collision; |
| 608 | } |
| 609 | |
| 610 | bool GodotCapsuleShape3D::intersect_point(const Vector3 &p_point) const { |
| 611 | if (Math::abs(p_point.y) < height * 0.5 - radius) { |
| 612 | return Vector3(p_point.x, 0, p_point.z).length() < radius; |
| 613 | } else { |
| 614 | Vector3 p = p_point; |
| 615 | p.y = Math::abs(p.y) - height * 0.5 + radius; |
| 616 | return p.length() < radius; |
| 617 | } |
| 618 | } |
| 619 | |
| 620 | Vector3 GodotCapsuleShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 621 | Vector3 s[2] = { |
| 622 | Vector3(0, -height * 0.5 + radius, 0), |
| 623 | Vector3(0, height * 0.5 - radius, 0), |
| 624 | }; |
| 625 | |
| 626 | Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s); |
| 627 | |
| 628 | if (p.distance_to(p_point) < radius) { |
| 629 | return p_point; |
| 630 | } |
| 631 | |
| 632 | return p + (p_point - p).normalized() * radius; |
| 633 | } |
| 634 | |
| 635 | Vector3 GodotCapsuleShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 636 | // use bad AABB approximation |
| 637 | Vector3 extents = get_aabb().size * 0.5; |
| 638 | |
| 639 | return Vector3( |
| 640 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
| 641 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
| 642 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
| 643 | } |
| 644 | |
| 645 | void GodotCapsuleShape3D::_setup(real_t p_height, real_t p_radius) { |
| 646 | height = p_height; |
| 647 | radius = p_radius; |
| 648 | configure(AABB(Vector3(-radius, -height * 0.5, -radius), Vector3(radius * 2, height, radius * 2))); |
| 649 | } |
| 650 | |
| 651 | void GodotCapsuleShape3D::set_data(const Variant &p_data) { |
| 652 | Dictionary d = p_data; |
| 653 | ERR_FAIL_COND(!d.has("radius" )); |
| 654 | ERR_FAIL_COND(!d.has("height" )); |
| 655 | _setup(d["height" ], d["radius" ]); |
| 656 | } |
| 657 | |
| 658 | Variant GodotCapsuleShape3D::get_data() const { |
| 659 | Dictionary d; |
| 660 | d["radius" ] = radius; |
| 661 | d["height" ] = height; |
| 662 | return d; |
| 663 | } |
| 664 | |
| 665 | GodotCapsuleShape3D::GodotCapsuleShape3D() {} |
| 666 | |
| 667 | /********** CYLINDER *************/ |
| 668 | |
| 669 | void GodotCylinderShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 670 | Vector3 cylinder_axis = p_transform.basis.get_column(1).normalized(); |
| 671 | real_t axis_dot = cylinder_axis.dot(p_normal); |
| 672 | |
| 673 | Vector3 local_normal = p_transform.basis.xform_inv(p_normal); |
| 674 | real_t scale = local_normal.length(); |
| 675 | real_t scaled_radius = radius * scale; |
| 676 | real_t scaled_height = height * scale; |
| 677 | |
| 678 | real_t length; |
| 679 | if (Math::abs(axis_dot) > 1.0) { |
| 680 | length = scaled_height * 0.5; |
| 681 | } else { |
| 682 | length = Math::abs(axis_dot * scaled_height * 0.5) + scaled_radius * Math::sqrt(1.0 - axis_dot * axis_dot); |
| 683 | } |
| 684 | |
| 685 | real_t distance = p_normal.dot(p_transform.origin); |
| 686 | |
| 687 | r_min = distance - length; |
| 688 | r_max = distance + length; |
| 689 | } |
| 690 | |
| 691 | Vector3 GodotCylinderShape3D::get_support(const Vector3 &p_normal) const { |
| 692 | Vector3 n = p_normal; |
| 693 | real_t h = (n.y > 0) ? height : -height; |
| 694 | real_t s = Math::sqrt(n.x * n.x + n.z * n.z); |
| 695 | if (Math::is_zero_approx(s)) { |
| 696 | n.x = radius; |
| 697 | n.y = h * 0.5; |
| 698 | n.z = 0.0; |
| 699 | } else { |
| 700 | real_t d = radius / s; |
| 701 | n.x = n.x * d; |
| 702 | n.y = h * 0.5; |
| 703 | n.z = n.z * d; |
| 704 | } |
| 705 | |
| 706 | return n; |
| 707 | } |
| 708 | |
| 709 | void GodotCylinderShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
| 710 | real_t d = p_normal.y; |
| 711 | if (Math::abs(d) > cylinder_face_support_threshold) { |
| 712 | real_t h = (d > 0) ? height : -height; |
| 713 | |
| 714 | Vector3 n = p_normal; |
| 715 | n.x = 0.0; |
| 716 | n.z = 0.0; |
| 717 | n.y = h * 0.5; |
| 718 | |
| 719 | r_amount = 3; |
| 720 | r_type = FEATURE_CIRCLE; |
| 721 | r_supports[0] = n; |
| 722 | r_supports[1] = n; |
| 723 | r_supports[1].x += radius; |
| 724 | r_supports[2] = n; |
| 725 | r_supports[2].z += radius; |
| 726 | } else if (Math::abs(d) < cylinder_edge_support_threshold_lower) { |
| 727 | // make it flat |
| 728 | Vector3 n = p_normal; |
| 729 | n.y = 0.0; |
| 730 | n.normalize(); |
| 731 | n *= radius; |
| 732 | |
| 733 | r_amount = 2; |
| 734 | r_type = FEATURE_EDGE; |
| 735 | r_supports[0] = n; |
| 736 | r_supports[0].y += height * 0.5; |
| 737 | r_supports[1] = n; |
| 738 | r_supports[1].y -= height * 0.5; |
| 739 | } else { |
| 740 | r_amount = 1; |
| 741 | r_type = FEATURE_POINT; |
| 742 | r_supports[0] = get_support(p_normal); |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | bool GodotCylinderShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 747 | return Geometry3D::segment_intersects_cylinder(p_begin, p_end, height, radius, &r_result, &r_normal, 1); |
| 748 | } |
| 749 | |
| 750 | bool GodotCylinderShape3D::intersect_point(const Vector3 &p_point) const { |
| 751 | if (Math::abs(p_point.y) < height * 0.5) { |
| 752 | return Vector3(p_point.x, 0, p_point.z).length() < radius; |
| 753 | } |
| 754 | return false; |
| 755 | } |
| 756 | |
| 757 | Vector3 GodotCylinderShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 758 | if (Math::absf(p_point.y) > height * 0.5) { |
| 759 | // Project point to top disk. |
| 760 | real_t dir = p_point.y > 0.0 ? 1.0 : -1.0; |
| 761 | Vector3 circle_pos(0.0, dir * height * 0.5, 0.0); |
| 762 | Plane circle_plane(Vector3(0.0, dir, 0.0), circle_pos); |
| 763 | Vector3 proj_point = circle_plane.project(p_point); |
| 764 | |
| 765 | // Clip position. |
| 766 | Vector3 delta_point_1 = proj_point - circle_pos; |
| 767 | real_t dist_point_1 = delta_point_1.length_squared(); |
| 768 | if (!Math::is_zero_approx(dist_point_1)) { |
| 769 | dist_point_1 = Math::sqrt(dist_point_1); |
| 770 | proj_point = circle_pos + delta_point_1 * MIN(dist_point_1, radius) / dist_point_1; |
| 771 | } |
| 772 | |
| 773 | return proj_point; |
| 774 | } else { |
| 775 | Vector3 s[2] = { |
| 776 | Vector3(0, -height * 0.5, 0), |
| 777 | Vector3(0, height * 0.5, 0), |
| 778 | }; |
| 779 | |
| 780 | Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s); |
| 781 | |
| 782 | if (p.distance_to(p_point) < radius) { |
| 783 | return p_point; |
| 784 | } |
| 785 | |
| 786 | return p + (p_point - p).normalized() * radius; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | Vector3 GodotCylinderShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 791 | // use bad AABB approximation |
| 792 | Vector3 extents = get_aabb().size * 0.5; |
| 793 | |
| 794 | return Vector3( |
| 795 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
| 796 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
| 797 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
| 798 | } |
| 799 | |
| 800 | void GodotCylinderShape3D::_setup(real_t p_height, real_t p_radius) { |
| 801 | height = p_height; |
| 802 | radius = p_radius; |
| 803 | configure(AABB(Vector3(-radius, -height * 0.5, -radius), Vector3(radius * 2.0, height, radius * 2.0))); |
| 804 | } |
| 805 | |
| 806 | void GodotCylinderShape3D::set_data(const Variant &p_data) { |
| 807 | Dictionary d = p_data; |
| 808 | ERR_FAIL_COND(!d.has("radius" )); |
| 809 | ERR_FAIL_COND(!d.has("height" )); |
| 810 | _setup(d["height" ], d["radius" ]); |
| 811 | } |
| 812 | |
| 813 | Variant GodotCylinderShape3D::get_data() const { |
