| 1 | /* |
| 2 | * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #ifndef _WINDOWS |
| 27 | #include "alloca.h" |
| 28 | #endif |
| 29 | #include "asm/macroAssembler.hpp" |
| 30 | #include "asm/macroAssembler.inline.hpp" |
| 31 | #include "code/debugInfoRec.hpp" |
| 32 | #include "code/icBuffer.hpp" |
| 33 | #include "code/nativeInst.hpp" |
| 34 | #include "code/vtableStubs.hpp" |
| 35 | #include "gc/shared/collectedHeap.hpp" |
| 36 | #include "gc/shared/gcLocker.hpp" |
| 37 | #include "gc/shared/barrierSet.hpp" |
| 38 | #include "gc/shared/barrierSetAssembler.hpp" |
| 39 | #include "interpreter/interpreter.hpp" |
| 40 | #include "logging/log.hpp" |
| 41 | #include "memory/resourceArea.hpp" |
| 42 | #include "memory/universe.hpp" |
| 43 | #include "oops/compiledICHolder.hpp" |
| 44 | #include "runtime/safepointMechanism.hpp" |
| 45 | #include "runtime/sharedRuntime.hpp" |
| 46 | #include "runtime/vframeArray.hpp" |
| 47 | #include "utilities/align.hpp" |
| 48 | #include "utilities/formatBuffer.hpp" |
| 49 | #include "vm_version_x86.hpp" |
| 50 | #include "vmreg_x86.inline.hpp" |
| 51 | #ifdef COMPILER1 |
| 52 | #include "c1/c1_Runtime1.hpp" |
| 53 | #endif |
| 54 | #ifdef COMPILER2 |
| 55 | #include "opto/runtime.hpp" |
| 56 | #endif |
| 57 | #if INCLUDE_JVMCI |
| 58 | #include "jvmci/jvmciJavaClasses.hpp" |
| 59 | #endif |
| 60 | |
| 61 | #define __ masm-> |
| 62 | |
| 63 | const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; |
| 64 | |
| 65 | class SimpleRuntimeFrame { |
| 66 | |
| 67 | public: |
| 68 | |
| 69 | // Most of the runtime stubs have this simple frame layout. |
| 70 | // This class exists to make the layout shared in one place. |
| 71 | // Offsets are for compiler stack slots, which are jints. |
| 72 | enum layout { |
| 73 | // The frame sender code expects that rbp will be in the "natural" place and |
| 74 | // will override any oopMap setting for it. We must therefore force the layout |
| 75 | // so that it agrees with the frame sender code. |
| 76 | rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, |
| 77 | rbp_off2, |
| 78 | return_off, return_off2, |
| 79 | framesize |
| 80 | }; |
| 81 | }; |
| 82 | |
| 83 | class RegisterSaver { |
| 84 | // Capture info about frame layout. Layout offsets are in jint |
| 85 | // units because compiler frame slots are jints. |
| 86 | #define XSAVE_AREA_BEGIN 160 |
| 87 | #define XSAVE_AREA_YMM_BEGIN 576 |
| 88 | #define XSAVE_AREA_ZMM_BEGIN 1152 |
| 89 | #define XSAVE_AREA_UPPERBANK 1664 |
| 90 | #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off |
| 91 | #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off |
| 92 | #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off |
| 93 | enum layout { |
| 94 | fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area |
| 95 | xmm_off = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt, // offset in fxsave save area |
| 96 | DEF_XMM_OFFS(0), |
| 97 | DEF_XMM_OFFS(1), |
| 98 | // 2..15 are implied in range usage |
| 99 | ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt, |
| 100 | DEF_YMM_OFFS(0), |
| 101 | DEF_YMM_OFFS(1), |
| 102 | // 2..15 are implied in range usage |
| 103 | zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt, |
| 104 | zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt, |
| 105 | DEF_ZMM_OFFS(16), |
| 106 | DEF_ZMM_OFFS(17), |
| 107 | // 18..31 are implied in range usage |
| 108 | fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt), |
| 109 | fpu_stateH_end, |
| 110 | r15_off, r15H_off, |
| 111 | r14_off, r14H_off, |
| 112 | r13_off, r13H_off, |
| 113 | r12_off, r12H_off, |
| 114 | r11_off, r11H_off, |
| 115 | r10_off, r10H_off, |
| 116 | r9_off, r9H_off, |
| 117 | r8_off, r8H_off, |
| 118 | rdi_off, rdiH_off, |
| 119 | rsi_off, rsiH_off, |
| 120 | ignore_off, ignoreH_off, // extra copy of rbp |
| 121 | rsp_off, rspH_off, |
| 122 | rbx_off, rbxH_off, |
| 123 | rdx_off, rdxH_off, |
| 124 | rcx_off, rcxH_off, |
| 125 | rax_off, raxH_off, |
| 126 | // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state |
| 127 | align_off, alignH_off, |
| 128 | flags_off, flagsH_off, |
| 129 | // The frame sender code expects that rbp will be in the "natural" place and |
| 130 | // will override any oopMap setting for it. We must therefore force the layout |
| 131 | // so that it agrees with the frame sender code. |
| 132 | rbp_off, rbpH_off, // copy of rbp we will restore |
| 133 | return_off, returnH_off, // slot for return address |
| 134 | reg_save_size // size in compiler stack slots |
| 135 | }; |
| 136 | |
| 137 | public: |
| 138 | static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false); |
| 139 | static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); |
| 140 | |
| 141 | // Offsets into the register save area |
| 142 | // Used by deoptimization when it is managing result register |
| 143 | // values on its own |
| 144 | |
| 145 | static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; } |
| 146 | static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; } |
| 147 | static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; } |
| 148 | static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; } |
| 149 | static int return_offset_in_bytes(void) { return BytesPerInt * return_off; } |
| 150 | |
| 151 | // During deoptimization only the result registers need to be restored, |
| 152 | // all the other values have already been extracted. |
| 153 | static void restore_result_registers(MacroAssembler* masm); |
| 154 | }; |
| 155 | |
| 156 | OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) { |
| 157 | int off = 0; |
| 158 | int num_xmm_regs = XMMRegisterImpl::number_of_registers; |
| 159 | if (UseAVX < 3) { |
| 160 | num_xmm_regs = num_xmm_regs/2; |
| 161 | } |
| 162 | #if COMPILER2_OR_JVMCI |
| 163 | if (save_vectors) { |
| 164 | assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX" ); |
| 165 | assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported" ); |
| 166 | } |
| 167 | #else |
| 168 | assert(!save_vectors, "vectors are generated only by C2 and JVMCI" ); |
| 169 | #endif |
| 170 | |
| 171 | // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated |
| 172 | int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs); |
| 173 | // OopMap frame size is in compiler stack slots (jint's) not bytes or words |
| 174 | int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; |
| 175 | // CodeBlob frame size is in words. |
| 176 | int frame_size_in_words = frame_size_in_bytes / wordSize; |
| 177 | *total_frame_words = frame_size_in_words; |
| 178 | |
| 179 | // Save registers, fpu state, and flags. |
| 180 | // We assume caller has already pushed the return address onto the |
| 181 | // stack, so rsp is 8-byte aligned here. |
| 182 | // We push rpb twice in this sequence because we want the real rbp |
| 183 | // to be under the return like a normal enter. |
| 184 | |
| 185 | __ enter(); // rsp becomes 16-byte aligned here |
| 186 | __ push_CPU_state(); // Push a multiple of 16 bytes |
| 187 | |
| 188 | // push cpu state handles this on EVEX enabled targets |
| 189 | if (save_vectors) { |
| 190 | // Save upper half of YMM registers(0..15) |
| 191 | int base_addr = XSAVE_AREA_YMM_BEGIN; |
| 192 | for (int n = 0; n < 16; n++) { |
| 193 | __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n)); |
| 194 | } |
| 195 | if (VM_Version::supports_evex()) { |
| 196 | // Save upper half of ZMM registers(0..15) |
| 197 | base_addr = XSAVE_AREA_ZMM_BEGIN; |
| 198 | for (int n = 0; n < 16; n++) { |
| 199 | __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n)); |
| 200 | } |
| 201 | // Save full ZMM registers(16..num_xmm_regs) |
| 202 | base_addr = XSAVE_AREA_UPPERBANK; |
| 203 | off = 0; |
| 204 | int vector_len = Assembler::AVX_512bit; |
| 205 | for (int n = 16; n < num_xmm_regs; n++) { |
| 206 | __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len); |
| 207 | } |
| 208 | } |
| 209 | } else { |
| 210 | if (VM_Version::supports_evex()) { |
| 211 | // Save upper bank of ZMM registers(16..31) for double/float usage |
| 212 | int base_addr = XSAVE_AREA_UPPERBANK; |
| 213 | off = 0; |
| 214 | for (int n = 16; n < num_xmm_regs; n++) { |
| 215 | __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n)); |
| 216 | } |
| 217 | } |
| 218 | } |
| 219 | __ vzeroupper(); |
| 220 | if (frame::arg_reg_save_area_bytes != 0) { |
| 221 | // Allocate argument register save area |
| 222 | __ subptr(rsp, frame::arg_reg_save_area_bytes); |
| 223 | } |
| 224 | |
| 225 | // Set an oopmap for the call site. This oopmap will map all |
| 226 | // oop-registers and debug-info registers as callee-saved. This |
| 227 | // will allow deoptimization at this safepoint to find all possible |
| 228 | // debug-info recordings, as well as let GC find all oops. |
| 229 | |
| 230 | OopMapSet *oop_maps = new OopMapSet(); |
| 231 | OopMap* map = new OopMap(frame_size_in_slots, 0); |
| 232 | |
| 233 | #define STACK_OFFSET(x) VMRegImpl::stack2reg((x)) |
| 234 | |
| 235 | map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg()); |
| 236 | map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg()); |
| 237 | map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg()); |
| 238 | map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg()); |
| 239 | // rbp location is known implicitly by the frame sender code, needs no oopmap |
| 240 | // and the location where rbp was saved by is ignored |
| 241 | map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg()); |
| 242 | map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg()); |
| 243 | map->set_callee_saved(STACK_OFFSET( r8_off ), r8->as_VMReg()); |
| 244 | map->set_callee_saved(STACK_OFFSET( r9_off ), r9->as_VMReg()); |
| 245 | map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg()); |
| 246 | map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg()); |
| 247 | map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg()); |
| 248 | map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg()); |
| 249 | map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg()); |
| 250 | map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg()); |
| 251 | // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15, |
| 252 | // on EVEX enabled targets, we get it included in the xsave area |
| 253 | off = xmm0_off; |
| 254 | int delta = xmm1_off - off; |
| 255 | for (int n = 0; n < 16; n++) { |
| 256 | XMMRegister xmm_name = as_XMMRegister(n); |
| 257 | map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()); |
| 258 | off += delta; |
| 259 | } |
| 260 | if(UseAVX > 2) { |
| 261 | // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets |
| 262 | off = zmm16_off; |
| 263 | delta = zmm17_off - off; |
| 264 | for (int n = 16; n < num_xmm_regs; n++) { |
| 265 | XMMRegister zmm_name = as_XMMRegister(n); |
| 266 | map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()); |
| 267 | off += delta; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | #if COMPILER2_OR_JVMCI |
| 272 | if (save_vectors) { |
| 273 | off = ymm0_off; |
| 274 | int delta = ymm1_off - off; |
| 275 | for (int n = 0; n < 16; n++) { |
| 276 | XMMRegister ymm_name = as_XMMRegister(n); |
| 277 | map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4)); |
| 278 | off += delta; |
| 279 | } |
| 280 | } |
| 281 | #endif // COMPILER2_OR_JVMCI |
| 282 | |
| 283 | // %%% These should all be a waste but we'll keep things as they were for now |
| 284 | if (true) { |
| 285 | map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next()); |
| 286 | map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next()); |
| 287 | map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next()); |
| 288 | map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next()); |
| 289 | // rbp location is known implicitly by the frame sender code, needs no oopmap |
| 290 | map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next()); |
| 291 | map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next()); |
| 292 | map->set_callee_saved(STACK_OFFSET( r8H_off ), r8->as_VMReg()->next()); |
| 293 | map->set_callee_saved(STACK_OFFSET( r9H_off ), r9->as_VMReg()->next()); |
| 294 | map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next()); |
| 295 | map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next()); |
| 296 | map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next()); |
| 297 | map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next()); |
| 298 | map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next()); |
| 299 | map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next()); |
| 300 | // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15, |
| 301 | // on EVEX enabled targets, we get it included in the xsave area |
| 302 | off = xmm0H_off; |
| 303 | delta = xmm1H_off - off; |
| 304 | for (int n = 0; n < 16; n++) { |
| 305 | XMMRegister xmm_name = as_XMMRegister(n); |
| 306 | map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next()); |
| 307 | off += delta; |
| 308 | } |
| 309 | if (UseAVX > 2) { |
| 310 | // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets |
| 311 | off = zmm16H_off; |
| 312 | delta = zmm17H_off - off; |
| 313 | for (int n = 16; n < num_xmm_regs; n++) { |
| 314 | XMMRegister zmm_name = as_XMMRegister(n); |
| 315 | map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next()); |
| 316 | off += delta; |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | return map; |
| 322 | } |
| 323 | |
| 324 | void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { |
| 325 | int num_xmm_regs = XMMRegisterImpl::number_of_registers; |
| 326 | if (UseAVX < 3) { |
| 327 | num_xmm_regs = num_xmm_regs/2; |
| 328 | } |
| 329 | if (frame::arg_reg_save_area_bytes != 0) { |
| 330 | // Pop arg register save area |
| 331 | __ addptr(rsp, frame::arg_reg_save_area_bytes); |
| 332 | } |
| 333 | |
| 334 | #if COMPILER2_OR_JVMCI |
| 335 | if (restore_vectors) { |
| 336 | assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX" ); |
| 337 | assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported" ); |
| 338 | } |
| 339 | #else |
| 340 | assert(!restore_vectors, "vectors are generated only by C2" ); |
| 341 | #endif |
| 342 | |
| 343 | __ vzeroupper(); |
| 344 | |
| 345 | // On EVEX enabled targets everything is handled in pop fpu state |
| 346 | if (restore_vectors) { |
| 347 | // Restore upper half of YMM registers (0..15) |
| 348 | int base_addr = XSAVE_AREA_YMM_BEGIN; |
| 349 | for (int n = 0; n < 16; n++) { |
| 350 | __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16)); |
| 351 | } |
| 352 | if (VM_Version::supports_evex()) { |
| 353 | // Restore upper half of ZMM registers (0..15) |
| 354 | base_addr = XSAVE_AREA_ZMM_BEGIN; |
| 355 | for (int n = 0; n < 16; n++) { |
| 356 | __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32)); |
| 357 | } |
| 358 | // Restore full ZMM registers(16..num_xmm_regs) |
| 359 | base_addr = XSAVE_AREA_UPPERBANK; |
| 360 | int vector_len = Assembler::AVX_512bit; |
| 361 | int off = 0; |
| 362 | for (int n = 16; n < num_xmm_regs; n++) { |
| 363 | __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len); |
| 364 | } |
| 365 | } |
| 366 | } else { |
| 367 | if (VM_Version::supports_evex()) { |
| 368 | // Restore upper bank of ZMM registers(16..31) for double/float usage |
| 369 | int base_addr = XSAVE_AREA_UPPERBANK; |
| 370 | int off = 0; |
| 371 | for (int n = 16; n < num_xmm_regs; n++) { |
| 372 | __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64))); |
| 373 | } |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | // Recover CPU state |
| 378 | __ pop_CPU_state(); |
| 379 | // Get the rbp described implicitly by the calling convention (no oopMap) |
| 380 | __ pop(rbp); |
| 381 | } |
| 382 | |
| 383 | void RegisterSaver::restore_result_registers(MacroAssembler* masm) { |
| 384 | |
| 385 | // Just restore result register. Only used by deoptimization. By |
| 386 | // now any callee save register that needs to be restored to a c2 |
| 387 | // caller of the deoptee has been extracted into the vframeArray |
| 388 | // and will be stuffed into the c2i adapter we create for later |
| 389 | // restoration so only result registers need to be restored here. |
| 390 | |
| 391 | // Restore fp result register |
| 392 | __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes())); |
| 393 | // Restore integer result register |
| 394 | __ movptr(rax, Address(rsp, rax_offset_in_bytes())); |
| 395 | __ movptr(rdx, Address(rsp, rdx_offset_in_bytes())); |
| 396 | |
| 397 | // Pop all of the register save are off the stack except the return address |
| 398 | __ addptr(rsp, return_offset_in_bytes()); |
| 399 | } |
| 400 | |
| 401 | // Is vector's size (in bytes) bigger than a size saved by default? |
| 402 | // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions. |
| 403 | bool SharedRuntime::is_wide_vector(int size) { |
| 404 | return size > 16; |
| 405 | } |
| 406 | |
| 407 | size_t SharedRuntime::trampoline_size() { |
| 408 | return 16; |
| 409 | } |
| 410 | |
| 411 | void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) { |
| 412 | __ jump(RuntimeAddress(destination)); |
| 413 | } |
| 414 | |
| 415 | // The java_calling_convention describes stack locations as ideal slots on |
| 416 | // a frame with no abi restrictions. Since we must observe abi restrictions |
| 417 | // (like the placement of the register window) the slots must be biased by |
| 418 | // the following value. |
| 419 | static int reg2offset_in(VMReg r) { |
| 420 | // Account for saved rbp and return address |
| 421 | // This should really be in_preserve_stack_slots |
| 422 | return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; |
| 423 | } |
| 424 | |
| 425 | static int reg2offset_out(VMReg r) { |
| 426 | return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; |
| 427 | } |
| 428 | |
| 429 | // --------------------------------------------------------------------------- |
| 430 | // Read the array of BasicTypes from a signature, and compute where the |
| 431 | // arguments should go. Values in the VMRegPair regs array refer to 4-byte |
| 432 | // quantities. Values less than VMRegImpl::stack0 are registers, those above |
| 433 | // refer to 4-byte stack slots. All stack slots are based off of the stack pointer |
| 434 | // as framesizes are fixed. |
| 435 | // VMRegImpl::stack0 refers to the first slot 0(sp). |
| 436 | // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register |
| 437 | // up to RegisterImpl::number_of_registers) are the 64-bit |
| 438 | // integer registers. |
| 439 | |
| 440 | // Note: the INPUTS in sig_bt are in units of Java argument words, which are |
| 441 | // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit |
| 442 | // units regardless of build. Of course for i486 there is no 64 bit build |
