1 | /* |
2 | * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #ifndef _WINDOWS |
27 | #include "alloca.h" |
28 | #endif |
29 | #include "asm/macroAssembler.hpp" |
30 | #include "asm/macroAssembler.inline.hpp" |
31 | #include "code/debugInfoRec.hpp" |
32 | #include "code/icBuffer.hpp" |
33 | #include "code/nativeInst.hpp" |
34 | #include "code/vtableStubs.hpp" |
35 | #include "gc/shared/collectedHeap.hpp" |
36 | #include "gc/shared/gcLocker.hpp" |
37 | #include "gc/shared/barrierSet.hpp" |
38 | #include "gc/shared/barrierSetAssembler.hpp" |
39 | #include "interpreter/interpreter.hpp" |
40 | #include "logging/log.hpp" |
41 | #include "memory/resourceArea.hpp" |
42 | #include "memory/universe.hpp" |
43 | #include "oops/compiledICHolder.hpp" |
44 | #include "runtime/safepointMechanism.hpp" |
45 | #include "runtime/sharedRuntime.hpp" |
46 | #include "runtime/vframeArray.hpp" |
47 | #include "utilities/align.hpp" |
48 | #include "utilities/formatBuffer.hpp" |
49 | #include "vm_version_x86.hpp" |
50 | #include "vmreg_x86.inline.hpp" |
51 | #ifdef COMPILER1 |
52 | #include "c1/c1_Runtime1.hpp" |
53 | #endif |
54 | #ifdef COMPILER2 |
55 | #include "opto/runtime.hpp" |
56 | #endif |
57 | #if INCLUDE_JVMCI |
58 | #include "jvmci/jvmciJavaClasses.hpp" |
59 | #endif |
60 | |
61 | #define __ masm-> |
62 | |
63 | const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; |
64 | |
65 | class SimpleRuntimeFrame { |
66 | |
67 | public: |
68 | |
69 | // Most of the runtime stubs have this simple frame layout. |
70 | // This class exists to make the layout shared in one place. |
71 | // Offsets are for compiler stack slots, which are jints. |
72 | enum layout { |
73 | // The frame sender code expects that rbp will be in the "natural" place and |
74 | // will override any oopMap setting for it. We must therefore force the layout |
75 | // so that it agrees with the frame sender code. |
76 | rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, |
77 | rbp_off2, |
78 | return_off, return_off2, |
79 | framesize |
80 | }; |
81 | }; |
82 | |
83 | class RegisterSaver { |
84 | // Capture info about frame layout. Layout offsets are in jint |
85 | // units because compiler frame slots are jints. |
86 | #define XSAVE_AREA_BEGIN 160 |
87 | #define XSAVE_AREA_YMM_BEGIN 576 |
88 | #define XSAVE_AREA_ZMM_BEGIN 1152 |
89 | #define XSAVE_AREA_UPPERBANK 1664 |
90 | #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off |
91 | #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off |
92 | #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off |
93 | enum layout { |
94 | fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area |
95 | xmm_off = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt, // offset in fxsave save area |
96 | DEF_XMM_OFFS(0), |
97 | DEF_XMM_OFFS(1), |
98 | // 2..15 are implied in range usage |
99 | ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt, |
100 | DEF_YMM_OFFS(0), |
101 | DEF_YMM_OFFS(1), |
102 | // 2..15 are implied in range usage |
103 | zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt, |
104 | zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt, |
105 | DEF_ZMM_OFFS(16), |
106 | DEF_ZMM_OFFS(17), |
107 | // 18..31 are implied in range usage |
108 | fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt), |
109 | fpu_stateH_end, |
110 | r15_off, r15H_off, |
111 | r14_off, r14H_off, |
112 | r13_off, r13H_off, |
113 | r12_off, r12H_off, |
114 | r11_off, r11H_off, |
115 | r10_off, r10H_off, |
116 | r9_off, r9H_off, |
117 | r8_off, r8H_off, |
118 | rdi_off, rdiH_off, |
119 | rsi_off, rsiH_off, |
120 | ignore_off, ignoreH_off, // extra copy of rbp |
121 | rsp_off, rspH_off, |
122 | rbx_off, rbxH_off, |
123 | rdx_off, rdxH_off, |
124 | rcx_off, rcxH_off, |
125 | rax_off, raxH_off, |
126 | // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state |
127 | align_off, alignH_off, |
128 | flags_off, flagsH_off, |
129 | // The frame sender code expects that rbp will be in the "natural" place and |
130 | // will override any oopMap setting for it. We must therefore force the layout |
131 | // so that it agrees with the frame sender code. |
132 | rbp_off, rbpH_off, // copy of rbp we will restore |
133 | return_off, returnH_off, // slot for return address |
134 | reg_save_size // size in compiler stack slots |
135 | }; |
136 | |
137 | public: |
138 | static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false); |
139 | static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); |
140 | |
141 | // Offsets into the register save area |
142 | // Used by deoptimization when it is managing result register |
143 | // values on its own |
144 | |
145 | static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; } |
146 | static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; } |
147 | static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; } |
148 | static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; } |
149 | static int return_offset_in_bytes(void) { return BytesPerInt * return_off; } |
150 | |
151 | // During deoptimization only the result registers need to be restored, |
152 | // all the other values have already been extracted. |
153 | static void restore_result_registers(MacroAssembler* masm); |
154 | }; |
155 | |
156 | OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) { |
157 | int off = 0; |
158 | int num_xmm_regs = XMMRegisterImpl::number_of_registers; |
159 | if (UseAVX < 3) { |
160 | num_xmm_regs = num_xmm_regs/2; |
161 | } |
162 | #if COMPILER2_OR_JVMCI |
163 | if (save_vectors) { |
164 | assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX" ); |
165 | assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported" ); |
166 | } |
167 | #else |
168 | assert(!save_vectors, "vectors are generated only by C2 and JVMCI" ); |
169 | #endif |
170 | |
171 | // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated |
172 | int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs); |
173 | // OopMap frame size is in compiler stack slots (jint's) not bytes or words |
174 | int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; |
175 | // CodeBlob frame size is in words. |
176 | int frame_size_in_words = frame_size_in_bytes / wordSize; |
177 | *total_frame_words = frame_size_in_words; |
178 | |
179 | // Save registers, fpu state, and flags. |
180 | // We assume caller has already pushed the return address onto the |
181 | // stack, so rsp is 8-byte aligned here. |
182 | // We push rpb twice in this sequence because we want the real rbp |
183 | // to be under the return like a normal enter. |
184 | |
185 | __ enter(); // rsp becomes 16-byte aligned here |
186 | __ push_CPU_state(); // Push a multiple of 16 bytes |
187 | |
188 | // push cpu state handles this on EVEX enabled targets |
189 | if (save_vectors) { |
190 | // Save upper half of YMM registers(0..15) |
191 | int base_addr = XSAVE_AREA_YMM_BEGIN; |
192 | for (int n = 0; n < 16; n++) { |
193 | __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n)); |
194 | } |
195 | if (VM_Version::supports_evex()) { |
196 | // Save upper half of ZMM registers(0..15) |
197 | base_addr = XSAVE_AREA_ZMM_BEGIN; |
198 | for (int n = 0; n < 16; n++) { |
199 | __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n)); |
200 | } |
201 | // Save full ZMM registers(16..num_xmm_regs) |
202 | base_addr = XSAVE_AREA_UPPERBANK; |
203 | off = 0; |
204 | int vector_len = Assembler::AVX_512bit; |
205 | for (int n = 16; n < num_xmm_regs; n++) { |
206 | __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len); |
207 | } |
208 | } |
209 | } else { |
210 | if (VM_Version::supports_evex()) { |
211 | // Save upper bank of ZMM registers(16..31) for double/float usage |
212 | int base_addr = XSAVE_AREA_UPPERBANK; |
213 | off = 0; |
214 | for (int n = 16; n < num_xmm_regs; n++) { |
215 | __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n)); |
216 | } |
217 | } |
218 | } |
219 | __ vzeroupper(); |
220 | if (frame::arg_reg_save_area_bytes != 0) { |
221 | // Allocate argument register save area |
222 | __ subptr(rsp, frame::arg_reg_save_area_bytes); |
223 | } |
224 | |
225 | // Set an oopmap for the call site. This oopmap will map all |
226 | // oop-registers and debug-info registers as callee-saved. This |
227 | // will allow deoptimization at this safepoint to find all possible |
228 | // debug-info recordings, as well as let GC find all oops. |
229 | |
230 | OopMapSet *oop_maps = new OopMapSet(); |
231 | OopMap* map = new OopMap(frame_size_in_slots, 0); |
232 | |
233 | #define STACK_OFFSET(x) VMRegImpl::stack2reg((x)) |
234 | |
235 | map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg()); |
236 | map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg()); |
237 | map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg()); |
238 | map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg()); |
239 | // rbp location is known implicitly by the frame sender code, needs no oopmap |
240 | // and the location where rbp was saved by is ignored |
241 | map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg()); |
242 | map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg()); |
243 | map->set_callee_saved(STACK_OFFSET( r8_off ), r8->as_VMReg()); |
244 | map->set_callee_saved(STACK_OFFSET( r9_off ), r9->as_VMReg()); |
245 | map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg()); |
246 | map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg()); |
247 | map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg()); |
248 | map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg()); |
249 | map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg()); |
250 | map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg()); |
251 | // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15, |
252 | // on EVEX enabled targets, we get it included in the xsave area |
253 | off = xmm0_off; |
254 | int delta = xmm1_off - off; |
255 | for (int n = 0; n < 16; n++) { |
256 | XMMRegister xmm_name = as_XMMRegister(n); |
257 | map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()); |
258 | off += delta; |
259 | } |
260 | if(UseAVX > 2) { |
261 | // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets |
262 | off = zmm16_off; |
263 | delta = zmm17_off - off; |
264 | for (int n = 16; n < num_xmm_regs; n++) { |
265 | XMMRegister zmm_name = as_XMMRegister(n); |
266 | map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()); |
267 | off += delta; |
268 | } |
269 | } |
270 | |
271 | #if COMPILER2_OR_JVMCI |
272 | if (save_vectors) { |
273 | off = ymm0_off; |
274 | int delta = ymm1_off - off; |
275 | for (int n = 0; n < 16; n++) { |
276 | XMMRegister ymm_name = as_XMMRegister(n); |
277 | map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4)); |
278 | off += delta; |
279 | } |
280 | } |
281 | #endif // COMPILER2_OR_JVMCI |
282 | |
283 | // %%% These should all be a waste but we'll keep things as they were for now |
284 | if (true) { |
285 | map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next()); |
286 | map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next()); |
287 | map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next()); |
288 | map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next()); |
289 | // rbp location is known implicitly by the frame sender code, needs no oopmap |
290 | map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next()); |
291 | map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next()); |
292 | map->set_callee_saved(STACK_OFFSET( r8H_off ), r8->as_VMReg()->next()); |
293 | map->set_callee_saved(STACK_OFFSET( r9H_off ), r9->as_VMReg()->next()); |
294 | map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next()); |
295 | map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next()); |
296 | map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next()); |
297 | map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next()); |
298 | map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next()); |
299 | map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next()); |
300 | // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15, |
301 | // on EVEX enabled targets, we get it included in the xsave area |
302 | off = xmm0H_off; |
303 | delta = xmm1H_off - off; |
304 | for (int n = 0; n < 16; n++) { |
305 | XMMRegister xmm_name = as_XMMRegister(n); |
306 | map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next()); |
307 | off += delta; |
308 | } |
309 | if (UseAVX > 2) { |
310 | // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets |
311 | off = zmm16H_off; |
312 | delta = zmm17H_off - off; |
313 | for (int n = 16; n < num_xmm_regs; n++) { |
314 | XMMRegister zmm_name = as_XMMRegister(n); |
315 | map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next()); |
316 | off += delta; |
317 | } |
318 | } |
319 | } |
320 | |
321 | return map; |
322 | } |
323 | |
324 | void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { |
325 | int num_xmm_regs = XMMRegisterImpl::number_of_registers; |
326 | if (UseAVX < 3) { |
327 | num_xmm_regs = num_xmm_regs/2; |
328 | } |
329 | if (frame::arg_reg_save_area_bytes != 0) { |
330 | // Pop arg register save area |
331 | __ addptr(rsp, frame::arg_reg_save_area_bytes); |
332 | } |
333 | |
334 | #if COMPILER2_OR_JVMCI |
335 | if (restore_vectors) { |
336 | assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX" ); |
337 | assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported" ); |
338 | } |
339 | #else |
340 | assert(!restore_vectors, "vectors are generated only by C2" ); |
341 | #endif |
342 | |
343 | __ vzeroupper(); |
344 | |
345 | // On EVEX enabled targets everything is handled in pop fpu state |
346 | if (restore_vectors) { |
347 | // Restore upper half of YMM registers (0..15) |
348 | int base_addr = XSAVE_AREA_YMM_BEGIN; |
349 | for (int n = 0; n < 16; n++) { |
350 | __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16)); |
351 | } |
352 | if (VM_Version::supports_evex()) { |
353 | // Restore upper half of ZMM registers (0..15) |
354 | base_addr = XSAVE_AREA_ZMM_BEGIN; |
355 | for (int n = 0; n < 16; n++) { |
356 | __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32)); |
357 | } |
358 | // Restore full ZMM registers(16..num_xmm_regs) |
359 | base_addr = XSAVE_AREA_UPPERBANK; |
360 | int vector_len = Assembler::AVX_512bit; |
361 | int off = 0; |
362 | for (int n = 16; n < num_xmm_regs; n++) { |
363 | __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len); |
364 | } |
365 | } |
366 | } else { |
367 | if (VM_Version::supports_evex()) { |
368 | // Restore upper bank of ZMM registers(16..31) for double/float usage |
369 | int base_addr = XSAVE_AREA_UPPERBANK; |
370 | int off = 0; |
371 | for (int n = 16; n < num_xmm_regs; n++) { |
372 | __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64))); |
373 | } |
374 | } |
375 | } |
376 | |
377 | // Recover CPU state |
378 | __ pop_CPU_state(); |
379 | // Get the rbp described implicitly by the calling convention (no oopMap) |
380 | __ pop(rbp); |
381 | } |
382 | |
383 | void RegisterSaver::restore_result_registers(MacroAssembler* masm) { |
384 | |
385 | // Just restore result register. Only used by deoptimization. By |
386 | // now any callee save register that needs to be restored to a c2 |
387 | // caller of the deoptee has been extracted into the vframeArray |
388 | // and will be stuffed into the c2i adapter we create for later |
389 | // restoration so only result registers need to be restored here. |
390 | |
391 | // Restore fp result register |
392 | __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes())); |
393 | // Restore integer result register |
394 | __ movptr(rax, Address(rsp, rax_offset_in_bytes())); |
395 | __ movptr(rdx, Address(rsp, rdx_offset_in_bytes())); |
396 | |
397 | // Pop all of the register save are off the stack except the return address |
398 | __ addptr(rsp, return_offset_in_bytes()); |
399 | } |
400 | |
401 | // Is vector's size (in bytes) bigger than a size saved by default? |
402 | // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions. |
403 | bool SharedRuntime::is_wide_vector(int size) { |
404 | return size > 16; |
405 | } |
406 | |
407 | size_t SharedRuntime::trampoline_size() { |
408 | return 16; |
409 | } |
410 | |
411 | void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) { |
412 | __ jump(RuntimeAddress(destination)); |
413 | } |
414 | |
415 | // The java_calling_convention describes stack locations as ideal slots on |
416 | // a frame with no abi restrictions. Since we must observe abi restrictions |
417 | // (like the placement of the register window) the slots must be biased by |
418 | // the following value. |
419 | static int reg2offset_in(VMReg r) { |
420 | // Account for saved rbp and return address |
421 | // This should really be in_preserve_stack_slots |
422 | return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; |
423 | } |
424 | |
425 | static int reg2offset_out(VMReg r) { |
426 | return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; |
427 | } |
428 | |
429 | // --------------------------------------------------------------------------- |
430 | // Read the array of BasicTypes from a signature, and compute where the |
431 | // arguments should go. Values in the VMRegPair regs array refer to 4-byte |
432 | // quantities. Values less than VMRegImpl::stack0 are registers, those above |
433 | // refer to 4-byte stack slots. All stack slots are based off of the stack pointer |
434 | // as framesizes are fixed. |
435 | // VMRegImpl::stack0 refers to the first slot 0(sp). |
436 | // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register |
437 | // up to RegisterImpl::number_of_registers) are the 64-bit |
438 | // integer registers. |
439 | |
440 | // Note: the INPUTS in sig_bt are in units of Java argument words, which are |
441 | // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit |
442 | // units regardless of build. Of course for i486 there is no 64 bit build |
443 | |
444 | // The Java calling convention is a "shifted" version of the C ABI. |
445 | // By skipping the first C ABI register we can call non-static jni methods |
446 | // with small numbers of arguments without having to shuffle the arguments |
447 | // at all. Since we control the java ABI we ought to at least get some |
448 | // advantage out of it. |
449 | |
450 | int SharedRuntime::java_calling_convention(const BasicType *sig_bt, |
451 | VMRegPair *regs, |
452 | int total_args_passed, |
453 | int is_outgoing) { |
454 | |
455 | // Create the mapping between argument positions and |
456 | // registers. |
457 | static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { |
458 | j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5 |
459 | }; |
460 | static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { |
461 | j_farg0, j_farg1, j_farg2, j_farg3, |
462 | j_farg4, j_farg5, j_farg6, j_farg7 |
463 | }; |
464 | |
465 | |
466 | uint int_args = 0; |
467 | uint fp_args = 0; |
468 | uint stk_args = 0; // inc by 2 each time |
469 | |
470 | for (int i = 0; i < total_args_passed; i++) { |
471 | switch (sig_bt[i]) { |
472 | case T_BOOLEAN: |
473 | case T_CHAR: |
474 | case T_BYTE: |
475 | case T_SHORT: |
476 | case T_INT: |
477 | if (int_args < Argument::n_int_register_parameters_j) { |
478 | regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); |
479 | } else { |
480 | regs[i].set1(VMRegImpl::stack2reg(stk_args)); |
481 | stk_args += 2; |
482 | } |
483 | break; |
484 | case T_VOID: |
485 | // halves of T_LONG or T_DOUBLE |
486 | assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half" ); |
487 | regs[i].set_bad(); |
488 | break; |
489 | case T_LONG: |
490 | assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half" ); |
491 | // fall through |
492 | case T_OBJECT: |
493 | case T_ARRAY: |
494 | case T_ADDRESS: |
495 | if (int_args < Argument::n_int_register_parameters_j) { |
496 | regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); |
497 | } else { |