| 814 | Dictionary d; |
| 815 | d["radius" ] = radius; |
| 816 | d["height" ] = height; |
| 817 | return d; |
| 818 | } |
| 819 | |
| 820 | GodotCylinderShape3D::GodotCylinderShape3D() {} |
| 821 | |
| 822 | /********** CONVEX POLYGON *************/ |
| 823 | |
| 824 | void GodotConvexPolygonShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 825 | uint32_t vertex_count = mesh.vertices.size(); |
| 826 | if (vertex_count == 0) { |
| 827 | return; |
| 828 | } |
| 829 | |
| 830 | const Vector3 *vrts = &mesh.vertices[0]; |
| 831 | |
| 832 | if (vertex_count > 3 * extreme_vertices.size()) { |
| 833 | // For a large mesh, two calls to get_support() is faster than a full |
| 834 | // scan over all vertices. |
| 835 | |
| 836 | Vector3 n = p_transform.basis.xform_inv(p_normal).normalized(); |
| 837 | r_min = p_normal.dot(p_transform.xform(get_support(-n))); |
| 838 | r_max = p_normal.dot(p_transform.xform(get_support(n))); |
| 839 | } else { |
| 840 | for (uint32_t i = 0; i < vertex_count; i++) { |
| 841 | real_t d = p_normal.dot(p_transform.xform(vrts[i])); |
| 842 | |
| 843 | if (i == 0 || d > r_max) { |
| 844 | r_max = d; |
| 845 | } |
| 846 | if (i == 0 || d < r_min) { |
| 847 | r_min = d; |
| 848 | } |
| 849 | } |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | Vector3 GodotConvexPolygonShape3D::get_support(const Vector3 &p_normal) const { |
| 854 | // Skip if there are no vertices in the mesh |
| 855 | if (mesh.vertices.size() == 0) { |
| 856 | return Vector3(); |
| 857 | } |
| 858 | |
| 859 | // Get the array of vertices |
| 860 | const Vector3 *const vertices_array = mesh.vertices.ptr(); |
| 861 | |
| 862 | // Start with an initial assumption of the first extreme vertex. |
| 863 | int best_vertex = extreme_vertices[0]; |
| 864 | real_t max_support = p_normal.dot(vertices_array[best_vertex]); |
| 865 | |
| 866 | // Check the remaining extreme vertices for a better vertex. |
| 867 | for (const int &vert : extreme_vertices) { |
| 868 | real_t s = p_normal.dot(vertices_array[vert]); |
| 869 | if (s > max_support) { |
| 870 | best_vertex = vert; |
| 871 | max_support = s; |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | // If we checked all vertices in the mesh then we're done. |
| 876 | if (extreme_vertices.size() == mesh.vertices.size()) { |
| 877 | return vertices_array[best_vertex]; |
| 878 | } |
| 879 | |
| 880 | // Move along the surface until we reach the true support vertex. |
| 881 | int last_vertex = -1; |
| 882 | while (true) { |
| 883 | int next_vertex = -1; |
| 884 | |
| 885 | // Iterate over all the neighbors checking for a better vertex. |
| 886 | for (const int &vert : vertex_neighbors[best_vertex]) { |
| 887 | if (vert != last_vertex) { |
| 888 | real_t s = p_normal.dot(vertices_array[vert]); |
| 889 | if (s > max_support) { |
| 890 | next_vertex = vert; |
| 891 | max_support = s; |
| 892 | break; |
| 893 | } |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | // No better vertex found, we have the best |
| 898 | if (next_vertex == -1) { |
| 899 | return vertices_array[best_vertex]; |
| 900 | } |
| 901 | |
| 902 | // Move to the better vertex and try again |
| 903 | last_vertex = best_vertex; |
| 904 | best_vertex = next_vertex; |
| 905 | } |
| 906 | } |
| 907 | |
| 908 | void GodotConvexPolygonShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
| 909 | const Geometry3D::MeshData::Face *faces = mesh.faces.ptr(); |
| 910 | int fc = mesh.faces.size(); |
| 911 | |
| 912 | const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr(); |
| 913 | int ec = mesh.edges.size(); |
| 914 | |
| 915 | const Vector3 *vertices = mesh.vertices.ptr(); |
| 916 | int vc = mesh.vertices.size(); |
| 917 | |
| 918 | r_amount = 0; |
| 919 | ERR_FAIL_COND_MSG(vc == 0, "Convex polygon shape has no vertices." ); |
| 920 | |
| 921 | //find vertex first |
| 922 | real_t max = 0; |
| 923 | int vtx = 0; |
| 924 | |
| 925 | for (int i = 0; i < vc; i++) { |
| 926 | real_t d = p_normal.dot(vertices[i]); |
| 927 | |
| 928 | if (i == 0 || d > max) { |
| 929 | max = d; |
| 930 | vtx = i; |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | for (int i = 0; i < fc; i++) { |
| 935 | if (faces[i].plane.normal.dot(p_normal) > face_support_threshold) { |
| 936 | int ic = faces[i].indices.size(); |
| 937 | const int *ind = faces[i].indices.ptr(); |
| 938 | |
| 939 | bool valid = false; |
| 940 | for (int j = 0; j < ic; j++) { |
| 941 | if (ind[j] == vtx) { |
| 942 | valid = true; |
| 943 | break; |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | if (!valid) { |
| 948 | continue; |
| 949 | } |
| 950 | |
| 951 | int m = MIN(p_max, ic); |
| 952 | for (int j = 0; j < m; j++) { |
| 953 | r_supports[j] = vertices[ind[j]]; |
| 954 | } |
| 955 | r_amount = m; |
| 956 | r_type = FEATURE_FACE; |
| 957 | return; |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | for (int i = 0; i < ec; i++) { |
| 962 | real_t dot = (vertices[edges[i].vertex_a] - vertices[edges[i].vertex_b]).normalized().dot(p_normal); |
| 963 | dot = ABS(dot); |
| 964 | if (dot < edge_support_threshold_lower && (edges[i].vertex_a == vtx || edges[i].vertex_b == vtx)) { |
| 965 | r_amount = 2; |
| 966 | r_type = FEATURE_EDGE; |
| 967 | r_supports[0] = vertices[edges[i].vertex_a]; |
| 968 | r_supports[1] = vertices[edges[i].vertex_b]; |
| 969 | return; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | r_supports[0] = vertices[vtx]; |
| 974 | r_amount = 1; |
| 975 | r_type = FEATURE_POINT; |
| 976 | } |
| 977 | |
| 978 | bool GodotConvexPolygonShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 979 | const Geometry3D::MeshData::Face *faces = mesh.faces.ptr(); |
| 980 | int fc = mesh.faces.size(); |
| 981 | |
| 982 | const Vector3 *vertices = mesh.vertices.ptr(); |
| 983 | |
| 984 | Vector3 n = p_end - p_begin; |
| 985 | real_t min = 1e20; |
| 986 | bool col = false; |
| 987 | |
| 988 | for (int i = 0; i < fc; i++) { |
| 989 | if (faces[i].plane.normal.dot(n) > 0) { |
| 990 | continue; //opposing face |
| 991 | } |
| 992 | |
| 993 | int ic = faces[i].indices.size(); |
| 994 | const int *ind = faces[i].indices.ptr(); |
| 995 | |
| 996 | for (int j = 1; j < ic - 1; j++) { |
| 997 | Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]); |
| 998 | Vector3 result; |
| 999 | if (f.intersects_segment(p_begin, p_end, &result)) { |
| 1000 | real_t d = n.dot(result); |
| 1001 | if (d < min) { |
| 1002 | min = d; |
| 1003 | r_result = result; |
| 1004 | r_normal = faces[i].plane.normal; |
| 1005 | col = true; |
| 1006 | } |
| 1007 | |
| 1008 | break; |
| 1009 | } |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | return col; |
| 1014 | } |
| 1015 | |
| 1016 | bool GodotConvexPolygonShape3D::intersect_point(const Vector3 &p_point) const { |
| 1017 | const Geometry3D::MeshData::Face *faces = mesh.faces.ptr(); |
| 1018 | int fc = mesh.faces.size(); |
| 1019 | |
| 1020 | for (int i = 0; i < fc; i++) { |
| 1021 | if (faces[i].plane.distance_to(p_point) >= 0) { |
| 1022 | return false; |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | return true; |
| 1027 | } |
| 1028 | |
| 1029 | Vector3 GodotConvexPolygonShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 1030 | const Geometry3D::MeshData::Face *faces = mesh.faces.ptr(); |
| 1031 | int fc = mesh.faces.size(); |
| 1032 | const Vector3 *vertices = mesh.vertices.ptr(); |
| 1033 | |
| 1034 | bool all_inside = true; |
| 1035 | for (int i = 0; i < fc; i++) { |
| 1036 | if (!faces[i].plane.is_point_over(p_point)) { |