| 443 | |
| 444 | // The Java calling convention is a "shifted" version of the C ABI. |
| 445 | // By skipping the first C ABI register we can call non-static jni methods |
| 446 | // with small numbers of arguments without having to shuffle the arguments |
| 447 | // at all. Since we control the java ABI we ought to at least get some |
| 448 | // advantage out of it. |
| 449 | |
| 450 | int SharedRuntime::java_calling_convention(const BasicType *sig_bt, |
| 451 | VMRegPair *regs, |
| 452 | int total_args_passed, |
| 453 | int is_outgoing) { |
| 454 | |
| 455 | // Create the mapping between argument positions and |
| 456 | // registers. |
| 457 | static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { |
| 458 | j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5 |
| 459 | }; |
| 460 | static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { |
| 461 | j_farg0, j_farg1, j_farg2, j_farg3, |
| 462 | j_farg4, j_farg5, j_farg6, j_farg7 |
| 463 | }; |
| 464 | |
| 465 | |
| 466 | uint int_args = 0; |
| 467 | uint fp_args = 0; |
| 468 | uint stk_args = 0; // inc by 2 each time |
| 469 | |
| 470 | for (int i = 0; i < total_args_passed; i++) { |
| 471 | switch (sig_bt[i]) { |
| 472 | case T_BOOLEAN: |
| 473 | case T_CHAR: |
| 474 | case T_BYTE: |
| 475 | case T_SHORT: |
| 476 | case T_INT: |
| 477 | if (int_args < Argument::n_int_register_parameters_j) { |
| 478 | regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); |
| 479 | } else { |
| 480 | regs[i].set1(VMRegImpl::stack2reg(stk_args)); |
| 481 | stk_args += 2; |
| 482 | } |
| 483 | break; |
| 484 | case T_VOID: |
| 485 | // halves of T_LONG or T_DOUBLE |
| 486 | assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half" ); |
| 487 | regs[i].set_bad(); |
| 488 | break; |
| 489 | case T_LONG: |
| 490 | assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half" ); |
| 491 | // fall through |
| 492 | case T_OBJECT: |
| 493 | case T_ARRAY: |
| 494 | case T_ADDRESS: |
| 495 | if (int_args < Argument::n_int_register_parameters_j) { |
| 496 | regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); |
| 497 | } else { |
| 498 | regs[i].set2(VMRegImpl::stack2reg(stk_args)); |
| 499 | stk_args += 2; |
| 500 | } |
| 501 | break; |
| 502 | case T_FLOAT: |
| 503 | if (fp_args < Argument::n_float_register_parameters_j) { |
| 504 | regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); |
| 505 | } else { |
| 506 | regs[i].set1(VMRegImpl::stack2reg(stk_args)); |
| 507 | stk_args += 2; |
| 508 | } |
| 509 | break; |
| 510 | case T_DOUBLE: |
| 511 | assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half" ); |
| 512 | if (fp_args < Argument::n_float_register_parameters_j) { |
| 513 | regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); |
| 514 | } else { |
| 515 | regs[i].set2(VMRegImpl::stack2reg(stk_args)); |
| 516 | stk_args += 2; |
| 517 | } |
| 518 | break; |
| 519 | default: |
| 520 | ShouldNotReachHere(); |
| 521 | break; |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | return align_up(stk_args, 2); |
| 526 | } |
| 527 | |
| 528 | // Patch the callers callsite with entry to compiled code if it exists. |
| 529 | static void patch_callers_callsite(MacroAssembler *masm) { |
| 530 | Label L; |
| 531 | __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); |
| 532 | __ jcc(Assembler::equal, L); |
| 533 | |
| 534 | // Save the current stack pointer |
| 535 | __ mov(r13, rsp); |
| 536 | // Schedule the branch target address early. |
| 537 | // Call into the VM to patch the caller, then jump to compiled callee |
| 538 | // rax isn't live so capture return address while we easily can |
| 539 | __ movptr(rax, Address(rsp, 0)); |
| 540 | |
| 541 | // align stack so push_CPU_state doesn't fault |
| 542 | __ andptr(rsp, -(StackAlignmentInBytes)); |
| 543 | __ push_CPU_state(); |
| 544 | __ vzeroupper(); |
| 545 | // VM needs caller's callsite |
| 546 | // VM needs target method |
| 547 | // This needs to be a long call since we will relocate this adapter to |
| 548 | // the codeBuffer and it may not reach |
| 549 | |
| 550 | // Allocate argument register save area |
| 551 | if (frame::arg_reg_save_area_bytes != 0) { |
| 552 | __ subptr(rsp, frame::arg_reg_save_area_bytes); |
| 553 | } |
| 554 | __ mov(c_rarg0, rbx); |
| 555 | __ mov(c_rarg1, rax); |
| 556 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); |
| 557 | |
| 558 | // De-allocate argument register save area |
| 559 | if (frame::arg_reg_save_area_bytes != 0) { |
| 560 | __ addptr(rsp, frame::arg_reg_save_area_bytes); |
| 561 | } |
| 562 | |
| 563 | __ vzeroupper(); |
| 564 | __ pop_CPU_state(); |
| 565 | // restore sp |
| 566 | __ mov(rsp, r13); |
| 567 | __ bind(L); |
| 568 | } |
| 569 | |
| 570 | |
| 571 | static void gen_c2i_adapter(MacroAssembler *masm, |
| 572 | int total_args_passed, |
| 573 | int comp_args_on_stack, |
| 574 | const BasicType *sig_bt, |
| 575 | const VMRegPair *regs, |
| 576 | Label& skip_fixup) { |
| 577 | // Before we get into the guts of the C2I adapter, see if we should be here |
| 578 | // at all. We've come from compiled code and are attempting to jump to the |
| 579 | // interpreter, which means the caller made a static call to get here |
| 580 | // (vcalls always get a compiled target if there is one). Check for a |
| 581 | // compiled target. If there is one, we need to patch the caller's call. |
| 582 | patch_callers_callsite(masm); |
| 583 | |
| 584 | __ bind(skip_fixup); |
| 585 | |
| 586 | // Since all args are passed on the stack, total_args_passed * |
| 587 | // Interpreter::stackElementSize is the space we need. Plus 1 because |
| 588 | // we also account for the return address location since |
| 589 | // we store it first rather than hold it in rax across all the shuffling |
| 590 | |
| 591 | int = (total_args_passed * Interpreter::stackElementSize) + wordSize; |
| 592 | |
| 593 | // stack is aligned, keep it that way |
| 594 | extraspace = align_up(extraspace, 2*wordSize); |
| 595 | |
| 596 | // Get return address |
| 597 | __ pop(rax); |
| 598 | |
| 599 | // set senderSP value |
| 600 | __ mov(r13, rsp); |
| 601 | |
| 602 | __ subptr(rsp, extraspace); |
| 603 | |
| 604 | // Store the return address in the expected location |
| 605 | __ movptr(Address(rsp, 0), rax); |
| 606 | |
| 607 | // Now write the args into the outgoing interpreter space |
| 608 | for (int i = 0; i < total_args_passed; i++) { |
| 609 | if (sig_bt[i] == T_VOID) { |
| 610 | assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half" ); |
| 611 | continue; |
| 612 | } |
| 613 | |
| 614 | // offset to start parameters |
| 615 | int st_off = (total_args_passed - i) * Interpreter::stackElementSize; |
| 616 | int next_off = st_off - Interpreter::stackElementSize; |
| 617 | |
| 618 | // Say 4 args: |
| 619 | // i st_off |
| 620 | // 0 32 T_LONG |
| 621 | // 1 24 T_VOID |
| 622 | // 2 16 T_OBJECT |
| 623 | // 3 8 T_BOOL |
| 624 | // - 0 return address |
| 625 | // |
| 626 | // However to make thing extra confusing. Because we can fit a long/double in |
| 627 | // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter |
| 628 | // leaves one slot empty and only stores to a single slot. In this case the |
| 629 | // slot that is occupied is the T_VOID slot. See I said it was confusing. |
| 630 | |
| 631 | VMReg r_1 = regs[i].first(); |
| 632 | VMReg r_2 = regs[i].second(); |
| 633 | if (!r_1->is_valid()) { |
| 634 | assert(!r_2->is_valid(), "" ); |
| 635 | continue; |
| 636 | } |
| 637 | if (r_1->is_stack()) { |
| 638 | // memory to memory use rax |
| 639 | int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; |
| 640 | if (!r_2->is_valid()) { |
| 641 | // sign extend?? |
| 642 | __ movl(rax, Address(rsp, ld_off)); |
| 643 | __ movptr(Address(rsp, st_off), rax); |
| 644 | |
| 645 | } else { |
| 646 | |
| 647 | __ movq(rax, Address(rsp, ld_off)); |
| 648 | |
| 649 | // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG |
| 650 | // T_DOUBLE and T_LONG use two slots in the interpreter |
| 651 | if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { |
| 652 | // ld_off == LSW, ld_off+wordSize == MSW |
| 653 | // st_off == MSW, next_off == LSW |
| 654 | __ movq(Address(rsp, next_off), rax); |
| 655 | #ifdef ASSERT |
| 656 | // Overwrite the unused slot with known junk |
| 657 | __ mov64(rax, CONST64(0xdeadffffdeadaaaa)); |
| 658 | __ movptr(Address(rsp, st_off), rax); |
| 659 | #endif /* ASSERT */ |
| 660 | } else { |
| 661 | __ movq(Address(rsp, st_off), rax); |
| 662 | } |
| 663 | } |
| 664 | } else if (r_1->is_Register()) { |
| 665 | Register r = r_1->as_Register(); |
| 666 | if (!r_2->is_valid()) { |
| 667 | // must be only an int (or less ) so move only 32bits to slot |
| 668 | // why not sign extend?? |
| 669 | __ movl(Address(rsp, st_off), r); |
| 670 | } else { |
| 671 | // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG |
| 672 | // T_DOUBLE and T_LONG use two slots in the interpreter |
| 673 | if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { |
| 674 | // long/double in gpr |
| 675 | #ifdef ASSERT |
| 676 | // Overwrite the unused slot with known junk |
| 677 | __ mov64(rax, CONST64(0xdeadffffdeadaaab)); |
| 678 | __ movptr(Address(rsp, st_off), rax); |
| 679 | #endif /* ASSERT */ |
| 680 | __ movq(Address(rsp, next_off), r); |
| 681 | } else { |
| 682 | __ movptr(Address(rsp, st_off), r); |
| 683 | } |
| 684 | } |
| 685 | } else { |
| 686 | assert(r_1->is_XMMRegister(), "" ); |
| 687 | if (!r_2->is_valid()) { |
| 688 | // only a float use just part of the slot |
| 689 | __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); |
| 690 | } else { |
| 691 | #ifdef ASSERT |
| 692 | // Overwrite the unused slot with known junk |
| 693 | __ mov64(rax, CONST64(0xdeadffffdeadaaac)); |
| 694 | __ movptr(Address(rsp, st_off), rax); |
| 695 | #endif /* ASSERT */ |
| 696 | __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister()); |
| 697 | } |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | // Schedule the branch target address early. |
| 702 | __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); |
| 703 | __ jmp(rcx); |
| 704 | } |
| 705 | |
| 706 | static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, |
| 707 | address code_start, address code_end, |
| 708 | Label& L_ok) { |
| 709 | Label L_fail; |
| 710 | __ lea(temp_reg, ExternalAddress(code_start)); |
| 711 | __ cmpptr(pc_reg, temp_reg); |
| 712 | __ jcc(Assembler::belowEqual, L_fail); |
| 713 | __ lea(temp_reg, ExternalAddress(code_end)); |
| 714 | __ cmpptr(pc_reg, temp_reg); |
| 715 | __ jcc(Assembler::below, L_ok); |
| 716 | __ bind(L_fail); |
| 717 | } |
| 718 | |
| 719 | void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, |
| 720 | int total_args_passed, |
| 721 | int comp_args_on_stack, |
| 722 | const BasicType *sig_bt, |
| 723 | const VMRegPair *regs) { |
| 724 | |
| 725 | // Note: r13 contains the senderSP on entry. We must preserve it since |
| 726 | // we may do a i2c -> c2i transition if we lose a race where compiled |
| 727 | // code goes non-entrant while we get args ready. |
| 728 | // In addition we use r13 to locate all the interpreter args as |
| 729 | // we must align the stack to 16 bytes on an i2c entry else we |
| 730 | // lose alignment we expect in all compiled code and register |
| 731 | // save code can segv when fxsave instructions find improperly |
| 732 | // aligned stack pointer. |
| 733 | |
| 734 | // Adapters can be frameless because they do not require the caller |
| 735 | // to perform additional cleanup work, such as correcting the stack pointer. |
| 736 | // An i2c adapter is frameless because the *caller* frame, which is interpreted, |
| 737 | // routinely repairs its own stack pointer (from interpreter_frame_last_sp), |
| 738 | // even if a callee has modified the stack pointer. |
| 739 | // A c2i adapter is frameless because the *callee* frame, which is interpreted, |
| 740 | // routinely repairs its caller's stack pointer (from sender_sp, which is set |
| 741 | // up via the senderSP register). |
| 742 | // In other words, if *either* the caller or callee is interpreted, we can |
| 743 | // get the stack pointer repaired after a call. |
| 744 | // This is why c2i and i2c adapters cannot be indefinitely composed. |
| 745 | // In particular, if a c2i adapter were to somehow call an i2c adapter, |
| 746 | // both caller and callee would be compiled methods, and neither would |
| 747 | // clean up the stack pointer changes performed by the two adapters. |
| 748 | // If this happens, control eventually transfers back to the compiled |
| 749 | // caller, but with an uncorrected stack, causing delayed havoc. |
| 750 | |
| 751 | // Pick up the return address |
| 752 | __ movptr(rax, Address(rsp, 0)); |
| 753 | |
| 754 | if (VerifyAdapterCalls && |
| 755 | (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { |
| 756 | // So, let's test for cascading c2i/i2c adapters right now. |
| 757 | // assert(Interpreter::contains($return_addr) || |
| 758 | // StubRoutines::contains($return_addr), |
| 759 | // "i2c adapter must return to an interpreter frame"); |
| 760 | __ block_comment("verify_i2c { " ); |
| 761 | Label L_ok; |
| 762 | if (Interpreter::code() != NULL) |
| 763 | range_check(masm, rax, r11, |
| 764 | Interpreter::code()->code_start(), Interpreter::code()->code_end(), |
| 765 | L_ok); |
| 766 | if (StubRoutines::code1() != NULL) |
| 767 | range_check(masm, rax, r11, |
| 768 | StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), |
| 769 | L_ok); |
| 770 | if (StubRoutines::code2() != NULL) |
| 771 | range_check(masm, rax, r11, |
| 772 | StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), |
| 773 | L_ok); |
| 774 | const char* msg = "i2c adapter must return to an interpreter frame" ; |
| 775 | __ block_comment(msg); |
| 776 | __ stop(msg); |
| 777 | __ bind(L_ok); |
| 778 | __ block_comment("} verify_i2ce " ); |
| 779 | } |
| 780 | |
| 781 | // Must preserve original SP for loading incoming arguments because |
| 782 | // we need to align the outgoing SP for compiled code. |
| 783 | __ movptr(r11, rsp); |
| 784 | |
| 785 | // Cut-out for having no stack args. Since up to 2 int/oop args are passed |
| 786 | // in registers, we will occasionally have no stack args. |
| 787 | int comp_words_on_stack = 0; |
| 788 | if (comp_args_on_stack) { |
| 789 | // Sig words on the stack are greater-than VMRegImpl::stack0. Those in |
| 790 | // registers are below. By subtracting stack0, we either get a negative |
| 791 | // number (all values in registers) or the maximum stack slot accessed. |
| 792 | |
| 793 | // Convert 4-byte c2 stack slots to words. |
| 794 | comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; |
| 795 | // Round up to miminum stack alignment, in wordSize |
| 796 | comp_words_on_stack = align_up(comp_words_on_stack, 2); |
| 797 | __ subptr(rsp, comp_words_on_stack * wordSize); |
| 798 | } |
| 799 | |
| 800 | |
| 801 | // Ensure compiled code always sees stack at proper alignment |
| 802 | __ andptr(rsp, -16); |
| 803 | |
| 804 | // push the return address and misalign the stack that youngest frame always sees |
| 805 | // as far as the placement of the call instruction |
| 806 | __ push(rax); |
| 807 | |
| 808 | // Put saved SP in another register |
| 809 | const Register saved_sp = rax; |
| 810 | __ movptr(saved_sp, r11); |
| 811 | |
| 812 | // Will jump to the compiled code just as if compiled code was doing it. |
| 813 | // Pre-load the register-jump target early, to schedule it better. |
| 814 | __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset()))); |
| 815 | |
| 816 | #if INCLUDE_JVMCI |
| 817 | if (EnableJVMCI || UseAOT) { |
| 818 | // check if this call should be routed towards a specific entry point |
| 819 | __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0); |
| 820 | Label no_alternative_target; |
| 821 | __ jcc(Assembler::equal, no_alternative_target); |
| 822 | __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); |
| 823 | __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0); |
| 824 | __ bind(no_alternative_target); |
| 825 | } |
| 826 | #endif // INCLUDE_JVMCI |
| 827 | |
| 828 | // Now generate the shuffle code. Pick up all register args and move the |
| 829 | // rest through the floating point stack top. |
| 830 | for (int i = 0; i < total_args_passed; i++) { |
| 831 | if (sig_bt[i] == T_VOID) { |
| 832 | // Longs and doubles are passed in native word order, but misaligned |
| 833 | // in the 32-bit build. |
| 834 | assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half" ); |
| 835 | continue; |
| 836 | } |
| 837 | |
| 838 | // Pick up 0, 1 or 2 words from SP+offset. |
| 839 | |
| 840 | assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), |
| 841 | "scrambled load targets?" ); |
| 842 | // Load in argument order going down. |
| 843 | int ld_off = (total_args_passed - i)*Interpreter::stackElementSize; |
| 844 | // Point to interpreter value (vs. tag) |
| 845 | int next_off = ld_off - Interpreter::stackElementSize; |
| 846 | // |
| 847 | // |
| 848 | // |
| 849 | VMReg r_1 = regs[i].first(); |
| 850 | VMReg r_2 = regs[i].second(); |
| 851 | if (!r_1->is_valid()) { |
| 852 | assert(!r_2->is_valid(), "" ); |
| 853 | continue; |
| 854 | } |
| 855 | if (r_1->is_stack()) { |
| 856 | // Convert stack slot to an SP offset (+ wordSize to account for return address ) |
| 857 | int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; |
| 858 | |
| 859 | // We can use r13 as a temp here because compiled code doesn't need r13 as an input |
| 860 | // and if we end up going thru a c2i because of a miss a reasonable value of r13 |
| 861 | // will be generated. |
| 862 | if (!r_2->is_valid()) { |
| 863 | // sign extend??? |
| 864 | __ movl(r13, Address(saved_sp, ld_off)); |
| 865 | __ movptr(Address(rsp, st_off), r13); |
| 866 | } else { |
| 867 | // |
| 868 | // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE |
| 869 | // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case |
| 870 | // So we must adjust where to pick up the data to match the interpreter. |
| 871 | // |
| 872 | // Interpreter local[n] == MSW, local[n+1] == LSW however locals |
| 873 | // are accessed as negative so LSW is at LOW address |
| 874 | |
| 875 | // ld_off is MSW so get LSW |
| 876 | const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? |
| 877 | next_off : ld_off; |
| 878 | __ movq(r13, Address(saved_sp, offset)); |
| 879 | // st_off is LSW (i.e. reg.first()) |
| 880 | __ movq(Address(rsp, st_off), r13); |
| 881 | } |
| 882 | } else if (r_1->is_Register()) { // Register argument |
| 883 | Register r = r_1->as_Register(); |
| 884 | assert(r != rax, "must be different" ); |
| 885 | if (r_2->is_valid()) { |
| 886 | // |
| 887 | // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE |
| 888 | // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case |
| 889 | // So we must adjust where to pick up the data to match the interpreter. |
| 890 | |
| 891 | const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? |
| 892 | next_off : ld_off; |
| 893 | |
| 894 | // this can be a misaligned move |
| 895 | __ movq(r, Address(saved_sp, offset)); |
| 896 | } else { |
| 897 | // sign extend and use a full word? |
| 898 | __ movl(r, Address(saved_sp, ld_off)); |
| 899 | } |
| 900 | } else { |
| 901 | if (!r_2->is_valid()) { |
| 902 | __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); |
| 903 | } else { |
| 904 | __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off)); |
| 905 | } |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | // 6243940 We might end up in handle_wrong_method if |
| 910 | // the callee is deoptimized as we race thru here. If that |
| 911 | // happens we don't want to take a safepoint because the |
| 912 | // caller frame will look interpreted and arguments are now |
| 913 | // "compiled" so it is much better to make this transition |
| 914 | // invisible to the stack walking code. Unfortunately if |
| 915 | // we try and find the callee by normal means a safepoint |
| 916 | // is possible. So we stash the desired callee in the thread |
| 917 | // and the vm will find there should this case occur. |
| 918 | |
| 919 | __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); |
| 920 | |
| 921 | // put Method* where a c2i would expect should we end up there |
| 922 | // only needed becaus eof c2 resolve stubs return Method* as a result in |
| 923 | // rax |
| 924 | __ mov(rax, rbx); |
| 925 | __ jmp(r11); |
| 926 | } |
| 927 | |
| 928 | // --------------------------------------------------------------- |
| 929 | AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, |
| 930 | int total_args_passed, |
| 931 | int comp_args_on_stack, |
| 932 | const BasicType *sig_bt, |
| 933 | const VMRegPair *regs, |
| 934 | AdapterFingerPrint* fingerprint) { |
| 935 | address i2c_entry = __ pc(); |
| 936 | |
| 937 | gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); |
| 938 | |
| 939 | // ------------------------------------------------------------------------- |
| 940 | // Generate a C2I adapter. On entry we know rbx holds the Method* during calls |
| 941 | // to the interpreter. The args start out packed in the compiled layout. They |
| 942 | // need to be unpacked into the interpreter layout. This will almost always |
| 943 | // require some stack space. We grow the current (compiled) stack, then repack |
| 944 | // the args. We finally end in a jump to the generic interpreter entry point. |
| 945 | // On exit from the interpreter, the interpreter will restore our SP (lest the |
| 946 | // compiled code, which relys solely on SP and not RBP, get sick). |
| 947 | |
| 948 | address c2i_unverified_entry = __ pc(); |
| 949 | Label skip_fixup; |
| 950 | Label ok; |
| 951 | |
| 952 | Register holder = rax; |
| 953 | Register receiver = j_rarg0; |
| 954 | Register temp = rbx; |
| 955 | |
| 956 | { |
| 957 | __ load_klass(temp, receiver); |
| 958 | __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); |
| 959 | __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset())); |
| 960 | __ jcc(Assembler::equal, ok); |
| 961 | __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); |
| 962 | |
| 963 | __ bind(ok); |
| 964 | // Method might have been compiled since the call site was patched to |
| 965 | // interpreted if that is the case treat it as a miss so we can get |
| 966 | // the call site corrected. |
| 967 | __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); |
| 968 | __ jcc(Assembler::equal, skip_fixup); |
| 969 | __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); |
| 970 | } |
| 971 | |
| 972 | address c2i_entry = __ pc(); |
| 973 | |
| 974 | BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
| 975 | bs->c2i_entry_barrier(masm); |
| 976 | |
| 977 | // Class initialization barrier for static methods |
| 978 | if (VM_Version::supports_fast_class_init_checks()) { |
| 979 | Label L_skip_barrier; |
| 980 | Register method = rbx; |
| 981 | |
| 982 | { // Bypass the barrier for non-static methods |
| 983 | Register flags = rscratch1; |
| 984 | __ movl(flags, Address(method, Method::access_flags_offset())); |
| 985 | __ testl(flags, JVM_ACC_STATIC); |
| 986 | __ jcc(Assembler::zero, L_skip_barrier); // non-static |
| 987 | } |
| 988 | |
| 989 | Register klass = rscratch1; |
| 990 | __ load_method_holder(klass, method); |
| 991 | __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/); |
| 992 | |
| 993 | __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path |
| 994 | |
| 995 | __ bind(L_skip_barrier); |
| 996 | } |
| 997 | |
| 998 | gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); |
| 999 | |
| 1000 | __ flush(); |
| 1001 | return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); |
| 1002 | } |
| 1003 | |
| 1004 | int SharedRuntime::c_calling_convention(const BasicType *sig_bt, |
| 1005 | VMRegPair *regs, |
| 1006 | VMRegPair *regs2, |
| 1007 | int total_args_passed) { |
| 1008 | assert(regs2 == NULL, "not needed on x86" ); |
| 1009 | // We return the amount of VMRegImpl stack slots we need to reserve for all |
| 1010 | // the arguments NOT counting out_preserve_stack_slots. |
| 1011 | |
| 1012 | // NOTE: These arrays will have to change when c1 is ported |
| 1013 | #ifdef _WIN64 |
| 1014 | static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { |
| 1015 | c_rarg0, c_rarg1, c_rarg2, c_rarg3 |
| 1016 | }; |
| 1017 | static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { |
| 1018 | c_farg0, c_farg1, c_farg2, c_farg3 |
| 1019 | }; |
| 1020 | #else |
| 1021 | static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { |
| 1022 | c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5 |
| 1023 | }; |
| 1024 | static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { |
| 1025 | c_farg0, c_farg1, c_farg2, c_farg3, |
| 1026 | c_farg4, c_farg5, c_farg6, c_farg7 |
| 1027 | }; |
| 1028 | #endif // _WIN64 |
| 1029 | |
| 1030 | |
| 1031 | uint int_args = 0; |
| 1032 | uint fp_args = 0; |
| 1033 | uint stk_args = 0; // inc by 2 each time |
| 1034 | |
| 1035 | for (int i = 0; i < total_args_passed; i++) { |
| 1036 | switch (sig_bt[i]) { |
| 1037 | case T_BOOLEAN: |
| 1038 | case T_CHAR: |
| 1039 | case T_BYTE: |
| 1040 | case T_SHORT: |
| 1041 | case T_INT: |
| 1042 | if (int_args < Argument::n_int_register_parameters_c) { |
| 1043 | regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); |
| 1044 | #ifdef _WIN64 |
| 1045 | fp_args++; |
| 1046 | // Allocate slots for callee to stuff register args the stack. |
| 1047 | stk_args += 2; |
| 1048 | #endif |
| 1049 | } else { |
| 1050 | regs[i].set1(VMRegImpl::stack2reg(stk_args)); |
| 1051 | stk_args += 2; |
| 1052 | } |
| 1053 | break; |
| 1054 | case T_LONG: |
| 1055 | assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half" ); |
| 1056 | // fall through |
| 1057 | case T_OBJECT: |
| 1058 | case T_ARRAY: |
| 1059 | case T_ADDRESS: |
| 1060 | case T_METADATA: |
| 1061 | if (int_args < Argument::n_int_register_parameters_c) { |
| 1062 | regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); |
| 1063 | #ifdef _WIN64 |
| 1064 | fp_args++; |
| 1065 | stk_args += 2; |
| 1066 | #endif |
| 1067 | } else { |
| 1068 | regs[i].set2(VMRegImpl::stack2reg(stk_args)); |
| 1069 | stk_args += 2; |
| 1070 | } |
| 1071 | break; |
| 1072 | case T_FLOAT: |
| 1073 | if (fp_args < Argument::n_float_register_parameters_c) { |
| 1074 | regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); |
| 1075 | #ifdef _WIN64 |
| 1076 | int_args++; |
| 1077 | // Allocate slots for callee to stuff register args the stack. |
| 1078 | stk_args += 2; |
| 1079 | #endif |
| 1080 | } else { |
| 1081 | regs[i].set1(VMRegImpl::stack2reg(stk_args)); |
| 1082 | stk_args += 2; |
| 1083 | } |
| 1084 | break; |
| 1085 | case T_DOUBLE: |
| 1086 | assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half" ); |
| 1087 | if (fp_args < Argument::n_float_register_parameters_c) { |
| 1088 | regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); |
| 1089 | #ifdef _WIN64 |
| 1090 | int_args++; |
| 1091 | // Allocate slots for callee to stuff register args the stack. |
| 1092 | stk_args += 2; |
| 1093 | #endif |
| 1094 | } else { |
| 1095 | regs[i].set2(VMRegImpl::stack2reg(stk_args)); |
| 1096 | stk_args += 2; |
| 1097 | } |
| 1098 | break; |
| 1099 | case T_VOID: // Halves of longs and doubles |
| 1100 | assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half" ); |
| 1101 | regs[i].set_bad(); |
| 1102 | break; |
| 1103 | default: |
| 1104 | ShouldNotReachHere(); |
| 1105 | break; |
| 1106 | } |
| 1107 | } |
| 1108 | #ifdef _WIN64 |
| 1109 | // windows abi requires that we always allocate enough stack space |
| 1110 | // for 4 64bit registers to be stored down. |
| 1111 | if (stk_args < 8) { |
| 1112 | stk_args = 8; |
| 1113 | } |
| 1114 | #endif // _WIN64 |
| 1115 | |
| 1116 | return stk_args; |
| 1117 | } |
| 1118 | |
| 1119 | // On 64 bit we will store integer like items to the stack as |
| 1120 | // 64 bits items (sparc abi) even though java would only store |
| 1121 | // 32bits for a parameter. On 32bit it will simply be 32 bits |
| 1122 | // So this routine will do 32->32 on 32bit and 32->64 on 64bit |
| 1123 | static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
| 1124 | if (src.first()->is_stack()) { |
| 1125 | if (dst.first()->is_stack()) { |
| 1126 | // stack to stack |
| 1127 | __ movslq(rax, Address(rbp, reg2offset_in(src.first()))); |
| 1128 | __ movq(Address(rsp, reg2offset_out(dst.first())), rax); |
| 1129 | } else { |
| 1130 | // stack to reg |
| 1131 | __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); |
| 1132 | } |
| 1133 | } else if (dst.first()->is_stack()) { |
| 1134 | // reg to stack |
| 1135 | // Do we really have to sign extend??? |
| 1136 | // __ movslq(src.first()->as_Register(), src.first()->as_Register()); |
| 1137 | __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); |
| 1138 | } else { |
| 1139 | // Do we really have to sign extend??? |
| 1140 | // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); |
| 1141 | if (dst.first() != src.first()) { |
| 1142 | __ movq(dst.first()->as_Register(), src.first()->as_Register()); |
| 1143 | } |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
| 1148 | if (src.first()->is_stack()) { |
| 1149 | if (dst.first()->is_stack()) { |
| 1150 | // stack to stack |
| 1151 | __ movq(rax, Address(rbp, reg2offset_in(src.first()))); |
| 1152 | __ movq(Address(rsp, reg2offset_out(dst.first())), rax); |
| 1153 | } else { |
| 1154 | // stack to reg |
| 1155 | __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); |
| 1156 | } |
| 1157 | } else if (dst.first()->is_stack()) { |
| 1158 | // reg to stack |
| 1159 | __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); |
| 1160 | } else { |
| 1161 | if (dst.first() != src.first()) { |
| 1162 | __ movq(dst.first()->as_Register(), src.first()->as_Register()); |
| 1163 | } |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | // An oop arg. Must pass a handle not the oop itself |
| 1168 | static void object_move(MacroAssembler* masm, |
| 1169 | OopMap* map, |
| 1170 | int oop_handle_offset, |
| 1171 | int framesize_in_slots, |
| 1172 | VMRegPair src, |
| 1173 | VMRegPair dst, |
| 1174 | bool is_receiver, |
| 1175 | int* receiver_offset) { |
| 1176 | |
| 1177 | // must pass a handle. First figure out the location we use as a handle |
| 1178 | |
| 1179 | Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); |
| 1180 | |
| 1181 | // See if oop is NULL if it is we need no handle |
| 1182 | |
| 1183 | if (src.first()->is_stack()) { |
| 1184 | |
| 1185 | // Oop is already on the stack as an argument |
| 1186 | int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); |
| 1187 | map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); |
| 1188 | if (is_receiver) { |
| 1189 | *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; |
| 1190 | } |
| 1191 | |
| 1192 | __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD); |
| 1193 | __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); |
| 1194 | // conditionally move a NULL |
| 1195 | __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); |
| 1196 | } else { |
| 1197 | |
| 1198 | // Oop is in an a register we must store it to the space we reserve |
| 1199 | // on the stack for oop_handles and pass a handle if oop is non-NULL |
| 1200 | |
| 1201 | const Register rOop = src.first()->as_Register(); |
| 1202 | int oop_slot; |
| 1203 | if (rOop == j_rarg0) |
| 1204 | oop_slot = 0; |
| 1205 | else if (rOop == j_rarg1) |
| 1206 | oop_slot = 1; |
| 1207 | else if (rOop == j_rarg2) |
| 1208 | oop_slot = 2; |
| 1209 | else if (rOop == j_rarg3) |
| 1210 | oop_slot = 3; |
| 1211 | else if (rOop == j_rarg4) |
| 1212 | oop_slot = 4; |
| 1213 | else { |
| 1214 | assert(rOop == j_rarg5, "wrong register" ); |
| 1215 | oop_slot = 5; |
| 1216 | } |
| 1217 | |
| 1218 | oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; |
| 1219 | int offset = oop_slot*VMRegImpl::stack_slot_size; |
| 1220 | |
| 1221 | map->set_oop(VMRegImpl::stack2reg(oop_slot)); |
| 1222 | // Store oop in handle area, may be NULL |
| 1223 | __ movptr(Address(rsp, offset), rOop); |
| 1224 | if (is_receiver) { |
| 1225 | *receiver_offset = offset; |
| 1226 | } |
| 1227 | |
| 1228 | __ cmpptr(rOop, (int32_t)NULL_WORD); |
| 1229 | __ lea(rHandle, Address(rsp, offset)); |
| 1230 | // conditionally move a NULL from the handle area where it was just stored |
| 1231 | __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); |
| 1232 | } |
| 1233 | |
| 1234 | // If arg is on the stack then place it otherwise it is already in correct reg. |
| 1235 | if (dst.first()->is_stack()) { |
| 1236 | __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | // A float arg may have to do float reg int reg conversion |
| 1241 | static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
| 1242 | assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move" ); |
| 1243 | |
| 1244 | // The calling conventions assures us that each VMregpair is either |
| 1245 | // all really one physical register or adjacent stack slots. |
| 1246 | // This greatly simplifies the cases here compared to sparc. |
| 1247 | |
| 1248 | if (src.first()->is_stack()) { |
| 1249 | if (dst.first()->is_stack()) { |
| 1250 | __ movl(rax, Address(rbp, reg2offset_in(src.first()))); |
| 1251 | __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); |
| 1252 | } else { |
| 1253 | // stack to reg |
| 1254 | assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters" ); |
| 1255 | __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()))); |
| 1256 | } |
| 1257 | } else if (dst.first()->is_stack()) { |
| 1258 | // reg to stack |
| 1259 | assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters" ); |
| 1260 | __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); |
| 1261 | } else { |
| 1262 | // reg to reg |
| 1263 | // In theory these overlap but the ordering is such that this is likely a nop |
| 1264 | if ( src.first() != dst.first()) { |
| 1265 | __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); |
| 1266 | } |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | // A long move |
| 1271 | static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
| 1272 | |
| 1273 | // The calling conventions assures us that each VMregpair is either |
| 1274 | // all really one physical register or adjacent stack slots. |
| 1275 | // This greatly simplifies the cases here compared to sparc. |
| 1276 | |
| 1277 | if (src.is_single_phys_reg() ) { |
| 1278 | if (dst.is_single_phys_reg()) { |
| 1279 | if (dst.first() != src.first()) { |
| 1280 | __ mov(dst.first()->as_Register(), src.first()->as_Register()); |
| 1281 | } |
| 1282 | } else { |
| 1283 | assert(dst.is_single_reg(), "not a stack pair" ); |
| 1284 | __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); |
| 1285 | } |
| 1286 | } else if (dst.is_single_phys_reg()) { |
| 1287 | assert(src.is_single_reg(), "not a stack pair" ); |
| 1288 | __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first()))); |
| 1289 | } else { |
| 1290 | assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs" ); |
| 1291 | __ movq(rax, Address(rbp, reg2offset_in(src.first()))); |
| 1292 | __ movq(Address(rsp, reg2offset_out(dst.first())), rax); |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | // A double move |
| 1297 | static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { |
| 1298 | |
| 1299 | // The calling conventions assures us that each VMregpair is either |
| 1300 | // all really one physical register or adjacent stack slots. |
| 1301 | // This greatly simplifies the cases here compared to sparc. |
| 1302 | |
| 1303 | if (src.is_single_phys_reg() ) { |
| 1304 | if (dst.is_single_phys_reg()) { |
| 1305 | // In theory these overlap but the ordering is such that this is likely a nop |
| 1306 | if ( src.first() != dst.first()) { |
| 1307 | __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); |
| 1308 | } |
| 1309 | } else { |
| 1310 | assert(dst.is_single_reg(), "not a stack pair" ); |
| 1311 | __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); |
| 1312 | } |
| 1313 | } else if (dst.is_single_phys_reg()) { |
| 1314 | assert(src.is_single_reg(), "not a stack pair" ); |
| 1315 | __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first()))); |
| 1316 | } else { |
| 1317 | assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs" ); |
| 1318 | __ movq(rax, Address(rbp, reg2offset_in(src.first()))); |
| 1319 | __ movq(Address(rsp, reg2offset_out(dst.first())), rax); |
| 1320 | } |
| 1321 | } |
| 1322 | |
| 1323 | |
| 1324 | void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { |
| 1325 | // We always ignore the frame_slots arg and just use the space just below frame pointer |
| 1326 | // which by this time is free to use |
| 1327 | switch (ret_type) { |
| 1328 | case T_FLOAT: |
| 1329 | __ movflt(Address(rbp, -wordSize), xmm0); |
| 1330 | break; |
| 1331 | case T_DOUBLE: |
| 1332 | __ movdbl(Address(rbp, -wordSize), xmm0); |
| 1333 | break; |
| 1334 | case T_VOID: break; |
| 1335 | default: { |
| 1336 | __ movptr(Address(rbp, -wordSize), rax); |
| 1337 | } |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { |
| 1342 | // We always ignore the frame_slots arg and just use the space just below frame pointer |
| 1343 | // which by this time is free to use |
| 1344 | switch (ret_type) { |
| 1345 | case T_FLOAT: |
| 1346 | __ movflt(xmm0, Address(rbp, -wordSize)); |
| 1347 | break; |
| 1348 | case T_DOUBLE: |
| 1349 | __ movdbl(xmm0, Address(rbp, -wordSize)); |
| 1350 | break; |
| 1351 | case T_VOID: break; |