498 | regs[i].set2(VMRegImpl::stack2reg(stk_args)); |
499 | stk_args += 2; |
500 | } |
501 | break; |
502 | case T_FLOAT: |
503 | if (fp_args < Argument::n_float_register_parameters_j) { |
504 | regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); |
505 | } else { |
506 | regs[i].set1(VMRegImpl::stack2reg(stk_args)); |
507 | stk_args += 2; |
508 | } |
509 | break; |
510 | case T_DOUBLE: |
511 | assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half" ); |
512 | if (fp_args < Argument::n_float_register_parameters_j) { |
513 | regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); |
514 | } else { |
515 | regs[i].set2(VMRegImpl::stack2reg(stk_args)); |
516 | stk_args += 2; |
517 | } |
518 | break; |
519 | default: |
520 | ShouldNotReachHere(); |
521 | break; |
522 | } |
523 | } |
524 | |
525 | return align_up(stk_args, 2); |
526 | } |
527 | |
528 | // Patch the callers callsite with entry to compiled code if it exists. |
529 | static void patch_callers_callsite(MacroAssembler *masm) { |
530 | Label L; |
531 | __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); |
532 | __ jcc(Assembler::equal, L); |
533 | |
534 | // Save the current stack pointer |
535 | __ mov(r13, rsp); |
536 | // Schedule the branch target address early. |
537 | // Call into the VM to patch the caller, then jump to compiled callee |
538 | // rax isn't live so capture return address while we easily can |
539 | __ movptr(rax, Address(rsp, 0)); |
540 | |
541 | // align stack so push_CPU_state doesn't fault |
542 | __ andptr(rsp, -(StackAlignmentInBytes)); |
543 | __ push_CPU_state(); |
544 | __ vzeroupper(); |
545 | // VM needs caller's callsite |
546 | // VM needs target method |
547 | // This needs to be a long call since we will relocate this adapter to |
548 | // the codeBuffer and it may not reach |
549 | |
550 | // Allocate argument register save area |
551 | if (frame::arg_reg_save_area_bytes != 0) { |
552 | __ subptr(rsp, frame::arg_reg_save_area_bytes); |
553 | } |
554 | __ mov(c_rarg0, rbx); |
555 | __ mov(c_rarg1, rax); |
556 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); |
557 | |
558 | // De-allocate argument register save area |
559 | if (frame::arg_reg_save_area_bytes != 0) { |
560 | __ addptr(rsp, frame::arg_reg_save_area_bytes); |
561 | } |
562 | |
563 | __ vzeroupper(); |
564 | __ pop_CPU_state(); |
565 | // restore sp |
566 | __ mov(rsp, r13); |
567 | __ bind(L); |
568 | } |
569 | |
570 | |
571 | static void gen_c2i_adapter(MacroAssembler *masm, |
572 | int total_args_passed, |
573 | int comp_args_on_stack, |
574 | const BasicType *sig_bt, |
575 | const VMRegPair *regs, |
576 | Label& skip_fixup) { |
577 | // Before we get into the guts of the C2I adapter, see if we should be here |
578 | // at all. We've come from compiled code and are attempting to jump to the |
579 | // interpreter, which means the caller made a static call to get here |
580 | // (vcalls always get a compiled target if there is one). Check for a |
581 | // compiled target. If there is one, we need to patch the caller's call. |
582 | patch_callers_callsite(masm); |
583 | |
584 | __ bind(skip_fixup); |
585 | |
586 | // Since all args are passed on the stack, total_args_passed * |
587 | // Interpreter::stackElementSize is the space we need. Plus 1 because |
588 | // we also account for the return address location since |
589 | // we store it first rather than hold it in rax across all the shuffling |
590 | |
591 | int = (total_args_passed * Interpreter::stackElementSize) + wordSize; |
592 | |
593 | // stack is aligned, keep it that way |
594 | extraspace = align_up(extraspace, 2*wordSize); |
595 | |
596 | // Get return address |
597 | __ pop(rax); |
598 | |
599 | // set senderSP value |
600 | __ mov(r13, rsp); |
601 | |
602 | __ subptr(rsp, extraspace); |
603 | |
604 | // Store the return address in the expected location |
605 | __ movptr(Address(rsp, 0), rax); |
606 | |
607 | // Now write the args into the outgoing interpreter space |
608 | for (int i = 0; i < total_args_passed; i++) { |
609 | if (sig_bt[i] == T_VOID) { |
610 | assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half" ); |
611 | continue; |
612 | } |
613 | |
614 | // offset to start parameters |
615 | int st_off = (total_args_passed - i) * Interpreter::stackElementSize; |
616 | int next_off = st_off - Interpreter::stackElementSize; |
617 | |
618 | // Say 4 args: |
619 | // i st_off |
620 | // 0 32 T_LONG |
621 | // 1 24 T_VOID |
622 | // 2 16 T_OBJECT |
623 | // 3 8 T_BOOL |
624 | // - 0 return address |
625 | // |
626 | // However to make thing extra confusing. Because we can fit a long/double in |
627 | // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter |
628 | // leaves one slot empty and only stores to a single slot. In this case the |
629 | // slot that is occupied is the T_VOID slot. See I said it was confusing. |
630 | |
631 | VMReg r_1 = regs[i].first(); |
632 | VMReg r_2 = regs[i].second(); |
633 | if (!r_1->is_valid()) { |
634 | assert(!r_2->is_valid(), "" ); |
635 | continue; |
636 | } |
637 | if (r_1->is_stack()) { |
638 | // memory to memory use rax |
639 | int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; |
640 | if (!r_2->is_valid()) { |
641 | // sign extend?? |
642 | __ movl(rax, Address(rsp, ld_off)); |
643 | __ movptr(Address(rsp, st_off), rax); |
644 | |
645 | } else { |
646 | |
647 | __ movq(rax, Address(rsp, ld_off)); |
648 | |
649 | // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG |
650 | // T_DOUBLE and T_LONG use two slots in the interpreter |
651 | if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { |
652 | // ld_off == LSW, ld_off+wordSize == MSW |
653 | // st_off == MSW, next_off == LSW |
654 | __ movq(Address(rsp, next_off), rax); |
655 | #ifdef ASSERT |
656 | // Overwrite the unused slot with known junk |
657 | __ mov64(rax, CONST64(0xdeadffffdeadaaaa)); |
658 | __ movptr(Address(rsp, st_off), rax); |
659 | #endif /* ASSERT */ |
660 | } else { |
661 | __ movq(Address(rsp, st_off), rax); |
662 | } |
663 | } |
664 | } else if (r_1->is_Register()) { |
665 | Register r = r_1->as_Register(); |
666 | if (!r_2->is_valid()) { |
667 | // must be only an int (or less ) so move only 32bits to slot |
668 | // why not sign extend?? |
669 | __ movl(Address(rsp, st_off), r); |
670 | } else { |
671 | // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG |
672 | // T_DOUBLE and T_LONG use two slots in the interpreter |
673 | if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { |
674 | // long/double in gpr |
675 | #ifdef ASSERT |
676 | // Overwrite the unused slot with known junk |
677 | __ mov64(rax, CONST64(0xdeadffffdeadaaab)); |
678 | __ movptr(Address(rsp, st_off), rax); |
679 | #endif /* ASSERT */ |
680 | __ movq(Address(rsp, next_off), r); |
681 | } else { |
682 | __ movptr(Address(rsp, st_off), r); |
683 | } |
684 | } |
685 | } else { |
686 | assert(r_1->is_XMMRegister(), "" ); |
687 | if (!r_2->is_valid()) { |
688 | // only a float use just part of the slot |
689 | __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); |
690 | } else { |
691 | #ifdef ASSERT |
692 | // Overwrite the unused slot with known junk |
693 | __ mov64(rax, CONST64(0xdeadffffdeadaaac)); |
694 | __ movptr(Address(rsp, st_off), rax); |
695 | #endif /* ASSERT */ |
696 | __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister()); |
697 | } |
698 | } |
699 | } |
700 | |
701 | // Schedule the branch target address early. |
702 | __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); |
703 | __ jmp(rcx); |
704 | } |
705 | |
706 | static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, |
707 | address code_start, address code_end, |
708 | Label& L_ok) { |
709 | Label L_fail; |
710 | __ lea(temp_reg, ExternalAddress(code_start)); |
711 | __ cmpptr(pc_reg, temp_reg); |
712 | __ jcc(Assembler::belowEqual, L_fail); |
713 | __ lea(temp_reg, ExternalAddress(code_end)); |
714 | __ cmpptr(pc_reg, temp_reg); |
715 | __ jcc(Assembler::below, L_ok); |
716 | __ bind(L_fail); |
717 | } |
718 | |
719 | void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, |
720 | int total_args_passed, |
721 | int comp_args_on_stack, |
722 | const BasicType *sig_bt, |
723 | const VMRegPair *regs) { |
724 | |
725 | // Note: r13 contains the senderSP on entry. We must preserve it since |
726 | // we may do a i2c -> c2i transition if we lose a race where compiled |
727 | // code goes non-entrant while we get args ready. |
728 | // In addition we use r13 to locate all the interpreter args as |
729 | // we must align the stack to 16 bytes on an i2c entry else we |
730 | // lose alignment we expect in all compiled code and register |
731 | // save code can segv when fxsave instructions find improperly |
732 | // aligned stack pointer. |
733 | |
734 | // Adapters can be frameless because they do not require the caller |
735 | // to perform additional cleanup work, such as correcting the stack pointer. |
736 | // An i2c adapter is frameless because the *caller* frame, which is interpreted, |
737 | // routinely repairs its own stack pointer (from interpreter_frame_last_sp), |
738 | // even if a callee has modified the stack pointer. |
739 | // A c2i adapter is frameless because the *callee* frame, which is interpreted, |
740 | // routinely repairs its caller's stack pointer (from sender_sp, which is set |
741 | // up via the senderSP register). |
742 | // In other words, if *either* the caller or callee is interpreted, we can |
743 | // get the stack pointer repaired after a call. |
744 | // This is why c2i and i2c adapters cannot be indefinitely composed. |
745 | // In particular, if a c2i adapter were to somehow call an i2c adapter, |
746 | // both caller and callee would be compiled methods, and neither would |
747 | // clean up the stack pointer changes performed by the two adapters. |
748 | // If this happens, control eventually transfers back to the compiled |
749 | // caller, but with an uncorrected stack, causing delayed havoc. |
750 | |
751 | // Pick up the return address |
752 | __ movptr(rax, Address(rsp, 0)); |
753 | |
754 | if (VerifyAdapterCalls && |
755 | (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { |
756 | // So, let's test for cascading c2i/i2c adapters right now. |
757 | // assert(Interpreter::contains($return_addr) || |
758 | // StubRoutines::contains($return_addr), |
759 | // "i2c adapter must return to an interpreter frame"); |
760 | __ block_comment("verify_i2c { " ); |
761 | Label L_ok; |
762 | if (Interpreter::code() != NULL) |
763 | range_check(masm, rax, r11, |
764 | Interpreter::code()->code_start(), Interpreter::code()->code_end(), |
765 | L_ok); |
766 | if (StubRoutines::code1() != NULL) |
767 | range_check(masm, rax, r11, |
768 | StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), |
769 | L_ok); |
770 | if (StubRoutines::code2() != NULL) |
771 | range_check(masm, rax, r11, |
772 | StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), |
773 | L_ok); |
774 | const char* msg = "i2c adapter must return to an interpreter frame" ; |
775 | __ block_comment(msg); |
776 | __ stop(msg); |
777 | __ bind(L_ok); |
778 | __ block_comment("} verify_i2ce " ); |
779 | } |
780 | |
781 | // Must preserve original SP for loading incoming arguments because |
782 | // we need to align the outgoing SP for compiled code. |
783 | __ movptr(r11, rsp); |
784 | |
785 | // Cut-out for having no stack args. Since up to 2 int/oop args are passed |
786 | // in registers, we will occasionally have no stack args. |
787 | int comp_words_on_stack = 0; |
788 | if (comp_args_on_stack) { |
789 | // Sig words on the stack are greater-than VMRegImpl::stack0. Those in |
790 | // registers are below. By subtracting stack0, we either get a negative |
791 | // number (all values in registers) or the maximum stack slot accessed. |
792 | |
793 | // Convert 4-byte c2 stack slots to words. |
794 | comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; |
795 | // Round up to miminum stack alignment, in wordSize |
796 | comp_words_on_stack = align_up(comp_words_on_stack, 2); |
797 | __ subptr(rsp, comp_words_on_stack * wordSize); |
798 | } |
799 | |
800 | |
801 | // Ensure compiled code always sees stack at proper alignment |
802 | __ andptr(rsp, -16); |
803 | |
804 | // push the return address and misalign the stack that youngest frame always sees |
805 | // as far as the placement of the call instruction |
806 | __ push(rax); |
807 | |
808 | // Put saved SP in another register |
809 | const Register saved_sp = rax; |
810 | __ movptr(saved_sp, r11); |
811 | |
812 | // Will jump to the compiled code just as if compiled code was doing it. |
813 | // Pre-load the register-jump target early, to schedule it better. |
814 | __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset()))); |
815 | |
816 | #if INCLUDE_JVMCI |
817 | if (EnableJVMCI || UseAOT) { |
818 | // check if this call should be routed towards a specific entry point |
819 | __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0); |
820 | Label no_alternative_target; |
821 | __ jcc(Assembler::equal, no_alternative_target); |
822 | __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); |
823 | __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0); |
824 | __ bind(no_alternative_target); |
825 | } |
826 | #endif // INCLUDE_JVMCI |
827 | |
828 | // Now generate the shuffle code. Pick up all register args and move the |
829 | // rest through the floating point stack top. |
830 | for (int i = 0; i < total_args_passed; i++) { |
831 | if (sig_bt[i] == T_VOID) { |
832 | // Longs and doubles are passed in native word order, but misaligned |
833 | // in the 32-bit build. |
834 | assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half" ); |
835 | continue; |
836 | } |
837 | |
838 | // Pick up 0, 1 or 2 words from SP+offset. |
839 | |
840 | assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), |
841 | "scrambled load targets?" ); |
842 | // Load in argument order going down. |
843 | int ld_off = (total_args_passed - i)*Interpreter::stackElementSize; |
844 | // Point to interpreter value (vs. tag) |
845 | int next_off = ld_off - Interpreter::stackElementSize; |
846 | // |
847 | // |
848 | // |
849 | VMReg r_1 = regs[i].first(); |
850 | VMReg r_2 = regs[i].second(); |
851 | if (!r_1->is_valid()) { |
852 | assert(!r_2->is_valid(), "" ); |
853 | continue; |
854 | } |
855 | if (r_1->is_stack()) { |
856 | // Convert stack slot to an SP offset (+ wordSize to account for return address ) |
857 | int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; |
858 | |
859 | // We can use r13 as a temp here because compiled code doesn't need r13 as an input |
860 | // and if we end up going thru a c2i because of a miss a reasonable value of r13 |
861 | // will be generated. |
862 | if (!r_2->is_valid()) { |
863 | // sign extend??? |
864 | __ movl(r13, Address(saved_sp, ld_off)); |
865 | __ movptr(Address(rsp, st_off), r13); |
866 | } else { |
867 | // |
868 | // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE |
869 | // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case |
870 | // So we must adjust where to pick up the data to match the interpreter. |
871 | // |
872 | // Interpreter local[n] == MSW, local[n+1] == LSW however locals |
873 | // are accessed as negative so LSW is at LOW address |
874 | |
875 | // ld_off is MSW so get LSW |
876 | const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? |
877 | next_off : ld_off; |
878 | __ movq(r13, Address(saved_sp, offset)); |
879 | // st_off is LSW (i.e. reg.first()) |
880 | __ movq(Address(rsp, st_off), r13); |
881 | } |
882 | } else if (r_1->is_Register()) { // Register argument |
883 | Register r = r_1->as_Register(); |
884 | assert(r != rax, "must be different" ); |
885 | if (r_2->is_valid()) { |
886 | // |
887 | // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE |
888 | // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case |
889 | // So we must adjust where to pick up the data to match the interpreter. |
890 | |
891 | const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? |
892 | next_off : ld_off; |
893 | |
894 | // this can be a misaligned move |
895 | __ movq(r, Address(saved_sp, offset)); |
896 | } else { |
897 | // sign extend and use a full word? |
898 | __ movl(r, Address(saved_sp, ld_off)); |
899 | } |
900 | } else { |
901 | if (!r_2->is_valid()) { |
902 | __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); |
903 | } else { |
904 | __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off)); |
905 | } |
906 | } |
907 | } |
908 | |
909 | // 6243940 We might end up in handle_wrong_method if |
910 | // the callee is deoptimized as we race thru here. If that |
911 | // happens we don't want to take a safepoint because the |
912 | // caller frame will look interpreted and arguments are now |
913 | // "compiled" so it is much better to make this transition |
914 | // invisible to the stack walking code. Unfortunately if |
915 | // we try and find the callee by normal means a safepoint |
916 | // is possible. So we stash the desired callee in the thread |
917 | // and the vm will find there should this case occur. |
918 | |
919 | __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); |
920 | |
921 | // put Method* where a c2i would expect should we end up there |
922 | // only needed becaus eof c2 resolve stubs return Method* as a result in |
923 | // rax |
924 | __ mov(rax, rbx); |
925 | __ jmp(r11); |
926 | } |
927 | |
928 | // --------------------------------------------------------------- |
929 | AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, |
930 | int total_args_passed, |
931 | int comp_args_on_stack, |
932 | const BasicType *sig_bt, |
933 | const VMRegPair *regs, |
934 | AdapterFingerPrint* fingerprint) { |
935 | address i2c_entry = __ pc(); |
936 | |
937 | gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); |
938 | |
939 | // ------------------------------------------------------------------------- |
940 | // Generate a C2I adapter. On entry we know rbx holds the Method* during calls |
941 | // to the interpreter. The args start out packed in the compiled layout. They |
942 | // need to be unpacked into the interpreter layout. This will almost always |
943 | // require some stack space. We grow the current (compiled) stack, then repack |
944 | // the args. We finally end in a jump to the generic interpreter entry point. |
945 | // On exit from the interpreter, the interpreter will restore our SP (lest the |
946 | // compiled code, which relys solely on SP and not RBP, get sick). |
947 | |
948 | address c2i_unverified_entry = __ pc(); |
949 | Label skip_fixup; |
950 | Label ok; |
951 | |
952 | Register holder = rax; |
953 | Register receiver = j_rarg0; |
954 | Register temp = rbx; |
955 | |
956 | { |
957 | __ load_klass(temp, receiver); |
958 | __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); |
959 | __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset())); |
960 | __ jcc(Assembler::equal, ok); |
961 | __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); |
962 | |
963 | __ bind(ok); |
964 | // Method might have been compiled since the call site was patched to |
965 | // interpreted if that is the case treat it as a miss so we can get |
966 | // the call site corrected. |
967 | __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); |
968 | __ jcc(Assembler::equal, skip_fixup); |
969 | __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); |
970 | } |
971 | |
972 | address c2i_entry = __ pc(); |
973 | |
974 | BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
975 | bs->c2i_entry_barrier(masm); |
976 | |
977 | // Class initialization barrier for static methods |
978 | if (VM_Version::supports_fast_class_init_checks()) { |
979 | Label L_skip_barrier; |
980 | Register method = rbx; |
981 | |
982 | { // Bypass the barrier for non-static methods |
983 | Register flags = rscratch1; |
984 | __ movl(flags, Address(method, Method::access_flags_offset())); |