| 1037 | continue; |
| 1038 | } |
| 1039 | |
| 1040 | all_inside = false; |
| 1041 | bool is_inside = true; |
| 1042 | int ic = faces[i].indices.size(); |
| 1043 | const int *indices = faces[i].indices.ptr(); |
| 1044 | |
| 1045 | for (int j = 0; j < ic; j++) { |
| 1046 | Vector3 a = vertices[indices[j]]; |
| 1047 | Vector3 b = vertices[indices[(j + 1) % ic]]; |
| 1048 | Vector3 n = (a - b).cross(faces[i].plane.normal).normalized(); |
| 1049 | if (Plane(n, a).is_point_over(p_point)) { |
| 1050 | is_inside = false; |
| 1051 | break; |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | if (is_inside) { |
| 1056 | return faces[i].plane.project(p_point); |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | if (all_inside) { |
| 1061 | return p_point; |
| 1062 | } |
| 1063 | |
| 1064 | real_t min_distance = 1e20; |
| 1065 | Vector3 min_point; |
| 1066 | |
| 1067 | //check edges |
| 1068 | const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr(); |
| 1069 | int ec = mesh.edges.size(); |
| 1070 | for (int i = 0; i < ec; i++) { |
| 1071 | Vector3 s[2] = { |
| 1072 | vertices[edges[i].vertex_a], |
| 1073 | vertices[edges[i].vertex_b] |
| 1074 | }; |
| 1075 | |
| 1076 | Vector3 closest = Geometry3D::get_closest_point_to_segment(p_point, s); |
| 1077 | real_t d = closest.distance_to(p_point); |
| 1078 | if (d < min_distance) { |
| 1079 | min_distance = d; |
| 1080 | min_point = closest; |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | return min_point; |
| 1085 | } |
| 1086 | |
| 1087 | Vector3 GodotConvexPolygonShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 1088 | // use bad AABB approximation |
| 1089 | Vector3 extents = get_aabb().size * 0.5; |
| 1090 | |
| 1091 | return Vector3( |
| 1092 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
| 1093 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
| 1094 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
| 1095 | } |
| 1096 | |
| 1097 | void GodotConvexPolygonShape3D::_setup(const Vector<Vector3> &p_vertices) { |
| 1098 | Error err = ConvexHullComputer::convex_hull(p_vertices, mesh); |
| 1099 | if (err != OK) { |
| 1100 | ERR_PRINT("Failed to build convex hull" ); |
| 1101 | } |
| 1102 | extreme_vertices.resize(0); |
| 1103 | vertex_neighbors.resize(0); |
| 1104 | |
| 1105 | AABB _aabb; |
| 1106 | |
| 1107 | for (uint32_t i = 0; i < mesh.vertices.size(); i++) { |
| 1108 | if (i == 0) { |
| 1109 | _aabb.position = mesh.vertices[i]; |
| 1110 | } else { |
| 1111 | _aabb.expand_to(mesh.vertices[i]); |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | configure(_aabb); |
| 1116 | |
| 1117 | // Pre-compute the extreme vertices in 26 directions. This will be used |
| 1118 | // to speed up get_support() by letting us quickly get a good guess for |
| 1119 | // the support vertex. |
| 1120 | |
| 1121 | for (int x = -1; x < 2; x++) { |
| 1122 | for (int y = -1; y < 2; y++) { |
| 1123 | for (int z = -1; z < 2; z++) { |
| 1124 | if (x != 0 || y != 0 || z != 0) { |
| 1125 | Vector3 dir(x, y, z); |
| 1126 | dir.normalize(); |
| 1127 | real_t max_support = 0.0; |
| 1128 | int best_vertex = -1; |
| 1129 | for (uint32_t i = 0; i < mesh.vertices.size(); i++) { |
| 1130 | real_t s = dir.dot(mesh.vertices[i]); |
| 1131 | if (best_vertex == -1 || s > max_support) { |
| 1132 | best_vertex = i; |
| 1133 | max_support = s; |
| 1134 | } |
| 1135 | } |
| 1136 | if (extreme_vertices.find(best_vertex) == -1) |
| 1137 | extreme_vertices.push_back(best_vertex); |
| 1138 | } |
| 1139 | } |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | // Record all the neighbors of each vertex. This is used in get_support(). |
| 1144 | |
| 1145 | if (extreme_vertices.size() < mesh.vertices.size()) { |
| 1146 | vertex_neighbors.resize(mesh.vertices.size()); |
| 1147 | for (Geometry3D::MeshData::Edge &edge : mesh.edges) { |
| 1148 | vertex_neighbors[edge.vertex_a].push_back(edge.vertex_b); |
| 1149 | vertex_neighbors[edge.vertex_b].push_back(edge.vertex_a); |
| 1150 | } |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | void GodotConvexPolygonShape3D::set_data(const Variant &p_data) { |
| 1155 | _setup(p_data); |
| 1156 | } |
| 1157 | |
| 1158 | Variant GodotConvexPolygonShape3D::get_data() const { |
| 1159 | Vector<Vector3> vertices; |
| 1160 | vertices.resize(mesh.vertices.size()); |
| 1161 | for (uint32_t i = 0; i < mesh.vertices.size(); i++) { |
| 1162 | vertices.write[i] = mesh.vertices[i]; |
| 1163 | } |
| 1164 | return vertices; |
| 1165 | } |
| 1166 | |
| 1167 | GodotConvexPolygonShape3D::GodotConvexPolygonShape3D() { |
| 1168 | } |
| 1169 | |
| 1170 | /********** FACE POLYGON *************/ |
| 1171 | |
| 1172 | void GodotFaceShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 1173 | for (int i = 0; i < 3; i++) { |
| 1174 | Vector3 v = p_transform.xform(vertex[i]); |
| 1175 | real_t d = p_normal.dot(v); |
| 1176 | |
| 1177 | if (i == 0 || d > r_max) { |
| 1178 | r_max = d; |
| 1179 | } |
| 1180 | |
| 1181 | if (i == 0 || d < r_min) { |
| 1182 | r_min = d; |
| 1183 | } |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | Vector3 GodotFaceShape3D::get_support(const Vector3 &p_normal) const { |
| 1188 | int vert_support_idx = -1; |
| 1189 | real_t support_max = 0; |
| 1190 | |
| 1191 | for (int i = 0; i < 3; i++) { |
| 1192 | real_t d = p_normal.dot(vertex[i]); |
| 1193 | |
| 1194 | if (i == 0 || d > support_max) { |
| 1195 | support_max = d; |
| 1196 | vert_support_idx = i; |
| 1197 | } |
| 1198 | } |
| 1199 | |
| 1200 | return vertex[vert_support_idx]; |
| 1201 | } |
| 1202 | |
| 1203 | void GodotFaceShape3D::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const { |
| 1204 | Vector3 n = p_normal; |
| 1205 | |
| 1206 | /** TEST FACE AS SUPPORT **/ |
| 1207 | if (Math::abs(normal.dot(n)) > face_support_threshold) { |
| 1208 | r_amount = 3; |
| 1209 | r_type = FEATURE_FACE; |
| 1210 | for (int i = 0; i < 3; i++) { |
| 1211 | r_supports[i] = vertex[i]; |
| 1212 | } |
| 1213 | return; |
| 1214 | } |
| 1215 | |
| 1216 | /** FIND SUPPORT VERTEX **/ |
| 1217 | |
| 1218 | int vert_support_idx = -1; |
| 1219 | real_t support_max = 0; |
| 1220 | |
| 1221 | for (int i = 0; i < 3; i++) { |
| 1222 | real_t d = n.dot(vertex[i]); |
| 1223 | |
| 1224 | if (i == 0 || d > support_max) { |
| 1225 | support_max = d; |
| 1226 | vert_support_idx = i; |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | /** TEST EDGES AS SUPPORT **/ |
| 1231 | |
| 1232 | for (int i = 0; i < 3; i++) { |
| 1233 | int nx = (i + 1) % 3; |
| 1234 | if (i != vert_support_idx && nx != vert_support_idx) { |
| 1235 | continue; |
| 1236 | } |
| 1237 | |
| 1238 | // check if edge is valid as a support |
| 1239 | real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n); |
| 1240 | dot = ABS(dot); |
| 1241 | if (dot < edge_support_threshold_lower) { |
| 1242 | r_amount = 2; |
| 1243 | r_type = FEATURE_EDGE; |
| 1244 | r_supports[0] = vertex[i]; |
| 1245 | r_supports[1] = vertex[nx]; |
| 1246 | return; |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | r_amount = 1; |
| 1251 | r_type = FEATURE_POINT; |
| 1252 | r_supports[0] = vertex[vert_support_idx]; |
| 1253 | } |
| 1254 | |
| 1255 | bool GodotFaceShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 1256 | bool c = Geometry3D::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result); |
| 1257 | if (c) { |
| 1258 | r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal; |
| 1259 | if (r_normal.dot(p_end - p_begin) > 0) { |