| 1352 | default: { |
| 1353 | __ movptr(rax, Address(rbp, -wordSize)); |
| 1354 | } |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { |
| 1359 | for ( int i = first_arg ; i < arg_count ; i++ ) { |
| 1360 | if (args[i].first()->is_Register()) { |
| 1361 | __ push(args[i].first()->as_Register()); |
| 1362 | } else if (args[i].first()->is_XMMRegister()) { |
| 1363 | __ subptr(rsp, 2*wordSize); |
| 1364 | __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister()); |
| 1365 | } |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { |
| 1370 | for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { |
| 1371 | if (args[i].first()->is_Register()) { |
| 1372 | __ pop(args[i].first()->as_Register()); |
| 1373 | } else if (args[i].first()->is_XMMRegister()) { |
| 1374 | __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0)); |
| 1375 | __ addptr(rsp, 2*wordSize); |
| 1376 | } |
| 1377 | } |
| 1378 | } |
| 1379 | |
| 1380 | |
| 1381 | static void save_or_restore_arguments(MacroAssembler* masm, |
| 1382 | const int stack_slots, |
| 1383 | const int total_in_args, |
| 1384 | const int arg_save_area, |
| 1385 | OopMap* map, |
| 1386 | VMRegPair* in_regs, |
| 1387 | BasicType* in_sig_bt) { |
| 1388 | // if map is non-NULL then the code should store the values, |
| 1389 | // otherwise it should load them. |
| 1390 | int slot = arg_save_area; |
| 1391 | // Save down double word first |
| 1392 | for ( int i = 0; i < total_in_args; i++) { |
| 1393 | if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) { |
| 1394 | int offset = slot * VMRegImpl::stack_slot_size; |
| 1395 | slot += VMRegImpl::slots_per_word; |
| 1396 | assert(slot <= stack_slots, "overflow" ); |
| 1397 | if (map != NULL) { |
| 1398 | __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); |
| 1399 | } else { |
| 1400 | __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); |
| 1401 | } |
| 1402 | } |
| 1403 | if (in_regs[i].first()->is_Register() && |
| 1404 | (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) { |
| 1405 | int offset = slot * VMRegImpl::stack_slot_size; |
| 1406 | if (map != NULL) { |
| 1407 | __ movq(Address(rsp, offset), in_regs[i].first()->as_Register()); |
| 1408 | if (in_sig_bt[i] == T_ARRAY) { |
| 1409 | map->set_oop(VMRegImpl::stack2reg(slot));; |
| 1410 | } |
| 1411 | } else { |
| 1412 | __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); |
| 1413 | } |
| 1414 | slot += VMRegImpl::slots_per_word; |
| 1415 | } |
| 1416 | } |
| 1417 | // Save or restore single word registers |
| 1418 | for ( int i = 0; i < total_in_args; i++) { |
| 1419 | if (in_regs[i].first()->is_Register()) { |
| 1420 | int offset = slot * VMRegImpl::stack_slot_size; |
| 1421 | slot++; |
| 1422 | assert(slot <= stack_slots, "overflow" ); |
| 1423 | |
| 1424 | // Value is in an input register pass we must flush it to the stack |
| 1425 | const Register reg = in_regs[i].first()->as_Register(); |
| 1426 | switch (in_sig_bt[i]) { |
| 1427 | case T_BOOLEAN: |
| 1428 | case T_CHAR: |
| 1429 | case T_BYTE: |
| 1430 | case T_SHORT: |
| 1431 | case T_INT: |
| 1432 | if (map != NULL) { |
| 1433 | __ movl(Address(rsp, offset), reg); |
| 1434 | } else { |
| 1435 | __ movl(reg, Address(rsp, offset)); |
| 1436 | } |
| 1437 | break; |
| 1438 | case T_ARRAY: |
| 1439 | case T_LONG: |
| 1440 | // handled above |
| 1441 | break; |
| 1442 | case T_OBJECT: |
| 1443 | default: ShouldNotReachHere(); |
| 1444 | } |
| 1445 | } else if (in_regs[i].first()->is_XMMRegister()) { |
| 1446 | if (in_sig_bt[i] == T_FLOAT) { |
| 1447 | int offset = slot * VMRegImpl::stack_slot_size; |
| 1448 | slot++; |
| 1449 | assert(slot <= stack_slots, "overflow" ); |
| 1450 | if (map != NULL) { |
| 1451 | __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); |
| 1452 | } else { |
| 1453 | __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); |
| 1454 | } |
| 1455 | } |
| 1456 | } else if (in_regs[i].first()->is_stack()) { |
| 1457 | if (in_sig_bt[i] == T_ARRAY && map != NULL) { |
| 1458 | int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); |
| 1459 | map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots)); |
| 1460 | } |
| 1461 | } |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | // Pin object, return pinned object or null in rax |
| 1466 | static void gen_pin_object(MacroAssembler* masm, |
| 1467 | VMRegPair reg) { |
| 1468 | __ block_comment("gen_pin_object {" ); |
| 1469 | |
| 1470 | // rax always contains oop, either incoming or |
| 1471 | // pinned. |
| 1472 | Register tmp_reg = rax; |
| 1473 | |
| 1474 | Label is_null; |
| 1475 | VMRegPair tmp; |
| 1476 | VMRegPair in_reg = reg; |
| 1477 | |
| 1478 | tmp.set_ptr(tmp_reg->as_VMReg()); |
| 1479 | if (reg.first()->is_stack()) { |
| 1480 | // Load the arg up from the stack |
| 1481 | move_ptr(masm, reg, tmp); |
| 1482 | reg = tmp; |
| 1483 | } else { |
| 1484 | __ movptr(rax, reg.first()->as_Register()); |
| 1485 | } |
| 1486 | __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); |
| 1487 | __ jccb(Assembler::equal, is_null); |
| 1488 | |
| 1489 | if (reg.first()->as_Register() != c_rarg1) { |
| 1490 | __ movptr(c_rarg1, reg.first()->as_Register()); |
| 1491 | } |
| 1492 | |
| 1493 | __ call_VM_leaf( |
| 1494 | CAST_FROM_FN_PTR(address, SharedRuntime::pin_object), |
| 1495 | r15_thread, c_rarg1); |
| 1496 | |
| 1497 | __ bind(is_null); |
| 1498 | __ block_comment("} gen_pin_object" ); |
| 1499 | } |
| 1500 | |
| 1501 | // Unpin object |
| 1502 | static void gen_unpin_object(MacroAssembler* masm, |
| 1503 | VMRegPair reg) { |
| 1504 | __ block_comment("gen_unpin_object {" ); |
| 1505 | Label is_null; |
| 1506 | |
| 1507 | if (reg.first()->is_stack()) { |
| 1508 | __ movptr(c_rarg1, Address(rbp, reg2offset_in(reg.first()))); |
| 1509 | } else if (reg.first()->as_Register() != c_rarg1) { |
| 1510 | __ movptr(c_rarg1, reg.first()->as_Register()); |
| 1511 | } |
| 1512 | |
| 1513 | __ testptr(c_rarg1, c_rarg1); |
| 1514 | __ jccb(Assembler::equal, is_null); |
| 1515 | |
| 1516 | __ call_VM_leaf( |
| 1517 | CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object), |
| 1518 | r15_thread, c_rarg1); |
| 1519 | |
| 1520 | __ bind(is_null); |
| 1521 | __ block_comment("} gen_unpin_object" ); |
| 1522 | } |
| 1523 | |
| 1524 | // Check GCLocker::needs_gc and enter the runtime if it's true. This |
| 1525 | // keeps a new JNI critical region from starting until a GC has been |
| 1526 | // forced. Save down any oops in registers and describe them in an |
| 1527 | // OopMap. |
| 1528 | static void check_needs_gc_for_critical_native(MacroAssembler* masm, |
| 1529 | int stack_slots, |
| 1530 | int total_c_args, |
| 1531 | int total_in_args, |
| 1532 | int arg_save_area, |
| 1533 | OopMapSet* oop_maps, |
| 1534 | VMRegPair* in_regs, |
| 1535 | BasicType* in_sig_bt) { |
| 1536 | __ block_comment("check GCLocker::needs_gc" ); |
| 1537 | Label cont; |
| 1538 | __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false); |
| 1539 | __ jcc(Assembler::equal, cont); |
| 1540 | |
| 1541 | // Save down any incoming oops and call into the runtime to halt for a GC |
| 1542 | |
| 1543 | OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); |
| 1544 | save_or_restore_arguments(masm, stack_slots, total_in_args, |
| 1545 | arg_save_area, map, in_regs, in_sig_bt); |
| 1546 | |
| 1547 | address the_pc = __ pc(); |
| 1548 | oop_maps->add_gc_map( __ offset(), map); |
| 1549 | __ set_last_Java_frame(rsp, noreg, the_pc); |
| 1550 | |
| 1551 | __ block_comment("block_for_jni_critical" ); |
| 1552 | __ movptr(c_rarg0, r15_thread); |
| 1553 | __ mov(r12, rsp); // remember sp |
| 1554 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
| 1555 | __ andptr(rsp, -16); // align stack as required by ABI |
| 1556 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical))); |
| 1557 | __ mov(rsp, r12); // restore sp |
| 1558 | __ reinit_heapbase(); |
| 1559 | |
| 1560 | __ reset_last_Java_frame(false); |
| 1561 | |
| 1562 | save_or_restore_arguments(masm, stack_slots, total_in_args, |
| 1563 | arg_save_area, NULL, in_regs, in_sig_bt); |
| 1564 | __ bind(cont); |
| 1565 | #ifdef ASSERT |
| 1566 | if (StressCriticalJNINatives) { |
| 1567 | // Stress register saving |
| 1568 | OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); |
| 1569 | save_or_restore_arguments(masm, stack_slots, total_in_args, |
| 1570 | arg_save_area, map, in_regs, in_sig_bt); |
| 1571 | // Destroy argument registers |
| 1572 | for (int i = 0; i < total_in_args - 1; i++) { |
| 1573 | if (in_regs[i].first()->is_Register()) { |
| 1574 | const Register reg = in_regs[i].first()->as_Register(); |
| 1575 | __ xorptr(reg, reg); |
| 1576 | } else if (in_regs[i].first()->is_XMMRegister()) { |
| 1577 | __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister()); |
| 1578 | } else if (in_regs[i].first()->is_FloatRegister()) { |
| 1579 | ShouldNotReachHere(); |
| 1580 | } else if (in_regs[i].first()->is_stack()) { |
| 1581 | // Nothing to do |
| 1582 | } else { |
| 1583 | ShouldNotReachHere(); |
| 1584 | } |
| 1585 | if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) { |
| 1586 | i++; |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | save_or_restore_arguments(masm, stack_slots, total_in_args, |
| 1591 | arg_save_area, NULL, in_regs, in_sig_bt); |
| 1592 | } |
| 1593 | #endif |
| 1594 | } |
| 1595 | |
| 1596 | // Unpack an array argument into a pointer to the body and the length |
| 1597 | // if the array is non-null, otherwise pass 0 for both. |
| 1598 | static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { |
| 1599 | Register tmp_reg = rax; |
| 1600 | assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, |
| 1601 | "possible collision" ); |
| 1602 | assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, |
| 1603 | "possible collision" ); |
| 1604 | |
| 1605 | __ block_comment("unpack_array_argument {" ); |
| 1606 | |
| 1607 | // Pass the length, ptr pair |
| 1608 | Label is_null, done; |
| 1609 | VMRegPair tmp; |
| 1610 | tmp.set_ptr(tmp_reg->as_VMReg()); |
| 1611 | if (reg.first()->is_stack()) { |
| 1612 | // Load the arg up from the stack |
| 1613 | move_ptr(masm, reg, tmp); |
| 1614 | reg = tmp; |
| 1615 | } |
| 1616 | __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); |
| 1617 | __ jccb(Assembler::equal, is_null); |
| 1618 | __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type))); |
| 1619 | move_ptr(masm, tmp, body_arg); |
| 1620 | // load the length relative to the body. |
| 1621 | __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() - |
| 1622 | arrayOopDesc::base_offset_in_bytes(in_elem_type))); |
| 1623 | move32_64(masm, tmp, length_arg); |
| 1624 | __ jmpb(done); |
| 1625 | __ bind(is_null); |
| 1626 | // Pass zeros |
| 1627 | __ xorptr(tmp_reg, tmp_reg); |
| 1628 | move_ptr(masm, tmp, body_arg); |
| 1629 | move32_64(masm, tmp, length_arg); |
| 1630 | __ bind(done); |
| 1631 | |
| 1632 | __ block_comment("} unpack_array_argument" ); |
| 1633 | } |
| 1634 | |
| 1635 | |
| 1636 | // Different signatures may require very different orders for the move |
| 1637 | // to avoid clobbering other arguments. There's no simple way to |
| 1638 | // order them safely. Compute a safe order for issuing stores and |
| 1639 | // break any cycles in those stores. This code is fairly general but |
| 1640 | // it's not necessary on the other platforms so we keep it in the |
| 1641 | // platform dependent code instead of moving it into a shared file. |
| 1642 | // (See bugs 7013347 & 7145024.) |
| 1643 | // Note that this code is specific to LP64. |
| 1644 | class ComputeMoveOrder: public StackObj { |
| 1645 | class MoveOperation: public ResourceObj { |
| 1646 | friend class ComputeMoveOrder; |
| 1647 | private: |
| 1648 | VMRegPair _src; |
| 1649 | VMRegPair _dst; |
| 1650 | int _src_index; |
| 1651 | int _dst_index; |
| 1652 | bool _processed; |
| 1653 | MoveOperation* _next; |
| 1654 | MoveOperation* _prev; |
| 1655 | |
| 1656 | static int get_id(VMRegPair r) { |
| 1657 | return r.first()->value(); |
| 1658 | } |
| 1659 | |
| 1660 | public: |
| 1661 | MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst): |
| 1662 | _src(src) |
| 1663 | , _dst(dst) |
| 1664 | , _src_index(src_index) |
| 1665 | , _dst_index(dst_index) |
| 1666 | , _processed(false) |
| 1667 | , _next(NULL) |
| 1668 | , _prev(NULL) { |
| 1669 | } |
| 1670 | |
| 1671 | VMRegPair src() const { return _src; } |
| 1672 | int src_id() const { return get_id(src()); } |
| 1673 | int src_index() const { return _src_index; } |
| 1674 | VMRegPair dst() const { return _dst; } |
| 1675 | void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; } |
| 1676 | int dst_index() const { return _dst_index; } |
| 1677 | int dst_id() const { return get_id(dst()); } |
| 1678 | MoveOperation* next() const { return _next; } |
| 1679 | MoveOperation* prev() const { return _prev; } |
| 1680 | void set_processed() { _processed = true; } |
| 1681 | bool is_processed() const { return _processed; } |
| 1682 | |
| 1683 | // insert |
| 1684 | void break_cycle(VMRegPair temp_register) { |
| 1685 | // create a new store following the last store |
| 1686 | // to move from the temp_register to the original |
| 1687 | MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst()); |
| 1688 | |
| 1689 | // break the cycle of links and insert new_store at the end |
| 1690 | // break the reverse link. |
| 1691 | MoveOperation* p = prev(); |
| 1692 | assert(p->next() == this, "must be" ); |
| 1693 | _prev = NULL; |
| 1694 | p->_next = new_store; |
| 1695 | new_store->_prev = p; |
| 1696 | |
| 1697 | // change the original store to save it's value in the temp. |
| 1698 | set_dst(-1, temp_register); |
| 1699 | } |
| 1700 | |
| 1701 | void link(GrowableArray<MoveOperation*>& killer) { |
| 1702 | // link this store in front the store that it depends on |
| 1703 | MoveOperation* n = killer.at_grow(src_id(), NULL); |
| 1704 | if (n != NULL) { |
| 1705 | assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet" ); |
| 1706 | _next = n; |
| 1707 | n->_prev = this; |
| 1708 | } |
| 1709 | } |
| 1710 | }; |
| 1711 | |
| 1712 | private: |
| 1713 | GrowableArray<MoveOperation*> edges; |
| 1714 | |
| 1715 | public: |
| 1716 | ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs, |
| 1717 | BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { |
| 1718 | // Move operations where the dest is the stack can all be |
| 1719 | // scheduled first since they can't interfere with the other moves. |
| 1720 | for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { |
| 1721 | if (in_sig_bt[i] == T_ARRAY) { |
| 1722 | c_arg--; |
| 1723 | if (out_regs[c_arg].first()->is_stack() && |
| 1724 | out_regs[c_arg + 1].first()->is_stack()) { |
| 1725 | arg_order.push(i); |
| 1726 | arg_order.push(c_arg); |
| 1727 | } else { |
| 1728 | if (out_regs[c_arg].first()->is_stack() || |
| 1729 | in_regs[i].first() == out_regs[c_arg].first()) { |
| 1730 | add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]); |
| 1731 | } else { |
| 1732 | add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); |
| 1733 | } |
| 1734 | } |
| 1735 | } else if (in_sig_bt[i] == T_VOID) { |
| 1736 | arg_order.push(i); |
| 1737 | arg_order.push(c_arg); |
| 1738 | } else { |
| 1739 | if (out_regs[c_arg].first()->is_stack() || |
| 1740 | in_regs[i].first() == out_regs[c_arg].first()) { |
| 1741 | arg_order.push(i); |
| 1742 | arg_order.push(c_arg); |
| 1743 | } else { |
| 1744 | add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); |
| 1745 | } |
| 1746 | } |
| 1747 | } |
| 1748 | // Break any cycles in the register moves and emit the in the |
| 1749 | // proper order. |
| 1750 | GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg); |
| 1751 | for (int i = 0; i < stores->length(); i++) { |
| 1752 | arg_order.push(stores->at(i)->src_index()); |
| 1753 | arg_order.push(stores->at(i)->dst_index()); |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | // Collected all the move operations |
| 1758 | void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { |
| 1759 | if (src.first() == dst.first()) return; |
| 1760 | edges.append(new MoveOperation(src_index, src, dst_index, dst)); |
| 1761 | } |
| 1762 | |
| 1763 | // Walk the edges breaking cycles between moves. The result list |
| 1764 | // can be walked in order to produce the proper set of loads |
| 1765 | GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { |
| 1766 | // Record which moves kill which values |
| 1767 | GrowableArray<MoveOperation*> killer; |
| 1768 | for (int i = 0; i < edges.length(); i++) { |
| 1769 | MoveOperation* s = edges.at(i); |
| 1770 | assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer" ); |
| 1771 | killer.at_put_grow(s->dst_id(), s, NULL); |
| 1772 | } |
| 1773 | assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL, |
| 1774 | "make sure temp isn't in the registers that are killed" ); |
| 1775 | |
| 1776 | // create links between loads and stores |
| 1777 | for (int i = 0; i < edges.length(); i++) { |
| 1778 | edges.at(i)->link(killer); |
| 1779 | } |
| 1780 | |
| 1781 | // at this point, all the move operations are chained together |
| 1782 | // in a doubly linked list. Processing it backwards finds |
| 1783 | // the beginning of the chain, forwards finds the end. If there's |
| 1784 | // a cycle it can be broken at any point, so pick an edge and walk |
| 1785 | // backward until the list ends or we end where we started. |
| 1786 | GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>(); |
| 1787 | for (int e = 0; e < edges.length(); e++) { |
| 1788 | MoveOperation* s = edges.at(e); |
| 1789 | if (!s->is_processed()) { |
| 1790 | MoveOperation* start = s; |
| 1791 | // search for the beginning of the chain or cycle |
| 1792 | while (start->prev() != NULL && start->prev() != s) { |
| 1793 | start = start->prev(); |
| 1794 | } |
| 1795 | if (start->prev() == s) { |
| 1796 | start->break_cycle(temp_register); |
| 1797 | } |
| 1798 | // walk the chain forward inserting to store list |
| 1799 | while (start != NULL) { |
| 1800 | stores->append(start); |
| 1801 | start->set_processed(); |
| 1802 | start = start->next(); |
| 1803 | } |
| 1804 | } |
| 1805 | } |
| 1806 | return stores; |
| 1807 | } |
| 1808 | }; |
| 1809 | |
| 1810 | static void verify_oop_args(MacroAssembler* masm, |
| 1811 | const methodHandle& method, |
| 1812 | const BasicType* sig_bt, |
| 1813 | const VMRegPair* regs) { |
| 1814 | Register temp_reg = rbx; // not part of any compiled calling seq |
| 1815 | if (VerifyOops) { |
| 1816 | for (int i = 0; i < method->size_of_parameters(); i++) { |
| 1817 | if (sig_bt[i] == T_OBJECT || |
| 1818 | sig_bt[i] == T_ARRAY) { |
| 1819 | VMReg r = regs[i].first(); |
| 1820 | assert(r->is_valid(), "bad oop arg" ); |
| 1821 | if (r->is_stack()) { |
| 1822 | __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); |