985 | __ testl(flags, JVM_ACC_STATIC); |
986 | __ jcc(Assembler::zero, L_skip_barrier); // non-static |
987 | } |
988 | |
989 | Register klass = rscratch1; |
990 | __ load_method_holder(klass, method); |
991 | __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/); |
992 | |
993 | __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path |
994 | |
995 | __ bind(L_skip_barrier); |
996 | } |
997 | |
998 | gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); |
999 | |
1000 | __ flush(); |
1001 | return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); |
1002 | } |
1003 | |
1004 | int SharedRuntime::c_calling_convention(const BasicType *sig_bt, |
1005 | VMRegPair *regs, |
1006 | VMRegPair *regs2, |
1007 | int total_args_passed) { |
1008 | assert(regs2 == NULL, "not needed on x86" ); |
1009 | // We return the amount of VMRegImpl stack slots we need to reserve for all |
1010 | // the arguments NOT counting out_preserve_stack_slots. |
1011 | |
1012 | // NOTE: These arrays will have to change when c1 is ported |
1013 | #ifdef _WIN64 |
1014 | static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { |
1015 | c_rarg0, c_rarg1, c_rarg2, c_rarg3 |
1016 | }; |
1017 | static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { |
1018 | c_farg0, c_farg1, c_farg2, c_farg3 |
1019 | }; |
1020 | #else |
1021 | static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { |
1022 | c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5 |
1023 | }; |
1024 | static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { |
1025 | c_farg0, c_farg1, c_farg2, c_farg3, |
1026 | c_farg4, c_farg5, c_farg6, c_farg7 |
1027 | }; |
1028 | #endif // _WIN64 |
1029 | |
1030 | |
1031 | uint int_args = 0; |
1032 | uint fp_args = 0; |
1033 | uint stk_args = 0; // inc by 2 each time |
1034 | |
1035 | for (int i = 0; i < total_args_passed; i++) { |
1036 | switch (sig_bt[i]) { |
1037 | case T_BOOLEAN: |
1038 | case T_CHAR: |
1039 | case T_BYTE: |
1040 | case T_SHORT: |
1041 | case T_INT: |
1042 | if (int_args < Argument::n_int_register_parameters_c) { |
1043 | regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); |
1044 | #ifdef _WIN64 |
1045 | fp_args++; |
1046 | // Allocate slots for callee to stuff register args the stack. |
1047 | stk_args += 2; |
1048 | #endif |
1049 | } else { |
1050 | regs[i].set1(VMRegImpl::stack2reg(stk_args)); |
1051 | stk_args += 2; |
1052 | } |
1053 | break; |
1054 | case T_LONG: |
1055 | assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half" ); |
1056 | // fall through |
1057 | case T_OBJECT: |
1058 | case T_ARRAY: |
1059 | case T_ADDRESS: |
1060 | case T_METADATA: |
1061 | if (int_args < Argument::n_int_register_parameters_c) { |
1062 | regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); |
1063 | #ifdef _WIN64 |
1064 | fp_args++; |
1065 | stk_args += 2; |
1066 | #endif |
1067 | } else { |
1068 | regs[i].set2(VMRegImpl::stack2reg(stk_args)); |
1069 | stk_args += 2; |
1070 | } |
1071 | break; |
1072 | case T_FLOAT: |
1073 | if (fp_args < Argument::n_float_register_parameters_c) { |
1074 | regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); |
1075 | #ifdef _WIN64 |
1076 | int_args++; |
1077 | // Allocate slots for callee to stuff register args the stack. |
1078 | stk_args += 2; |
1079 | #endif |
1080 | } else { |
1081 | regs[i].set1(VMRegImpl::stack2reg(stk_args)); |
1082 | stk_args += 2; |
1083 | } |
1084 | break; |
1085 | case T_DOUBLE: |
1086 | assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half" ); |
1087 | if (fp_args < Argument::n_float_register_parameters_c) { |
1088 | regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); |
1089 | #ifdef _WIN64 |
1090 | int_args++; |
1091 | // Allocate slots for callee to stuff register args the stack. |
1092 | stk_args += 2; |
1093 | #endif |
1094 | } else { |
1095 | regs[i].set2(VMRegImpl::stack2reg(stk_args)); |
1096 | stk_args += 2; |
1097 | } |
1098 | break; |
1099 | case T_VOID: // Halves of longs and doubles |
1100 | assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half" ); |
1101 | regs[i].set_bad(); |
1102 | break; |
1103 | default: |
1104 | ShouldNotReachHere(); |
1105 | break; |
1106 | } |
1107 | } |
1108 | #ifdef _WIN64 |
1109 | // windows abi requires that we always allocate enough stack space |
1110 | // for 4 64bit registers to be stored down. |
1111 | if (stk_args < 8) { |
1112 | stk_args = 8; |
1113 | } |
1114 | #endif // _WIN64 |
1115 | |
1116 | return stk_args; |
1117 | } |
1118 | |
1119 | // On 64 bit we will store integer like items to the stack as |
1120 | // 64 bits items (sparc abi) even though java would only store |
1121 | // 32bits for a parameter. On 32bit it will simply be 32 bits |
1122 | // So this routine will do 32->32 on 32bit and 32->64 on 64bit |
1123 | static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
1124 | if (src.first()->is_stack()) { |
1125 | if (dst.first()->is_stack()) { |
1126 | // stack to stack |
1127 | __ movslq(rax, Address(rbp, reg2offset_in(src.first()))); |
1128 | __ movq(Address(rsp, reg2offset_out(dst.first())), rax); |
1129 | } else { |
1130 | // stack to reg |
1131 | __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); |
1132 | } |
1133 | } else if (dst.first()->is_stack()) { |
1134 | // reg to stack |
1135 | // Do we really have to sign extend??? |
1136 | // __ movslq(src.first()->as_Register(), src.first()->as_Register()); |
1137 | __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); |
1138 | } else { |
1139 | // Do we really have to sign extend??? |
1140 | // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); |
1141 | if (dst.first() != src.first()) { |
1142 | __ movq(dst.first()->as_Register(), src.first()->as_Register()); |
1143 | } |
1144 | } |
1145 | } |
1146 | |
1147 | static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
1148 | if (src.first()->is_stack()) { |
1149 | if (dst.first()->is_stack()) { |
1150 | // stack to stack |
1151 | __ movq(rax, Address(rbp, reg2offset_in(src.first()))); |
1152 | __ movq(Address(rsp, reg2offset_out(dst.first())), rax); |
1153 | } else { |
1154 | // stack to reg |
1155 | __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); |
1156 | } |
1157 | } else if (dst.first()->is_stack()) { |
1158 | // reg to stack |
1159 | __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); |
1160 | } else { |
1161 | if (dst.first() != src.first()) { |
1162 | __ movq(dst.first()->as_Register(), src.first()->as_Register()); |
1163 | } |
1164 | } |
1165 | } |
1166 | |
1167 | // An oop arg. Must pass a handle not the oop itself |
1168 | static void object_move(MacroAssembler* masm, |
1169 | OopMap* map, |
1170 | int oop_handle_offset, |
1171 | int framesize_in_slots, |
1172 | VMRegPair src, |
1173 | VMRegPair dst, |
1174 | bool is_receiver, |
1175 | int* receiver_offset) { |
1176 | |
1177 | // must pass a handle. First figure out the location we use as a handle |
1178 | |
1179 | Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); |
1180 | |
1181 | // See if oop is NULL if it is we need no handle |
1182 | |
1183 | if (src.first()->is_stack()) { |
1184 | |
1185 | // Oop is already on the stack as an argument |
1186 | int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); |
1187 | map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); |
1188 | if (is_receiver) { |
1189 | *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; |
1190 | } |
1191 | |
1192 | __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD); |
1193 | __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); |
1194 | // conditionally move a NULL |
1195 | __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); |
1196 | } else { |
1197 | |
1198 | // Oop is in an a register we must store it to the space we reserve |
1199 | // on the stack for oop_handles and pass a handle if oop is non-NULL |
1200 | |
1201 | const Register rOop = src.first()->as_Register(); |
1202 | int oop_slot; |
1203 | if (rOop == j_rarg0) |
1204 | oop_slot = 0; |
1205 | else if (rOop == j_rarg1) |
1206 | oop_slot = 1; |
1207 | else if (rOop == j_rarg2) |
1208 | oop_slot = 2; |
1209 | else if (rOop == j_rarg3) |
1210 | oop_slot = 3; |
1211 | else if (rOop == j_rarg4) |
1212 | oop_slot = 4; |
1213 | else { |
1214 | assert(rOop == j_rarg5, "wrong register" ); |
1215 | oop_slot = 5; |
1216 | } |
1217 | |
1218 | oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; |
1219 | int offset = oop_slot*VMRegImpl::stack_slot_size; |
1220 | |
1221 | map->set_oop(VMRegImpl::stack2reg(oop_slot)); |
1222 | // Store oop in handle area, may be NULL |
1223 | __ movptr(Address(rsp, offset), rOop); |
1224 | if (is_receiver) { |
1225 | *receiver_offset = offset; |
1226 | } |
1227 | |
1228 | __ cmpptr(rOop, (int32_t)NULL_WORD); |
1229 | __ lea(rHandle, Address(rsp, offset)); |
1230 | // conditionally move a NULL from the handle area where it was just stored |
1231 | __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); |
1232 | } |
1233 | |
1234 | // If arg is on the stack then place it otherwise it is already in correct reg. |
1235 | if (dst.first()->is_stack()) { |
1236 | __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); |
1237 | } |
1238 | } |
1239 | |
1240 | // A float arg may have to do float reg int reg conversion |
1241 | static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
1242 | assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move" ); |
1243 | |
1244 | // The calling conventions assures us that each VMregpair is either |
1245 | // all really one physical register or adjacent stack slots. |
1246 | // This greatly simplifies the cases here compared to sparc. |
1247 | |
1248 | if (src.first()->is_stack()) { |
1249 | if (dst.first()->is_stack()) { |
1250 | __ movl(rax, Address(rbp, reg2offset_in(src.first()))); |
1251 | __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); |
1252 | } else { |
1253 | // stack to reg |
1254 | assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters" ); |
1255 | __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()))); |
1256 | } |
1257 | } else if (dst.first()->is_stack()) { |
1258 | // reg to stack |
1259 | assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters" ); |
1260 | __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); |
1261 | } else { |
1262 | // reg to reg |
1263 | // In theory these overlap but the ordering is such that this is likely a nop |
1264 | if ( src.first() != dst.first()) { |
1265 | __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); |
1266 | } |
1267 | } |
1268 | } |
1269 | |
1270 | // A long move |
1271 | static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
1272 | |
1273 | // The calling conventions assures us that each VMregpair is either |
1274 | // all really one physical register or adjacent stack slots. |
1275 | // This greatly simplifies the cases here compared to sparc. |
1276 | |
1277 | if (src.is_single_phys_reg() ) { |
1278 | if (dst.is_single_phys_reg()) { |
1279 | if (dst.first() != src.first()) { |
1280 | __ mov(dst.first()->as_Register(), src.first()->as_Register()); |
1281 | } |
1282 | } else { |
1283 | assert(dst.is_single_reg(), "not a stack pair" ); |
1284 | __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); |
1285 | } |
1286 | } else if (dst.is_single_phys_reg()) { |
1287 | assert(src.is_single_reg(), "not a stack pair" ); |
1288 | __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first()))); |
1289 | } else { |
1290 | assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs" ); |
1291 | __ movq(rax, Address(rbp, reg2offset_in(src.first()))); |
1292 | __ movq(Address(rsp, reg2offset_out(dst.first())), rax); |
1293 | } |
1294 | } |
1295 | |
1296 | // A double move |
1297 | static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
1298 | |
1299 | // The calling conventions assures us that each VMregpair is either |
1300 | // all really one physical register or adjacent stack slots. |
1301 | // This greatly simplifies the cases here compared to sparc. |
1302 | |
1303 | if (src.is_single_phys_reg() ) { |
1304 | if (dst.is_single_phys_reg()) { |
1305 | // In theory these overlap but the ordering is such that this is likely a nop |
1306 | if ( src.first() != dst.first()) { |
1307 | __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); |
1308 | } |
1309 | } else { |
1310 | assert(dst.is_single_reg(), "not a stack pair" ); |
1311 | __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); |
1312 | } |
1313 | } else if (dst.is_single_phys_reg()) { |
1314 | assert(src.is_single_reg(), "not a stack pair" ); |
1315 | __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first()))); |
1316 | } else { |
1317 | assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs" ); |
1318 | __ movq(rax, Address(rbp, reg2offset_in(src.first()))); |
1319 | __ movq(Address(rsp, reg2offset_out(dst.first())), rax); |
1320 | } |
1321 | } |
1322 | |
1323 | |
1324 | void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { |
1325 | // We always ignore the frame_slots arg and just use the space just below frame pointer |
1326 | // which by this time is free to use |
1327 | switch (ret_type) { |
1328 | case T_FLOAT: |
1329 | __ movflt(Address(rbp, -wordSize), xmm0); |
1330 | break; |
1331 | case T_DOUBLE: |
1332 | __ movdbl(Address(rbp, -wordSize), xmm0); |
1333 | break; |
1334 | case T_VOID: break; |
1335 | default: { |
1336 | __ movptr(Address(rbp, -wordSize), rax); |
1337 | } |
1338 | } |
1339 | } |
1340 | |
1341 | void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { |
1342 | // We always ignore the frame_slots arg and just use the space just below frame pointer |
1343 | // which by this time is free to use |
1344 | switch (ret_type) { |
1345 | case T_FLOAT: |
1346 | __ movflt(xmm0, Address(rbp, -wordSize)); |
1347 | break; |
1348 | case T_DOUBLE: |
1349 | __ movdbl(xmm0, Address(rbp, -wordSize)); |
1350 | break; |
1351 | case T_VOID: break; |
1352 | default: { |
1353 | __ movptr(rax, Address(rbp, -wordSize)); |
1354 | } |
1355 | } |
1356 | } |
1357 | |
1358 | static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { |
1359 | for ( int i = first_arg ; i < arg_count ; i++ ) { |
1360 | if (args[i].first()->is_Register()) { |
1361 | __ push(args[i].first()->as_Register()); |
1362 | } else if (args[i].first()->is_XMMRegister()) { |
1363 | __ subptr(rsp, 2*wordSize); |
1364 | __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister()); |
1365 | } |
1366 | } |
1367 | } |
1368 | |
1369 | static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { |
1370 | for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { |
1371 | if (args[i].first()->is_Register()) { |
1372 | __ pop(args[i].first()->as_Register()); |
1373 | } else if (args[i].first()->is_XMMRegister()) { |
1374 | __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0)); |
1375 | __ addptr(rsp, 2*wordSize); |
1376 | } |
1377 | } |
1378 | } |
1379 | |
1380 | |
1381 | static void save_or_restore_arguments(MacroAssembler* masm, |
1382 | const int stack_slots, |
1383 | const int total_in_args, |
1384 | const int arg_save_area, |
1385 | OopMap* map, |
1386 | VMRegPair* in_regs, |
1387 | BasicType* in_sig_bt) { |
1388 | // if map is non-NULL then the code should store the values, |
1389 | // otherwise it should load them. |
1390 | int slot = arg_save_area; |
1391 | // Save down double word first |
1392 | for ( int i = 0; i < total_in_args; i++) { |
1393 | if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) { |
1394 | int offset = slot * VMRegImpl::stack_slot_size; |
1395 | slot += VMRegImpl::slots_per_word; |
1396 | assert(slot <= stack_slots, "overflow" ); |
1397 | if (map != NULL) { |
1398 | __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); |
1399 | } else { |
1400 | __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); |
1401 | } |
1402 | } |
1403 | if (in_regs[i].first()->is_Register() && |
1404 | (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) { |
1405 | int offset = slot * VMRegImpl::stack_slot_size; |
1406 | if (map != NULL) { |
1407 | __ movq(Address(rsp, offset), in_regs[i].first()->as_Register()); |
1408 | if (in_sig_bt[i] == T_ARRAY) { |
1409 | map->set_oop(VMRegImpl::stack2reg(slot));; |
1410 | } |
1411 | } else { |
1412 | __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); |
1413 | } |
1414 | slot += VMRegImpl::slots_per_word; |
1415 | } |
1416 | } |
1417 | // Save or restore single word registers |
1418 | for ( int i = 0; i < total_in_args; i++) { |
1419 | if (in_regs[i].first()->is_Register()) { |
1420 | int offset = slot * VMRegImpl::stack_slot_size; |
1421 | slot++; |
1422 | assert(slot <= stack_slots, "overflow" ); |
1423 | |
1424 | // Value is in an input register pass we must flush it to the stack |
1425 | const Register reg = in_regs[i].first()->as_Register(); |
1426 | switch (in_sig_bt[i]) { |
1427 | case T_BOOLEAN: |
1428 | case T_CHAR: |
1429 | case T_BYTE: |
1430 | case T_SHORT: |
1431 | case T_INT: |
1432 | if (map != NULL) { |
1433 | __ movl(Address(rsp, offset), reg); |
1434 | } else { |
1435 | __ movl(reg, Address(rsp, offset)); |
1436 | } |
1437 | break; |
1438 | case T_ARRAY: |
1439 | case T_LONG: |
1440 | // handled above |
1441 | break; |
1442 | case T_OBJECT: |
1443 | default: ShouldNotReachHere(); |
1444 | } |
1445 | } else if (in_regs[i].first()->is_XMMRegister()) { |
1446 | if (in_sig_bt[i] == T_FLOAT) { |
1447 | int offset = slot * VMRegImpl::stack_slot_size; |
1448 | slot++; |
1449 | assert(slot <= stack_slots, "overflow" ); |
1450 | if (map != NULL) { |
1451 | __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); |
1452 | } else { |
1453 | __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); |
1454 | } |
1455 | } |
1456 | } else if (in_regs[i].first()->is_stack()) { |
1457 | if (in_sig_bt[i] == T_ARRAY && map != NULL) { |
1458 | int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); |
1459 | map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots)); |
1460 | } |
1461 | } |
1462 | } |
1463 | } |
1464 | |
1465 | // Pin object, return pinned object or null in rax |
1466 | static void gen_pin_object(MacroAssembler* masm, |
1467 | VMRegPair reg) { |
1468 | __ block_comment("gen_pin_object {" ); |
1469 | |
1470 | // rax always contains oop, either incoming or |
1471 | // pinned. |
1472 | Register tmp_reg = rax; |
1473 | |
1474 | Label is_null; |
1475 | VMRegPair tmp; |
1476 | VMRegPair in_reg = reg; |
1477 | |
1478 | tmp.set_ptr(tmp_reg->as_VMReg()); |
1479 | if (reg.first()->is_stack()) { |
1480 | // Load the arg up from the stack |
1481 | move_ptr(masm, reg, tmp); |
1482 | reg = tmp; |
1483 | } else { |
1484 | __ movptr(rax, reg.first()->as_Register()); |
1485 | } |
1486 | __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); |
1487 | __ jccb(Assembler::equal, is_null); |
1488 | |
1489 | if (reg.first()->as_Register() != c_rarg1) { |
1490 | __ movptr(c_rarg1, reg.first()->as_Register()); |
1491 | } |
1492 | |
1493 | __ call_VM_leaf( |
1494 | CAST_FROM_FN_PTR(address, SharedRuntime::pin_object), |
1495 | r15_thread, c_rarg1); |
1496 | |
1497 | __ bind(is_null); |
1498 | __ block_comment("} gen_pin_object" ); |
1499 | } |
1500 | |
1501 | // Unpin object |
1502 | static void gen_unpin_object(MacroAssembler* masm, |
1503 | VMRegPair reg) { |
1504 | __ block_comment("gen_unpin_object {" ); |
1505 | Label is_null; |
1506 | |
1507 | if (reg.first()->is_stack()) { |
1508 | __ movptr(c_rarg1, Address(rbp, reg2offset_in(reg.first()))); |
1509 | } else if (reg.first()->as_Register() != c_rarg1) { |
1510 | __ movptr(c_rarg1, reg.first()->as_Register()); |
1511 | } |
1512 | |
1513 | __ testptr(c_rarg1, c_rarg1); |
1514 | __ jccb(Assembler::equal, is_null); |
1515 | |
1516 | __ call_VM_leaf( |
1517 | CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object), |
1518 | r15_thread, c_rarg1); |
1519 | |
1520 | __ bind(is_null); |
1521 | __ block_comment("} gen_unpin_object" ); |
1522 | } |
1523 | |
1524 | // Check GCLocker::needs_gc and enter the runtime if it's true. This |