| 1260 | if (backface_collision && p_hit_back_faces) { |
| 1261 | r_normal = -r_normal; |
| 1262 | } else { |
| 1263 | c = false; |
| 1264 | } |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | return c; |
| 1269 | } |
| 1270 | |
| 1271 | bool GodotFaceShape3D::intersect_point(const Vector3 &p_point) const { |
| 1272 | return false; //face is flat |
| 1273 | } |
| 1274 | |
| 1275 | Vector3 GodotFaceShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 1276 | return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point); |
| 1277 | } |
| 1278 | |
| 1279 | Vector3 GodotFaceShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 1280 | return Vector3(); // Sorry, but i don't think anyone cares, FaceShape! |
| 1281 | } |
| 1282 | |
| 1283 | GodotFaceShape3D::GodotFaceShape3D() { |
| 1284 | configure(AABB()); |
| 1285 | } |
| 1286 | |
| 1287 | Vector<Vector3> GodotConcavePolygonShape3D::get_faces() const { |
| 1288 | Vector<Vector3> rfaces; |
| 1289 | rfaces.resize(faces.size() * 3); |
| 1290 | |
| 1291 | for (int i = 0; i < faces.size(); i++) { |
| 1292 | Face f = faces.get(i); |
| 1293 | |
| 1294 | for (int j = 0; j < 3; j++) { |
| 1295 | rfaces.set(i * 3 + j, vertices.get(f.indices[j])); |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | return rfaces; |
| 1300 | } |
| 1301 | |
| 1302 | void GodotConcavePolygonShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 1303 | int count = vertices.size(); |
| 1304 | if (count == 0) { |
| 1305 | r_min = 0; |
| 1306 | r_max = 0; |
| 1307 | return; |
| 1308 | } |
| 1309 | const Vector3 *vptr = vertices.ptr(); |
| 1310 | |
| 1311 | for (int i = 0; i < count; i++) { |
| 1312 | real_t d = p_normal.dot(p_transform.xform(vptr[i])); |
| 1313 | |
| 1314 | if (i == 0 || d > r_max) { |
| 1315 | r_max = d; |
| 1316 | } |
| 1317 | if (i == 0 || d < r_min) { |
| 1318 | r_min = d; |
| 1319 | } |
| 1320 | } |
| 1321 | } |
| 1322 | |
| 1323 | Vector3 GodotConcavePolygonShape3D::get_support(const Vector3 &p_normal) const { |
| 1324 | int count = vertices.size(); |
| 1325 | if (count == 0) { |
| 1326 | return Vector3(); |
| 1327 | } |
| 1328 | |
| 1329 | const Vector3 *vptr = vertices.ptr(); |
| 1330 | |
| 1331 | Vector3 n = p_normal; |
| 1332 | |
| 1333 | int vert_support_idx = -1; |
| 1334 | real_t support_max = 0; |
| 1335 | |
| 1336 | for (int i = 0; i < count; i++) { |
| 1337 | real_t d = n.dot(vptr[i]); |
| 1338 | |
| 1339 | if (i == 0 || d > support_max) { |
| 1340 | support_max = d; |
| 1341 | vert_support_idx = i; |
| 1342 | } |
| 1343 | } |
| 1344 | |
| 1345 | return vptr[vert_support_idx]; |
| 1346 | } |
| 1347 | |
| 1348 | void GodotConcavePolygonShape3D::_cull_segment(int p_idx, _SegmentCullParams *p_params) const { |
| 1349 | const BVH *params_bvh = &p_params->bvh[p_idx]; |
| 1350 | |
| 1351 | if (!params_bvh->aabb.intersects_segment(p_params->from, p_params->to)) { |
| 1352 | return; |
| 1353 | } |
| 1354 | |
| 1355 | if (params_bvh->face_index >= 0) { |
| 1356 | const Face *f = &p_params->faces[params_bvh->face_index]; |
| 1357 | GodotFaceShape3D *face = p_params->face; |
| 1358 | face->normal = f->normal; |
| 1359 | face->vertex[0] = p_params->vertices[f->indices[0]]; |
| 1360 | face->vertex[1] = p_params->vertices[f->indices[1]]; |
| 1361 | face->vertex[2] = p_params->vertices[f->indices[2]]; |
| 1362 | |
| 1363 | Vector3 res; |
| 1364 | Vector3 normal; |
| 1365 | int face_index = params_bvh->face_index; |
| 1366 | if (face->intersect_segment(p_params->from, p_params->to, res, normal, face_index, true)) { |
| 1367 | real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from); |
| 1368 | if ((d > 0) && (d < p_params->min_d)) { |
| 1369 | p_params->min_d = d; |
| 1370 | p_params->result = res; |
| 1371 | p_params->normal = normal; |
| 1372 | p_params->face_index = face_index; |
| 1373 | p_params->collisions++; |
| 1374 | } |
| 1375 | } |
| 1376 | } else { |
| 1377 | if (params_bvh->left >= 0) { |
| 1378 | _cull_segment(params_bvh->left, p_params); |
| 1379 | } |
| 1380 | if (params_bvh->right >= 0) { |
| 1381 | _cull_segment(params_bvh->right, p_params); |
| 1382 | } |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | bool GodotConcavePolygonShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 1387 | if (faces.size() == 0) { |
| 1388 | return false; |
| 1389 | } |
| 1390 | |
| 1391 | // unlock data |
| 1392 | const Face *fr = faces.ptr(); |
| 1393 | const Vector3 *vr = vertices.ptr(); |
| 1394 | const BVH *br = bvh.ptr(); |
| 1395 | |
| 1396 | GodotFaceShape3D face; |
| 1397 | face.backface_collision = backface_collision && p_hit_back_faces; |
| 1398 | |
| 1399 | _SegmentCullParams params; |
| 1400 | params.from = p_begin; |
| 1401 | params.to = p_end; |
| 1402 | params.dir = (p_end - p_begin).normalized(); |
| 1403 | |
| 1404 | params.faces = fr; |
| 1405 | params.vertices = vr; |
| 1406 | params.bvh = br; |
| 1407 | |
| 1408 | params.face = &face; |
| 1409 | |
| 1410 | // cull |
| 1411 | _cull_segment(0, ¶ms); |
| 1412 | |
| 1413 | if (params.collisions > 0) { |
| 1414 | r_result = params.result; |
| 1415 | r_normal = params.normal; |
| 1416 | r_face_index = params.face_index; |
| 1417 | return true; |
| 1418 | } else { |
| 1419 | return false; |
| 1420 | } |
| 1421 | } |
| 1422 | |
| 1423 | bool GodotConcavePolygonShape3D::intersect_point(const Vector3 &p_point) const { |
| 1424 | return false; //face is flat |
| 1425 | } |
| 1426 | |
| 1427 | Vector3 GodotConcavePolygonShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 1428 | return Vector3(); |
| 1429 | } |
| 1430 | |
| 1431 | bool GodotConcavePolygonShape3D::_cull(int p_idx, _CullParams *p_params) const { |
| 1432 | const BVH *params_bvh = &p_params->bvh[p_idx]; |
| 1433 | |
| 1434 | if (!p_params->aabb.intersects(params_bvh->aabb)) { |
| 1435 | return false; |
| 1436 | } |
| 1437 | |
| 1438 | if (params_bvh->face_index >= 0) { |
| 1439 | const Face *f = &p_params->faces[params_bvh->face_index]; |
| 1440 | GodotFaceShape3D *face = p_params->face; |
| 1441 | face->normal = f->normal; |
| 1442 | face->vertex[0] = p_params->vertices[f->indices[0]]; |
| 1443 | face->vertex[1] = p_params->vertices[f->indices[1]]; |
| 1444 | face->vertex[2] = p_params->vertices[f->indices[2]]; |
| 1445 | if (p_params->callback(p_params->userdata, face)) { |
| 1446 | return true; |
| 1447 | } |
| 1448 | } else { |
| 1449 | if (params_bvh->left >= 0) { |
| 1450 | if (_cull(params_bvh->left, p_params)) { |
| 1451 | return true; |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | if (params_bvh->right >= 0) { |
| 1456 | if (_cull(params_bvh->right, p_params)) { |
| 1457 | return true; |
| 1458 | } |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | return false; |
| 1463 | } |
| 1464 | |
| 1465 | void GodotConcavePolygonShape3D::cull(const AABB &p_local_aabb, QueryCallback p_callback, void *p_userdata, bool p_invert_backface_collision) const { |
| 1466 | // make matrix local to concave |
| 1467 | if (faces.size() == 0) { |
| 1468 | return; |
| 1469 | } |
| 1470 | |
| 1471 | AABB local_aabb = p_local_aabb; |
| 1472 | |
| 1473 | // unlock data |
| 1474 | const Face *fr = faces.ptr(); |
| 1475 | const Vector3 *vr = vertices.ptr(); |
| 1476 | const BVH *br = bvh.ptr(); |
| 1477 | |
| 1478 | GodotFaceShape3D face; // use this to send in the callback |
| 1479 | face.backface_collision = backface_collision; |
| 1480 | face.invert_backface_collision = p_invert_backface_collision; |
| 1481 | |
| 1482 | _CullParams params; |