| 1823 | __ verify_oop(temp_reg); |
| 1824 | } else { |
| 1825 | __ verify_oop(r->as_Register()); |
| 1826 | } |
| 1827 | } |
| 1828 | } |
| 1829 | } |
| 1830 | } |
| 1831 | |
| 1832 | static void gen_special_dispatch(MacroAssembler* masm, |
| 1833 | const methodHandle& method, |
| 1834 | const BasicType* sig_bt, |
| 1835 | const VMRegPair* regs) { |
| 1836 | verify_oop_args(masm, method, sig_bt, regs); |
| 1837 | vmIntrinsics::ID iid = method->intrinsic_id(); |
| 1838 | |
| 1839 | // Now write the args into the outgoing interpreter space |
| 1840 | bool has_receiver = false; |
| 1841 | Register receiver_reg = noreg; |
| 1842 | int member_arg_pos = -1; |
| 1843 | Register member_reg = noreg; |
| 1844 | int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); |
| 1845 | if (ref_kind != 0) { |
| 1846 | member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument |
| 1847 | member_reg = rbx; // known to be free at this point |
| 1848 | has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); |
| 1849 | } else if (iid == vmIntrinsics::_invokeBasic) { |
| 1850 | has_receiver = true; |
| 1851 | } else { |
| 1852 | fatal("unexpected intrinsic id %d" , iid); |
| 1853 | } |
| 1854 | |
| 1855 | if (member_reg != noreg) { |
| 1856 | // Load the member_arg into register, if necessary. |
| 1857 | SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); |
| 1858 | VMReg r = regs[member_arg_pos].first(); |
| 1859 | if (r->is_stack()) { |
| 1860 | __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); |
| 1861 | } else { |
| 1862 | // no data motion is needed |
| 1863 | member_reg = r->as_Register(); |
| 1864 | } |
| 1865 | } |
| 1866 | |
| 1867 | if (has_receiver) { |
| 1868 | // Make sure the receiver is loaded into a register. |
| 1869 | assert(method->size_of_parameters() > 0, "oob" ); |
| 1870 | assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object" ); |
| 1871 | VMReg r = regs[0].first(); |
| 1872 | assert(r->is_valid(), "bad receiver arg" ); |
| 1873 | if (r->is_stack()) { |
| 1874 | // Porting note: This assumes that compiled calling conventions always |
| 1875 | // pass the receiver oop in a register. If this is not true on some |
| 1876 | // platform, pick a temp and load the receiver from stack. |
| 1877 | fatal("receiver always in a register" ); |
| 1878 | receiver_reg = j_rarg0; // known to be free at this point |
| 1879 | __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); |
| 1880 | } else { |
| 1881 | // no data motion is needed |
| 1882 | receiver_reg = r->as_Register(); |
| 1883 | } |
| 1884 | } |
| 1885 | |
| 1886 | // Figure out which address we are really jumping to: |
| 1887 | MethodHandles::generate_method_handle_dispatch(masm, iid, |
| 1888 | receiver_reg, member_reg, /*for_compiler_entry:*/ true); |
| 1889 | } |
| 1890 | |
| 1891 | // --------------------------------------------------------------------------- |
| 1892 | // Generate a native wrapper for a given method. The method takes arguments |
| 1893 | // in the Java compiled code convention, marshals them to the native |
| 1894 | // convention (handlizes oops, etc), transitions to native, makes the call, |
| 1895 | // returns to java state (possibly blocking), unhandlizes any result and |
| 1896 | // returns. |
| 1897 | // |
| 1898 | // Critical native functions are a shorthand for the use of |
| 1899 | // GetPrimtiveArrayCritical and disallow the use of any other JNI |
| 1900 | // functions. The wrapper is expected to unpack the arguments before |
| 1901 | // passing them to the callee and perform checks before and after the |
| 1902 | // native call to ensure that they GCLocker |
| 1903 | // lock_critical/unlock_critical semantics are followed. Some other |
| 1904 | // parts of JNI setup are skipped like the tear down of the JNI handle |
| 1905 | // block and the check for pending exceptions it's impossible for them |
| 1906 | // to be thrown. |
| 1907 | // |
| 1908 | // They are roughly structured like this: |
| 1909 | // if (GCLocker::needs_gc()) |
| 1910 | // SharedRuntime::block_for_jni_critical(); |
| 1911 | // tranistion to thread_in_native |
| 1912 | // unpack arrray arguments and call native entry point |
| 1913 | // check for safepoint in progress |
| 1914 | // check if any thread suspend flags are set |
| 1915 | // call into JVM and possible unlock the JNI critical |
| 1916 | // if a GC was suppressed while in the critical native. |
| 1917 | // transition back to thread_in_Java |
| 1918 | // return to caller |
| 1919 | // |
| 1920 | nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, |
| 1921 | const methodHandle& method, |
| 1922 | int compile_id, |
| 1923 | BasicType* in_sig_bt, |
| 1924 | VMRegPair* in_regs, |
| 1925 | BasicType ret_type) { |
| 1926 | if (method->is_method_handle_intrinsic()) { |
| 1927 | vmIntrinsics::ID iid = method->intrinsic_id(); |
| 1928 | intptr_t start = (intptr_t)__ pc(); |
| 1929 | int vep_offset = ((intptr_t)__ pc()) - start; |
| 1930 | gen_special_dispatch(masm, |
| 1931 | method, |
| 1932 | in_sig_bt, |
| 1933 | in_regs); |
| 1934 | int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period |
| 1935 | __ flush(); |
| 1936 | int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually |
| 1937 | return nmethod::new_native_nmethod(method, |
| 1938 | compile_id, |
| 1939 | masm->code(), |
| 1940 | vep_offset, |
| 1941 | frame_complete, |
| 1942 | stack_slots / VMRegImpl::slots_per_word, |
| 1943 | in_ByteSize(-1), |
| 1944 | in_ByteSize(-1), |
| 1945 | (OopMapSet*)NULL); |
| 1946 | } |
| 1947 | bool is_critical_native = true; |
| 1948 | address native_func = method->critical_native_function(); |
| 1949 | if (native_func == NULL) { |
| 1950 | native_func = method->native_function(); |
| 1951 | is_critical_native = false; |
| 1952 | } |
| 1953 | assert(native_func != NULL, "must have function" ); |
| 1954 | |
| 1955 | // An OopMap for lock (and class if static) |
| 1956 | OopMapSet *oop_maps = new OopMapSet(); |
| 1957 | intptr_t start = (intptr_t)__ pc(); |
| 1958 | |
| 1959 | // We have received a description of where all the java arg are located |
| 1960 | // on entry to the wrapper. We need to convert these args to where |
| 1961 | // the jni function will expect them. To figure out where they go |
| 1962 | // we convert the java signature to a C signature by inserting |
| 1963 | // the hidden arguments as arg[0] and possibly arg[1] (static method) |
| 1964 | |
| 1965 | const int total_in_args = method->size_of_parameters(); |
| 1966 | int total_c_args = total_in_args; |
| 1967 | if (!is_critical_native) { |
| 1968 | total_c_args += 1; |
| 1969 | if (method->is_static()) { |
| 1970 | total_c_args++; |
| 1971 | } |
| 1972 | } else { |
| 1973 | for (int i = 0; i < total_in_args; i++) { |
| 1974 | if (in_sig_bt[i] == T_ARRAY) { |
| 1975 | total_c_args++; |
| 1976 | } |
| 1977 | } |
| 1978 | } |
| 1979 | |
| 1980 | BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); |
| 1981 | VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); |
| 1982 | BasicType* in_elem_bt = NULL; |
| 1983 | |
| 1984 | int argc = 0; |
| 1985 | if (!is_critical_native) { |
| 1986 | out_sig_bt[argc++] = T_ADDRESS; |
| 1987 | if (method->is_static()) { |
| 1988 | out_sig_bt[argc++] = T_OBJECT; |
| 1989 | } |
| 1990 | |
| 1991 | for (int i = 0; i < total_in_args ; i++ ) { |
| 1992 | out_sig_bt[argc++] = in_sig_bt[i]; |
| 1993 | } |
| 1994 | } else { |
| 1995 | in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); |
| 1996 | SignatureStream ss(method->signature()); |
| 1997 | for (int i = 0; i < total_in_args ; i++ ) { |
| 1998 | if (in_sig_bt[i] == T_ARRAY) { |
| 1999 | // Arrays are passed as int, elem* pair |
| 2000 | out_sig_bt[argc++] = T_INT; |
| 2001 | out_sig_bt[argc++] = T_ADDRESS; |
| 2002 | Symbol* atype = ss.as_symbol(); |
| 2003 | const char* at = atype->as_C_string(); |
| 2004 | if (strlen(at) == 2) { |
| 2005 | assert(at[0] == '[', "must be" ); |
| 2006 | switch (at[1]) { |
| 2007 | case 'B': in_elem_bt[i] = T_BYTE; break; |
| 2008 | case 'C': in_elem_bt[i] = T_CHAR; break; |
| 2009 | case 'D': in_elem_bt[i] = T_DOUBLE; break; |
| 2010 | case 'F': in_elem_bt[i] = T_FLOAT; break; |
| 2011 | case 'I': in_elem_bt[i] = T_INT; break; |
| 2012 | case 'J': in_elem_bt[i] = T_LONG; break; |
| 2013 | case 'S': in_elem_bt[i] = T_SHORT; break; |
| 2014 | case 'Z': in_elem_bt[i] = T_BOOLEAN; break; |
| 2015 | default: ShouldNotReachHere(); |
| 2016 | } |
| 2017 | } |
| 2018 | } else { |
| 2019 | out_sig_bt[argc++] = in_sig_bt[i]; |
| 2020 | in_elem_bt[i] = T_VOID; |
| 2021 | } |
| 2022 | if (in_sig_bt[i] != T_VOID) { |
| 2023 | assert(in_sig_bt[i] == ss.type(), "must match" ); |
| 2024 | ss.next(); |
| 2025 | } |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | // Now figure out where the args must be stored and how much stack space |
| 2030 | // they require. |
| 2031 | int out_arg_slots; |
| 2032 | out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); |
| 2033 | |
| 2034 | // Compute framesize for the wrapper. We need to handlize all oops in |
| 2035 | // incoming registers |
| 2036 | |
| 2037 | // Calculate the total number of stack slots we will need. |
| 2038 | |
| 2039 | // First count the abi requirement plus all of the outgoing args |
| 2040 | int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; |
| 2041 | |
| 2042 | // Now the space for the inbound oop handle area |
| 2043 | int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers |
| 2044 | if (is_critical_native) { |
| 2045 | // Critical natives may have to call out so they need a save area |
| 2046 | // for register arguments. |
| 2047 | int double_slots = 0; |
| 2048 | int single_slots = 0; |
| 2049 | for ( int i = 0; i < total_in_args; i++) { |
| 2050 | if (in_regs[i].first()->is_Register()) { |
| 2051 | const Register reg = in_regs[i].first()->as_Register(); |
| 2052 | switch (in_sig_bt[i]) { |
| 2053 | case T_BOOLEAN: |
| 2054 | case T_BYTE: |
| 2055 | case T_SHORT: |
| 2056 | case T_CHAR: |
| 2057 | case T_INT: single_slots++; break; |
| 2058 | case T_ARRAY: // specific to LP64 (7145024) |
| 2059 | case T_LONG: double_slots++; break; |
| 2060 | default: ShouldNotReachHere(); |
| 2061 | } |
| 2062 | } else if (in_regs[i].first()->is_XMMRegister()) { |
| 2063 | switch (in_sig_bt[i]) { |
| 2064 | case T_FLOAT: single_slots++; break; |
| 2065 | case T_DOUBLE: double_slots++; break; |
| 2066 | default: ShouldNotReachHere(); |
| 2067 | } |
| 2068 | } else if (in_regs[i].first()->is_FloatRegister()) { |
| 2069 | ShouldNotReachHere(); |
| 2070 | } |
| 2071 | } |
| 2072 | total_save_slots = double_slots * 2 + single_slots; |
| 2073 | // align the save area |
| 2074 | if (double_slots != 0) { |
| 2075 | stack_slots = align_up(stack_slots, 2); |
| 2076 | } |
| 2077 | } |
| 2078 | |
| 2079 | int oop_handle_offset = stack_slots; |
| 2080 | stack_slots += total_save_slots; |
| 2081 | |
| 2082 | // Now any space we need for handlizing a klass if static method |
| 2083 | |
| 2084 | int klass_slot_offset = 0; |
| 2085 | int klass_offset = -1; |
| 2086 | int lock_slot_offset = 0; |
| 2087 | bool is_static = false; |
| 2088 | |
| 2089 | if (method->is_static()) { |
| 2090 | klass_slot_offset = stack_slots; |
| 2091 | stack_slots += VMRegImpl::slots_per_word; |
| 2092 | klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; |
| 2093 | is_static = true; |
| 2094 | } |
| 2095 | |
| 2096 | // Plus a lock if needed |
| 2097 | |
| 2098 | if (method->is_synchronized()) { |
| 2099 | lock_slot_offset = stack_slots; |
| 2100 | stack_slots += VMRegImpl::slots_per_word; |
| 2101 | } |
| 2102 | |
| 2103 | // Now a place (+2) to save return values or temp during shuffling |
| 2104 | // + 4 for return address (which we own) and saved rbp |
| 2105 | stack_slots += 6; |
| 2106 | |
| 2107 | // Ok The space we have allocated will look like: |
| 2108 | // |
| 2109 | // |
| 2110 | // FP-> | | |
| 2111 | // |---------------------| |
| 2112 | // | 2 slots for moves | |
| 2113 | // |---------------------| |
| 2114 | // | lock box (if sync) | |
| 2115 | // |---------------------| <- lock_slot_offset |
| 2116 | // | klass (if static) | |
| 2117 | // |---------------------| <- klass_slot_offset |
| 2118 | // | oopHandle area | |
| 2119 | // |---------------------| <- oop_handle_offset (6 java arg registers) |
| 2120 | // | outbound memory | |
| 2121 | // | based arguments | |
| 2122 | // | | |
| 2123 | // |---------------------| |
| 2124 | // | | |
| 2125 | // SP-> | out_preserved_slots | |
| 2126 | // |
| 2127 | // |
| 2128 | |
| 2129 | |
| 2130 | // Now compute actual number of stack words we need rounding to make |
| 2131 | // stack properly aligned. |
| 2132 | stack_slots = align_up(stack_slots, StackAlignmentInSlots); |
| 2133 | |
| 2134 | int stack_size = stack_slots * VMRegImpl::stack_slot_size; |
| 2135 | |
| 2136 | // First thing make an ic check to see if we should even be here |
| 2137 | |
| 2138 | // We are free to use all registers as temps without saving them and |
| 2139 | // restoring them except rbp. rbp is the only callee save register |
| 2140 | // as far as the interpreter and the compiler(s) are concerned. |
| 2141 | |
| 2142 | |
| 2143 | const Register ic_reg = rax; |
| 2144 | const Register receiver = j_rarg0; |
| 2145 | |
| 2146 | Label hit; |
| 2147 | Label exception_pending; |
| 2148 | |
| 2149 | assert_different_registers(ic_reg, receiver, rscratch1); |
| 2150 | __ verify_oop(receiver); |
| 2151 | __ load_klass(rscratch1, receiver); |
| 2152 | __ cmpq(ic_reg, rscratch1); |
| 2153 | __ jcc(Assembler::equal, hit); |
| 2154 | |
| 2155 | __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); |
| 2156 | |
| 2157 | // Verified entry point must be aligned |
| 2158 | __ align(8); |
| 2159 | |
| 2160 | __ bind(hit); |
| 2161 | |
| 2162 | int vep_offset = ((intptr_t)__ pc()) - start; |
| 2163 | |
| 2164 | if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { |
| 2165 | Label L_skip_barrier; |
| 2166 | Register klass = r10; |
| 2167 | __ mov_metadata(klass, method->method_holder()); // InstanceKlass* |
| 2168 | __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/); |
| 2169 | |
| 2170 | __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path |
| 2171 | |
| 2172 | __ bind(L_skip_barrier); |
| 2173 | } |
| 2174 | |
| 2175 | #ifdef COMPILER1 |
| 2176 | // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available. |
| 2177 | if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) { |
| 2178 | inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/); |
| 2179 | } |
| 2180 | #endif // COMPILER1 |
| 2181 | |
| 2182 | // The instruction at the verified entry point must be 5 bytes or longer |
| 2183 | // because it can be patched on the fly by make_non_entrant. The stack bang |
| 2184 | // instruction fits that requirement. |
| 2185 | |
| 2186 | // Generate stack overflow check |
| 2187 | |
| 2188 | if (UseStackBanging) { |
| 2189 | __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size()); |
| 2190 | } else { |
| 2191 | // need a 5 byte instruction to allow MT safe patching to non-entrant |
| 2192 | __ fat_nop(); |
| 2193 | } |
| 2194 | |
| 2195 | // Generate a new frame for the wrapper. |
| 2196 | __ enter(); |
| 2197 | // -2 because return address is already present and so is saved rbp |
| 2198 | __ subptr(rsp, stack_size - 2*wordSize); |
| 2199 | |
| 2200 | BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); |
| 2201 | bs->nmethod_entry_barrier(masm); |
| 2202 | |
| 2203 | // Frame is now completed as far as size and linkage. |
| 2204 | int frame_complete = ((intptr_t)__ pc()) - start; |
| 2205 | |
| 2206 | if (UseRTMLocking) { |
| 2207 | // Abort RTM transaction before calling JNI |
| 2208 | // because critical section will be large and will be |
| 2209 | // aborted anyway. Also nmethod could be deoptimized. |
| 2210 | __ xabort(0); |
| 2211 | } |
| 2212 | |
| 2213 | #ifdef ASSERT |
| 2214 | { |
| 2215 | Label L; |
| 2216 | __ mov(rax, rsp); |
| 2217 | __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI) |
| 2218 | __ cmpptr(rax, rsp); |
| 2219 | __ jcc(Assembler::equal, L); |
| 2220 | __ stop("improperly aligned stack" ); |
| 2221 | __ bind(L); |
| 2222 | } |
| 2223 | #endif /* ASSERT */ |
| 2224 | |
| 2225 | |
| 2226 | // We use r14 as the oop handle for the receiver/klass |
| 2227 | // It is callee save so it survives the call to native |
| 2228 | |
| 2229 | const Register oop_handle_reg = r14; |
| 2230 | |
| 2231 | if (is_critical_native && !Universe::heap()->supports_object_pinning()) { |
| 2232 | check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args, |
| 2233 | oop_handle_offset, oop_maps, in_regs, in_sig_bt); |
| 2234 | } |
| 2235 | |
| 2236 | // |
| 2237 | // We immediately shuffle the arguments so that any vm call we have to |
| 2238 | // make from here on out (sync slow path, jvmti, etc.) we will have |
| 2239 | // captured the oops from our caller and have a valid oopMap for |
| 2240 | // them. |
| 2241 | |
| 2242 | // ----------------- |
| 2243 | // The Grand Shuffle |
| 2244 | |
| 2245 | // The Java calling convention is either equal (linux) or denser (win64) than the |
| 2246 | // c calling convention. However the because of the jni_env argument the c calling |
| 2247 | // convention always has at least one more (and two for static) arguments than Java. |
| 2248 | // Therefore if we move the args from java -> c backwards then we will never have |
| 2249 | // a register->register conflict and we don't have to build a dependency graph |
| 2250 | // and figure out how to break any cycles. |
| 2251 | // |
| 2252 | |
| 2253 | // Record esp-based slot for receiver on stack for non-static methods |
| 2254 | int receiver_offset = -1; |
| 2255 | |
| 2256 | // This is a trick. We double the stack slots so we can claim |
| 2257 | // the oops in the caller's frame. Since we are sure to have |
| 2258 | // more args than the caller doubling is enough to make |
| 2259 | // sure we can capture all the incoming oop args from the |
| 2260 | // caller. |
| 2261 | // |
| 2262 | OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); |
| 2263 | |
| 2264 | // Mark location of rbp (someday) |
| 2265 | // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp)); |
| 2266 | |
| 2267 | // Use eax, ebx as temporaries during any memory-memory moves we have to do |
| 2268 | // All inbound args are referenced based on rbp and all outbound args via rsp. |
| 2269 | |
| 2270 | |
| 2271 | #ifdef ASSERT |
| 2272 | bool reg_destroyed[RegisterImpl::number_of_registers]; |
| 2273 | bool freg_destroyed[XMMRegisterImpl::number_of_registers]; |
| 2274 | for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { |
| 2275 | reg_destroyed[r] = false; |
| 2276 | } |
| 2277 | for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) { |