1525 | // keeps a new JNI critical region from starting until a GC has been |
1526 | // forced. Save down any oops in registers and describe them in an |
1527 | // OopMap. |
1528 | static void check_needs_gc_for_critical_native(MacroAssembler* masm, |
1529 | int stack_slots, |
1530 | int total_c_args, |
1531 | int total_in_args, |
1532 | int arg_save_area, |
1533 | OopMapSet* oop_maps, |
1534 | VMRegPair* in_regs, |
1535 | BasicType* in_sig_bt) { |
1536 | __ block_comment("check GCLocker::needs_gc" ); |
1537 | Label cont; |
1538 | __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false); |
1539 | __ jcc(Assembler::equal, cont); |
1540 | |
1541 | // Save down any incoming oops and call into the runtime to halt for a GC |
1542 | |
1543 | OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); |
1544 | save_or_restore_arguments(masm, stack_slots, total_in_args, |
1545 | arg_save_area, map, in_regs, in_sig_bt); |
1546 | |
1547 | address the_pc = __ pc(); |
1548 | oop_maps->add_gc_map( __ offset(), map); |
1549 | __ set_last_Java_frame(rsp, noreg, the_pc); |
1550 | |
1551 | __ block_comment("block_for_jni_critical" ); |
1552 | __ movptr(c_rarg0, r15_thread); |
1553 | __ mov(r12, rsp); // remember sp |
1554 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
1555 | __ andptr(rsp, -16); // align stack as required by ABI |
1556 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical))); |
1557 | __ mov(rsp, r12); // restore sp |
1558 | __ reinit_heapbase(); |
1559 | |
1560 | __ reset_last_Java_frame(false); |
1561 | |
1562 | save_or_restore_arguments(masm, stack_slots, total_in_args, |
1563 | arg_save_area, NULL, in_regs, in_sig_bt); |
1564 | __ bind(cont); |
1565 | #ifdef ASSERT |
1566 | if (StressCriticalJNINatives) { |
1567 | // Stress register saving |
1568 | OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); |
1569 | save_or_restore_arguments(masm, stack_slots, total_in_args, |
1570 | arg_save_area, map, in_regs, in_sig_bt); |
1571 | // Destroy argument registers |
1572 | for (int i = 0; i < total_in_args - 1; i++) { |
1573 | if (in_regs[i].first()->is_Register()) { |
1574 | const Register reg = in_regs[i].first()->as_Register(); |
1575 | __ xorptr(reg, reg); |
1576 | } else if (in_regs[i].first()->is_XMMRegister()) { |
1577 | __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister()); |
1578 | } else if (in_regs[i].first()->is_FloatRegister()) { |
1579 | ShouldNotReachHere(); |
1580 | } else if (in_regs[i].first()->is_stack()) { |
1581 | // Nothing to do |
1582 | } else { |
1583 | ShouldNotReachHere(); |
1584 | } |
1585 | if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) { |
1586 | i++; |
1587 | } |
1588 | } |
1589 | |
1590 | save_or_restore_arguments(masm, stack_slots, total_in_args, |
1591 | arg_save_area, NULL, in_regs, in_sig_bt); |
1592 | } |
1593 | #endif |
1594 | } |
1595 | |
1596 | // Unpack an array argument into a pointer to the body and the length |
1597 | // if the array is non-null, otherwise pass 0 for both. |
1598 | static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { |
1599 | Register tmp_reg = rax; |
1600 | assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, |
1601 | "possible collision" ); |
1602 | assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, |
1603 | "possible collision" ); |
1604 | |
1605 | __ block_comment("unpack_array_argument {" ); |
1606 | |
1607 | // Pass the length, ptr pair |
1608 | Label is_null, done; |
1609 | VMRegPair tmp; |
1610 | tmp.set_ptr(tmp_reg->as_VMReg()); |
1611 | if (reg.first()->is_stack()) { |
1612 | // Load the arg up from the stack |
1613 | move_ptr(masm, reg, tmp); |
1614 | reg = tmp; |
1615 | } |
1616 | __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); |
1617 | __ jccb(Assembler::equal, is_null); |
1618 | __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type))); |
1619 | move_ptr(masm, tmp, body_arg); |
1620 | // load the length relative to the body. |
1621 | __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() - |
1622 | arrayOopDesc::base_offset_in_bytes(in_elem_type))); |
1623 | move32_64(masm, tmp, length_arg); |
1624 | __ jmpb(done); |
1625 | __ bind(is_null); |
1626 | // Pass zeros |
1627 | __ xorptr(tmp_reg, tmp_reg); |
1628 | move_ptr(masm, tmp, body_arg); |
1629 | move32_64(masm, tmp, length_arg); |
1630 | __ bind(done); |
1631 | |
1632 | __ block_comment("} unpack_array_argument" ); |
1633 | } |
1634 | |
1635 | |
1636 | // Different signatures may require very different orders for the move |
1637 | // to avoid clobbering other arguments. There's no simple way to |
1638 | // order them safely. Compute a safe order for issuing stores and |
1639 | // break any cycles in those stores. This code is fairly general but |
1640 | // it's not necessary on the other platforms so we keep it in the |
1641 | // platform dependent code instead of moving it into a shared file. |
1642 | // (See bugs 7013347 & 7145024.) |
1643 | // Note that this code is specific to LP64. |
1644 | class ComputeMoveOrder: public StackObj { |
1645 | class MoveOperation: public ResourceObj { |
1646 | friend class ComputeMoveOrder; |
1647 | private: |
1648 | VMRegPair _src; |
1649 | VMRegPair _dst; |
1650 | int _src_index; |
1651 | int _dst_index; |
1652 | bool _processed; |
1653 | MoveOperation* _next; |
1654 | MoveOperation* _prev; |
1655 | |
1656 | static int get_id(VMRegPair r) { |
1657 | return r.first()->value(); |
1658 | } |
1659 | |
1660 | public: |
1661 | MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst): |
1662 | _src(src) |
1663 | , _dst(dst) |
1664 | , _src_index(src_index) |
1665 | , _dst_index(dst_index) |
1666 | , _processed(false) |
1667 | , _next(NULL) |
1668 | , _prev(NULL) { |
1669 | } |
1670 | |
1671 | VMRegPair src() const { return _src; } |
1672 | int src_id() const { return get_id(src()); } |
1673 | int src_index() const { return _src_index; } |
1674 | VMRegPair dst() const { return _dst; } |
1675 | void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; } |
1676 | int dst_index() const { return _dst_index; } |
1677 | int dst_id() const { return get_id(dst()); } |
1678 | MoveOperation* next() const { return _next; } |
1679 | MoveOperation* prev() const { return _prev; } |
1680 | void set_processed() { _processed = true; } |
1681 | bool is_processed() const { return _processed; } |
1682 | |
1683 | // insert |
1684 | void break_cycle(VMRegPair temp_register) { |
1685 | // create a new store following the last store |
1686 | // to move from the temp_register to the original |
1687 | MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst()); |
1688 | |
1689 | // break the cycle of links and insert new_store at the end |
1690 | // break the reverse link. |
1691 | MoveOperation* p = prev(); |
1692 | assert(p->next() == this, "must be" ); |
1693 | _prev = NULL; |
1694 | p->_next = new_store; |
1695 | new_store->_prev = p; |
1696 | |
1697 | // change the original store to save it's value in the temp. |
1698 | set_dst(-1, temp_register); |
1699 | } |
1700 | |
1701 | void link(GrowableArray<MoveOperation*>& killer) { |
1702 | // link this store in front the store that it depends on |
1703 | MoveOperation* n = killer.at_grow(src_id(), NULL); |
1704 | if (n != NULL) { |
1705 | assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet" ); |
1706 | _next = n; |
1707 | n->_prev = this; |
1708 | } |
1709 | } |
1710 | }; |
1711 | |
1712 | private: |
1713 | GrowableArray<MoveOperation*> edges; |
1714 | |
1715 | public: |
1716 | ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs, |
1717 | BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { |
1718 | // Move operations where the dest is the stack can all be |
1719 | // scheduled first since they can't interfere with the other moves. |
1720 | for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { |
1721 | if (in_sig_bt[i] == T_ARRAY) { |
1722 | c_arg--; |
1723 | if (out_regs[c_arg].first()->is_stack() && |
1724 | out_regs[c_arg + 1].first()->is_stack()) { |
1725 | arg_order.push(i); |
1726 | arg_order.push(c_arg); |
1727 | } else { |
1728 | if (out_regs[c_arg].first()->is_stack() || |
1729 | in_regs[i].first() == out_regs[c_arg].first()) { |
1730 | add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]); |
1731 | } else { |
1732 | add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); |
1733 | } |
1734 | } |
1735 | } else if (in_sig_bt[i] == T_VOID) { |
1736 | arg_order.push(i); |
1737 | arg_order.push(c_arg); |
1738 | } else { |
1739 | if (out_regs[c_arg].first()->is_stack() || |
1740 | in_regs[i].first() == out_regs[c_arg].first()) { |
1741 | arg_order.push(i); |
1742 | arg_order.push(c_arg); |
1743 | } else { |
1744 | add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); |
1745 | } |
1746 | } |
1747 | } |
1748 | // Break any cycles in the register moves and emit the in the |
1749 | // proper order. |
1750 | GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg); |
1751 | for (int i = 0; i < stores->length(); i++) { |
1752 | arg_order.push(stores->at(i)->src_index()); |
1753 | arg_order.push(stores->at(i)->dst_index()); |
1754 | } |
1755 | } |
1756 | |
1757 | // Collected all the move operations |
1758 | void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { |
1759 | if (src.first() == dst.first()) return; |
1760 | edges.append(new MoveOperation(src_index, src, dst_index, dst)); |
1761 | } |
1762 | |
1763 | // Walk the edges breaking cycles between moves. The result list |
1764 | // can be walked in order to produce the proper set of loads |
1765 | GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { |
1766 | // Record which moves kill which values |
1767 | GrowableArray<MoveOperation*> killer; |
1768 | for (int i = 0; i < edges.length(); i++) { |
1769 | MoveOperation* s = edges.at(i); |
1770 | assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer" ); |
1771 | killer.at_put_grow(s->dst_id(), s, NULL); |
1772 | } |
1773 | assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL, |
1774 | "make sure temp isn't in the registers that are killed" ); |
1775 | |
1776 | // create links between loads and stores |
1777 | for (int i = 0; i < edges.length(); i++) { |
1778 | edges.at(i)->link(killer); |
1779 | } |
1780 | |
1781 | // at this point, all the move operations are chained together |
1782 | // in a doubly linked list. Processing it backwards finds |
1783 | // the beginning of the chain, forwards finds the end. If there's |
1784 | // a cycle it can be broken at any point, so pick an edge and walk |
1785 | // backward until the list ends or we end where we started. |
1786 | GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>(); |
1787 | for (int e = 0; e < edges.length(); e++) { |
1788 | MoveOperation* s = edges.at(e); |
1789 | if (!s->is_processed()) { |
1790 | MoveOperation* start = s; |
1791 | // search for the beginning of the chain or cycle |
1792 | while (start->prev() != NULL && start->prev() != s) { |
1793 | start = start->prev(); |
1794 | } |
1795 | if (start->prev() == s) { |
1796 | start->break_cycle(temp_register); |
1797 | } |
1798 | // walk the chain forward inserting to store list |
1799 | while (start != NULL) { |
1800 | stores->append(start); |
1801 | start->set_processed(); |
1802 | start = start->next(); |
1803 | } |
1804 | } |
1805 | } |
1806 | return stores; |
1807 | } |
1808 | }; |
1809 | |
1810 | static void verify_oop_args(MacroAssembler* masm, |
1811 | const methodHandle& method, |
1812 | const BasicType* sig_bt, |
1813 | const VMRegPair* regs) { |
1814 | Register temp_reg = rbx; // not part of any compiled calling seq |
1815 | if (VerifyOops) { |
1816 | for (int i = 0; i < method->size_of_parameters(); i++) { |
1817 | if (sig_bt[i] == T_OBJECT || |
1818 | sig_bt[i] == T_ARRAY) { |
1819 | VMReg r = regs[i].first(); |
1820 | assert(r->is_valid(), "bad oop arg" ); |
1821 | if (r->is_stack()) { |
1822 | __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); |
1823 | __ verify_oop(temp_reg); |
1824 | } else { |
1825 | __ verify_oop(r->as_Register()); |
1826 | } |
1827 | } |
1828 | } |
1829 | } |
1830 | } |
1831 | |
1832 | static void gen_special_dispatch(MacroAssembler* masm, |
1833 | const methodHandle& method, |
1834 | const BasicType* sig_bt, |
1835 | const VMRegPair* regs) { |
1836 | verify_oop_args(masm, method, sig_bt, regs); |
1837 | vmIntrinsics::ID iid = method->intrinsic_id(); |
1838 | |
1839 | // Now write the args into the outgoing interpreter space |
1840 | bool has_receiver = false; |
1841 | Register receiver_reg = noreg; |
1842 | int member_arg_pos = -1; |
1843 | Register member_reg = noreg; |
1844 | int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); |
1845 | if (ref_kind != 0) { |
1846 | member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument |
1847 | member_reg = rbx; // known to be free at this point |
1848 | has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); |
1849 | } else if (iid == vmIntrinsics::_invokeBasic) { |
1850 | has_receiver = true; |
1851 | } else { |
1852 | fatal("unexpected intrinsic id %d" , iid); |
1853 | } |
1854 | |
1855 | if (member_reg != noreg) { |
1856 | // Load the member_arg into register, if necessary. |
1857 | SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); |
1858 | VMReg r = regs[member_arg_pos].first(); |
1859 | if (r->is_stack()) { |
1860 | __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); |
1861 | } else { |
1862 | // no data motion is needed |
1863 | member_reg = r->as_Register(); |
1864 | } |
1865 | } |
1866 | |
1867 | if (has_receiver) { |
1868 | // Make sure the receiver is loaded into a register. |
1869 | assert(method->size_of_parameters() > 0, "oob" ); |
1870 | assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object" ); |
1871 | VMReg r = regs[0].first(); |
1872 | assert(r->is_valid(), "bad receiver arg" ); |
1873 | if (r->is_stack()) { |
1874 | // Porting note: This assumes that compiled calling conventions always |
1875 | // pass the receiver oop in a register. If this is not true on some |
1876 | // platform, pick a temp and load the receiver from stack. |
1877 | fatal("receiver always in a register" ); |
1878 | receiver_reg = j_rarg0; // known to be free at this point |
1879 | __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); |
1880 | } else { |
1881 | // no data motion is needed |
1882 | receiver_reg = r->as_Register(); |
1883 | } |
1884 | } |
1885 | |
1886 | // Figure out which address we are really jumping to: |
1887 | MethodHandles::generate_method_handle_dispatch(masm, iid, |
1888 | receiver_reg, member_reg, /*for_compiler_entry:*/ true); |
1889 | } |
1890 | |
1891 | // --------------------------------------------------------------------------- |
1892 | // Generate a native wrapper for a given method. The method takes arguments |
1893 | // in the Java compiled code convention, marshals them to the native |
1894 | // convention (handlizes oops, etc), transitions to native, makes the call, |
1895 | // returns to java state (possibly blocking), unhandlizes any result and |
1896 | // returns. |
1897 | // |
1898 | // Critical native functions are a shorthand for the use of |
1899 | // GetPrimtiveArrayCritical and disallow the use of any other JNI |
1900 | // functions. The wrapper is expected to unpack the arguments before |
1901 | // passing them to the callee and perform checks before and after the |
1902 | // native call to ensure that they GCLocker |
1903 | // lock_critical/unlock_critical semantics are followed. Some other |
1904 | // parts of JNI setup are skipped like the tear down of the JNI handle |
1905 | // block and the check for pending exceptions it's impossible for them |
1906 | // to be thrown. |
1907 | // |
1908 | // They are roughly structured like this: |
1909 | // if (GCLocker::needs_gc()) |
1910 | // SharedRuntime::block_for_jni_critical(); |
1911 | // tranistion to thread_in_native |
1912 | // unpack arrray arguments and call native entry point |
1913 | // check for safepoint in progress |
1914 | // check if any thread suspend flags are set |
1915 | // call into JVM and possible unlock the JNI critical |
1916 | // if a GC was suppressed while in the critical native. |
1917 | // transition back to thread_in_Java |
1918 | // return to caller |
1919 | // |
1920 | nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, |
1921 | const methodHandle& method, |
1922 | int compile_id, |
1923 | BasicType* in_sig_bt, |
1924 | VMRegPair* in_regs, |
1925 | BasicType ret_type) { |
1926 | if (method->is_method_handle_intrinsic()) { |
1927 | vmIntrinsics::ID iid = method->intrinsic_id(); |
1928 | intptr_t start = (intptr_t)__ pc(); |
1929 | int vep_offset = ((intptr_t)__ pc()) - start; |
1930 | gen_special_dispatch(masm, |
1931 | method, |
1932 | in_sig_bt, |
1933 | in_regs); |
1934 | int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period |
1935 | __ flush(); |
1936 | int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually |
1937 | return nmethod::new_native_nmethod(method, |
1938 | compile_id, |
1939 | masm->code(), |
1940 | vep_offset, |
1941 | frame_complete, |
1942 | stack_slots / VMRegImpl::slots_per_word, |
1943 | in_ByteSize(-1), |
1944 | in_ByteSize(-1), |
1945 | (OopMapSet*)NULL); |
1946 | } |
1947 | bool is_critical_native = true; |
1948 | address native_func = method->critical_native_function(); |
1949 | if (native_func == NULL) { |
1950 | native_func = method->native_function(); |
1951 | is_critical_native = false; |
1952 | } |
1953 | assert(native_func != NULL, "must have function" ); |
1954 | |
1955 | // An OopMap for lock (and class if static) |
1956 | OopMapSet *oop_maps = new OopMapSet(); |
1957 | intptr_t start = (intptr_t)__ pc(); |
1958 | |
1959 | // We have received a description of where all the java arg are located |
1960 | // on entry to the wrapper. We need to convert these args to where |
1961 | // the jni function will expect them. To figure out where they go |
1962 | // we convert the java signature to a C signature by inserting |
1963 | // the hidden arguments as arg[0] and possibly arg[1] (static method) |
1964 | |
1965 | const int total_in_args = method->size_of_parameters(); |
1966 | int total_c_args = total_in_args; |
1967 | if (!is_critical_native) { |
1968 | total_c_args += 1; |
1969 | if (method->is_static()) { |
1970 | total_c_args++; |
1971 | } |
1972 | } else { |
1973 | for (int i = 0; i < total_in_args; i++) { |
1974 | if (in_sig_bt[i] == T_ARRAY) { |
1975 | total_c_args++; |
1976 | } |
1977 | } |
1978 | } |
1979 | |
1980 | BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); |
1981 | VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); |
1982 | BasicType* in_elem_bt = NULL; |
1983 | |
1984 | int argc = 0; |
1985 | if (!is_critical_native) { |
1986 | out_sig_bt[argc++] = T_ADDRESS; |
1987 | if (method->is_static()) { |
1988 | out_sig_bt[argc++] = T_OBJECT; |
1989 | } |
1990 | |
1991 | for (int i = 0; i < total_in_args ; i++ ) { |
1992 | out_sig_bt[argc++] = in_sig_bt[i]; |
1993 | } |
1994 | } else { |
1995 | in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); |
1996 | SignatureStream ss(method->signature()); |
1997 | for (int i = 0; i < total_in_args ; i++ ) { |
1998 | if (in_sig_bt[i] == T_ARRAY) { |
1999 | // Arrays are passed as int, elem* pair |
2000 | out_sig_bt[argc++] = T_INT; |
2001 | out_sig_bt[argc++] = T_ADDRESS; |
2002 | Symbol* atype = ss.as_symbol(); |
2003 | const char* at = atype->as_C_string(); |
2004 | if (strlen(at) == 2) { |
2005 | assert(at[0] == '[', "must be" ); |
2006 | switch (at[1]) { |
2007 | case 'B': in_elem_bt[i] = T_BYTE; break; |
2008 | case 'C': in_elem_bt[i] = T_CHAR; break; |
2009 | case 'D': in_elem_bt[i] = T_DOUBLE; break; |
2010 | case 'F': in_elem_bt[i] = T_FLOAT; break; |
2011 | case 'I': in_elem_bt[i] = T_INT; break; |
2012 | case 'J': in_elem_bt[i] = T_LONG; break; |
2013 | case 'S': in_elem_bt[i] = T_SHORT; break; |
2014 | case 'Z': in_elem_bt[i] = T_BOOLEAN; break; |
2015 | default: ShouldNotReachHere(); |
2016 | } |
2017 | } |
2018 | } else { |
2019 | out_sig_bt[argc++] = in_sig_bt[i]; |