| 1483 | params.aabb = local_aabb; |
| 1484 | params.face = &face; |
| 1485 | params.faces = fr; |
| 1486 | params.vertices = vr; |
| 1487 | params.bvh = br; |
| 1488 | params.callback = p_callback; |
| 1489 | params.userdata = p_userdata; |
| 1490 | |
| 1491 | // cull |
| 1492 | _cull(0, ¶ms); |
| 1493 | } |
| 1494 | |
| 1495 | Vector3 GodotConcavePolygonShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 1496 | // use bad AABB approximation |
| 1497 | Vector3 extents = get_aabb().size * 0.5; |
| 1498 | |
| 1499 | return Vector3( |
| 1500 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
| 1501 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
| 1502 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
| 1503 | } |
| 1504 | |
| 1505 | struct _Volume_BVH_Element { |
| 1506 | AABB aabb; |
| 1507 | Vector3 center; |
| 1508 | int face_index = 0; |
| 1509 | }; |
| 1510 | |
| 1511 | struct _Volume_BVH_CompareX { |
| 1512 | _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const { |
| 1513 | return a.center.x < b.center.x; |
| 1514 | } |
| 1515 | }; |
| 1516 | |
| 1517 | struct _Volume_BVH_CompareY { |
| 1518 | _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const { |
| 1519 | return a.center.y < b.center.y; |
| 1520 | } |
| 1521 | }; |
| 1522 | |
| 1523 | struct _Volume_BVH_CompareZ { |
| 1524 | _FORCE_INLINE_ bool operator()(const _Volume_BVH_Element &a, const _Volume_BVH_Element &b) const { |
| 1525 | return a.center.z < b.center.z; |
| 1526 | } |
| 1527 | }; |
| 1528 | |
| 1529 | struct _Volume_BVH { |
| 1530 | AABB aabb; |
| 1531 | _Volume_BVH *left = nullptr; |
| 1532 | _Volume_BVH *right = nullptr; |
| 1533 | |
| 1534 | int face_index = 0; |
| 1535 | }; |
| 1536 | |
| 1537 | _Volume_BVH *_volume_build_bvh(_Volume_BVH_Element *p_elements, int p_size, int &count) { |
| 1538 | _Volume_BVH *bvh = memnew(_Volume_BVH); |
| 1539 | |
| 1540 | if (p_size == 1) { |
| 1541 | //leaf |
| 1542 | bvh->aabb = p_elements[0].aabb; |
| 1543 | bvh->left = nullptr; |
| 1544 | bvh->right = nullptr; |
| 1545 | bvh->face_index = p_elements->face_index; |
| 1546 | count++; |
| 1547 | return bvh; |
| 1548 | } else { |
| 1549 | bvh->face_index = -1; |
| 1550 | } |
| 1551 | |
| 1552 | AABB aabb; |
| 1553 | for (int i = 0; i < p_size; i++) { |
| 1554 | if (i == 0) { |
| 1555 | aabb = p_elements[i].aabb; |
| 1556 | } else { |
| 1557 | aabb.merge_with(p_elements[i].aabb); |
| 1558 | } |
| 1559 | } |
| 1560 | bvh->aabb = aabb; |
| 1561 | switch (aabb.get_longest_axis_index()) { |
| 1562 | case 0: { |
| 1563 | SortArray<_Volume_BVH_Element, _Volume_BVH_CompareX> sort_x; |
| 1564 | sort_x.sort(p_elements, p_size); |
| 1565 | |
| 1566 | } break; |
| 1567 | case 1: { |
| 1568 | SortArray<_Volume_BVH_Element, _Volume_BVH_CompareY> sort_y; |
| 1569 | sort_y.sort(p_elements, p_size); |
| 1570 | } break; |
| 1571 | case 2: { |
| 1572 | SortArray<_Volume_BVH_Element, _Volume_BVH_CompareZ> sort_z; |
| 1573 | sort_z.sort(p_elements, p_size); |
| 1574 | } break; |
| 1575 | } |
| 1576 | |
| 1577 | int split = p_size / 2; |
| 1578 | bvh->left = _volume_build_bvh(p_elements, split, count); |
| 1579 | bvh->right = _volume_build_bvh(&p_elements[split], p_size - split, count); |
| 1580 | |
| 1581 | //printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index); |
| 1582 | count++; |
| 1583 | return bvh; |
| 1584 | } |
| 1585 | |
| 1586 | void GodotConcavePolygonShape3D::_fill_bvh(_Volume_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) { |
| 1587 | int idx = p_idx; |
| 1588 | |
| 1589 | p_bvh_array[idx].aabb = p_bvh_tree->aabb; |
| 1590 | p_bvh_array[idx].face_index = p_bvh_tree->face_index; |
| 1591 | //printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right); |
| 1592 | |
| 1593 | if (p_bvh_tree->left) { |
| 1594 | p_bvh_array[idx].left = ++p_idx; |
| 1595 | _fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx); |
| 1596 | |
| 1597 | } else { |
| 1598 | p_bvh_array[p_idx].left = -1; |
| 1599 | } |
| 1600 | |
| 1601 | if (p_bvh_tree->right) { |
| 1602 | p_bvh_array[idx].right = ++p_idx; |
| 1603 | _fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx); |
| 1604 | |
| 1605 | } else { |
| 1606 | p_bvh_array[p_idx].right = -1; |
| 1607 | } |
| 1608 | |
| 1609 | memdelete(p_bvh_tree); |
| 1610 | } |
| 1611 | |
| 1612 | void GodotConcavePolygonShape3D::_setup(const Vector<Vector3> &p_faces, bool p_backface_collision) { |
| 1613 | int src_face_count = p_faces.size(); |
| 1614 | if (src_face_count == 0) { |
| 1615 | configure(AABB()); |
| 1616 | return; |
| 1617 | } |
| 1618 | ERR_FAIL_COND(src_face_count % 3); |
| 1619 | src_face_count /= 3; |
| 1620 | |
| 1621 | const Vector3 *facesr = p_faces.ptr(); |
| 1622 | |
| 1623 | Vector<_Volume_BVH_Element> bvh_array; |
| 1624 | bvh_array.resize(src_face_count); |
| 1625 | |
| 1626 | _Volume_BVH_Element *bvh_arrayw = bvh_array.ptrw(); |
| 1627 | |
| 1628 | faces.resize(src_face_count); |
| 1629 | Face *facesw = faces.ptrw(); |
| 1630 | |
| 1631 | vertices.resize(src_face_count * 3); |
| 1632 | |
| 1633 | Vector3 *verticesw = vertices.ptrw(); |
| 1634 | |
| 1635 | AABB _aabb; |
| 1636 | |
| 1637 | for (int i = 0; i < src_face_count; i++) { |
| 1638 | Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]); |
| 1639 | |
| 1640 | bvh_arrayw[i].aabb = face.get_aabb(); |
| 1641 | bvh_arrayw[i].center = bvh_arrayw[i].aabb.get_center(); |
| 1642 | bvh_arrayw[i].face_index = i; |
| 1643 | facesw[i].indices[0] = i * 3 + 0; |
| 1644 | facesw[i].indices[1] = i * 3 + 1; |
| 1645 | facesw[i].indices[2] = i * 3 + 2; |
| 1646 | facesw[i].normal = face.get_plane().normal; |
| 1647 | verticesw[i * 3 + 0] = face.vertex[0]; |
| 1648 | verticesw[i * 3 + 1] = face.vertex[1]; |
| 1649 | verticesw[i * 3 + 2] = face.vertex[2]; |
| 1650 | if (i == 0) { |
| 1651 | _aabb = bvh_arrayw[i].aabb; |
| 1652 | } else { |
| 1653 | _aabb.merge_with(bvh_arrayw[i].aabb); |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | int count = 0; |
| 1658 | _Volume_BVH *bvh_tree = _volume_build_bvh(bvh_arrayw, src_face_count, count); |
| 1659 | |
| 1660 | bvh.resize(count + 1); |
| 1661 | |
| 1662 | BVH *bvh_arrayw2 = bvh.ptrw(); |
| 1663 | |
| 1664 | int idx = 0; |
| 1665 | _fill_bvh(bvh_tree, bvh_arrayw2, idx); |
| 1666 | |
| 1667 | backface_collision = p_backface_collision; |
| 1668 | |
| 1669 | configure(_aabb); // this type of shape has no margin |
| 1670 | } |
| 1671 | |
| 1672 | void GodotConcavePolygonShape3D::set_data(const Variant &p_data) { |
| 1673 | Dictionary d = p_data; |
| 1674 | ERR_FAIL_COND(!d.has("faces" )); |
| 1675 | |
| 1676 | _setup(d["faces" ], d["backface_collision" ]); |
| 1677 | } |
| 1678 | |
| 1679 | Variant GodotConcavePolygonShape3D::get_data() const { |
| 1680 | Dictionary d; |
| 1681 | d["faces" ] = get_faces(); |
| 1682 | d["backface_collision" ] = backface_collision; |
| 1683 | |
| 1684 | return d; |
| 1685 | } |
| 1686 | |
| 1687 | GodotConcavePolygonShape3D::GodotConcavePolygonShape3D() { |
| 1688 | } |
| 1689 | |
| 1690 | /* HEIGHT MAP SHAPE */ |
| 1691 | |
| 1692 | Vector<real_t> GodotHeightMapShape3D::get_heights() const { |
| 1693 | return heights; |
| 1694 | } |
| 1695 | |
| 1696 | int GodotHeightMapShape3D::get_width() const { |
| 1697 | return width; |
| 1698 | } |
| 1699 | |
| 1700 | int GodotHeightMapShape3D::get_depth() const { |
| 1701 | return depth; |
| 1702 | } |
| 1703 | |
| 1704 | void GodotHeightMapShape3D::project_range(const Vector3 &p_normal, const Transform3D &p_transform, real_t &r_min, real_t &r_max) const { |