| 2278 | freg_destroyed[f] = false; |
| 2279 | } |
| 2280 | |
| 2281 | #endif /* ASSERT */ |
| 2282 | |
| 2283 | // This may iterate in two different directions depending on the |
| 2284 | // kind of native it is. The reason is that for regular JNI natives |
| 2285 | // the incoming and outgoing registers are offset upwards and for |
| 2286 | // critical natives they are offset down. |
| 2287 | GrowableArray<int> arg_order(2 * total_in_args); |
| 2288 | // Inbound arguments that need to be pinned for critical natives |
| 2289 | GrowableArray<int> pinned_args(total_in_args); |
| 2290 | // Current stack slot for storing register based array argument |
| 2291 | int pinned_slot = oop_handle_offset; |
| 2292 | |
| 2293 | VMRegPair tmp_vmreg; |
| 2294 | tmp_vmreg.set2(rbx->as_VMReg()); |
| 2295 | |
| 2296 | if (!is_critical_native) { |
| 2297 | for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { |
| 2298 | arg_order.push(i); |
| 2299 | arg_order.push(c_arg); |
| 2300 | } |
| 2301 | } else { |
| 2302 | // Compute a valid move order, using tmp_vmreg to break any cycles |
| 2303 | ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg); |
| 2304 | } |
| 2305 | |
| 2306 | int temploc = -1; |
| 2307 | for (int ai = 0; ai < arg_order.length(); ai += 2) { |
| 2308 | int i = arg_order.at(ai); |
| 2309 | int c_arg = arg_order.at(ai + 1); |
| 2310 | __ block_comment(err_msg("move %d -> %d" , i, c_arg)); |
| 2311 | if (c_arg == -1) { |
| 2312 | assert(is_critical_native, "should only be required for critical natives" ); |
| 2313 | // This arg needs to be moved to a temporary |
| 2314 | __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register()); |
| 2315 | in_regs[i] = tmp_vmreg; |
| 2316 | temploc = i; |
| 2317 | continue; |
| 2318 | } else if (i == -1) { |
| 2319 | assert(is_critical_native, "should only be required for critical natives" ); |
| 2320 | // Read from the temporary location |
| 2321 | assert(temploc != -1, "must be valid" ); |
| 2322 | i = temploc; |
| 2323 | temploc = -1; |
| 2324 | } |
| 2325 | #ifdef ASSERT |
| 2326 | if (in_regs[i].first()->is_Register()) { |
| 2327 | assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!" ); |
| 2328 | } else if (in_regs[i].first()->is_XMMRegister()) { |
| 2329 | assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!" ); |
| 2330 | } |
| 2331 | if (out_regs[c_arg].first()->is_Register()) { |
| 2332 | reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; |
| 2333 | } else if (out_regs[c_arg].first()->is_XMMRegister()) { |
| 2334 | freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; |
| 2335 | } |
| 2336 | #endif /* ASSERT */ |
| 2337 | switch (in_sig_bt[i]) { |
| 2338 | case T_ARRAY: |
| 2339 | if (is_critical_native) { |
| 2340 | // pin before unpack |
| 2341 | if (Universe::heap()->supports_object_pinning()) { |
| 2342 | save_args(masm, total_c_args, 0, out_regs); |
| 2343 | gen_pin_object(masm, in_regs[i]); |
| 2344 | pinned_args.append(i); |
| 2345 | restore_args(masm, total_c_args, 0, out_regs); |
| 2346 | |
| 2347 | // rax has pinned array |
| 2348 | VMRegPair result_reg; |
| 2349 | result_reg.set_ptr(rax->as_VMReg()); |
| 2350 | move_ptr(masm, result_reg, in_regs[i]); |
| 2351 | if (!in_regs[i].first()->is_stack()) { |
| 2352 | assert(pinned_slot <= stack_slots, "overflow" ); |
| 2353 | move_ptr(masm, result_reg, VMRegImpl::stack2reg(pinned_slot)); |
| 2354 | pinned_slot += VMRegImpl::slots_per_word; |
| 2355 | } |
| 2356 | } |
| 2357 | unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); |
| 2358 | c_arg++; |
| 2359 | #ifdef ASSERT |
| 2360 | if (out_regs[c_arg].first()->is_Register()) { |
| 2361 | reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; |
| 2362 | } else if (out_regs[c_arg].first()->is_XMMRegister()) { |
| 2363 | freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; |
| 2364 | } |
| 2365 | #endif |
| 2366 | break; |
| 2367 | } |
| 2368 | case T_OBJECT: |
| 2369 | assert(!is_critical_native, "no oop arguments" ); |
| 2370 | object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], |
| 2371 | ((i == 0) && (!is_static)), |
| 2372 | &receiver_offset); |
| 2373 | break; |
| 2374 | case T_VOID: |
| 2375 | break; |
| 2376 | |
| 2377 | case T_FLOAT: |
| 2378 | float_move(masm, in_regs[i], out_regs[c_arg]); |
| 2379 | break; |
| 2380 | |
| 2381 | case T_DOUBLE: |
| 2382 | assert( i + 1 < total_in_args && |
| 2383 | in_sig_bt[i + 1] == T_VOID && |
| 2384 | out_sig_bt[c_arg+1] == T_VOID, "bad arg list" ); |
| 2385 | double_move(masm, in_regs[i], out_regs[c_arg]); |
| 2386 | break; |
| 2387 | |
| 2388 | case T_LONG : |
| 2389 | long_move(masm, in_regs[i], out_regs[c_arg]); |
| 2390 | break; |
| 2391 | |
| 2392 | case T_ADDRESS: assert(false, "found T_ADDRESS in java args" ); |
| 2393 | |
| 2394 | default: |
| 2395 | move32_64(masm, in_regs[i], out_regs[c_arg]); |
| 2396 | } |
| 2397 | } |
| 2398 | |
| 2399 | int c_arg; |
| 2400 | |
| 2401 | // Pre-load a static method's oop into r14. Used both by locking code and |
| 2402 | // the normal JNI call code. |
| 2403 | if (!is_critical_native) { |
| 2404 | // point c_arg at the first arg that is already loaded in case we |
| 2405 | // need to spill before we call out |
| 2406 | c_arg = total_c_args - total_in_args; |
| 2407 | |
| 2408 | if (method->is_static()) { |
| 2409 | |
| 2410 | // load oop into a register |
| 2411 | __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); |
| 2412 | |
| 2413 | // Now handlize the static class mirror it's known not-null. |
| 2414 | __ movptr(Address(rsp, klass_offset), oop_handle_reg); |
| 2415 | map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); |
| 2416 | |
| 2417 | // Now get the handle |
| 2418 | __ lea(oop_handle_reg, Address(rsp, klass_offset)); |
| 2419 | // store the klass handle as second argument |
| 2420 | __ movptr(c_rarg1, oop_handle_reg); |
| 2421 | // and protect the arg if we must spill |
| 2422 | c_arg--; |
| 2423 | } |
| 2424 | } else { |
| 2425 | // For JNI critical methods we need to save all registers in save_args. |
| 2426 | c_arg = 0; |
| 2427 | } |
| 2428 | |
| 2429 | // Change state to native (we save the return address in the thread, since it might not |
| 2430 | // be pushed on the stack when we do a a stack traversal). It is enough that the pc() |
| 2431 | // points into the right code segment. It does not have to be the correct return pc. |
| 2432 | // We use the same pc/oopMap repeatedly when we call out |
| 2433 | |
| 2434 | intptr_t the_pc = (intptr_t) __ pc(); |
| 2435 | oop_maps->add_gc_map(the_pc - start, map); |
| 2436 | |
| 2437 | __ set_last_Java_frame(rsp, noreg, (address)the_pc); |
| 2438 | |
| 2439 | |
| 2440 | // We have all of the arguments setup at this point. We must not touch any register |
| 2441 | // argument registers at this point (what if we save/restore them there are no oop? |
| 2442 | |
| 2443 | { |
| 2444 | SkipIfEqual skip(masm, &DTraceMethodProbes, false); |
| 2445 | // protect the args we've loaded |
| 2446 | save_args(masm, total_c_args, c_arg, out_regs); |
| 2447 | __ mov_metadata(c_rarg1, method()); |
| 2448 | __ call_VM_leaf( |
| 2449 | CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), |
| 2450 | r15_thread, c_rarg1); |
| 2451 | restore_args(masm, total_c_args, c_arg, out_regs); |
| 2452 | } |
| 2453 | |
| 2454 | // RedefineClasses() tracing support for obsolete method entry |
| 2455 | if (log_is_enabled(Trace, redefine, class, obsolete)) { |
| 2456 | // protect the args we've loaded |
| 2457 | save_args(masm, total_c_args, c_arg, out_regs); |
| 2458 | __ mov_metadata(c_rarg1, method()); |
| 2459 | __ call_VM_leaf( |
| 2460 | CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), |
| 2461 | r15_thread, c_rarg1); |
| 2462 | restore_args(masm, total_c_args, c_arg, out_regs); |
| 2463 | } |
| 2464 | |
| 2465 | // Lock a synchronized method |
| 2466 | |
| 2467 | // Register definitions used by locking and unlocking |
| 2468 | |
| 2469 | const Register swap_reg = rax; // Must use rax for cmpxchg instruction |
| 2470 | const Register obj_reg = rbx; // Will contain the oop |
| 2471 | const Register lock_reg = r13; // Address of compiler lock object (BasicLock) |
| 2472 | const Register old_hdr = r13; // value of old header at unlock time |
| 2473 | |
| 2474 | Label slow_path_lock; |
| 2475 | Label lock_done; |
| 2476 | |
| 2477 | if (method->is_synchronized()) { |
| 2478 | assert(!is_critical_native, "unhandled" ); |
| 2479 | |
| 2480 | |
| 2481 | const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); |
| 2482 | |
| 2483 | // Get the handle (the 2nd argument) |
| 2484 | __ mov(oop_handle_reg, c_rarg1); |
| 2485 | |
| 2486 | // Get address of the box |
| 2487 | |
| 2488 | __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); |
| 2489 | |
| 2490 | // Load the oop from the handle |
| 2491 | __ movptr(obj_reg, Address(oop_handle_reg, 0)); |
| 2492 | |
| 2493 | __ resolve(IS_NOT_NULL, obj_reg); |
| 2494 | if (UseBiasedLocking) { |
| 2495 | __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock); |
| 2496 | } |
| 2497 | |
| 2498 | // Load immediate 1 into swap_reg %rax |
| 2499 | __ movl(swap_reg, 1); |
| 2500 | |
| 2501 | // Load (object->mark() | 1) into swap_reg %rax |
| 2502 | __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); |
| 2503 | |
| 2504 | // Save (object->mark() | 1) into BasicLock's displaced header |
| 2505 | __ movptr(Address(lock_reg, mark_word_offset), swap_reg); |
| 2506 | |
| 2507 | // src -> dest iff dest == rax else rax <- dest |
| 2508 | __ lock(); |
| 2509 | __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); |
| 2510 | __ jcc(Assembler::equal, lock_done); |
| 2511 | |
| 2512 | // Hmm should this move to the slow path code area??? |
| 2513 | |
| 2514 | // Test if the oopMark is an obvious stack pointer, i.e., |
| 2515 | // 1) (mark & 3) == 0, and |
| 2516 | // 2) rsp <= mark < mark + os::pagesize() |
| 2517 | // These 3 tests can be done by evaluating the following |
| 2518 | // expression: ((mark - rsp) & (3 - os::vm_page_size())), |
| 2519 | // assuming both stack pointer and pagesize have their |
| 2520 | // least significant 2 bits clear. |
| 2521 | // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg |
| 2522 | |
| 2523 | __ subptr(swap_reg, rsp); |
| 2524 | __ andptr(swap_reg, 3 - os::vm_page_size()); |
| 2525 | |
| 2526 | // Save the test result, for recursive case, the result is zero |
| 2527 | __ movptr(Address(lock_reg, mark_word_offset), swap_reg); |
| 2528 | __ jcc(Assembler::notEqual, slow_path_lock); |
| 2529 | |
| 2530 | // Slow path will re-enter here |
| 2531 | |
| 2532 | __ bind(lock_done); |
| 2533 | } |
| 2534 | |
| 2535 | |
| 2536 | // Finally just about ready to make the JNI call |
| 2537 | |
| 2538 | |
| 2539 | // get JNIEnv* which is first argument to native |
| 2540 | if (!is_critical_native) { |
| 2541 | __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset()))); |
| 2542 | } |
| 2543 | |
| 2544 | // Now set thread in native |
| 2545 | __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native); |
| 2546 | |
| 2547 | __ call(RuntimeAddress(native_func)); |
| 2548 | |
| 2549 | // Verify or restore cpu control state after JNI call |
| 2550 | __ restore_cpu_control_state_after_jni(); |
| 2551 | |
| 2552 | // Unpack native results. |
| 2553 | switch (ret_type) { |
| 2554 | case T_BOOLEAN: __ c2bool(rax); break; |
| 2555 | case T_CHAR : __ movzwl(rax, rax); break; |
| 2556 | case T_BYTE : __ sign_extend_byte (rax); break; |
| 2557 | case T_SHORT : __ sign_extend_short(rax); break; |
| 2558 | case T_INT : /* nothing to do */ break; |
| 2559 | case T_DOUBLE : |
| 2560 | case T_FLOAT : |
| 2561 | // Result is in xmm0 we'll save as needed |
| 2562 | break; |
| 2563 | case T_ARRAY: // Really a handle |
| 2564 | case T_OBJECT: // Really a handle |
| 2565 | break; // can't de-handlize until after safepoint check |
| 2566 | case T_VOID: break; |
| 2567 | case T_LONG: break; |
| 2568 | default : ShouldNotReachHere(); |
| 2569 | } |
| 2570 | |
| 2571 | // unpin pinned arguments |
| 2572 | pinned_slot = oop_handle_offset; |
| 2573 | if (pinned_args.length() > 0) { |
| 2574 | // save return value that may be overwritten otherwise. |
| 2575 | save_native_result(masm, ret_type, stack_slots); |
| 2576 | for (int index = 0; index < pinned_args.length(); index ++) { |
| 2577 | int i = pinned_args.at(index); |
| 2578 | assert(pinned_slot <= stack_slots, "overflow" ); |
| 2579 | if (!in_regs[i].first()->is_stack()) { |
| 2580 | int offset = pinned_slot * VMRegImpl::stack_slot_size; |
| 2581 | __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); |
| 2582 | pinned_slot += VMRegImpl::slots_per_word; |
| 2583 | } |
| 2584 | gen_unpin_object(masm, in_regs[i]); |
| 2585 | } |
| 2586 | restore_native_result(masm, ret_type, stack_slots); |
| 2587 | } |
| 2588 | |
| 2589 | // Switch thread to "native transition" state before reading the synchronization state. |
| 2590 | // This additional state is necessary because reading and testing the synchronization |
| 2591 | // state is not atomic w.r.t. GC, as this scenario demonstrates: |
| 2592 | // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. |
| 2593 | // VM thread changes sync state to synchronizing and suspends threads for GC. |
| 2594 | // Thread A is resumed to finish this native method, but doesn't block here since it |
| 2595 | // didn't see any synchronization is progress, and escapes. |
| 2596 | __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans); |
| 2597 | |
| 2598 | // Force this write out before the read below |
| 2599 | __ membar(Assembler::Membar_mask_bits( |
| 2600 | Assembler::LoadLoad | Assembler::LoadStore | |
| 2601 | Assembler::StoreLoad | Assembler::StoreStore)); |
| 2602 | |
| 2603 | Label after_transition; |
| 2604 | |
| 2605 | // check for safepoint operation in progress and/or pending suspend requests |
| 2606 | { |
| 2607 | Label Continue; |
| 2608 | Label slow_path; |
| 2609 | |
| 2610 | __ safepoint_poll(slow_path, r15_thread, rscratch1); |
| 2611 | |
| 2612 | __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0); |
| 2613 | __ jcc(Assembler::equal, Continue); |
| 2614 | __ bind(slow_path); |
| 2615 | |
| 2616 | // Don't use call_VM as it will see a possible pending exception and forward it |
| 2617 | // and never return here preventing us from clearing _last_native_pc down below. |
| 2618 | // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are |
| 2619 | // preserved and correspond to the bcp/locals pointers. So we do a runtime call |
| 2620 | // by hand. |
| 2621 | // |
| 2622 | __ vzeroupper(); |
| 2623 | save_native_result(masm, ret_type, stack_slots); |
| 2624 | __ mov(c_rarg0, r15_thread); |
| 2625 | __ mov(r12, rsp); // remember sp |
| 2626 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
| 2627 | __ andptr(rsp, -16); // align stack as required by ABI |
| 2628 | if (!is_critical_native) { |
| 2629 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); |
| 2630 | } else { |
| 2631 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition))); |
| 2632 | } |
| 2633 | __ mov(rsp, r12); // restore sp |
| 2634 | __ reinit_heapbase(); |
| 2635 | // Restore any method result value |
| 2636 | restore_native_result(masm, ret_type, stack_slots); |
| 2637 | |
| 2638 | if (is_critical_native) { |
| 2639 | // The call above performed the transition to thread_in_Java so |
| 2640 | // skip the transition logic below. |
| 2641 | __ jmpb(after_transition); |
| 2642 | } |
| 2643 | |
| 2644 | __ bind(Continue); |
| 2645 | } |
| 2646 | |
| 2647 | // change thread state |
| 2648 | __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java); |
| 2649 | __ bind(after_transition); |
| 2650 | |
| 2651 | Label reguard; |
| 2652 | Label reguard_done; |
| 2653 | __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled); |
| 2654 | __ jcc(Assembler::equal, reguard); |
| 2655 | __ bind(reguard_done); |
| 2656 | |
| 2657 | // native result if any is live |
| 2658 | |
| 2659 | // Unlock |
| 2660 | Label unlock_done; |
| 2661 | Label slow_path_unlock; |
| 2662 | if (method->is_synchronized()) { |
| 2663 | |
| 2664 | // Get locked oop from the handle we passed to jni |
| 2665 | __ movptr(obj_reg, Address(oop_handle_reg, 0)); |
| 2666 | __ resolve(IS_NOT_NULL, obj_reg); |
| 2667 | |
| 2668 | Label done; |
| 2669 | |
| 2670 | if (UseBiasedLocking) { |
| 2671 | __ biased_locking_exit(obj_reg, old_hdr, done); |
| 2672 | } |
| 2673 | |
| 2674 | // Simple recursive lock? |
| 2675 | |
| 2676 | __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD); |
| 2677 | __ jcc(Assembler::equal, done); |
| 2678 | |
| 2679 | // Must save rax if if it is live now because cmpxchg must use it |
| 2680 | if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { |
| 2681 | save_native_result(masm, ret_type, stack_slots); |
| 2682 | } |
| 2683 | |
| 2684 | |
| 2685 | // get address of the stack lock |
| 2686 | __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); |
| 2687 | // get old displaced header |
| 2688 | __ movptr(old_hdr, Address(rax, 0)); |
| 2689 | |
| 2690 | // Atomic swap old header if oop still contains the stack lock |
| 2691 | __ lock(); |
| 2692 | __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); |
| 2693 | __ jcc(Assembler::notEqual, slow_path_unlock); |
| 2694 | |
| 2695 | // slow path re-enters here |
| 2696 | __ bind(unlock_done); |
| 2697 | if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { |
| 2698 | restore_native_result(masm, ret_type, stack_slots); |
| 2699 | } |
| 2700 | |
| 2701 | __ bind(done); |
| 2702 | |
| 2703 | } |
| 2704 | { |
| 2705 | SkipIfEqual skip(masm, &DTraceMethodProbes, false); |
| 2706 | save_native_result(masm, ret_type, stack_slots); |
| 2707 | __ mov_metadata(c_rarg1, method()); |
| 2708 | __ call_VM_leaf( |
| 2709 | CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), |
| 2710 | r15_thread, c_rarg1); |
| 2711 | restore_native_result(masm, ret_type, stack_slots); |
| 2712 | } |
| 2713 | |
| 2714 | __ reset_last_Java_frame(false); |
| 2715 | |
| 2716 | // Unbox oop result, e.g. JNIHandles::resolve value. |
| 2717 | if (ret_type == T_OBJECT || ret_type == T_ARRAY) { |
| 2718 | __ resolve_jobject(rax /* value */, |
| 2719 | r15_thread /* thread */, |
| 2720 | rcx /* tmp */); |
| 2721 | } |
| 2722 | |
| 2723 | if (CheckJNICalls) { |
| 2724 | // clear_pending_jni_exception_check |
| 2725 | __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); |
| 2726 | } |
| 2727 | |
| 2728 | if (!is_critical_native) { |
| 2729 | // reset handle block |
| 2730 | __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset())); |
| 2731 | __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD); |
| 2732 | } |
| 2733 | |
| 2734 | // pop our frame |
| 2735 | |
| 2736 | __ leave(); |
| 2737 | |
| 2738 | if (!is_critical_native) { |
| 2739 | // Any exception pending? |