2020 | in_elem_bt[i] = T_VOID; |
2021 | } |
2022 | if (in_sig_bt[i] != T_VOID) { |
2023 | assert(in_sig_bt[i] == ss.type(), "must match" ); |
2024 | ss.next(); |
2025 | } |
2026 | } |
2027 | } |
2028 | |
2029 | // Now figure out where the args must be stored and how much stack space |
2030 | // they require. |
2031 | int out_arg_slots; |
2032 | out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); |
2033 | |
2034 | // Compute framesize for the wrapper. We need to handlize all oops in |
2035 | // incoming registers |
2036 | |
2037 | // Calculate the total number of stack slots we will need. |
2038 | |
2039 | // First count the abi requirement plus all of the outgoing args |
2040 | int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; |
2041 | |
2042 | // Now the space for the inbound oop handle area |
2043 | int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers |
2044 | if (is_critical_native) { |
2045 | // Critical natives may have to call out so they need a save area |
2046 | // for register arguments. |
2047 | int double_slots = 0; |
2048 | int single_slots = 0; |
2049 | for ( int i = 0; i < total_in_args; i++) { |
2050 | if (in_regs[i].first()->is_Register()) { |
2051 | const Register reg = in_regs[i].first()->as_Register(); |
2052 | switch (in_sig_bt[i]) { |
2053 | case T_BOOLEAN: |
2054 | case T_BYTE: |
2055 | case T_SHORT: |
2056 | case T_CHAR: |
2057 | case T_INT: single_slots++; break; |
2058 | case T_ARRAY: // specific to LP64 (7145024) |
2059 | case T_LONG: double_slots++; break; |
2060 | default: ShouldNotReachHere(); |
2061 | } |
2062 | } else if (in_regs[i].first()->is_XMMRegister()) { |
2063 | switch (in_sig_bt[i]) { |
2064 | case T_FLOAT: single_slots++; break; |
2065 | case T_DOUBLE: double_slots++; break; |
2066 | default: ShouldNotReachHere(); |
2067 | } |
2068 | } else if (in_regs[i].first()->is_FloatRegister()) { |
2069 | ShouldNotReachHere(); |
2070 | } |
2071 | } |
2072 | total_save_slots = double_slots * 2 + single_slots; |
2073 | // align the save area |
2074 | if (double_slots != 0) { |
2075 | stack_slots = align_up(stack_slots, 2); |
2076 | } |
2077 | } |
2078 | |
2079 | int oop_handle_offset = stack_slots; |
2080 | stack_slots += total_save_slots; |
2081 | |
2082 | // Now any space we need for handlizing a klass if static method |
2083 | |
2084 | int klass_slot_offset = 0; |
2085 | int klass_offset = -1; |
2086 | int lock_slot_offset = 0; |
2087 | bool is_static = false; |
2088 | |
2089 | if (method->is_static()) { |
2090 | klass_slot_offset = stack_slots; |
2091 | stack_slots += VMRegImpl::slots_per_word; |
2092 | klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; |
2093 | is_static = true; |
2094 | } |
2095 | |
2096 | // Plus a lock if needed |
2097 | |
2098 | if (method->is_synchronized()) { |
2099 | lock_slot_offset = stack_slots; |
2100 | stack_slots += VMRegImpl::slots_per_word; |
2101 | } |
2102 | |
2103 | // Now a place (+2) to save return values or temp during shuffling |
2104 | // + 4 for return address (which we own) and saved rbp |
2105 | stack_slots += 6; |
2106 | |
2107 | // Ok The space we have allocated will look like: |
2108 | // |
2109 | // |
2110 | // FP-> | | |
2111 | // |---------------------| |
2112 | // | 2 slots for moves | |
2113 | // |---------------------| |
2114 | // | lock box (if sync) | |
2115 | // |---------------------| <- lock_slot_offset |
2116 | // | klass (if static) | |
2117 | // |---------------------| <- klass_slot_offset |
2118 | // | oopHandle area | |
2119 | // |---------------------| <- oop_handle_offset (6 java arg registers) |
2120 | // | outbound memory | |
2121 | // | based arguments | |
2122 | // | | |
2123 | // |---------------------| |
2124 | // | | |
2125 | // SP-> | out_preserved_slots | |
2126 | // |
2127 | // |
2128 | |
2129 | |
2130 | // Now compute actual number of stack words we need rounding to make |
2131 | // stack properly aligned. |
2132 | stack_slots = align_up(stack_slots, StackAlignmentInSlots); |
2133 | |
2134 | int stack_size = stack_slots * VMRegImpl::stack_slot_size; |
2135 | |
2136 | // First thing make an ic check to see if we should even be here |
2137 | |
2138 | // We are free to use all registers as temps without saving them and |
2139 | // restoring them except rbp. rbp is the only callee save register |
2140 | // as far as the interpreter and the compiler(s) are concerned. |
2141 | |
2142 | |
2143 | const Register ic_reg = rax; |
2144 | const Register receiver = j_rarg0; |
2145 | |
2146 | Label hit; |
2147 | Label exception_pending; |
2148 | |
2149 | assert_different_registers(ic_reg, receiver, rscratch1); |
2150 | __ verify_oop(receiver); |
2151 | __ load_klass(rscratch1, receiver); |
2152 | __ cmpq(ic_reg, rscratch1); |
2153 | __ jcc(Assembler::equal, hit); |
2154 | |
2155 | __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); |
2156 | |
2157 | // Verified entry point must be aligned |
2158 | __ align(8); |
2159 | |
2160 | __ bind(hit); |
2161 | |
2162 | int vep_offset = ((intptr_t)__ pc()) - start; |
2163 | |
2164 | if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { |
2165 | Label L_skip_barrier; |
2166 | Register klass = r10; |
2167 | __ mov_metadata(klass, method->method_holder()); // InstanceKlass* |
2168 | __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/); |
2169 | |
2170 | __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path |
2171 | |
2172 | __ bind(L_skip_barrier); |
2173 | } |
2174 | |
2175 | #ifdef COMPILER1 |
2176 | // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available. |
2177 | if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) { |
2178 | inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/); |
2179 | } |
2180 | #endif // COMPILER1 |
2181 | |
2182 | // The instruction at the verified entry point must be 5 bytes or longer |
2183 | // because it can be patched on the fly by make_non_entrant. The stack bang |
2184 | // instruction fits that requirement. |
2185 | |
2186 | // Generate stack overflow check |
2187 | |
2188 | if (UseStackBanging) { |
2189 | __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size()); |
2190 | } else { |
2191 | // need a 5 byte instruction to allow MT safe patching to non-entrant |
2192 | __ fat_nop(); |
2193 | } |
2194 | |
2195 | // Generate a new frame for the wrapper. |
2196 | __ enter(); |
2197 | // -2 because return address is already present and so is saved rbp |
2198 | __ subptr(rsp, stack_size - 2*wordSize); |
2199 | |
2200 | BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
2201 | bs->nmethod_entry_barrier(masm); |
2202 | |
2203 | // Frame is now completed as far as size and linkage. |
2204 | int frame_complete = ((intptr_t)__ pc()) - start; |
2205 | |
2206 | if (UseRTMLocking) { |
2207 | // Abort RTM transaction before calling JNI |
2208 | // because critical section will be large and will be |
2209 | // aborted anyway. Also nmethod could be deoptimized. |
2210 | __ xabort(0); |
2211 | } |
2212 | |
2213 | #ifdef ASSERT |
2214 | { |
2215 | Label L; |
2216 | __ mov(rax, rsp); |
2217 | __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI) |
2218 | __ cmpptr(rax, rsp); |
2219 | __ jcc(Assembler::equal, L); |
2220 | __ stop("improperly aligned stack" ); |
2221 | __ bind(L); |
2222 | } |
2223 | #endif /* ASSERT */ |
2224 | |
2225 | |
2226 | // We use r14 as the oop handle for the receiver/klass |
2227 | // It is callee save so it survives the call to native |
2228 | |
2229 | const Register oop_handle_reg = r14; |
2230 | |
2231 | if (is_critical_native && !Universe::heap()->supports_object_pinning()) { |
2232 | check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args, |
2233 | oop_handle_offset, oop_maps, in_regs, in_sig_bt); |
2234 | } |
2235 | |
2236 | // |
2237 | // We immediately shuffle the arguments so that any vm call we have to |
2238 | // make from here on out (sync slow path, jvmti, etc.) we will have |
2239 | // captured the oops from our caller and have a valid oopMap for |
2240 | // them. |
2241 | |
2242 | // ----------------- |
2243 | // The Grand Shuffle |
2244 | |
2245 | // The Java calling convention is either equal (linux) or denser (win64) than the |
2246 | // c calling convention. However the because of the jni_env argument the c calling |
2247 | // convention always has at least one more (and two for static) arguments than Java. |
2248 | // Therefore if we move the args from java -> c backwards then we will never have |
2249 | // a register->register conflict and we don't have to build a dependency graph |
2250 | // and figure out how to break any cycles. |
2251 | // |
2252 | |
2253 | // Record esp-based slot for receiver on stack for non-static methods |
2254 | int receiver_offset = -1; |
2255 | |
2256 | // This is a trick. We double the stack slots so we can claim |
2257 | // the oops in the caller's frame. Since we are sure to have |
2258 | // more args than the caller doubling is enough to make |
2259 | // sure we can capture all the incoming oop args from the |
2260 | // caller. |
2261 | // |
2262 | OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); |
2263 | |
2264 | // Mark location of rbp (someday) |
2265 | // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp)); |
2266 | |
2267 | // Use eax, ebx as temporaries during any memory-memory moves we have to do |
2268 | // All inbound args are referenced based on rbp and all outbound args via rsp. |
2269 | |
2270 | |
2271 | #ifdef ASSERT |
2272 | bool reg_destroyed[RegisterImpl::number_of_registers]; |
2273 | bool freg_destroyed[XMMRegisterImpl::number_of_registers]; |
2274 | for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { |
2275 | reg_destroyed[r] = false; |
2276 | } |
2277 | for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) { |
2278 | freg_destroyed[f] = false; |
2279 | } |
2280 | |
2281 | #endif /* ASSERT */ |
2282 | |
2283 | // This may iterate in two different directions depending on the |
2284 | // kind of native it is. The reason is that for regular JNI natives |
2285 | // the incoming and outgoing registers are offset upwards and for |
2286 | // critical natives they are offset down. |
2287 | GrowableArray<int> arg_order(2 * total_in_args); |
2288 | // Inbound arguments that need to be pinned for critical natives |
2289 | GrowableArray<int> pinned_args(total_in_args); |
2290 | // Current stack slot for storing register based array argument |
2291 | int pinned_slot = oop_handle_offset; |
2292 | |
2293 | VMRegPair tmp_vmreg; |
2294 | tmp_vmreg.set2(rbx->as_VMReg()); |
2295 | |
2296 | if (!is_critical_native) { |
2297 | for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { |
2298 | arg_order.push(i); |
2299 | arg_order.push(c_arg); |
2300 | } |
2301 | } else { |
2302 | // Compute a valid move order, using tmp_vmreg to break any cycles |
2303 | ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg); |
2304 | } |
2305 | |
2306 | int temploc = -1; |
2307 | for (int ai = 0; ai < arg_order.length(); ai += 2) { |
2308 | int i = arg_order.at(ai); |
2309 | int c_arg = arg_order.at(ai + 1); |
2310 | __ block_comment(err_msg("move %d -> %d" , i, c_arg)); |
2311 | if (c_arg == -1) { |
2312 | assert(is_critical_native, "should only be required for critical natives" ); |
2313 | // This arg needs to be moved to a temporary |
2314 | __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register()); |
2315 | in_regs[i] = tmp_vmreg; |
2316 | temploc = i; |
2317 | continue; |
2318 | } else if (i == -1) { |
2319 | assert(is_critical_native, "should only be required for critical natives" ); |
2320 | // Read from the temporary location |
2321 | assert(temploc != -1, "must be valid" ); |
2322 | i = temploc; |
2323 | temploc = -1; |
2324 | } |
2325 | #ifdef ASSERT |
2326 | if (in_regs[i].first()->is_Register()) { |
2327 | assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!" ); |
2328 | } else if (in_regs[i].first()->is_XMMRegister()) { |
2329 | assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!" ); |
2330 | } |
2331 | if (out_regs[c_arg].first()->is_Register()) { |
2332 | reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; |
2333 | } else if (out_regs[c_arg].first()->is_XMMRegister()) { |
2334 | freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; |
2335 | } |
2336 | #endif /* ASSERT */ |
2337 | switch (in_sig_bt[i]) { |
2338 | case T_ARRAY: |
2339 | if (is_critical_native) { |
2340 | // pin before unpack |
2341 | if (Universe::heap()->supports_object_pinning()) { |
2342 | save_args(masm, total_c_args, 0, out_regs); |
2343 | gen_pin_object(masm, in_regs[i]); |
2344 | pinned_args.append(i); |
2345 | restore_args(masm, total_c_args, 0, out_regs); |
2346 | |
2347 | // rax has pinned array |
2348 | VMRegPair result_reg; |
2349 | result_reg.set_ptr(rax->as_VMReg()); |
2350 | move_ptr(masm, result_reg, in_regs[i]); |
2351 | if (!in_regs[i].first()->is_stack()) { |
2352 | assert(pinned_slot <= stack_slots, "overflow" ); |
2353 | move_ptr(masm, result_reg, VMRegImpl::stack2reg(pinned_slot)); |
2354 | pinned_slot += VMRegImpl::slots_per_word; |
2355 | } |
2356 | } |
2357 | unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); |
2358 | c_arg++; |
2359 | #ifdef ASSERT |
2360 | if (out_regs[c_arg].first()->is_Register()) { |
2361 | reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; |
2362 | } else if (out_regs[c_arg].first()->is_XMMRegister()) { |
2363 | freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; |
2364 | } |
2365 | #endif |
2366 | break; |
2367 | } |
2368 | case T_OBJECT: |
2369 | assert(!is_critical_native, "no oop arguments" ); |
2370 | object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], |
2371 | ((i == 0) && (!is_static)), |
2372 | &receiver_offset); |
2373 | break; |
2374 | case T_VOID: |
2375 | break; |
2376 | |
2377 | case T_FLOAT: |
2378 | float_move(masm, in_regs[i], out_regs[c_arg]); |
2379 | break; |
2380 | |
2381 | case T_DOUBLE: |
2382 | assert( i + 1 < total_in_args && |
2383 | in_sig_bt[i + 1] == T_VOID && |
2384 | out_sig_bt[c_arg+1] == T_VOID, "bad arg list" ); |
2385 | double_move(masm, in_regs[i], out_regs[c_arg]); |
2386 | break; |
2387 | |
2388 | case T_LONG : |
2389 | long_move(masm, in_regs[i], out_regs[c_arg]); |
2390 | break; |
2391 | |
2392 | case T_ADDRESS: assert(false, "found T_ADDRESS in java args" ); |
2393 | |
2394 | default: |
2395 | move32_64(masm, in_regs[i], out_regs[c_arg]); |
2396 | } |
2397 | } |
2398 | |
2399 | int c_arg; |
2400 | |
2401 | // Pre-load a static method's oop into r14. Used both by locking code and |
2402 | // the normal JNI call code. |
2403 | if (!is_critical_native) { |
2404 | // point c_arg at the first arg that is already loaded in case we |
2405 | // need to spill before we call out |
2406 | c_arg = total_c_args - total_in_args; |
2407 | |
2408 | if (method->is_static()) { |
2409 | |
2410 | // load oop into a register |
2411 | __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); |
2412 | |
2413 | // Now handlize the static class mirror it's known not-null. |
2414 | __ movptr(Address(rsp, klass_offset), oop_handle_reg); |
2415 | map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); |
2416 | |
2417 | // Now get the handle |
2418 | __ lea(oop_handle_reg, Address(rsp, klass_offset)); |
2419 | // store the klass handle as second argument |
2420 | __ movptr(c_rarg1, oop_handle_reg); |
2421 | // and protect the arg if we must spill |
2422 | c_arg--; |
2423 | } |
2424 | } else { |
2425 | // For JNI critical methods we need to save all registers in save_args. |
2426 | c_arg = 0; |
2427 | } |
2428 | |
2429 | // Change state to native (we save the return address in the thread, since it might not |
2430 | // be pushed on the stack when we do a a stack traversal). It is enough that the pc() |
2431 | // points into the right code segment. It does not have to be the correct return pc. |
2432 | // We use the same pc/oopMap repeatedly when we call out |
2433 | |
2434 | intptr_t the_pc = (intptr_t) __ pc(); |
2435 | oop_maps->add_gc_map(the_pc - start, map); |
2436 | |
2437 | __ set_last_Java_frame(rsp, noreg, (address)the_pc); |
2438 | |
2439 | |
2440 | // We have all of the arguments setup at this point. We must not touch any register |
2441 | // argument registers at this point (what if we save/restore them there are no oop? |
2442 | |
2443 | { |
2444 | SkipIfEqual skip(masm, &DTraceMethodProbes, false); |
2445 | // protect the args we've loaded |
2446 | save_args(masm, total_c_args, c_arg, out_regs); |
2447 | __ mov_metadata(c_rarg1, method()); |
2448 | __ call_VM_leaf( |
2449 | CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), |
2450 | r15_thread, c_rarg1); |
2451 | restore_args(masm, total_c_args, c_arg, out_regs); |
2452 | } |
2453 | |
2454 | // RedefineClasses() tracing support for obsolete method entry |
2455 | if (log_is_enabled(Trace, redefine, class, obsolete)) { |
2456 | // protect the args we've loaded |
2457 | save_args(masm, total_c_args, c_arg, out_regs); |
2458 | __ mov_metadata(c_rarg1, method()); |
2459 | __ call_VM_leaf( |
2460 | CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), |
2461 | r15_thread, c_rarg1); |
2462 | restore_args(masm, total_c_args, c_arg, out_regs); |
2463 | } |
2464 | |
2465 | // Lock a synchronized method |
2466 | |
2467 | // Register definitions used by locking and unlocking |
2468 | |
2469 | const Register swap_reg = rax; // Must use rax for cmpxchg instruction |
2470 | const Register obj_reg = rbx; // Will contain the oop |
2471 | const Register lock_reg = r13; // Address of compiler lock object (BasicLock) |
2472 | const Register old_hdr = r13; // value of old header at unlock time |
2473 | |
2474 | Label slow_path_lock; |
2475 | Label lock_done; |
2476 | |
2477 | if (method->is_synchronized()) { |
2478 | assert(!is_critical_native, "unhandled" ); |
2479 | |
2480 | |
2481 | const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); |
2482 | |
2483 | // Get the handle (the 2nd argument) |
2484 | __ mov(oop_handle_reg, c_rarg1); |
2485 | |
2486 | // Get address of the box |
2487 | |
2488 | __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); |
2489 | |
2490 | // Load the oop from the handle |
2491 | __ movptr(obj_reg, Address(oop_handle_reg, 0)); |
2492 | |
2493 | __ resolve(IS_NOT_NULL, obj_reg); |
2494 | if (UseBiasedLocking) { |
2495 | __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock); |
2496 | } |
2497 | |
2498 | // Load immediate 1 into swap_reg %rax |
2499 | __ movl(swap_reg, 1); |
2500 | |
2501 | // Load (object->mark() | 1) into swap_reg %rax |
2502 | __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); |
2503 | |
2504 | // Save (object->mark() | 1) into BasicLock's displaced header |
2505 | __ movptr(Address(lock_reg, mark_word_offset), swap_reg); |
2506 | |
2507 | // src -> dest iff dest == rax else rax <- dest |
2508 | __ lock(); |
2509 | __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); |
2510 | __ jcc(Assembler::equal, lock_done); |
2511 | |
2512 | // Hmm should this move to the slow path code area??? |
2513 | |
2514 | // Test if the oopMark is an obvious stack pointer, i.e., |
2515 | // 1) (mark & 3) == 0, and |
2516 | // 2) rsp <= mark < mark + os::pagesize() |
2517 | // These 3 tests can be done by evaluating the following |
2518 | // expression: ((mark - rsp) & (3 - os::vm_page_size())), |
2519 | // assuming both stack pointer and pagesize have their |
2520 | // least significant 2 bits clear. |
2521 | // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg |
2522 | |
2523 | __ subptr(swap_reg, rsp); |
2524 | __ andptr(swap_reg, 3 - os::vm_page_size()); |
2525 | |
2526 | // Save the test result, for recursive case, the result is zero |
2527 | __ movptr(Address(lock_reg, mark_word_offset), swap_reg); |
2528 | __ jcc(Assembler::notEqual, slow_path_lock); |
2529 | |
2530 | // Slow path will re-enter here |
2531 | |
2532 | __ bind(lock_done); |
2533 | } |
2534 | |
2535 | |
2536 | // Finally just about ready to make the JNI call |
2537 | |
2538 | |