| 1705 | //not very useful, but not very used either |
| 1706 | p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal), r_min, r_max); |
| 1707 | } |
| 1708 | |
| 1709 | Vector3 GodotHeightMapShape3D::get_support(const Vector3 &p_normal) const { |
| 1710 | //not very useful, but not very used either |
| 1711 | return get_aabb().get_support(p_normal); |
| 1712 | } |
| 1713 | |
| 1714 | struct _HeightmapSegmentCullParams { |
| 1715 | Vector3 from; |
| 1716 | Vector3 to; |
| 1717 | Vector3 dir; |
| 1718 | |
| 1719 | Vector3 result; |
| 1720 | Vector3 normal; |
| 1721 | |
| 1722 | const GodotHeightMapShape3D *heightmap = nullptr; |
| 1723 | GodotFaceShape3D *face = nullptr; |
| 1724 | }; |
| 1725 | |
| 1726 | struct _HeightmapGridCullState { |
| 1727 | real_t length = 0.0; |
| 1728 | real_t length_flat = 0.0; |
| 1729 | |
| 1730 | real_t dist = 0.0; |
| 1731 | real_t prev_dist = 0.0; |
| 1732 | |
| 1733 | int x = 0; |
| 1734 | int z = 0; |
| 1735 | }; |
| 1736 | |
| 1737 | _FORCE_INLINE_ bool _heightmap_face_cull_segment(_HeightmapSegmentCullParams &p_params) { |
| 1738 | Vector3 res; |
| 1739 | Vector3 normal; |
| 1740 | int fi = -1; |
| 1741 | if (p_params.face->intersect_segment(p_params.from, p_params.to, res, normal, fi, true)) { |
| 1742 | p_params.result = res; |
| 1743 | p_params.normal = normal; |
| 1744 | |
| 1745 | return true; |
| 1746 | } |
| 1747 | |
| 1748 | return false; |
| 1749 | } |
| 1750 | |
| 1751 | _FORCE_INLINE_ bool _heightmap_cell_cull_segment(_HeightmapSegmentCullParams &p_params, const _HeightmapGridCullState &p_state) { |
| 1752 | // First triangle. |
| 1753 | p_params.heightmap->_get_point(p_state.x, p_state.z, p_params.face->vertex[0]); |
| 1754 | p_params.heightmap->_get_point(p_state.x + 1, p_state.z, p_params.face->vertex[1]); |
| 1755 | p_params.heightmap->_get_point(p_state.x, p_state.z + 1, p_params.face->vertex[2]); |
| 1756 | p_params.face->normal = Plane(p_params.face->vertex[0], p_params.face->vertex[1], p_params.face->vertex[2]).normal; |
| 1757 | if (_heightmap_face_cull_segment(p_params)) { |
| 1758 | return true; |
| 1759 | } |
| 1760 | |
| 1761 | // Second triangle. |
| 1762 | p_params.face->vertex[0] = p_params.face->vertex[1]; |
| 1763 | p_params.heightmap->_get_point(p_state.x + 1, p_state.z + 1, p_params.face->vertex[1]); |
| 1764 | p_params.face->normal = Plane(p_params.face->vertex[0], p_params.face->vertex[1], p_params.face->vertex[2]).normal; |
| 1765 | if (_heightmap_face_cull_segment(p_params)) { |
| 1766 | return true; |
| 1767 | } |
| 1768 | |
| 1769 | return false; |
| 1770 | } |
| 1771 | |
| 1772 | _FORCE_INLINE_ bool _heightmap_chunk_cull_segment(_HeightmapSegmentCullParams &p_params, const _HeightmapGridCullState &p_state) { |
| 1773 | const GodotHeightMapShape3D::Range &chunk = p_params.heightmap->_get_bounds_chunk(p_state.x, p_state.z); |
| 1774 | |
| 1775 | Vector3 enter_pos; |
| 1776 | Vector3 exit_pos; |
| 1777 | |
| 1778 | if (p_state.length_flat > CMP_EPSILON) { |
| 1779 | real_t flat_to_3d = p_state.length / p_state.length_flat; |
| 1780 | real_t enter_param = p_state.prev_dist * flat_to_3d; |
| 1781 | real_t exit_param = p_state.dist * flat_to_3d; |
| 1782 | enter_pos = p_params.from + p_params.dir * enter_param; |
| 1783 | exit_pos = p_params.from + p_params.dir * exit_param; |
| 1784 | } else { |
| 1785 | // Consider the ray vertical. |
| 1786 | // (though we shouldn't reach this often because there is an early check up-front) |
| 1787 | enter_pos = p_params.from; |
| 1788 | exit_pos = p_params.to; |
| 1789 | } |
| 1790 | |
| 1791 | // Transform positions to heightmap space. |
| 1792 | enter_pos *= GodotHeightMapShape3D::BOUNDS_CHUNK_SIZE; |
| 1793 | exit_pos *= GodotHeightMapShape3D::BOUNDS_CHUNK_SIZE; |
| 1794 | |
| 1795 | // We did enter the flat projection of the AABB, |
| 1796 | // but we have to check if we intersect it on the vertical axis. |
| 1797 | if ((enter_pos.y > chunk.max) && (exit_pos.y > chunk.max)) { |
| 1798 | return false; |
| 1799 | } |
| 1800 | if ((enter_pos.y < chunk.min) && (exit_pos.y < chunk.min)) { |
| 1801 | return false; |
| 1802 | } |
| 1803 | |
| 1804 | return p_params.heightmap->_intersect_grid_segment(_heightmap_cell_cull_segment, enter_pos, exit_pos, p_params.heightmap->width, p_params.heightmap->depth, p_params.heightmap->local_origin, p_params.result, p_params.normal); |
| 1805 | } |
| 1806 | |
| 1807 | template <typename ProcessFunction> |
| 1808 | bool GodotHeightMapShape3D::_intersect_grid_segment(ProcessFunction &p_process, const Vector3 &p_begin, const Vector3 &p_end, int p_width, int p_depth, const Vector3 &offset, Vector3 &r_point, Vector3 &r_normal) const { |
| 1809 | Vector3 delta = (p_end - p_begin); |
| 1810 | real_t length = delta.length(); |
| 1811 | |
| 1812 | if (length < CMP_EPSILON) { |
| 1813 | return false; |
| 1814 | } |
| 1815 | |
| 1816 | Vector3 local_begin = p_begin + offset; |
| 1817 | |
| 1818 | GodotFaceShape3D face; |
| 1819 | face.backface_collision = false; |
| 1820 | |
| 1821 | _HeightmapSegmentCullParams params; |
| 1822 | params.from = p_begin; |
| 1823 | params.to = p_end; |
| 1824 | params.dir = delta / length; |
| 1825 | params.heightmap = this; |
| 1826 | params.face = &face; |
| 1827 | |
| 1828 | _HeightmapGridCullState state; |
| 1829 | |
| 1830 | // Perform grid query from projected ray. |
| 1831 | Vector2 ray_dir_flat(delta.x, delta.z); |
| 1832 | state.length = length; |
| 1833 | state.length_flat = ray_dir_flat.length(); |
| 1834 | |
| 1835 | if (state.length_flat < CMP_EPSILON) { |
| 1836 | ray_dir_flat = Vector2(); |
| 1837 | } else { |
| 1838 | ray_dir_flat /= state.length_flat; |
| 1839 | } |
| 1840 | |
| 1841 | const int x_step = (ray_dir_flat.x > CMP_EPSILON) ? 1 : ((ray_dir_flat.x < -CMP_EPSILON) ? -1 : 0); |
| 1842 | const int z_step = (ray_dir_flat.y > CMP_EPSILON) ? 1 : ((ray_dir_flat.y < -CMP_EPSILON) ? -1 : 0); |
| 1843 | |
| 1844 | const real_t infinite = 1e20; |
| 1845 | const real_t delta_x = (x_step != 0) ? 1.f / Math::abs(ray_dir_flat.x) : infinite; |
| 1846 | const real_t delta_z = (z_step != 0) ? 1.f / Math::abs(ray_dir_flat.y) : infinite; |
| 1847 | |
| 1848 | real_t cross_x; // At which value of `param` we will cross a x-axis lane? |
| 1849 | real_t cross_z; // At which value of `param` we will cross a z-axis lane? |
| 1850 | |
| 1851 | // X initialization. |
| 1852 | if (x_step != 0) { |
| 1853 | if (x_step == 1) { |
| 1854 | cross_x = (Math::ceil(local_begin.x) - local_begin.x) * delta_x; |
| 1855 | } else { |
| 1856 | cross_x = (local_begin.x - Math::floor(local_begin.x)) * delta_x; |
| 1857 | } |
| 1858 | } else { |
| 1859 | cross_x = infinite; // Will never cross on X. |
| 1860 | } |
| 1861 | |
| 1862 | // Z initialization. |
| 1863 | if (z_step != 0) { |
| 1864 | if (z_step == 1) { |
| 1865 | cross_z = (Math::ceil(local_begin.z) - local_begin.z) * delta_z; |
| 1866 | } else { |
| 1867 | cross_z = (local_begin.z - Math::floor(local_begin.z)) * delta_z; |
| 1868 | } |
| 1869 | } else { |
| 1870 | cross_z = infinite; // Will never cross on Z. |
| 1871 | } |
| 1872 | |
| 1873 | int x = Math::floor(local_begin.x); |
| 1874 | int z = Math::floor(local_begin.z); |
| 1875 | |
| 1876 | // Workaround cases where the ray starts at an integer position. |
| 1877 | if (Math::is_zero_approx(cross_x)) { |
| 1878 | cross_x += delta_x; |
| 1879 | // If going backwards, we should ignore the position we would get by the above flooring, |