| 2740 | __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); |
| 2741 | __ jcc(Assembler::notEqual, exception_pending); |
| 2742 | } |
| 2743 | |
| 2744 | // Return |
| 2745 | |
| 2746 | __ ret(0); |
| 2747 | |
| 2748 | // Unexpected paths are out of line and go here |
| 2749 | |
| 2750 | if (!is_critical_native) { |
| 2751 | // forward the exception |
| 2752 | __ bind(exception_pending); |
| 2753 | |
| 2754 | // and forward the exception |
| 2755 | __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); |
| 2756 | } |
| 2757 | |
| 2758 | // Slow path locking & unlocking |
| 2759 | if (method->is_synchronized()) { |
| 2760 | |
| 2761 | // BEGIN Slow path lock |
| 2762 | __ bind(slow_path_lock); |
| 2763 | |
| 2764 | // has last_Java_frame setup. No exceptions so do vanilla call not call_VM |
| 2765 | // args are (oop obj, BasicLock* lock, JavaThread* thread) |
| 2766 | |
| 2767 | // protect the args we've loaded |
| 2768 | save_args(masm, total_c_args, c_arg, out_regs); |
| 2769 | |
| 2770 | __ mov(c_rarg0, obj_reg); |
| 2771 | __ mov(c_rarg1, lock_reg); |
| 2772 | __ mov(c_rarg2, r15_thread); |
| 2773 | |
| 2774 | // Not a leaf but we have last_Java_frame setup as we want |
| 2775 | __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); |
| 2776 | restore_args(masm, total_c_args, c_arg, out_regs); |
| 2777 | |
| 2778 | #ifdef ASSERT |
| 2779 | { Label L; |
| 2780 | __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); |
| 2781 | __ jcc(Assembler::equal, L); |
| 2782 | __ stop("no pending exception allowed on exit from monitorenter" ); |
| 2783 | __ bind(L); |
| 2784 | } |
| 2785 | #endif |
| 2786 | __ jmp(lock_done); |
| 2787 | |
| 2788 | // END Slow path lock |
| 2789 | |
| 2790 | // BEGIN Slow path unlock |
| 2791 | __ bind(slow_path_unlock); |
| 2792 | |
| 2793 | // If we haven't already saved the native result we must save it now as xmm registers |
| 2794 | // are still exposed. |
| 2795 | __ vzeroupper(); |
| 2796 | if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { |
| 2797 | save_native_result(masm, ret_type, stack_slots); |
| 2798 | } |
| 2799 | |
| 2800 | __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); |
| 2801 | |
| 2802 | __ mov(c_rarg0, obj_reg); |
| 2803 | __ mov(c_rarg2, r15_thread); |
| 2804 | __ mov(r12, rsp); // remember sp |
| 2805 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
| 2806 | __ andptr(rsp, -16); // align stack as required by ABI |
| 2807 | |
| 2808 | // Save pending exception around call to VM (which contains an EXCEPTION_MARK) |
| 2809 | // NOTE that obj_reg == rbx currently |
| 2810 | __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset()))); |
| 2811 | __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); |
| 2812 | |
| 2813 | // args are (oop obj, BasicLock* lock, JavaThread* thread) |
| 2814 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); |
| 2815 | __ mov(rsp, r12); // restore sp |
| 2816 | __ reinit_heapbase(); |
| 2817 | #ifdef ASSERT |
| 2818 | { |
| 2819 | Label L; |
| 2820 | __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD); |
| 2821 | __ jcc(Assembler::equal, L); |
| 2822 | __ stop("no pending exception allowed on exit complete_monitor_unlocking_C" ); |
| 2823 | __ bind(L); |
| 2824 | } |
| 2825 | #endif /* ASSERT */ |
| 2826 | |
| 2827 | __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx); |
| 2828 | |
| 2829 | if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { |
| 2830 | restore_native_result(masm, ret_type, stack_slots); |
| 2831 | } |
| 2832 | __ jmp(unlock_done); |
| 2833 | |
| 2834 | // END Slow path unlock |
| 2835 | |
| 2836 | } // synchronized |
| 2837 | |
| 2838 | // SLOW PATH Reguard the stack if needed |
| 2839 | |
| 2840 | __ bind(reguard); |
| 2841 | __ vzeroupper(); |
| 2842 | save_native_result(masm, ret_type, stack_slots); |
| 2843 | __ mov(r12, rsp); // remember sp |
| 2844 | __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows |
| 2845 | __ andptr(rsp, -16); // align stack as required by ABI |
| 2846 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); |
| 2847 | __ mov(rsp, r12); // restore sp |
| 2848 | __ reinit_heapbase(); |
| 2849 | restore_native_result(masm, ret_type, stack_slots); |
| 2850 | // and continue |
| 2851 | __ jmp(reguard_done); |
| 2852 | |
| 2853 | |
| 2854 | |
| 2855 | __ flush(); |
| 2856 | |
| 2857 | nmethod *nm = nmethod::new_native_nmethod(method, |
| 2858 | compile_id, |
| 2859 | masm->code(), |
| 2860 | vep_offset, |
| 2861 | frame_complete, |
| 2862 | stack_slots / VMRegImpl::slots_per_word, |
| 2863 | (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), |
| 2864 | in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), |
| 2865 | oop_maps); |
| 2866 | |
| 2867 | if (is_critical_native) { |
| 2868 | nm->set_lazy_critical_native(true); |
| 2869 | } |
| 2870 | |
| 2871 | return nm; |
| 2872 | |
| 2873 | } |
| 2874 | |
| 2875 | // this function returns the adjust size (in number of words) to a c2i adapter |
| 2876 | // activation for use during deoptimization |
| 2877 | int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { |
| 2878 | return (callee_locals - callee_parameters) * Interpreter::stackElementWords; |
| 2879 | } |
| 2880 | |
| 2881 | |
| 2882 | uint SharedRuntime::out_preserve_stack_slots() { |
| 2883 | return 0; |
| 2884 | } |
| 2885 | |
| 2886 | //------------------------------generate_deopt_blob---------------------------- |
| 2887 | void SharedRuntime::generate_deopt_blob() { |
| 2888 | // Allocate space for the code |
| 2889 | ResourceMark rm; |
| 2890 | // Setup code generation tools |
| 2891 | int pad = 0; |
| 2892 | #if INCLUDE_JVMCI |
| 2893 | if (EnableJVMCI || UseAOT) { |
| 2894 | pad += 512; // Increase the buffer size when compiling for JVMCI |
| 2895 | } |
| 2896 | #endif |
| 2897 | CodeBuffer buffer("deopt_blob" , 2048+pad, 1024); |
| 2898 | MacroAssembler* masm = new MacroAssembler(&buffer); |
| 2899 | int frame_size_in_words; |
| 2900 | OopMap* map = NULL; |
| 2901 | OopMapSet *oop_maps = new OopMapSet(); |
| 2902 | |
| 2903 | // ------------- |
| 2904 | // This code enters when returning to a de-optimized nmethod. A return |
| 2905 | // address has been pushed on the the stack, and return values are in |
| 2906 | // registers. |
| 2907 | // If we are doing a normal deopt then we were called from the patched |
| 2908 | // nmethod from the point we returned to the nmethod. So the return |
| 2909 | // address on the stack is wrong by NativeCall::instruction_size |
| 2910 | // We will adjust the value so it looks like we have the original return |
| 2911 | // address on the stack (like when we eagerly deoptimized). |
| 2912 | // In the case of an exception pending when deoptimizing, we enter |
| 2913 | // with a return address on the stack that points after the call we patched |
| 2914 | // into the exception handler. We have the following register state from, |
| 2915 | // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). |
| 2916 | // rax: exception oop |
| 2917 | // rbx: exception handler |
| 2918 | // rdx: throwing pc |
| 2919 | // So in this case we simply jam rdx into the useless return address and |
| 2920 | // the stack looks just like we want. |
| 2921 | // |
| 2922 | // At this point we need to de-opt. We save the argument return |
| 2923 | // registers. We call the first C routine, fetch_unroll_info(). This |
| 2924 | // routine captures the return values and returns a structure which |
| 2925 | // describes the current frame size and the sizes of all replacement frames. |
| 2926 | // The current frame is compiled code and may contain many inlined |
| 2927 | // functions, each with their own JVM state. We pop the current frame, then |
| 2928 | // push all the new frames. Then we call the C routine unpack_frames() to |
| 2929 | // populate these frames. Finally unpack_frames() returns us the new target |
| 2930 | // address. Notice that callee-save registers are BLOWN here; they have |
| 2931 | // already been captured in the vframeArray at the time the return PC was |
| 2932 | // patched. |
| 2933 | address start = __ pc(); |
| 2934 | Label cont; |
| 2935 | |
| 2936 | // Prolog for non exception case! |
| 2937 | |
| 2938 | // Save everything in sight. |
| 2939 | map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
| 2940 | |
| 2941 | // Normal deoptimization. Save exec mode for unpack_frames. |
| 2942 | __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved |
| 2943 | __ jmp(cont); |
| 2944 | |
| 2945 | int reexecute_offset = __ pc() - start; |
| 2946 | #if INCLUDE_JVMCI && !defined(COMPILER1) |
| 2947 | if (EnableJVMCI && UseJVMCICompiler) { |
| 2948 | // JVMCI does not use this kind of deoptimization |
| 2949 | __ should_not_reach_here(); |
| 2950 | } |
| 2951 | #endif |
| 2952 | |
| 2953 | // Reexecute case |
| 2954 | // return address is the pc describes what bci to do re-execute at |
| 2955 | |
| 2956 | // No need to update map as each call to save_live_registers will produce identical oopmap |
| 2957 | (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
| 2958 | |
| 2959 | __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved |
| 2960 | __ jmp(cont); |
| 2961 | |
| 2962 | #if INCLUDE_JVMCI |
| 2963 | Label after_fetch_unroll_info_call; |
| 2964 | int implicit_exception_uncommon_trap_offset = 0; |
| 2965 | int uncommon_trap_offset = 0; |
| 2966 | |
| 2967 | if (EnableJVMCI || UseAOT) { |
| 2968 | implicit_exception_uncommon_trap_offset = __ pc() - start; |
| 2969 | |
| 2970 | __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); |
| 2971 | __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD); |
| 2972 | |
| 2973 | uncommon_trap_offset = __ pc() - start; |
| 2974 | |
| 2975 | // Save everything in sight. |
| 2976 | RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
| 2977 | // fetch_unroll_info needs to call last_java_frame() |
| 2978 | __ set_last_Java_frame(noreg, noreg, NULL); |
| 2979 | |
| 2980 | __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset()))); |
| 2981 | __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1); |
| 2982 | |
| 2983 | __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute); |
| 2984 | __ mov(c_rarg0, r15_thread); |
| 2985 | __ movl(c_rarg2, r14); // exec mode |
| 2986 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); |
| 2987 | oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); |
| 2988 | |
| 2989 | __ reset_last_Java_frame(false); |
| 2990 | |
| 2991 | __ jmp(after_fetch_unroll_info_call); |
| 2992 | } // EnableJVMCI |
| 2993 | #endif // INCLUDE_JVMCI |
| 2994 | |
| 2995 | int exception_offset = __ pc() - start; |
| 2996 | |
| 2997 | // Prolog for exception case |
| 2998 | |
| 2999 | // all registers are dead at this entry point, except for rax, and |
| 3000 | // rdx which contain the exception oop and exception pc |
| 3001 | // respectively. Set them in TLS and fall thru to the |
| 3002 | // unpack_with_exception_in_tls entry point. |
| 3003 | |
| 3004 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); |
| 3005 | __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax); |
| 3006 | |
| 3007 | int exception_in_tls_offset = __ pc() - start; |
| 3008 | |
| 3009 | // new implementation because exception oop is now passed in JavaThread |
| 3010 | |
| 3011 | // Prolog for exception case |
| 3012 | // All registers must be preserved because they might be used by LinearScan |
| 3013 | // Exceptiop oop and throwing PC are passed in JavaThread |
| 3014 | // tos: stack at point of call to method that threw the exception (i.e. only |
| 3015 | // args are on the stack, no return address) |
| 3016 | |
| 3017 | // make room on stack for the return address |
| 3018 | // It will be patched later with the throwing pc. The correct value is not |
| 3019 | // available now because loading it from memory would destroy registers. |
| 3020 | __ push(0); |
| 3021 | |
| 3022 | // Save everything in sight. |
| 3023 | map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
| 3024 | |
| 3025 | // Now it is safe to overwrite any register |
| 3026 | |
| 3027 | // Deopt during an exception. Save exec mode for unpack_frames. |
| 3028 | __ movl(r14, Deoptimization::Unpack_exception); // callee-saved |
| 3029 | |
| 3030 | // load throwing pc from JavaThread and patch it as the return address |
| 3031 | // of the current frame. Then clear the field in JavaThread |
| 3032 | |
| 3033 | __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); |
| 3034 | __ movptr(Address(rbp, wordSize), rdx); |
| 3035 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); |
| 3036 | |
| 3037 | #ifdef ASSERT |
| 3038 | // verify that there is really an exception oop in JavaThread |
| 3039 | __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); |
| 3040 | __ verify_oop(rax); |
| 3041 | |
| 3042 | // verify that there is no pending exception |
| 3043 | Label no_pending_exception; |
| 3044 | __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); |
| 3045 | __ testptr(rax, rax); |
| 3046 | __ jcc(Assembler::zero, no_pending_exception); |
| 3047 | __ stop("must not have pending exception here" ); |
| 3048 | __ bind(no_pending_exception); |
| 3049 | #endif |
| 3050 | |
| 3051 | __ bind(cont); |
| 3052 | |
| 3053 | // Call C code. Need thread and this frame, but NOT official VM entry |
| 3054 | // crud. We cannot block on this call, no GC can happen. |
| 3055 | // |
| 3056 | // UnrollBlock* fetch_unroll_info(JavaThread* thread) |
| 3057 | |
| 3058 | // fetch_unroll_info needs to call last_java_frame(). |
| 3059 | |
| 3060 | __ set_last_Java_frame(noreg, noreg, NULL); |
| 3061 | #ifdef ASSERT |
| 3062 | { Label L; |
| 3063 | __ cmpptr(Address(r15_thread, |
| 3064 | JavaThread::last_Java_fp_offset()), |
| 3065 | (int32_t)0); |
| 3066 | __ jcc(Assembler::equal, L); |
| 3067 | __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared" ); |
| 3068 | __ bind(L); |
| 3069 | } |
| 3070 | #endif // ASSERT |
| 3071 | __ mov(c_rarg0, r15_thread); |
| 3072 | __ movl(c_rarg1, r14); // exec_mode |
| 3073 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); |
| 3074 | |
| 3075 | // Need to have an oopmap that tells fetch_unroll_info where to |
| 3076 | // find any register it might need. |
| 3077 | oop_maps->add_gc_map(__ pc() - start, map); |
| 3078 | |
| 3079 | __ reset_last_Java_frame(false); |
| 3080 | |
| 3081 | #if INCLUDE_JVMCI |
| 3082 | if (EnableJVMCI || UseAOT) { |
| 3083 | __ bind(after_fetch_unroll_info_call); |
| 3084 | } |
| 3085 | #endif |
| 3086 | |
| 3087 | // Load UnrollBlock* into rdi |
| 3088 | __ mov(rdi, rax); |
| 3089 | |
| 3090 | __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); |
| 3091 | Label noException; |
| 3092 | __ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending? |
| 3093 | __ jcc(Assembler::notEqual, noException); |
| 3094 | __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); |
| 3095 | // QQQ this is useless it was NULL above |
| 3096 | __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); |
| 3097 | __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD); |
| 3098 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); |
| 3099 | |
| 3100 | __ verify_oop(rax); |
| 3101 | |
| 3102 | // Overwrite the result registers with the exception results. |
| 3103 | __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); |
| 3104 | // I think this is useless |
| 3105 | __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx); |
| 3106 | |
| 3107 | __ bind(noException); |
| 3108 | |
| 3109 | // Only register save data is on the stack. |
| 3110 | // Now restore the result registers. Everything else is either dead |
| 3111 | // or captured in the vframeArray. |
| 3112 | RegisterSaver::restore_result_registers(masm); |
| 3113 | |
| 3114 | // All of the register save area has been popped of the stack. Only the |
| 3115 | // return address remains. |
| 3116 | |
| 3117 | // Pop all the frames we must move/replace. |
| 3118 | // |
| 3119 | // Frame picture (youngest to oldest) |
| 3120 | // 1: self-frame (no frame link) |
| 3121 | // 2: deopting frame (no frame link) |
| 3122 | // 3: caller of deopting frame (could be compiled/interpreted). |
| 3123 | // |
| 3124 | // Note: by leaving the return address of self-frame on the stack |
| 3125 | // and using the size of frame 2 to adjust the stack |
| 3126 | // when we are done the return to frame 3 will still be on the stack. |
| 3127 | |
| 3128 | // Pop deoptimized frame |
| 3129 | __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); |
| 3130 | __ addptr(rsp, rcx); |
| 3131 | |
| 3132 | // rsp should be pointing at the return address to the caller (3) |
| 3133 | |
| 3134 | // Pick up the initial fp we should save |
| 3135 | // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) |
| 3136 | __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); |
| 3137 | |
| 3138 | #ifdef ASSERT |
| 3139 | // Compilers generate code that bang the stack by as much as the |
| 3140 | // interpreter would need. So this stack banging should never |
| 3141 | // trigger a fault. Verify that it does not on non product builds. |
| 3142 | if (UseStackBanging) { |
| 3143 | __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); |
| 3144 | __ bang_stack_size(rbx, rcx); |
| 3145 | } |
| 3146 | #endif |
| 3147 | |
| 3148 | // Load address of array of frame pcs into rcx |
| 3149 | __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); |
| 3150 | |
| 3151 | // Trash the old pc |
| 3152 | __ addptr(rsp, wordSize); |
| 3153 | |
| 3154 | // Load address of array of frame sizes into rsi |
| 3155 | __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); |
| 3156 | |
| 3157 | // Load counter into rdx |
| 3158 | __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); |
| 3159 | |
| 3160 | // Now adjust the caller's stack to make up for the extra locals |
| 3161 | // but record the original sp so that we can save it in the skeletal interpreter |
| 3162 | // frame and the stack walking of interpreter_sender will get the unextended sp |
| 3163 | // value and not the "real" sp value. |
| 3164 | |
| 3165 | const Register sender_sp = r8; |
| 3166 | |
| 3167 | __ mov(sender_sp, rsp); |
| 3168 | __ movl(rbx, Address(rdi, |
| 3169 | Deoptimization::UnrollBlock:: |
| 3170 | caller_adjustment_offset_in_bytes())); |
| 3171 | __ subptr(rsp, rbx); |
| 3172 | |
| 3173 | // Push interpreter frames in a loop |
| 3174 | Label loop; |
| 3175 | __ bind(loop); |
| 3176 | __ movptr(rbx, Address(rsi, 0)); // Load frame size |
| 3177 | __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand |
| 3178 | __ pushptr(Address(rcx, 0)); // Save return address |
| 3179 | __ enter(); // Save old & set new ebp |
| 3180 | __ subptr(rsp, rbx); // Prolog |
| 3181 | // This value is corrected by layout_activation_impl |