2539 | // get JNIEnv* which is first argument to native |
2540 | if (!is_critical_native) { |
2541 | __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset()))); |
2542 | } |
2543 | |
2544 | // Now set thread in native |
2545 | __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native); |
2546 | |
2547 | __ call(RuntimeAddress(native_func)); |
2548 | |
2549 | // Verify or restore cpu control state after JNI call |
2550 | __ restore_cpu_control_state_after_jni(); |
2551 | |
2552 | // Unpack native results. |
2553 | switch (ret_type) { |
2554 | case T_BOOLEAN: __ c2bool(rax); break; |
2555 | case T_CHAR : __ movzwl(rax, rax); break; |
2556 | case T_BYTE : __ sign_extend_byte (rax); break; |
2557 | case T_SHORT : __ sign_extend_short(rax); break; |
2558 | case T_INT : /* nothing to do */ break; |
2559 | case T_DOUBLE : |
2560 | case T_FLOAT : |
2561 | // Result is in xmm0 we'll save as needed |
2562 | break; |
2563 | case T_ARRAY: // Really a handle |
2564 | case T_OBJECT: // Really a handle |
2565 | break; // can't de-handlize until after safepoint check |
2566 | case T_VOID: break; |
2567 | case T_LONG: break; |
2568 | default : ShouldNotReachHere(); |
2569 | } |
2570 | |
2571 | // unpin pinned arguments |
2572 | pinned_slot = oop_handle_offset; |
2573 | if (pinned_args.length() > 0) { |
2574 | // save return value that may be overwritten otherwise. |
2575 | save_native_result(masm, ret_type, stack_slots); |
2576 | for (int index = 0; index < pinned_args.length(); index ++) { |
2577 | int i = pinned_args.at(index); |
2578 | assert(pinned_slot <= stack_slots, "overflow" ); |
2579 | if (!in_regs[i].first()->is_stack()) { |
2580 | int offset = pinned_slot * VMRegImpl::stack_slot_size; |
2581 | __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); |
2582 | pinned_slot += VMRegImpl::slots_per_word; |
2583 | } |
2584 | gen_unpin_object(masm, in_regs[i]); |
2585 | } |
2586 | restore_native_result(masm, ret_type, stack_slots); |
2587 | } |
2588 | |
2589 | // Switch thread to "native transition" state before reading the synchronization state. |
2590 | // This additional state is necessary because reading and testing the synchronization |
2591 | // state is not atomic w.r.t. GC, as this scenario demonstrates: |
2592 | // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. |
2593 | // VM thread changes sync state to synchronizing and suspends threads for GC. |
2594 | // Thread A is resumed to finish this native method, but doesn't block here since it |
2595 | // didn't see any synchronization is progress, and escapes. |
2596 | __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans); |
2597 | |
2598 | // Force this write out before the read below |
2599 | __ membar(Assembler::Membar_mask_bits( |
2600 | Assembler::LoadLoad | Assembler::LoadStore | |
2601 | Assembler::StoreLoad | Assembler::StoreStore)); |
2602 | |
2603 | Label after_transition; |
2604 | |
2605 | // check for safepoint operation in progress and/or pending suspend requests |
2606 | { |
2607 | Label Continue; |
2608 | Label slow_path; |
2609 | |
2610 | __ safepoint_poll(slow_path, r15_thread, rscratch1); |
2611 | |
2612 | __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0); |
2613 | __ jcc(Assembler::equal, Continue); |
2614 | __ bind(slow_path); |
2615 | |
2616 | // Don't use call_VM as it will see a possible pending exception and forward it |
2617 | // and never return here preventing us from clearing _last_native_pc down below. |
2618 | // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are |
2619 | // preserved and correspond to the bcp/locals pointers. So we do a runtime call |
2620 | // by hand. |
2621 | // |
2622 | __ vzeroupper(); |
2623 | save_native_result(masm, ret_type, stack_slots); |
2624 | __ mov(c_rarg0, r15_thread); |
2625 | __ mov(r12, rsp); // remember sp |
2626 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
2627 | __ andptr(rsp, -16); // align stack as required by ABI |
2628 | if (!is_critical_native) { |
2629 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); |
2630 | } else { |
2631 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition))); |
2632 | } |
2633 | __ mov(rsp, r12); // restore sp |
2634 | __ reinit_heapbase(); |
2635 | // Restore any method result value |
2636 | restore_native_result(masm, ret_type, stack_slots); |
2637 | |
2638 | if (is_critical_native) { |
2639 | // The call above performed the transition to thread_in_Java so |
2640 | // skip the transition logic below. |
2641 | __ jmpb(after_transition); |
2642 | } |
2643 | |
2644 | __ bind(Continue); |
2645 | } |
2646 | |
2647 | // change thread state |
2648 | __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java); |
2649 | __ bind(after_transition); |
2650 | |
2651 | Label reguard; |
2652 | Label reguard_done; |
2653 | __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled); |
2654 | __ jcc(Assembler::equal, reguard); |
2655 | __ bind(reguard_done); |
2656 | |
2657 | // native result if any is live |
2658 | |
2659 | // Unlock |
2660 | Label unlock_done; |
2661 | Label slow_path_unlock; |
2662 | if (method->is_synchronized()) { |
2663 | |
2664 | // Get locked oop from the handle we passed to jni |
2665 | __ movptr(obj_reg, Address(oop_handle_reg, 0)); |
2666 | __ resolve(IS_NOT_NULL, obj_reg); |
2667 | |
2668 | Label done; |
2669 | |
2670 | if (UseBiasedLocking) { |
2671 | __ biased_locking_exit(obj_reg, old_hdr, done); |
2672 | } |
2673 | |
2674 | // Simple recursive lock? |
2675 | |
2676 | __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD); |
2677 | __ jcc(Assembler::equal, done); |
2678 | |
2679 | // Must save rax if if it is live now because cmpxchg must use it |
2680 | if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { |
2681 | save_native_result(masm, ret_type, stack_slots); |
2682 | } |
2683 | |
2684 | |
2685 | // get address of the stack lock |
2686 | __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); |
2687 | // get old displaced header |
2688 | __ movptr(old_hdr, Address(rax, 0)); |
2689 | |
2690 | // Atomic swap old header if oop still contains the stack lock |
2691 | __ lock(); |
2692 | __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); |
2693 | __ jcc(Assembler::notEqual, slow_path_unlock); |
2694 | |
2695 | // slow path re-enters here |
2696 | __ bind(unlock_done); |
2697 | if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { |
2698 | restore_native_result(masm, ret_type, stack_slots); |
2699 | } |
2700 | |
2701 | __ bind(done); |
2702 | |
2703 | } |
2704 | { |
2705 | SkipIfEqual skip(masm, &DTraceMethodProbes, false); |
2706 | save_native_result(masm, ret_type, stack_slots); |
2707 | __ mov_metadata(c_rarg1, method()); |
2708 | __ call_VM_leaf( |
2709 | CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), |
2710 | r15_thread, c_rarg1); |
2711 | restore_native_result(masm, ret_type, stack_slots); |
2712 | } |
2713 | |
2714 | __ reset_last_Java_frame(false); |
2715 | |
2716 | // Unbox oop result, e.g. JNIHandles::resolve value. |
2717 | if (ret_type == T_OBJECT || ret_type == T_ARRAY) { |
2718 | __ resolve_jobject(rax /* value */, |
2719 | r15_thread /* thread */, |
2720 | rcx /* tmp */); |
2721 | } |
2722 | |
2723 | if (CheckJNICalls) { |
2724 | // clear_pending_jni_exception_check |
2725 | __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); |
2726 | } |
2727 | |
2728 | if (!is_critical_native) { |
2729 | // reset handle block |
2730 | __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset())); |
2731 | __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD); |
2732 | } |
2733 | |
2734 | // pop our frame |
2735 | |
2736 | __ leave(); |
2737 | |
2738 | if (!is_critical_native) { |
2739 | // Any exception pending? |
2740 | __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); |
2741 | __ jcc(Assembler::notEqual, exception_pending); |
2742 | } |
2743 | |
2744 | // Return |
2745 | |
2746 | __ ret(0); |
2747 | |
2748 | // Unexpected paths are out of line and go here |
2749 | |
2750 | if (!is_critical_native) { |
2751 | // forward the exception |
2752 | __ bind(exception_pending); |
2753 | |
2754 | // and forward the exception |
2755 | __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); |
2756 | } |
2757 | |
2758 | // Slow path locking & unlocking |
2759 | if (method->is_synchronized()) { |
2760 | |
2761 | // BEGIN Slow path lock |
2762 | __ bind(slow_path_lock); |
2763 | |
2764 | // has last_Java_frame setup. No exceptions so do vanilla call not call_VM |
2765 | // args are (oop obj, BasicLock* lock, JavaThread* thread) |
2766 | |
2767 | // protect the args we've loaded |
2768 | save_args(masm, total_c_args, c_arg, out_regs); |
2769 | |
2770 | __ mov(c_rarg0, obj_reg); |
2771 | __ mov(c_rarg1, lock_reg); |
2772 | __ mov(c_rarg2, r15_thread); |
2773 | |
2774 | // Not a leaf but we have last_Java_frame setup as we want |
2775 | __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); |
2776 | restore_args(masm, total_c_args, c_arg, out_regs); |
2777 | |
2778 | #ifdef ASSERT |
2779 | { Label L; |
2780 | __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); |
2781 | __ jcc(Assembler::equal, L); |
2782 | __ stop("no pending exception allowed on exit from monitorenter" ); |
2783 | __ bind(L); |
2784 | } |
2785 | #endif |
2786 | __ jmp(lock_done); |
2787 | |
2788 | // END Slow path lock |
2789 | |
2790 | // BEGIN Slow path unlock |
2791 | __ bind(slow_path_unlock); |
2792 | |
2793 | // If we haven't already saved the native result we must save it now as xmm registers |
2794 | // are still exposed. |
2795 | __ vzeroupper(); |
2796 | if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { |
2797 | save_native_result(masm, ret_type, stack_slots); |
2798 | } |
2799 | |
2800 | __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); |
2801 | |
2802 | __ mov(c_rarg0, obj_reg); |
2803 | __ mov(c_rarg2, r15_thread); |
2804 | __ mov(r12, rsp); // remember sp |
2805 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
2806 | __ andptr(rsp, -16); // align stack as required by ABI |
2807 | |
2808 | // Save pending exception around call to VM (which contains an EXCEPTION_MARK) |
2809 | // NOTE that obj_reg == rbx currently |
2810 | __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset()))); |
2811 | __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); |
2812 | |
2813 | // args are (oop obj, BasicLock* lock, JavaThread* thread) |
2814 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); |
2815 | __ mov(rsp, r12); // restore sp |
2816 | __ reinit_heapbase(); |
2817 | #ifdef ASSERT |
2818 | { |
2819 | Label L; |
2820 | __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD); |
2821 | __ jcc(Assembler::equal, L); |
2822 | __ stop("no pending exception allowed on exit complete_monitor_unlocking_C" ); |
2823 | __ bind(L); |
2824 | } |
2825 | #endif /* ASSERT */ |
2826 | |
2827 | __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx); |
2828 | |
2829 | if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { |
2830 | restore_native_result(masm, ret_type, stack_slots); |
2831 | } |
2832 | __ jmp(unlock_done); |
2833 | |
2834 | // END Slow path unlock |
2835 | |
2836 | } // synchronized |
2837 | |
2838 | // SLOW PATH Reguard the stack if needed |
2839 | |
2840 | __ bind(reguard); |
2841 | __ vzeroupper(); |
2842 | save_native_result(masm, ret_type, stack_slots); |
2843 | __ mov(r12, rsp); // remember sp |
2844 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
2845 | __ andptr(rsp, -16); // align stack as required by ABI |
2846 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); |
2847 | __ mov(rsp, r12); // restore sp |
2848 | __ reinit_heapbase(); |
2849 | restore_native_result(masm, ret_type, stack_slots); |
2850 | // and continue |
2851 | __ jmp(reguard_done); |
2852 | |
2853 | |
2854 | |
2855 | __ flush(); |
2856 | |
2857 | nmethod *nm = nmethod::new_native_nmethod(method, |
2858 | compile_id, |
2859 | masm->code(), |
2860 | vep_offset, |
2861 | frame_complete, |
2862 | stack_slots / VMRegImpl::slots_per_word, |
2863 | (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), |
2864 | in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), |
2865 | oop_maps); |
2866 | |
2867 | if (is_critical_native) { |
2868 | nm->set_lazy_critical_native(true); |
2869 | } |
2870 | |
2871 | return nm; |
2872 | |
2873 | } |
2874 | |
2875 | // this function returns the adjust size (in number of words) to a c2i adapter |
2876 | // activation for use during deoptimization |
2877 | int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { |
2878 | return (callee_locals - callee_parameters) * Interpreter::stackElementWords; |
2879 | } |
2880 | |
2881 | |
2882 | uint SharedRuntime::out_preserve_stack_slots() { |
2883 | return 0; |
2884 | } |
2885 | |
2886 | //------------------------------generate_deopt_blob---------------------------- |
2887 | void SharedRuntime::generate_deopt_blob() { |
2888 | // Allocate space for the code |
2889 | ResourceMark rm; |
2890 | // Setup code generation tools |
2891 | int pad = 0; |
2892 | #if INCLUDE_JVMCI |
2893 | if (EnableJVMCI || UseAOT) { |
2894 | pad += 512; // Increase the buffer size when compiling for JVMCI |
2895 | } |
2896 | #endif |
2897 | CodeBuffer buffer("deopt_blob" , 2048+pad, 1024); |
2898 | MacroAssembler* masm = new MacroAssembler(&buffer); |
2899 | int frame_size_in_words; |
2900 | OopMap* map = NULL; |
2901 | OopMapSet *oop_maps = new OopMapSet(); |
2902 | |
2903 | // ------------- |
2904 | // This code enters when returning to a de-optimized nmethod. A return |
2905 | // address has been pushed on the the stack, and return values are in |
2906 | // registers. |
2907 | // If we are doing a normal deopt then we were called from the patched |
2908 | // nmethod from the point we returned to the nmethod. So the return |
2909 | // address on the stack is wrong by NativeCall::instruction_size |
2910 | // We will adjust the value so it looks like we have the original return |
2911 | // address on the stack (like when we eagerly deoptimized). |
2912 | // In the case of an exception pending when deoptimizing, we enter |
2913 | // with a return address on the stack that points after the call we patched |
2914 | // into the exception handler. We have the following register state from, |
2915 | // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). |
2916 | // rax: exception oop |
2917 | // rbx: exception handler |
2918 | // rdx: throwing pc |
2919 | // So in this case we simply jam rdx into the useless return address and |
2920 | // the stack looks just like we want. |
2921 | // |
2922 | // At this point we need to de-opt. We save the argument return |
2923 | // registers. We call the first C routine, fetch_unroll_info(). This |
2924 | // routine captures the return values and returns a structure which |
2925 | // describes the current frame size and the sizes of all replacement frames. |
2926 | // The current frame is compiled code and may contain many inlined |
2927 | // functions, each with their own JVM state. We pop the current frame, then |
2928 | // push all the new frames. Then we call the C routine unpack_frames() to |
2929 | // populate these frames. Finally unpack_frames() returns us the new target |
2930 | // address. Notice that callee-save registers are BLOWN here; they have |
2931 | // already been captured in the vframeArray at the time the return PC was |
2932 | // patched. |
2933 | address start = __ pc(); |
2934 | Label cont; |
2935 | |
2936 | // Prolog for non exception case! |
2937 | |
2938 | // Save everything in sight. |
2939 | map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
2940 | |
2941 | // Normal deoptimization. Save exec mode for unpack_frames. |
2942 | __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved |
2943 | __ jmp(cont); |
2944 | |
2945 | int reexecute_offset = __ pc() - start; |
2946 | #if INCLUDE_JVMCI && !defined(COMPILER1) |
2947 | if (EnableJVMCI && UseJVMCICompiler) { |
2948 | // JVMCI does not use this kind of deoptimization |
2949 | __ should_not_reach_here(); |
2950 | } |
2951 | #endif |
2952 | |
2953 | // Reexecute case |
2954 | // return address is the pc describes what bci to do re-execute at |
2955 | |
2956 | // No need to update map as each call to save_live_registers will produce identical oopmap |
2957 | (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
2958 | |
2959 | __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved |
2960 | __ jmp(cont); |
2961 | |
2962 | #if INCLUDE_JVMCI |
2963 | Label after_fetch_unroll_info_call; |
2964 | int implicit_exception_uncommon_trap_offset = 0; |
2965 | int uncommon_trap_offset = 0; |
2966 | |
2967 | if (EnableJVMCI || UseAOT) { |
2968 | implicit_exception_uncommon_trap_offset = __ pc() - start; |
2969 | |
2970 | __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); |
2971 | __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD); |
2972 | |
2973 | uncommon_trap_offset = __ pc() - start; |
2974 | |
2975 | // Save everything in sight. |
2976 | RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
2977 | // fetch_unroll_info needs to call last_java_frame() |
2978 | __ set_last_Java_frame(noreg, noreg, NULL); |
2979 | |
2980 | __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset()))); |
2981 | __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1); |
2982 | |
2983 | __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute); |
2984 | __ mov(c_rarg0, r15_thread); |
2985 | __ movl(c_rarg2, r14); // exec mode |
2986 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); |
2987 | oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); |
2988 | |
2989 | __ reset_last_Java_frame(false); |
2990 | |
2991 | __ jmp(after_fetch_unroll_info_call); |
2992 | } // EnableJVMCI |
2993 | #endif // INCLUDE_JVMCI |
2994 | |
2995 | int exception_offset = __ pc() - start; |
2996 | |
2997 | // Prolog for exception case |
2998 | |
2999 | // all registers are dead at this entry point, except for rax, and |
3000 | // rdx which contain the exception oop and exception pc |
3001 | // respectively. Set them in TLS and fall thru to the |
3002 | // unpack_with_exception_in_tls entry point. |
3003 | |
3004 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); |
3005 | __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax); |
3006 | |
3007 | int exception_in_tls_offset = __ pc() - start; |
3008 | |
3009 | // new implementation because exception oop is now passed in JavaThread |
3010 | |
3011 | // Prolog for exception case |
3012 | // All registers must be preserved because they might be used by LinearScan |
3013 | // Exceptiop oop and throwing PC are passed in JavaThread |
3014 | // tos: stack at point of call to method that threw the exception (i.e. only |
3015 | // args are on the stack, no return address) |
3016 | |
3017 | // make room on stack for the return address |
3018 | // It will be patched later with the throwing pc. The correct value is not |
3019 | // available now because loading it from memory would destroy registers. |
3020 | __ push(0); |
3021 | |
3022 | // Save everything in sight. |
3023 | map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
3024 | |
3025 | // Now it is safe to overwrite any register |
3026 | |
3027 | // Deopt during an exception. Save exec mode for unpack_frames. |
3028 | __ movl(r14, Deoptimization::Unpack_exception); // callee-saved |
3029 | |
3030 | // load throwing pc from JavaThread and patch it as the return address |
3031 | // of the current frame. Then clear the field in JavaThread |
3032 | |
3033 | __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); |
3034 | __ movptr(Address(rbp, wordSize), rdx); |
3035 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); |
3036 | |
3037 | #ifdef ASSERT |
3038 | // verify that there is really an exception oop in JavaThread |
3039 | __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); |
3040 | __ verify_oop(rax); |
3041 | |
3042 | // verify that there is no pending exception |
3043 | Label no_pending_exception; |