| 1880 | // because the ray is not heading in that direction. |
| 1881 | if (x_step == -1) { |
| 1882 | x -= 1; |
| 1883 | } |
| 1884 | } |
| 1885 | |
| 1886 | if (Math::is_zero_approx(cross_z)) { |
| 1887 | cross_z += delta_z; |
| 1888 | if (z_step == -1) { |
| 1889 | z -= 1; |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | // Start inside the grid. |
| 1894 | int x_start = MAX(MIN(x, p_width - 2), 0); |
| 1895 | int z_start = MAX(MIN(z, p_depth - 2), 0); |
| 1896 | |
| 1897 | // Adjust initial cross values. |
| 1898 | cross_x += delta_x * x_step * (x_start - x); |
| 1899 | cross_z += delta_z * z_step * (z_start - z); |
| 1900 | |
| 1901 | x = x_start; |
| 1902 | z = z_start; |
| 1903 | |
| 1904 | while (true) { |
| 1905 | state.prev_dist = state.dist; |
| 1906 | state.x = x; |
| 1907 | state.z = z; |
| 1908 | |
| 1909 | if (cross_x < cross_z) { |
| 1910 | // X lane. |
| 1911 | x += x_step; |
| 1912 | // Assign before advancing the param, |
| 1913 | // to be in sync with the initialization step. |
| 1914 | state.dist = cross_x; |
| 1915 | cross_x += delta_x; |
| 1916 | } else { |
| 1917 | // Z lane. |
| 1918 | z += z_step; |
| 1919 | state.dist = cross_z; |
| 1920 | cross_z += delta_z; |
| 1921 | } |
| 1922 | |
| 1923 | if (state.dist > state.length_flat) { |
| 1924 | state.dist = state.length_flat; |
| 1925 | if (p_process(params, state)) { |
| 1926 | r_point = params.result; |
| 1927 | r_normal = params.normal; |
| 1928 | return true; |
| 1929 | } |
| 1930 | break; |
| 1931 | } |
| 1932 | |
| 1933 | if (p_process(params, state)) { |
| 1934 | r_point = params.result; |
| 1935 | r_normal = params.normal; |
| 1936 | return true; |
| 1937 | } |
| 1938 | |
| 1939 | // Stop when outside the grid. |
| 1940 | if ((x < 0) || (z < 0) || (x >= p_width - 1) || (z >= p_depth - 1)) { |
| 1941 | break; |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | return false; |
| 1946 | } |
| 1947 | |
| 1948 | bool GodotHeightMapShape3D::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal, int &r_face_index, bool p_hit_back_faces) const { |
| 1949 | if (heights.is_empty()) { |
| 1950 | return false; |
| 1951 | } |
| 1952 | |
| 1953 | Vector3 local_begin = p_begin + local_origin; |
| 1954 | Vector3 local_end = p_end + local_origin; |
| 1955 | |
| 1956 | // Quantize the ray begin/end. |
| 1957 | int begin_x = Math::floor(local_begin.x); |
| 1958 | int begin_z = Math::floor(local_begin.z); |
| 1959 | int end_x = Math::floor(local_end.x); |
| 1960 | int end_z = Math::floor(local_end.z); |
| 1961 | |
| 1962 | if ((begin_x == end_x) && (begin_z == end_z)) { |
| 1963 | // Simple case for rays that don't traverse the grid horizontally. |
| 1964 | // Just perform a test on the given cell. |
| 1965 | GodotFaceShape3D face; |
| 1966 | face.backface_collision = p_hit_back_faces; |
| 1967 | |
| 1968 | _HeightmapSegmentCullParams params; |
| 1969 | params.from = p_begin; |
| 1970 | params.to = p_end; |
| 1971 | params.dir = (p_end - p_begin).normalized(); |
| 1972 | |
| 1973 | params.heightmap = this; |
| 1974 | params.face = &face; |
| 1975 | |
| 1976 | _HeightmapGridCullState state; |
| 1977 | state.x = MAX(MIN(begin_x, width - 2), 0); |
| 1978 | state.z = MAX(MIN(begin_z, depth - 2), 0); |
| 1979 | if (_heightmap_cell_cull_segment(params, state)) { |
| 1980 | r_point = params.result; |
| 1981 | r_normal = params.normal; |
| 1982 | return true; |
| 1983 | } |
| 1984 | } else if (bounds_grid.is_empty()) { |
| 1985 | // Process all cells intersecting the flat projection of the ray. |
| 1986 | return _intersect_grid_segment(_heightmap_cell_cull_segment, p_begin, p_end, width, depth, local_origin, r_point, r_normal); |
| 1987 | } else { |
| 1988 | Vector3 ray_diff = (p_end - p_begin); |
| 1989 | real_t length_flat_sqr = ray_diff.x * ray_diff.x + ray_diff.z * ray_diff.z; |
| 1990 | if (length_flat_sqr < BOUNDS_CHUNK_SIZE * BOUNDS_CHUNK_SIZE) { |
| 1991 | // Don't use chunks, the ray is too short in the plane. |
| 1992 | return _intersect_grid_segment(_heightmap_cell_cull_segment, p_begin, p_end, width, depth, local_origin, r_point, r_normal); |
| 1993 | } else { |
| 1994 | // The ray is long, run raycast on a higher-level grid. |
| 1995 | Vector3 bounds_from = p_begin / BOUNDS_CHUNK_SIZE; |
| 1996 | Vector3 bounds_to = p_end / BOUNDS_CHUNK_SIZE; |
| 1997 | Vector3 bounds_offset = local_origin / BOUNDS_CHUNK_SIZE; |
| 1998 | return _intersect_grid_segment(_heightmap_chunk_cull_segment, bounds_from, bounds_to, bounds_grid_width, bounds_grid_depth, bounds_offset, r_point, r_normal); |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | return false; |
| 2003 | } |
| 2004 | |
| 2005 | bool GodotHeightMapShape3D::intersect_point(const Vector3 &p_point) const { |
| 2006 | return false; |
| 2007 | } |
| 2008 | |
| 2009 | Vector3 GodotHeightMapShape3D::get_closest_point_to(const Vector3 &p_point) const { |
| 2010 | return Vector3(); |
| 2011 | } |
| 2012 | |
| 2013 | void GodotHeightMapShape3D::_get_cell(const Vector3 &p_point, int &r_x, int &r_y, int &r_z) const { |
| 2014 | const AABB &shape_aabb = get_aabb(); |
| 2015 | |
| 2016 | Vector3 pos_local = shape_aabb.position + local_origin; |
| 2017 | |
| 2018 | Vector3 clamped_point(p_point); |
| 2019 | clamped_point.x = CLAMP(p_point.x, pos_local.x, pos_local.x + shape_aabb.size.x); |
| 2020 | clamped_point.y = CLAMP(p_point.y, pos_local.y, pos_local.y + shape_aabb.size.y); |
| 2021 | clamped_point.z = CLAMP(p_point.z, pos_local.z, pos_local.z + shape_aabb.size.z); |
| 2022 | |
| 2023 | r_x = (clamped_point.x < 0.0) ? (clamped_point.x - 0.5) : (clamped_point.x + 0.5); |
| 2024 | r_y = (clamped_point.y < 0.0) ? (clamped_point.y - 0.5) : (clamped_point.y + 0.5); |
| 2025 | r_z = (clamped_point.z < 0.0) ? (clamped_point.z - 0.5) : (clamped_point.z + 0.5); |
| 2026 | } |
| 2027 | |
| 2028 | void GodotHeightMapShape3D::cull(const AABB &p_local_aabb, QueryCallback p_callback, void *p_userdata, bool p_invert_backface_collision) const { |
| 2029 | if (heights.is_empty()) { |
| 2030 | return; |
| 2031 | } |
| 2032 | |
| 2033 | AABB local_aabb = p_local_aabb; |
| 2034 | local_aabb.position += local_origin; |
| 2035 | |
| 2036 | // Quantize the aabb, and adjust the start/end ranges. |
| 2037 | int aabb_min[3]; |
| 2038 | int aabb_max[3]; |
| 2039 | _get_cell(local_aabb.position, aabb_min[0], aabb_min[1], aabb_min[2]); |
| 2040 | _get_cell(local_aabb.position + local_aabb.size, aabb_max[0], aabb_max[1], aabb_max[2]); |
| 2041 | |
| 2042 | // Expand the min/max quantized values. |
| 2043 | // This is to catch the case where the input aabb falls between grid points. |
| 2044 | for (int i = 0; i < 3; ++i) { |
| 2045 | aabb_min[i]--; |
| 2046 | aabb_max[i]++; |
| 2047 | } |
| 2048 | |
| 2049 | int start_x = MAX(0, aabb_min[0]); |
| 2050 | int end_x = MIN(width - 1, aabb_max[0]); |
| 2051 | int start_z = MAX(0, aabb_min[2]); |
| 2052 | int end_z = MIN(depth - 1, aabb_max[2]); |
| 2053 | |
| 2054 | GodotFaceShape3D face; |
| 2055 | face.backface_collision = !p_invert_backface_collision; |
| 2056 | face.invert_backface_collision = p_invert_backface_collision; |
| 2057 | |
| 2058 | for (int z = start_z; z < end_z; z++) { |
| 2059 | for (int x = start_x; x < end_x; x++) { |
| 2060 | // First triangle. |
| 2061 | _get_point(x, z, face.vertex[0]); |
| 2062 | _get_point(x + 1, z, face.vertex[1]); |
| 2063 | _get_point(x, z + 1, face.vertex[2]); |
| 2064 | face.normal = Plane(face.vertex[0], face.vertex[1], face.vertex[2]).normal; |