3044 | __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); |
3045 | __ testptr(rax, rax); |
3046 | __ jcc(Assembler::zero, no_pending_exception); |
3047 | __ stop("must not have pending exception here" ); |
3048 | __ bind(no_pending_exception); |
3049 | #endif |
3050 | |
3051 | __ bind(cont); |
3052 | |
3053 | // Call C code. Need thread and this frame, but NOT official VM entry |
3054 | // crud. We cannot block on this call, no GC can happen. |
3055 | // |
3056 | // UnrollBlock* fetch_unroll_info(JavaThread* thread) |
3057 | |
3058 | // fetch_unroll_info needs to call last_java_frame(). |
3059 | |
3060 | __ set_last_Java_frame(noreg, noreg, NULL); |
3061 | #ifdef ASSERT |
3062 | { Label L; |
3063 | __ cmpptr(Address(r15_thread, |
3064 | JavaThread::last_Java_fp_offset()), |
3065 | (int32_t)0); |
3066 | __ jcc(Assembler::equal, L); |
3067 | __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared" ); |
3068 | __ bind(L); |
3069 | } |
3070 | #endif // ASSERT |
3071 | __ mov(c_rarg0, r15_thread); |
3072 | __ movl(c_rarg1, r14); // exec_mode |
3073 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); |
3074 | |
3075 | // Need to have an oopmap that tells fetch_unroll_info where to |
3076 | // find any register it might need. |
3077 | oop_maps->add_gc_map(__ pc() - start, map); |
3078 | |
3079 | __ reset_last_Java_frame(false); |
3080 | |
3081 | #if INCLUDE_JVMCI |
3082 | if (EnableJVMCI || UseAOT) { |
3083 | __ bind(after_fetch_unroll_info_call); |
3084 | } |
3085 | #endif |
3086 | |
3087 | // Load UnrollBlock* into rdi |
3088 | __ mov(rdi, rax); |
3089 | |
3090 | __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); |
3091 | Label noException; |
3092 | __ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending? |
3093 | __ jcc(Assembler::notEqual, noException); |
3094 | __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); |
3095 | // QQQ this is useless it was NULL above |
3096 | __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); |
3097 | __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD); |
3098 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); |
3099 | |
3100 | __ verify_oop(rax); |
3101 | |
3102 | // Overwrite the result registers with the exception results. |
3103 | __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); |
3104 | // I think this is useless |
3105 | __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx); |
3106 | |
3107 | __ bind(noException); |
3108 | |
3109 | // Only register save data is on the stack. |
3110 | // Now restore the result registers. Everything else is either dead |
3111 | // or captured in the vframeArray. |
3112 | RegisterSaver::restore_result_registers(masm); |
3113 | |
3114 | // All of the register save area has been popped of the stack. Only the |
3115 | // return address remains. |
3116 | |
3117 | // Pop all the frames we must move/replace. |
3118 | // |
3119 | // Frame picture (youngest to oldest) |
3120 | // 1: self-frame (no frame link) |
3121 | // 2: deopting frame (no frame link) |
3122 | // 3: caller of deopting frame (could be compiled/interpreted). |
3123 | // |
3124 | // Note: by leaving the return address of self-frame on the stack |
3125 | // and using the size of frame 2 to adjust the stack |
3126 | // when we are done the return to frame 3 will still be on the stack. |
3127 | |
3128 | // Pop deoptimized frame |
3129 | __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); |
3130 | __ addptr(rsp, rcx); |
3131 | |
3132 | // rsp should be pointing at the return address to the caller (3) |
3133 | |
3134 | // Pick up the initial fp we should save |
3135 | // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) |
3136 | __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); |
3137 | |
3138 | #ifdef ASSERT |
3139 | // Compilers generate code that bang the stack by as much as the |
3140 | // interpreter would need. So this stack banging should never |
3141 | // trigger a fault. Verify that it does not on non product builds. |
3142 | if (UseStackBanging) { |
3143 | __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); |
3144 | __ bang_stack_size(rbx, rcx); |
3145 | } |
3146 | #endif |
3147 | |
3148 | // Load address of array of frame pcs into rcx |
3149 | __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); |
3150 | |
3151 | // Trash the old pc |
3152 | __ addptr(rsp, wordSize); |
3153 | |
3154 | // Load address of array of frame sizes into rsi |
3155 | __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); |
3156 | |
3157 | // Load counter into rdx |
3158 | __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); |
3159 | |
3160 | // Now adjust the caller's stack to make up for the extra locals |
3161 | // but record the original sp so that we can save it in the skeletal interpreter |
3162 | // frame and the stack walking of interpreter_sender will get the unextended sp |
3163 | // value and not the "real" sp value. |
3164 | |
3165 | const Register sender_sp = r8; |
3166 | |
3167 | __ mov(sender_sp, rsp); |
3168 | __ movl(rbx, Address(rdi, |
3169 | Deoptimization::UnrollBlock:: |
3170 | caller_adjustment_offset_in_bytes())); |
3171 | __ subptr(rsp, rbx); |
3172 | |
3173 | // Push interpreter frames in a loop |
3174 | Label loop; |
3175 | __ bind(loop); |
3176 | __ movptr(rbx, Address(rsi, 0)); // Load frame size |
3177 | __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand |
3178 | __ pushptr(Address(rcx, 0)); // Save return address |
3179 | __ enter(); // Save old & set new ebp |
3180 | __ subptr(rsp, rbx); // Prolog |
3181 | // This value is corrected by layout_activation_impl |
3182 | __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); |
3183 | __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable |
3184 | __ mov(sender_sp, rsp); // Pass sender_sp to next frame |
3185 | __ addptr(rsi, wordSize); // Bump array pointer (sizes) |
3186 | __ addptr(rcx, wordSize); // Bump array pointer (pcs) |
3187 | __ decrementl(rdx); // Decrement counter |
3188 | __ jcc(Assembler::notZero, loop); |
3189 | __ pushptr(Address(rcx, 0)); // Save final return address |
3190 | |
3191 | // Re-push self-frame |
3192 | __ enter(); // Save old & set new ebp |
3193 | |
3194 | // Allocate a full sized register save area. |
3195 | // Return address and rbp are in place, so we allocate two less words. |
3196 | __ subptr(rsp, (frame_size_in_words - 2) * wordSize); |
3197 | |
3198 | // Restore frame locals after moving the frame |
3199 | __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0); |
3200 | __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); |
3201 | |
3202 | // Call C code. Need thread but NOT official VM entry |
3203 | // crud. We cannot block on this call, no GC can happen. Call should |
3204 | // restore return values to their stack-slots with the new SP. |
3205 | // |
3206 | // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) |
3207 | |
3208 | // Use rbp because the frames look interpreted now |
3209 | // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. |
3210 | // Don't need the precise return PC here, just precise enough to point into this code blob. |
3211 | address the_pc = __ pc(); |
3212 | __ set_last_Java_frame(noreg, rbp, the_pc); |
3213 | |
3214 | __ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI |
3215 | __ mov(c_rarg0, r15_thread); |
3216 | __ movl(c_rarg1, r14); // second arg: exec_mode |
3217 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); |
3218 | // Revert SP alignment after call since we're going to do some SP relative addressing below |
3219 | __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset())); |
3220 | |
3221 | // Set an oopmap for the call site |
3222 | // Use the same PC we used for the last java frame |
3223 | oop_maps->add_gc_map(the_pc - start, |
3224 | new OopMap( frame_size_in_words, 0 )); |
3225 | |
3226 | // Clear fp AND pc |
3227 | __ reset_last_Java_frame(true); |
3228 | |
3229 | // Collect return values |
3230 | __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes())); |
3231 | __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes())); |
3232 | // I think this is useless (throwing pc?) |
3233 | __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes())); |
3234 | |
3235 | // Pop self-frame. |
3236 | __ leave(); // Epilog |
3237 | |
3238 | // Jump to interpreter |
3239 | __ ret(0); |
3240 | |
3241 | // Make sure all code is generated |
3242 | masm->flush(); |
3243 | |
3244 | _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); |
3245 | _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); |
3246 | #if INCLUDE_JVMCI |
3247 | if (EnableJVMCI || UseAOT) { |
3248 | _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); |
3249 | _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); |
3250 | } |
3251 | #endif |
3252 | } |
3253 | |
3254 | #ifdef COMPILER2 |
3255 | //------------------------------generate_uncommon_trap_blob-------------------- |
3256 | void SharedRuntime::generate_uncommon_trap_blob() { |
3257 | // Allocate space for the code |
3258 | ResourceMark rm; |
3259 | // Setup code generation tools |
3260 | CodeBuffer buffer("uncommon_trap_blob" , 2048, 1024); |
3261 | MacroAssembler* masm = new MacroAssembler(&buffer); |
3262 | |
3263 | assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned" ); |
3264 | |
3265 | address start = __ pc(); |
3266 | |
3267 | if (UseRTMLocking) { |
3268 | // Abort RTM transaction before possible nmethod deoptimization. |
3269 | __ xabort(0); |
3270 | } |
3271 | |
3272 | // Push self-frame. We get here with a return address on the |
3273 | // stack, so rsp is 8-byte aligned until we allocate our frame. |
3274 | __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog! |
3275 | |
3276 | // No callee saved registers. rbp is assumed implicitly saved |
3277 | __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); |
3278 | |
3279 | // compiler left unloaded_class_index in j_rarg0 move to where the |
3280 | // runtime expects it. |
3281 | __ movl(c_rarg1, j_rarg0); |
3282 | |
3283 | __ set_last_Java_frame(noreg, noreg, NULL); |
3284 | |
3285 | // Call C code. Need thread but NOT official VM entry |
3286 | // crud. We cannot block on this call, no GC can happen. Call should |
3287 | // capture callee-saved registers as well as return values. |
3288 | // Thread is in rdi already. |
3289 | // |
3290 | // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); |
3291 | |
3292 | __ mov(c_rarg0, r15_thread); |
3293 | __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap); |
3294 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); |
3295 | |
3296 | // Set an oopmap for the call site |
3297 | OopMapSet* oop_maps = new OopMapSet(); |
3298 | OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); |
3299 | |
3300 | // location of rbp is known implicitly by the frame sender code |
3301 | |
3302 | oop_maps->add_gc_map(__ pc() - start, map); |
3303 | |
3304 | __ reset_last_Java_frame(false); |
3305 | |
3306 | // Load UnrollBlock* into rdi |
3307 | __ mov(rdi, rax); |
3308 | |
3309 | #ifdef ASSERT |
3310 | { Label L; |
3311 | __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()), |
3312 | (int32_t)Deoptimization::Unpack_uncommon_trap); |
3313 | __ jcc(Assembler::equal, L); |
3314 | __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap" ); |
3315 | __ bind(L); |
3316 | } |
3317 | #endif |
3318 | |
3319 | // Pop all the frames we must move/replace. |
3320 | // |
3321 | // Frame picture (youngest to oldest) |
3322 | // 1: self-frame (no frame link) |
3323 | // 2: deopting frame (no frame link) |
3324 | // 3: caller of deopting frame (could be compiled/interpreted). |
3325 | |
3326 | // Pop self-frame. We have no frame, and must rely only on rax and rsp. |
3327 | __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog! |
3328 | |
3329 | // Pop deoptimized frame (int) |
3330 | __ movl(rcx, Address(rdi, |
3331 | Deoptimization::UnrollBlock:: |
3332 | size_of_deoptimized_frame_offset_in_bytes())); |
3333 | __ addptr(rsp, rcx); |
3334 | |
3335 | // rsp should be pointing at the return address to the caller (3) |
3336 | |
3337 | // Pick up the initial fp we should save |
3338 | // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) |
3339 | __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); |
3340 | |
3341 | #ifdef ASSERT |
3342 | // Compilers generate code that bang the stack by as much as the |
3343 | // interpreter would need. So this stack banging should never |
3344 | // trigger a fault. Verify that it does not on non product builds. |
3345 | if (UseStackBanging) { |
3346 | __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); |
3347 | __ bang_stack_size(rbx, rcx); |
3348 | } |
3349 | #endif |
3350 | |
3351 | // Load address of array of frame pcs into rcx (address*) |
3352 | __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); |
3353 | |
3354 | // Trash the return pc |
3355 | __ addptr(rsp, wordSize); |
3356 | |
3357 | // Load address of array of frame sizes into rsi (intptr_t*) |
3358 | __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes())); |
3359 | |
3360 | // Counter |
3361 | __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int) |
3362 | |
3363 | // Now adjust the caller's stack to make up for the extra locals but |
3364 | // record the original sp so that we can save it in the skeletal |
3365 | // interpreter frame and the stack walking of interpreter_sender |
3366 | // will get the unextended sp value and not the "real" sp value. |
3367 | |
3368 | const Register sender_sp = r8; |
3369 | |
3370 | __ mov(sender_sp, rsp); |
3371 | __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int) |
3372 | __ subptr(rsp, rbx); |
3373 | |
3374 | // Push interpreter frames in a loop |
3375 | Label loop; |
3376 | __ bind(loop); |
3377 | __ movptr(rbx, Address(rsi, 0)); // Load frame size |
3378 | __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand |
3379 | __ pushptr(Address(rcx, 0)); // Save return address |
3380 | __ enter(); // Save old & set new rbp |
3381 | __ subptr(rsp, rbx); // Prolog |
3382 | __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), |
3383 | sender_sp); // Make it walkable |
3384 | // This value is corrected by layout_activation_impl |
3385 | __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); |
3386 | __ mov(sender_sp, rsp); // Pass sender_sp to next frame |
3387 | __ addptr(rsi, wordSize); // Bump array pointer (sizes) |
3388 | __ addptr(rcx, wordSize); // Bump array pointer (pcs) |
3389 | __ decrementl(rdx); // Decrement counter |
3390 | __ jcc(Assembler::notZero, loop); |
3391 | __ pushptr(Address(rcx, 0)); // Save final return address |
3392 | |
3393 | // Re-push self-frame |
3394 | __ enter(); // Save old & set new rbp |
3395 | __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt); |
3396 | // Prolog |
3397 | |
3398 | // Use rbp because the frames look interpreted now |
3399 | // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. |
3400 | // Don't need the precise return PC here, just precise enough to point into this code blob. |
3401 | address the_pc = __ pc(); |
3402 | __ set_last_Java_frame(noreg, rbp, the_pc); |
3403 | |
3404 | // Call C code. Need thread but NOT official VM entry |
3405 | // crud. We cannot block on this call, no GC can happen. Call should |
3406 | // restore return values to their stack-slots with the new SP. |
3407 | // Thread is in rdi already. |
3408 | // |
3409 | // BasicType unpack_frames(JavaThread* thread, int exec_mode); |
3410 | |
3411 | __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI |
3412 | __ mov(c_rarg0, r15_thread); |
3413 | __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap); |
3414 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); |
3415 | |
3416 | // Set an oopmap for the call site |
3417 | // Use the same PC we used for the last java frame |
3418 | oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); |
3419 | |
3420 | // Clear fp AND pc |
3421 | __ reset_last_Java_frame(true); |
3422 | |
3423 | // Pop self-frame. |
3424 | __ leave(); // Epilog |
3425 | |
3426 | // Jump to interpreter |
3427 | __ ret(0); |
3428 | |
3429 | // Make sure all code is generated |
3430 | masm->flush(); |
3431 | |
3432 | _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, |
3433 | SimpleRuntimeFrame::framesize >> 1); |
3434 | } |
3435 | #endif // COMPILER2 |
3436 | |
3437 | |
3438 | //------------------------------generate_handler_blob------ |
3439 | // |
3440 | // Generate a special Compile2Runtime blob that saves all registers, |
3441 | // and setup oopmap. |
3442 | // |
3443 | SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { |
3444 | assert(StubRoutines::forward_exception_entry() != NULL, |
3445 | "must be generated before" ); |
3446 | |
3447 | ResourceMark rm; |
3448 | OopMapSet *oop_maps = new OopMapSet(); |
3449 | OopMap* map; |
3450 | |
3451 | // Allocate space for the code. Setup code generation tools. |
3452 | CodeBuffer buffer("handler_blob" , 2048, 1024); |
3453 | MacroAssembler* masm = new MacroAssembler(&buffer); |
3454 | |
3455 | address start = __ pc(); |
3456 | address call_pc = NULL; |
3457 | int frame_size_in_words; |
3458 | bool cause_return = (poll_type == POLL_AT_RETURN); |
3459 | bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); |
3460 | |
3461 | if (UseRTMLocking) { |
3462 | // Abort RTM transaction before calling runtime |
3463 | // because critical section will be large and will be |
3464 | // aborted anyway. Also nmethod could be deoptimized. |
3465 | __ xabort(0); |
3466 | } |
3467 | |
3468 | // Make room for return address (or push it again) |
3469 | if (!cause_return) { |
3470 | __ push(rbx); |
3471 | } |
3472 | |
3473 | // Save registers, fpu state, and flags |
3474 | map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors); |
3475 | |
3476 | // The following is basically a call_VM. However, we need the precise |
3477 | // address of the call in order to generate an oopmap. Hence, we do all the |
3478 | // work outselves. |
3479 | |
3480 | __ set_last_Java_frame(noreg, noreg, NULL); |
3481 | |
3482 | // The return address must always be correct so that frame constructor never |
3483 | // sees an invalid pc. |
3484 | |
3485 | if (!cause_return) { |
3486 | // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack. |
3487 | // Additionally, rbx is a callee saved register and we can look at it later to determine |
3488 | // if someone changed the return address for us! |
3489 | __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset())); |
3490 | __ movptr(Address(rbp, wordSize), rbx); |
3491 | } |
3492 | |
3493 | // Do the call |
3494 | __ mov(c_rarg0, r15_thread); |
3495 | __ call(RuntimeAddress(call_ptr)); |
3496 | |
3497 | // Set an oopmap for the call site. This oopmap will map all |
3498 | // oop-registers and debug-info registers as callee-saved. This |
3499 | // will allow deoptimization at this safepoint to find all possible |
3500 | // debug-info recordings, as well as let GC find all oops. |
3501 | |
3502 | oop_maps->add_gc_map( __ pc() - start, map); |
3503 | |
3504 | Label noException; |
3505 | |
3506 | __ reset_last_Java_frame(false); |
3507 | |
3508 | __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); |
3509 | __ jcc(Assembler::equal, noException); |
3510 | |
3511 | // Exception pending |
3512 | |
3513 | RegisterSaver::restore_live_registers(masm, save_vectors); |
3514 | |
3515 | __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); |
3516 | |
3517 | // No exception case |
3518 | __ bind(noException); |
3519 | |
3520 | Label no_adjust; |
3521 | #ifdef ASSERT |
3522 | Label bail; |
3523 | #endif |
3524 | if (SafepointMechanism::uses_thread_local_poll() && !cause_return) { |
3525 | Label no_prefix, not_special; |
3526 | |
3527 | // If our stashed return pc was modified by the runtime we avoid touching it |
3528 | __ cmpptr(rbx, Address(rbp, wordSize)); |
3529 | __ jccb(Assembler::notEqual, no_adjust); |
3530 | |
3531 | // Skip over the poll instruction. |
3532 | // See NativeInstruction::is_safepoint_poll() |
3533 | // Possible encodings: |
3534 | // 85 00 test %eax,(%rax) |
3535 | // 85 01 test %eax,(%rcx) |
3536 | // 85 02 test %eax,(%rdx) |
3537 | // 85 03 test %eax,(%rbx) |
3538 | // 85 06 test %eax,(%rsi) |
3539 | // 85 07 test %eax,(%rdi) |
3540 | // |
3541 | // 41 85 00 test %eax,(%r8) |
3542 | // 41 85 01 test %eax,(%r9) |
3543 | // 41 85 02 test %eax,(%r10) |
3544 | // 41 85 03 test %eax,(%r11) |
3545 | // 41 85 06 test %eax,(%r14) |
3546 | // 41 85 07 test %eax,(%r15) |
3547 | // |
3548 | // 85 04 24 test %eax,(%rsp) |
3549 | // 41 85 04 24 test %eax,(%r12) |
3550 | // 85 45 00 test %eax,0x0(%rbp) |
3551 | // 41 85 45 00 test %eax,0x0(%r13) |
3552 | |
3553 | __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix); |
3554 | __ jcc(Assembler::notEqual, no_prefix); |
3555 | __ addptr(rbx, 1); |
3556 | __ bind(no_prefix); |
3557 | #ifdef ASSERT |
3558 | __ movptr(rax, rbx); // remember where 0x85 should be, for verification below |
3559 | #endif |
3560 | // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values: |
3561 | // r12/rsp 0x04 |
3562 | // r13/rbp 0x05 |
3563 | __ movzbq(rcx, Address(rbx, 1)); |
3564 | __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05 |
3565 | __ subptr(rcx, 4); // looking for 0x00 .. 0x01 |
3566 | __ cmpptr(rcx, 1); |
3567 | __ jcc(Assembler::above, not_special); |
3568 | __ addptr(rbx, 1); |
3569 | __ bind(not_special); |
3570 | #ifdef ASSERT |
3571 | // Verify the correct encoding of the poll we're about to skip. |
3572 | __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl); |
3573 | __ jcc(Assembler::notEqual, bail); |
3574 | // Mask out the modrm bits |
3575 | __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask); |
3576 | // rax encodes to 0, so if the bits are nonzero it's incorrect |
3577 | __ jcc(Assembler::notZero, bail); |
3578 | #endif |
3579 | // Adjust return pc forward to step over the safepoint poll instruction |
3580 | __ addptr(rbx, 2); |
3581 | __ movptr(Address(rbp, wordSize), rbx); |
3582 | } |
3583 | |
3584 | __ bind(no_adjust); |
3585 | // Normal exit, restore registers and exit. |
3586 | RegisterSaver::restore_live_registers(masm, save_vectors); |
3587 | __ ret(0); |
3588 | |
3589 | #ifdef ASSERT |
3590 | __ bind(bail); |
3591 | __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected" ); |
3592 | #endif |
3593 | |
3594 | // Make sure all code is generated |
3595 | masm->flush(); |
3596 | |
3597 | // Fill-out other meta info |
3598 | return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); |
3599 | } |
3600 | |
3601 | // |
3602 | // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss |
3603 | // |
3604 | // Generate a stub that calls into vm to find out the proper destination |
3605 | // of a java call. All the argument registers are live at this point |
3606 | // but since this is generic code we don't know what they are and the caller |
3607 | // must do any gc of the args. |
3608 | // |
3609 | RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { |
3610 | assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before" ); |
3611 | |
3612 | // allocate space for the code |
3613 | ResourceMark rm; |
3614 | |
3615 | CodeBuffer buffer(name, 1000, 512); |
3616 | MacroAssembler* masm = new MacroAssembler(&buffer); |
3617 | |
3618 | int frame_size_in_words; |
3619 | |
3620 | OopMapSet *oop_maps = new OopMapSet(); |
3621 | OopMap* map = NULL; |
3622 | |
3623 | int start = __ offset(); |
3624 | |
3625 | map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
3626 | |
3627 | int frame_complete = __ offset(); |
3628 | |
3629 | __ set_last_Java_frame(noreg, noreg, NULL); |
3630 | |
3631 | __ mov(c_rarg0, r15_thread); |
3632 | |
3633 | __ call(RuntimeAddress(destination)); |
3634 | |
3635 | |
3636 | // Set an oopmap for the call site. |
3637 | // We need this not only for callee-saved registers, but also for volatile |
3638 | // registers that the compiler might be keeping live across a safepoint. |
3639 | |
3640 | oop_maps->add_gc_map( __ offset() - start, map); |
3641 | |
3642 | // rax contains the address we are going to jump to assuming no exception got installed |
3643 | |
3644 | // clear last_Java_sp |
3645 | __ reset_last_Java_frame(false); |
3646 | // check for pending exceptions |
3647 | Label pending; |
3648 | __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); |
3649 | __ jcc(Assembler::notEqual, pending); |
3650 | |
3651 | // get the returned Method* |
3652 | __ get_vm_result_2(rbx, r15_thread); |
3653 | __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx); |
3654 | |
3655 | __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); |
3656 | |
3657 | RegisterSaver::restore_live_registers(masm); |
3658 | |
3659 | // We are back the the original state on entry and ready to go. |
3660 | |
3661 | __ jmp(rax); |
3662 | |
3663 | // Pending exception after the safepoint |
3664 | |
3665 | __ bind(pending); |
3666 | |
3667 | RegisterSaver::restore_live_registers(masm); |
3668 | |
3669 | // exception pending => remove activation and forward to exception handler |
3670 | |
3671 | __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD); |
3672 | |
3673 | __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); |
3674 | __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); |
3675 | |
3676 | // ------------- |
3677 | // make sure all code is generated |
3678 | masm->flush(); |
3679 | |
3680 | // return the blob |
3681 | // frame_size_words or bytes?? |
3682 | return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); |
3683 | } |
3684 | |
3685 | |
3686 | //------------------------------Montgomery multiplication------------------------ |
3687 | // |
3688 | |
3689 | #ifndef _WINDOWS |
3690 | |
3691 | #define ASM_SUBTRACT |
3692 | |
3693 | #ifdef ASM_SUBTRACT |
3694 | // Subtract 0:b from carry:a. Return carry. |
3695 | static unsigned long |
3696 | sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) { |
3697 | long i = 0, cnt = len; |
3698 | unsigned long tmp; |
3699 | asm volatile("clc; " |
3700 | "0: ; " |
3701 | "mov (%[b], %[i], 8), %[tmp]; " |
3702 | "sbb %[tmp], (%[a], %[i], 8); " |
3703 | "inc %[i]; dec %[cnt]; " |
3704 | "jne 0b; " |
3705 | "mov %[carry], %[tmp]; sbb $0, %[tmp]; " |
3706 | : [i]"+r" (i), [cnt]"+r" (cnt), [tmp]"=&r" (tmp) |
3707 | : [a]"r" (a), [b]"r" (b), [carry]"r" (carry) |
3708 | : "memory" ); |
3709 | return tmp; |
3710 | } |
3711 | #else // ASM_SUBTRACT |
3712 | typedef int __attribute__((mode(TI))) int128; |
3713 | |
3714 | // Subtract 0:b from carry:a. Return carry. |
3715 | static unsigned long |
3716 | sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) { |
3717 | int128 tmp = 0; |
3718 | int i; |
3719 | for (i = 0; i < len; i++) { |
3720 | tmp += a[i]; |
3721 | tmp -= b[i]; |
3722 | a[i] = tmp; |
3723 | tmp >>= 64; |
3724 | assert(-1 <= tmp && tmp <= 0, "invariant" ); |
3725 | } |
3726 | return tmp + carry; |
3727 | } |
3728 | #endif // ! ASM_SUBTRACT |
3729 | |
3730 | // Multiply (unsigned) Long A by Long B, accumulating the double- |
3731 | // length result into the accumulator formed of T0, T1, and T2. |
3732 | #define MACC(A, B, T0, T1, T2) \ |
3733 | do { \ |
3734 | unsigned long hi, lo; \ |
3735 | __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ |
3736 | : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ |
3737 | : "r"(A), "a"(B) : "cc"); \ |
3738 | } while(0) |
3739 | |
3740 | // As above, but add twice the double-length result into the |
3741 | // accumulator. |
3742 | #define MACC2(A, B, T0, T1, T2) \ |
3743 | do { \ |
3744 | unsigned long hi, lo; \ |
3745 | __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \ |
3746 | "add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ |
3747 | : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ |
3748 | : "r"(A), "a"(B) : "cc"); \ |
3749 | } while(0) |
3750 | |
3751 | // Fast Montgomery multiplication. The derivation of the algorithm is |
3752 | // in A Cryptographic Library for the Motorola DSP56000, |
3753 | // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237. |
3754 | |
3755 | static void __attribute__((noinline)) |
3756 | montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[], |
3757 | unsigned long m[], unsigned long inv, int len) { |
3758 | unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator |
3759 | int i; |
3760 | |
3761 | assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply" ); |
3762 | |
3763 | for (i = 0; i < len; i++) { |
3764 | int j; |
3765 | for (j = 0; j < i; j++) { |
3766 | MACC(a[j], b[i-j], t0, t1, t2); |
3767 | MACC(m[j], n[i-j], t0, t1, t2); |
3768 | } |
3769 | MACC(a[i], b[0], t0, t1, t2); |
3770 | m[i] = t0 * inv; |
3771 | MACC(m[i], n[0], t0, t1, t2); |
3772 | |
3773 | assert(t0 == 0, "broken Montgomery multiply" ); |
3774 | |
3775 | t0 = t1; t1 = t2; t2 = 0; |
3776 | } |
3777 | |
3778 | for (i = len; i < 2*len; i++) { |
3779 | int j; |
3780 | for (j = i-len+1; j < len; j++) { |
3781 | MACC(a[j], b[i-j], t0, t1, t2); |
3782 | MACC(m[j], n[i-j], t0, t1, t2); |
3783 | } |
3784 | m[i-len] = t0; |
3785 | t0 = t1; t1 = t2; t2 = 0; |
3786 | } |
3787 | |
3788 | while (t0) |
3789 | t0 = sub(m, n, t0, len); |
3790 | } |
3791 | |
3792 | // Fast Montgomery squaring. This uses asymptotically 25% fewer |
3793 | // multiplies so it should be up to 25% faster than Montgomery |
3794 | // multiplication. However, its loop control is more complex and it |
3795 | // may actually run slower on some machines. |
3796 | |
3797 | static void __attribute__((noinline)) |
3798 | montgomery_square(unsigned long a[], unsigned long n[], |
3799 | unsigned long m[], unsigned long inv, int len) { |
3800 | unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator |
3801 | int i; |
3802 | |
3803 | assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply" ); |
3804 | |
3805 | for (i = 0; i < len; i++) { |
3806 | int j; |
3807 | int end = (i+1)/2; |
3808 | for (j = 0; j < end; j++) { |
3809 | MACC2(a[j], a[i-j], t0, t1, t2); |
3810 | MACC(m[j], n[i-j], t0, t1, t2); |
3811 | } |
3812 | if ((i & 1) == 0) { |
3813 | MACC(a[j], a[j], t0, t1, t2); |
3814 | } |
3815 | for (; j < i; j++) { |
3816 | MACC(m[j], n[i-j], t0, t1, t2); |
3817 | } |
3818 | m[i] = t0 * inv; |
3819 | MACC(m[i], n[0], t0, t1, t2); |
3820 | |
3821 | assert(t0 == 0, "broken Montgomery square" ); |
3822 | |
3823 | t0 = t1; t1 = t2; t2 = 0; |
3824 | } |
3825 | |
3826 | for (i = len; i < 2*len; i++) { |
3827 | int start = i-len+1; |
3828 | int end = start + (len - start)/2; |
3829 | int j; |
3830 | for (j = start; j < end; j++) { |
3831 | MACC2(a[j], a[i-j], t0, t1, t2); |
3832 | MACC(m[j], n[i-j], t0, t1, t2); |
3833 | } |
3834 | if ((i & 1) == 0) { |
3835 | MACC(a[j], a[j], t0, t1, t2); |
3836 | } |
3837 | for (; j < len; j++) { |
3838 | MACC(m[j], n[i-j], t0, t1, t2); |
3839 | } |
3840 | m[i-len] = t0; |
3841 | t0 = t1; t1 = t2; t2 = 0; |
3842 | } |
3843 | |
3844 | while (t0) |
3845 | t0 = sub(m, n, t0, len); |
3846 | } |
3847 | |
3848 | // Swap words in a longword. |
3849 | static unsigned long swap(unsigned long x) { |
3850 | return (x << 32) | (x >> 32); |
3851 | } |
3852 | |
3853 | // Copy len longwords from s to d, word-swapping as we go. The |
3854 | // destination array is reversed. |
3855 | static void reverse_words(unsigned long *s, unsigned long *d, int len) { |
3856 | d += len; |
3857 | while(len-- > 0) { |
3858 | d--; |
3859 | *d = swap(*s); |
3860 | s++; |
3861 | } |
3862 | } |
3863 | |
3864 | // The threshold at which squaring is advantageous was determined |
3865 | // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz. |
3866 | #define MONTGOMERY_SQUARING_THRESHOLD 64 |
3867 | |
3868 | void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints, |
3869 | jint len, jlong inv, |
3870 | jint *m_ints) { |
3871 | assert(len % 2 == 0, "array length in montgomery_multiply must be even" ); |
3872 | int longwords = len/2; |
3873 | |
3874 | // Make very sure we don't use so much space that the stack might |
3875 | // overflow. 512 jints corresponds to an 16384-bit integer and |
3876 | // will use here a total of 8k bytes of stack space. |
3877 | int total_allocation = longwords * sizeof (unsigned long) * 4; |
3878 | guarantee(total_allocation <= 8192, "must be" ); |
3879 | unsigned long *scratch = (unsigned long *)alloca(total_allocation); |
3880 | |
3881 | // Local scratch arrays |
3882 | unsigned long |
3883 | *a = scratch + 0 * longwords, |
3884 | *b = scratch + 1 * longwords, |
3885 | *n = scratch + 2 * longwords, |
3886 | *m = scratch + 3 * longwords; |
3887 | |
3888 | reverse_words((unsigned long *)a_ints, a, longwords); |
3889 | reverse_words((unsigned long *)b_ints, b, longwords); |
3890 | reverse_words((unsigned long *)n_ints, n, longwords); |
3891 | |
3892 | ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords); |
3893 | |
3894 | reverse_words(m, (unsigned long *)m_ints, longwords); |
3895 | } |
3896 | |
3897 | void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints, |
3898 | jint len, jlong inv, |
3899 | jint *m_ints) { |
3900 | assert(len % 2 == 0, "array length in montgomery_square must be even" ); |
3901 | int longwords = len/2; |
3902 | |
3903 | // Make very sure we don't use so much space that the stack might |
3904 | // overflow. 512 jints corresponds to an 16384-bit integer and |
3905 | // will use here a total of 6k bytes of stack space. |
3906 | int total_allocation = longwords * sizeof (unsigned long) * 3; |
3907 | guarantee(total_allocation <= 8192, "must be" ); |
3908 | unsigned long *scratch = (unsigned long *)alloca(total_allocation); |
3909 | |
3910 | // Local scratch arrays |
3911 | unsigned long |
3912 | *a = scratch + 0 * longwords, |
3913 | *n = scratch + 1 * longwords, |
3914 | *m = scratch + 2 * longwords; |
3915 | |
3916 | reverse_words((unsigned long *)a_ints, a, longwords); |
3917 | reverse_words((unsigned long *)n_ints, n, longwords); |
3918 | |
3919 | if (len >= MONTGOMERY_SQUARING_THRESHOLD) { |
3920 | ::montgomery_square(a, n, m, (unsigned long)inv, longwords); |
3921 | } else { |
3922 | ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords); |
3923 | } |
3924 | |
3925 | reverse_words(m, (unsigned long *)m_ints, longwords); |
3926 | } |
3927 | |
3928 | #endif // WINDOWS |
3929 | |
3930 | #ifdef COMPILER2 |
3931 | // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame |
3932 | // |
3933 | //------------------------------generate_exception_blob--------------------------- |
3934 | // creates exception blob at the end |
3935 | // Using exception blob, this code is jumped from a compiled method. |
3936 | // (see emit_exception_handler in x86_64.ad file) |
3937 | // |
3938 | // Given an exception pc at a call we call into the runtime for the |
3939 | // handler in this method. This handler might merely restore state |
3940 | // (i.e. callee save registers) unwind the frame and jump to the |
3941 | // exception handler for the nmethod if there is no Java level handler |
3942 | // for the nmethod. |
3943 | // |
3944 | // This code is entered with a jmp. |
3945 | // |
3946 | // Arguments: |
3947 | // rax: exception oop |
3948 | // rdx: exception pc |
3949 | // |
3950 | // Results: |
3951 | // rax: exception oop |
3952 | // rdx: exception pc in caller or ??? |
3953 | // destination: exception handler of caller |
3954 | // |
3955 | // Note: the exception pc MUST be at a call (precise debug information) |
3956 | // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved. |
3957 | // |
3958 | |
3959 | void OptoRuntime::generate_exception_blob() { |
3960 | assert(!OptoRuntime::is_callee_saved_register(RDX_num), "" ); |
3961 | assert(!OptoRuntime::is_callee_saved_register(RAX_num), "" ); |
3962 | assert(!OptoRuntime::is_callee_saved_register(RCX_num), "" ); |
3963 | |
3964 | assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned" ); |
3965 | |
3966 | // Allocate space for the code |
3967 | ResourceMark rm; |
3968 | // Setup code generation tools |
3969 | CodeBuffer buffer("exception_blob" , 2048, 1024); |
3970 | MacroAssembler* masm = new MacroAssembler(&buffer); |
3971 | |
3972 | |
3973 | address start = __ pc(); |
3974 | |
3975 | // Exception pc is 'return address' for stack walker |
3976 | __ push(rdx); |
3977 | __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog |
3978 | |
3979 | // Save callee-saved registers. See x86_64.ad. |
3980 | |
3981 | // rbp is an implicitly saved callee saved register (i.e., the calling |
3982 | // convention will save/restore it in the prolog/epilog). Other than that |
3983 | // there are no callee save registers now that adapter frames are gone. |
3984 | |
3985 | __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); |
3986 | |
3987 | // Store exception in Thread object. We cannot pass any arguments to the |
3988 | // handle_exception call, since we do not want to make any assumption |
3989 | // about the size of the frame where the exception happened in. |
3990 | // c_rarg0 is either rdi (Linux) or rcx (Windows). |
3991 | __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax); |
3992 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); |
3993 | |
3994 | // This call does all the hard work. It checks if an exception handler |
3995 | // exists in the method. |
3996 | // If so, it returns the handler address. |
3997 | // If not, it prepares for stack-unwinding, restoring the callee-save |
3998 | // registers of the frame being removed. |
3999 | // |
4000 | // address OptoRuntime::handle_exception_C(JavaThread* thread) |
4001 | |
4002 | // At a method handle call, the stack may not be properly aligned |
4003 | // when returning with an exception. |
4004 | address the_pc = __ pc(); |
4005 | __ set_last_Java_frame(noreg, noreg, the_pc); |
4006 | __ mov(c_rarg0, r15_thread); |
4007 | __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack |
4008 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); |
4009 | |
4010 | // Set an oopmap for the call site. This oopmap will only be used if we |
4011 | // are unwinding the stack. Hence, all locations will be dead. |
4012 | // Callee-saved registers will be the same as the frame above (i.e., |
4013 | // handle_exception_stub), since they were restored when we got the |
4014 | // exception. |
4015 | |
4016 | OopMapSet* oop_maps = new OopMapSet(); |
4017 | |
4018 | oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); |
4019 | |
4020 | __ reset_last_Java_frame(false); |
4021 | |
4022 | // Restore callee-saved registers |
4023 | |
4024 | // rbp is an implicitly saved callee-saved register (i.e., the calling |
4025 | // convention will save restore it in prolog/epilog) Other than that |
4026 | // there are no callee save registers now that adapter frames are gone. |
4027 | |
4028 | __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt)); |
4029 | |
4030 | __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog |
4031 | __ pop(rdx); // No need for exception pc anymore |
4032 | |
4033 | // rax: exception handler |
4034 | |
4035 | // We have a handler in rax (could be deopt blob). |
4036 | __ mov(r8, rax); |
4037 | |
4038 | // Get the exception oop |
4039 | __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); |
4040 | // Get the exception pc in case we are deoptimized |
4041 | __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); |
4042 | #ifdef ASSERT |
4043 | __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD); |
4044 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD); |
4045 | #endif |
4046 | // Clear the exception oop so GC no longer processes it as a root. |
4047 | __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD); |
4048 | |
4049 | // rax: exception oop |
4050 | // r8: exception handler |
4051 | // rdx: exception pc |
4052 | // Jump to handler |
4053 | |
4054 | __ jmp(r8); |
4055 | |
4056 | // Make sure all code is generated |
4057 | masm->flush(); |
4058 | |
4059 | // Set exception blob |
4060 | _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); |
4061 | } |
4062 | #endif // COMPILER2 |
4063 | |