| 2065 | if (p_callback(p_userdata, &face)) { |
| 2066 | return; |
| 2067 | } |
| 2068 | |
| 2069 | // Second triangle. |
| 2070 | face.vertex[0] = face.vertex[1]; |
| 2071 | _get_point(x + 1, z + 1, face.vertex[1]); |
| 2072 | face.normal = Plane(face.vertex[0], face.vertex[1], face.vertex[2]).normal; |
| 2073 | if (p_callback(p_userdata, &face)) { |
| 2074 | return; |
| 2075 | } |
| 2076 | } |
| 2077 | } |
| 2078 | } |
| 2079 | |
| 2080 | Vector3 GodotHeightMapShape3D::get_moment_of_inertia(real_t p_mass) const { |
| 2081 | // use bad AABB approximation |
| 2082 | Vector3 extents = get_aabb().size * 0.5; |
| 2083 | |
| 2084 | return Vector3( |
| 2085 | (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), |
| 2086 | (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), |
| 2087 | (p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y)); |
| 2088 | } |
| 2089 | |
| 2090 | void GodotHeightMapShape3D::_build_accelerator() { |
| 2091 | bounds_grid.clear(); |
| 2092 | |
| 2093 | bounds_grid_width = width / BOUNDS_CHUNK_SIZE; |
| 2094 | bounds_grid_depth = depth / BOUNDS_CHUNK_SIZE; |
| 2095 | |
| 2096 | if (width % BOUNDS_CHUNK_SIZE > 0) { |
| 2097 | ++bounds_grid_width; // In case terrain size isn't dividable by chunk size. |
| 2098 | } |
| 2099 | |
| 2100 | if (depth % BOUNDS_CHUNK_SIZE > 0) { |
| 2101 | ++bounds_grid_depth; |
| 2102 | } |
| 2103 | |
| 2104 | uint32_t bound_grid_size = (uint32_t)(bounds_grid_width * bounds_grid_depth); |
| 2105 | |
| 2106 | if (bound_grid_size < 2) { |
| 2107 | // Grid is empty or just one chunk. |
| 2108 | return; |
| 2109 | } |
| 2110 | |
| 2111 | bounds_grid.resize(bound_grid_size); |
| 2112 | |
| 2113 | // Compute min and max height for all chunks. |
| 2114 | for (int cz = 0; cz < bounds_grid_depth; ++cz) { |
| 2115 | int z0 = cz * BOUNDS_CHUNK_SIZE; |
| 2116 | |
| 2117 | for (int cx = 0; cx < bounds_grid_width; ++cx) { |
| 2118 | int x0 = cx * BOUNDS_CHUNK_SIZE; |
| 2119 | |
| 2120 | Range r; |
| 2121 | |
| 2122 | r.min = _get_height(x0, z0); |
| 2123 | r.max = r.min; |
| 2124 | |
| 2125 | // Compute min and max height for this chunk. |
| 2126 | // We have to include one extra cell to account for neighbors. |
| 2127 | // Here is why: |
| 2128 | // Say we have a flat terrain, and a plateau that fits a chunk perfectly. |
| 2129 | // |
| 2130 | // Left Right |
| 2131 | // 0---0---0---1---1---1 |
| 2132 | // | | | | | | |
| 2133 | // 0---0---0---1---1---1 |
| 2134 | // | | | | | | |
| 2135 | // 0---0---0---1---1---1 |
| 2136 | // x |
| 2137 | // |
| 2138 | // If the AABB for the Left chunk did not share vertices with the Right, |
| 2139 | // then we would fail collision tests at x due to a gap. |
| 2140 | // |
| 2141 | int z_max = MIN(z0 + BOUNDS_CHUNK_SIZE + 1, depth); |
| 2142 | int x_max = MIN(x0 + BOUNDS_CHUNK_SIZE + 1, width); |
| 2143 | for (int z = z0; z < z_max; ++z) { |
| 2144 | for (int x = x0; x < x_max; ++x) { |
| 2145 | real_t height = _get_height(x, z); |
| 2146 | if (height < r.min) { |
| 2147 | r.min = height; |
| 2148 | } else if (height > r.max) { |
| 2149 | r.max = height; |
| 2150 | } |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | bounds_grid[cx + cz * bounds_grid_width] = r; |
| 2155 | } |
| 2156 | } |
| 2157 | } |
| 2158 | |
| 2159 | void GodotHeightMapShape3D::_setup(const Vector<real_t> &p_heights, int p_width, int p_depth, real_t p_min_height, real_t p_max_height) { |
| 2160 | heights = p_heights; |
| 2161 | width = p_width; |
| 2162 | depth = p_depth; |
| 2163 | |
| 2164 | // Initialize aabb. |
| 2165 | AABB aabb_new; |
| 2166 | aabb_new.position = Vector3(0.0, p_min_height, 0.0); |
| 2167 | aabb_new.size = Vector3(p_width - 1, p_max_height - p_min_height, p_depth - 1); |
| 2168 | |
| 2169 | // Initialize origin as the aabb center. |
| 2170 | local_origin = aabb_new.position + 0.5 * aabb_new.size; |
| 2171 | local_origin.y = 0.0; |
| 2172 | |
| 2173 | aabb_new.position -= local_origin; |
| 2174 | |
| 2175 | _build_accelerator(); |
| 2176 | |
| 2177 | configure(aabb_new); |
| 2178 | } |
| 2179 | |
| 2180 | void GodotHeightMapShape3D::set_data(const Variant &p_data) { |
| 2181 | ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY); |
| 2182 | |
| 2183 | Dictionary d = p_data; |
| 2184 | ERR_FAIL_COND(!d.has("width" )); |
| 2185 | ERR_FAIL_COND(!d.has("depth" )); |
| 2186 | ERR_FAIL_COND(!d.has("heights" )); |
| 2187 | |
| 2188 | int width_new = d["width" ]; |
| 2189 | int depth_new = d["depth" ]; |
| 2190 | |
| 2191 | ERR_FAIL_COND(width_new <= 0.0); |
| 2192 | ERR_FAIL_COND(depth_new <= 0.0); |
| 2193 | |
| 2194 | Variant heights_variant = d["heights" ]; |
| 2195 | Vector<real_t> heights_buffer; |
| 2196 | #ifdef REAL_T_IS_DOUBLE |
| 2197 | if (heights_variant.get_type() == Variant::PACKED_FLOAT64_ARRAY) { |
| 2198 | #else |
| 2199 | if (heights_variant.get_type() == Variant::PACKED_FLOAT32_ARRAY) { |
| 2200 | #endif |
| 2201 | // Ready-to-use heights can be passed. |
| 2202 | heights_buffer = heights_variant; |
| 2203 | } else if (heights_variant.get_type() == Variant::OBJECT) { |
| 2204 | // If an image is passed, we have to convert it. |
| 2205 | // This would be expensive to do with a script, so it's nice to have it here. |
| 2206 | Ref<Image> image = heights_variant; |
| 2207 | ERR_FAIL_COND(image.is_null()); |
| 2208 | ERR_FAIL_COND(image->get_format() != Image::FORMAT_RF); |
| 2209 | |
| 2210 | PackedByteArray im_data = image->get_data(); |
| 2211 | heights_buffer.resize(image->get_width() * image->get_height()); |
| 2212 | |
| 2213 | real_t *w = heights_buffer.ptrw(); |
| 2214 | real_t *rp = (real_t *)im_data.ptr(); |
| 2215 | for (int i = 0; i < heights_buffer.size(); ++i) { |
| 2216 | w[i] = rp[i]; |
| 2217 | } |
| 2218 | } else { |
| 2219 | #ifdef REAL_T_IS_DOUBLE |
| 2220 | ERR_FAIL_MSG("Expected PackedFloat64Array or float Image." ); |
| 2221 | #else |
| 2222 | ERR_FAIL_MSG("Expected PackedFloat32Array or float Image." ); |
| 2223 | #endif |
| 2224 | } |
| 2225 | |
| 2226 | // Compute min and max heights or use precomputed values. |
| 2227 | real_t min_height = 0.0; |
| 2228 | real_t max_height = 0.0; |
| 2229 | if (d.has("min_height" ) && d.has("max_height" )) { |
| 2230 | min_height = d["min_height" ]; |
| 2231 | max_height = d["max_height" ]; |
| 2232 | } else { |
| 2233 | int heights_size = heights.size(); |
| 2234 | for (int i = 0; i < heights_size; ++i) { |
| 2235 | real_t h = heights[i]; |
| 2236 | if (h < min_height) { |
| 2237 | min_height = h; |
| 2238 | } else if (h > max_height) { |
| 2239 | max_height = h; |
| 2240 | } |
| 2241 | } |
| 2242 | } |
| 2243 | |
| 2244 | ERR_FAIL_COND(min_height > max_height); |
| 2245 | |
| 2246 | ERR_FAIL_COND(heights_buffer.size() != (width_new * depth_new)); |
| 2247 | |
| 2248 | // If specified, min and max height will be used as precomputed values. |
| 2249 | _setup(heights_buffer, width_new, depth_new, min_height, max_height); |
| 2250 | } |
| 2251 | |
| 2252 | Variant GodotHeightMapShape3D::get_data() const { |
| 2253 | Dictionary d; |
| 2254 | d["width" ] = width; |
| 2255 | d["depth" ] = depth; |
| 2256 | |
| 2257 | const AABB &shape_aabb = get_aabb(); |
| 2258 | d["min_height" ] = shape_aabb.position.y; |
| 2259 | d["max_height" ] = shape_aabb.position.y + shape_aabb.size.y; |
| 2260 | |
| 2261 | d["heights" ] = heights; |
| 2262 | |
| 2263 | return d; |
| 2264 | } |
| 2265 | |
| 2266 | GodotHeightMapShape3D::GodotHeightMapShape3D() { |
| 2267 | } |
| 2268 | |