| 3182 | __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); |
| 3183 | __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable |
| 3184 | __ mov(sender_sp, rsp); // Pass sender_sp to next frame |
| 3185 | __ addptr(rsi, wordSize); // Bump array pointer (sizes) |
| 3186 | __ addptr(rcx, wordSize); // Bump array pointer (pcs) |
| 3187 | __ decrementl(rdx); // Decrement counter |
| 3188 | __ jcc(Assembler::notZero, loop); |
| 3189 | __ pushptr(Address(rcx, 0)); // Save final return address |
| 3190 | |
| 3191 | // Re-push self-frame |
| 3192 | __ enter(); // Save old & set new ebp |
| 3193 | |
| 3194 | // Allocate a full sized register save area. |
| 3195 | // Return address and rbp are in place, so we allocate two less words. |
| 3196 | __ subptr(rsp, (frame_size_in_words - 2) * wordSize); |
| 3197 | |
| 3198 | // Restore frame locals after moving the frame |
| 3199 | __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0); |
| 3200 | __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); |
| 3201 | |
| 3202 | // Call C code. Need thread but NOT official VM entry |
| 3203 | // crud. We cannot block on this call, no GC can happen. Call should |
| 3204 | // restore return values to their stack-slots with the new SP. |
| 3205 | // |
| 3206 | // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) |
| 3207 | |
| 3208 | // Use rbp because the frames look interpreted now |
| 3209 | // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. |
| 3210 | // Don't need the precise return PC here, just precise enough to point into this code blob. |
| 3211 | address the_pc = __ pc(); |
| 3212 | __ set_last_Java_frame(noreg, rbp, the_pc); |
| 3213 | |
| 3214 | __ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI |
| 3215 | __ mov(c_rarg0, r15_thread); |
| 3216 | __ movl(c_rarg1, r14); // second arg: exec_mode |
| 3217 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); |
| 3218 | // Revert SP alignment after call since we're going to do some SP relative addressing below |
| 3219 | __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset())); |
| 3220 | |
| 3221 | // Set an oopmap for the call site |
| 3222 | // Use the same PC we used for the last java frame |
| 3223 | oop_maps->add_gc_map(the_pc - start, |
| 3224 | new OopMap( frame_size_in_words, 0 )); |
| 3225 | |
| 3226 | // Clear fp AND pc |
| 3227 | __ reset_last_Java_frame(true); |
| 3228 | |
| 3229 | // Collect return values |
| 3230 | __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes())); |
| 3231 | __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes())); |
| 3232 | // I think this is useless (throwing pc?) |
| 3233 | __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes())); |
| 3234 | |
| 3235 | // Pop self-frame. |
| 3236 | __ leave(); // Epilog |
| 3237 | |
| 3238 | // Jump to interpreter |
| 3239 | __ ret(0); |
| 3240 | |
| 3241 | // Make sure all code is generated |
| 3242 | masm->flush(); |
| 3243 | |
| 3244 | _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); |
| 3245 | _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); |
| 3246 | #if INCLUDE_JVMCI |
| 3247 | if (EnableJVMCI || UseAOT) { |
| 3248 | _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); |
| 3249 | _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); |
| 3250 | } |
| 3251 | #endif |
| 3252 | } |
| 3253 | |
| 3254 | #ifdef COMPILER2 |
| 3255 | //------------------------------generate_uncommon_trap_blob-------------------- |
| 3256 | void SharedRuntime::generate_uncommon_trap_blob() { |
| 3257 | // Allocate space for the code |
| 3258 | ResourceMark rm; |
| 3259 | // Setup code generation tools |
| 3260 | CodeBuffer buffer("uncommon_trap_blob" , 2048, 1024); |
| 3261 | MacroAssembler* masm = new MacroAssembler(&buffer); |
| 3262 | |
| 3263 | assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned" ); |
| 3264 | |
| 3265 | address start = __ pc(); |
| 3266 | |
| 3267 | if (UseRTMLocking) { |
| 3268 | // Abort RTM transaction before possible nmethod deoptimization. |
| 3269 | __ xabort(0); |
| 3270 | } |
| 3271 | |
| 3272 | // Push self-frame. We get here with a return address on the |
| 3273 | // stack, so rsp is 8-byte aligned until we allocate our frame. |
| 3274 | __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog! |
| 3275 | |
| 3276 | // No callee saved registers. rbp is assumed implicitly saved |
| 3277 | __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); |
| 3278 | |
| 3279 | // compiler left unloaded_class_index in j_rarg0 move to where the |
| 3280 | // runtime expects it. |
| 3281 | __ movl(c_rarg1, j_rarg0); |
| 3282 | |
| 3283 | __ set_last_Java_frame(noreg, noreg, NULL); |
| 3284 | |
| 3285 | // Call C code. Need thread but NOT official VM entry |
| 3286 | // crud. We cannot block on this call, no GC can happen. Call should |
| 3287 | // capture callee-saved registers as well as return values. |
| 3288 | // Thread is in rdi already. |
| 3289 | // |
| 3290 | // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); |
| 3291 | |
| 3292 | __ mov(c_rarg0, r15_thread); |
| 3293 | __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap); |
| 3294 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); |
| 3295 | |
| 3296 | // Set an oopmap for the call site |
| 3297 | OopMapSet* oop_maps = new OopMapSet(); |
| 3298 | OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); |
| 3299 | |
| 3300 | // location of rbp is known implicitly by the frame sender code |
| 3301 | |
| 3302 | oop_maps->add_gc_map(__ pc() - start, map); |
| 3303 | |
| 3304 | __ reset_last_Java_frame(false); |
| 3305 | |
| 3306 | // Load UnrollBlock* into rdi |
| 3307 | __ mov(rdi, rax); |
| 3308 | |
| 3309 | #ifdef ASSERT |
| 3310 | { Label L; |
| 3311 | __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()), |
| 3312 | (int32_t)Deoptimization::Unpack_uncommon_trap); |
| 3313 | __ jcc(Assembler::equal, L); |
| 3314 | __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap" ); |
| 3315 | __ bind(L); |
| 3316 | } |
| 3317 | #endif |
| 3318 | |
| 3319 | // Pop all the frames we must move/replace. |
| 3320 | // |
| 3321 | // Frame picture (youngest to oldest) |
| 3322 | // 1: self-frame (no frame link) |
| 3323 | // 2: deopting frame (no frame link) |
| 3324 | // 3: caller of deopting frame (could be compiled/interpreted). |
| 3325 | |
| 3326 | // Pop self-frame. We have no frame, and must rely only on rax and rsp. |
| 3327 | __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog! |
| 3328 | |
| 3329 | // Pop deoptimized frame (int) |
| 3330 | __ movl(rcx, Address(rdi, |
| 3331 | Deoptimization::UnrollBlock:: |
| 3332 | size_of_deoptimized_frame_offset_in_bytes())); |
| 3333 | __ addptr(rsp, rcx); |
| 3334 | |
| 3335 | // rsp should be pointing at the return address to the caller (3) |
| 3336 | |
| 3337 | // Pick up the initial fp we should save |
| 3338 | // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) |
| 3339 | __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); |
| 3340 | |
| 3341 | #ifdef ASSERT |
| 3342 | // Compilers generate code that bang the stack by as much as the |
| 3343 | // interpreter would need. So this stack banging should never |
| 3344 | // trigger a fault. Verify that it does not on non product builds. |
| 3345 | if (UseStackBanging) { |
| 3346 | __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); |
| 3347 | __ bang_stack_size(rbx, rcx); |
| 3348 | } |
| 3349 | #endif |
| 3350 | |
| 3351 | // Load address of array of frame pcs into rcx (address*) |
| 3352 | __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); |
| 3353 | |
| 3354 | // Trash the return pc |
| 3355 | __ addptr(rsp, wordSize); |
| 3356 | |
| 3357 | // Load address of array of frame sizes into rsi (intptr_t*) |
| 3358 | __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes())); |
| 3359 | |
| 3360 | // Counter |
| 3361 | __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int) |
| 3362 | |
| 3363 | // Now adjust the caller's stack to make up for the extra locals but |
| 3364 | // record the original sp so that we can save it in the skeletal |
| 3365 | // interpreter frame and the stack walking of interpreter_sender |
| 3366 | // will get the unextended sp value and not the "real" sp value. |
| 3367 | |
| 3368 | const Register sender_sp = r8; |
| 3369 | |
| 3370 | __ mov(sender_sp, rsp); |
| 3371 | __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int) |
| 3372 | __ subptr(rsp, rbx); |
| 3373 | |
| 3374 | // Push interpreter frames in a loop |
| 3375 | Label loop; |
| 3376 | __ bind(loop); |
| 3377 | __ movptr(rbx, Address(rsi, 0)); // Load frame size |
| 3378 | __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand |
| 3379 | __ pushptr(Address(rcx, 0)); // Save return address |
| 3380 | __ enter(); // Save old & set new rbp |
| 3381 | __ subptr(rsp, rbx); // Prolog |
| 3382 | __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), |
| 3383 | sender_sp); // Make it walkable |
| 3384 | // This value is corrected by layout_activation_impl |
| 3385 | __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); |
| 3386 | __ mov(sender_sp, rsp); // Pass sender_sp to next frame |
| 3387 | __ addptr(rsi, wordSize); // Bump array pointer (sizes) |
| 3388 | __ addptr(rcx, wordSize); // Bump array pointer (pcs) |
| 3389 | __ decrementl(rdx); // Decrement counter |
| 3390 | __ jcc(Assembler::notZero, loop); |
| 3391 | __ pushptr(Address(rcx, 0)); // Save final return address |
| 3392 | |
| 3393 | // Re-push self-frame |
| 3394 | __ enter(); // Save old & set new rbp |
| 3395 | __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt); |
| 3396 | // Prolog |
| 3397 | |
| 3398 | // Use rbp because the frames look interpreted now |
| 3399 | // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. |
| 3400 | // Don't need the precise return PC here, just precise enough to point into this code blob. |
| 3401 | address the_pc = __ pc(); |
| 3402 | __ set_last_Java_frame(noreg, rbp, the_pc); |
| 3403 | |
| 3404 | // Call C code. Need thread but NOT official VM entry |
| 3405 | // crud. We cannot block on this call, no GC can happen. Call should |
| 3406 | // restore return values to their stack-slots with the new SP. |
| 3407 | // Thread is in rdi already. |
| 3408 | // |
| 3409 | // BasicType unpack_frames(JavaThread* thread, int exec_mode); |
| 3410 | |
| 3411 | __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI |
| 3412 | __ mov(c_rarg0, r15_thread); |
| 3413 | __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap); |
| 3414 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); |
| 3415 | |
| 3416 | // Set an oopmap for the call site |
| 3417 | // Use the same PC we used for the last java frame |
| 3418 | oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); |
| 3419 | |
| 3420 | // Clear fp AND pc |
| 3421 | __ reset_last_Java_frame(true); |
| 3422 | |
| 3423 | // Pop self-frame. |
| 3424 | __ leave(); // Epilog |
| 3425 | |
| 3426 | // Jump to interpreter |
| 3427 | __ ret(0); |
| 3428 | |
| 3429 | // Make sure all code is generated |
| 3430 | masm->flush(); |
| 3431 | |
| 3432 | _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, |
| 3433 | SimpleRuntimeFrame::framesize >> 1); |
| 3434 | } |
| 3435 | #endif // COMPILER2 |
| 3436 | |
| 3437 | |
| 3438 | //------------------------------generate_handler_blob------ |
| 3439 | // |
| 3440 | // Generate a special Compile2Runtime blob that saves all registers, |
| 3441 | // and setup oopmap. |
| 3442 | // |
| 3443 | SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { |
| 3444 | assert(StubRoutines::forward_exception_entry() != NULL, |
| 3445 | "must be generated before" ); |
| 3446 | |
| 3447 | ResourceMark rm; |
| 3448 | OopMapSet *oop_maps = new OopMapSet(); |
| 3449 | OopMap* map; |
| 3450 | |
| 3451 | // Allocate space for the code. Setup code generation tools. |
| 3452 | CodeBuffer buffer("handler_blob" , 2048, 1024); |
| 3453 | MacroAssembler* masm = new MacroAssembler(&buffer); |
| 3454 | |
| 3455 | address start = __ pc(); |
| 3456 | address call_pc = NULL; |
| 3457 | int frame_size_in_words; |
| 3458 | bool cause_return = (poll_type == POLL_AT_RETURN); |
| 3459 | bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); |
| 3460 | |
| 3461 | if (UseRTMLocking) { |
| 3462 | // Abort RTM transaction before calling runtime |
| 3463 | // because critical section will be large and will be |
| 3464 | // aborted anyway. Also nmethod could be deoptimized. |
| 3465 | __ xabort(0); |
| 3466 | } |
| 3467 | |
| 3468 | // Make room for return address (or push it again) |
| 3469 | if (!cause_return) { |
| 3470 | __ push(rbx); |
| 3471 | } |
| 3472 | |
| 3473 | // Save registers, fpu state, and flags |
| 3474 | map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors); |
| 3475 | |
| 3476 | // The following is basically a call_VM. However, we need the precise |
| 3477 | // address of the call in order to generate an oopmap. Hence, we do all the |
| 3478 | // work outselves. |
| 3479 | |
| 3480 | __ set_last_Java_frame(noreg, noreg, NULL); |
| 3481 | |
| 3482 | // The return address must always be correct so that frame constructor never |
| 3483 | // sees an invalid pc. |
| 3484 | |
| 3485 | if (!cause_return) { |
| 3486 | // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack. |
| 3487 | // Additionally, rbx is a callee saved register and we can look at it later to determine |
| 3488 | // if someone changed the return address for us! |
| 3489 | __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset())); |
| 3490 | __ movptr(Address(rbp, wordSize), rbx); |
| 3491 | } |
| 3492 | |
| 3493 | // Do the call |
| 3494 | __ mov(c_rarg0, r15_thread); |
| 3495 | __ call(RuntimeAddress(call_ptr)); |
| 3496 | |
| 3497 | // Set an oopmap for the call site. This oopmap will map all |
| 3498 | // oop-registers and debug-info registers as callee-saved. This |
| 3499 | // will allow deoptimization at this safepoint to find all possible |
| 3500 | // debug-info recordings, as well as let GC find all oops. |
| 3501 | |
| 3502 | oop_maps->add_gc_map( __ pc() - start, map); |
| 3503 | |
| 3504 | Label noException; |
| 3505 | |
| 3506 | __ reset_last_Java_frame(false); |
| 3507 | |
| 3508 | __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); |
| 3509 | __ jcc(Assembler::equal, noException); |
| 3510 | |
| 3511 | // Exception pending |
| 3512 | |
| 3513 | RegisterSaver::restore_live_registers(masm, save_vectors); |
| 3514 | |
| 3515 | __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); |
| 3516 | |
| 3517 | // No exception case |
| 3518 | __ bind(noException); |
| 3519 | |
| 3520 | Label no_adjust; |
| 3521 | #ifdef ASSERT |
| 3522 | Label bail; |
| 3523 | #endif |
| 3524 | if (SafepointMechanism::uses_thread_local_poll() && !cause_return) { |
| 3525 | Label no_prefix, not_special; |
| 3526 | |
| 3527 | // If our stashed return pc was modified by the runtime we avoid touching it |
| 3528 | __ cmpptr(rbx, Address(rbp, wordSize)); |
| 3529 | __ jccb(Assembler::notEqual, no_adjust); |
| 3530 | |
| 3531 | // Skip over the poll instruction. |
| 3532 | // See NativeInstruction::is_safepoint_poll() |
| 3533 | // Possible encodings: |
| 3534 | // 85 00 test %eax,(%rax) |
| 3535 | // 85 01 test %eax,(%rcx) |
| 3536 | // 85 02 test %eax,(%rdx) |
| 3537 | // 85 03 test %eax,(%rbx) |
| 3538 | // 85 06 test %eax,(%rsi) |
| 3539 | // 85 07 test %eax,(%rdi) |
| 3540 | // |
| 3541 | // 41 85 00 test %eax,(%r8) |
| 3542 | // 41 85 01 test %eax,(%r9) |
| 3543 | // 41 85 02 test %eax,(%r10) |
| 3544 | // 41 85 03 test %eax,(%r11) |
| 3545 | // 41 85 06 test %eax,(%r14) |
| 3546 | // 41 85 07 test %eax,(%r15) |
| 3547 | // |
| 3548 | // 85 04 24 test %eax,(%rsp) |
| 3549 | // 41 85 04 24 test %eax,(%r12) |
| 3550 | // 85 45 00 test %eax,0x0(%rbp) |
| 3551 | // 41 85 45 00 test %eax,0x0(%r13) |
| 3552 | |
| 3553 | __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix); |
| 3554 | __ jcc(Assembler::notEqual, no_prefix); |
| 3555 | __ addptr(rbx, 1); |
| 3556 | __ bind(no_prefix); |
| 3557 | #ifdef ASSERT |
| 3558 | __ movptr(rax, rbx); // remember where 0x85 should be, for verification below |
| 3559 | #endif |
| 3560 | // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values: |
| 3561 | // r12/rsp 0x04 |
| 3562 | // r13/rbp 0x05 |
| 3563 | __ movzbq(rcx, Address(rbx, 1)); |
| 3564 | __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05 |
| 3565 | __ subptr(rcx, 4); // looking for 0x00 .. 0x01 |
| 3566 | __ cmpptr(rcx, 1); |
| 3567 | __ jcc(Assembler::above, not_special); |
| 3568 | __ addptr(rbx, 1); |
| 3569 | __ bind(not_special); |
| 3570 | #ifdef ASSERT |
| 3571 | // Verify the correct encoding of the poll we're about to skip. |
| 3572 | __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl); |
| 3573 | __ jcc(Assembler::notEqual, bail); |
| 3574 | // Mask out the modrm bits |
| 3575 | __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask); |
| 3576 | // rax encodes to 0, so if the bits are nonzero it's incorrect |
| 3577 | __ jcc(Assembler::notZero, bail); |
| 3578 | #endif |
| 3579 | // Adjust return pc forward to step over the safepoint poll instruction |
| 3580 | __ addptr(rbx, 2); |
| 3581 | __ movptr(Address(rbp, wordSize), rbx); |
| 3582 | } |
| 3583 | |
| 3584 | __ bind(no_adjust); |
| 3585 | // Normal exit, restore registers and exit. |
| 3586 | RegisterSaver::restore_live_registers(masm, save_vectors); |
| 3587 | __ ret(0); |
| 3588 | |
| 3589 | #ifdef ASSERT |
| 3590 | __ bind(bail); |
| 3591 | __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected" ); |
| 3592 | #endif |
| 3593 | |
| 3594 | // Make sure all code is generated |
| 3595 | masm->flush(); |
| 3596 | |
| 3597 | // Fill-out other meta info |
| 3598 | return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); |
| 3599 | } |
| 3600 | |
| 3601 | // |
| 3602 | // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss |
| 3603 | // |
| 3604 | // Generate a stub that calls into vm to find out the proper destination |
| 3605 | // of a java call. All the argument registers are live at this point |
| 3606 | // but since this is generic code we don't know what they are and the caller |
| 3607 | // must do any gc of the args. |
| 3608 | // |
| 3609 | RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { |
| 3610 | assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before" ); |
| 3611 | |
| 3612 | // allocate space for the code |
| 3613 | ResourceMark rm; |
| 3614 | |
| 3615 | CodeBuffer buffer(name, 1000, 512); |
| 3616 | MacroAssembler* masm = new MacroAssembler(&buffer); |
| 3617 | |
| 3618 | int frame_size_in_words; |
| 3619 | |
| 3620 | OopMapSet *oop_maps = new OopMapSet(); |
| 3621 | OopMap* map = NULL; |
| 3622 | |
| 3623 | int start = __ offset(); |
| 3624 | |
| 3625 | map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); |
| 3626 | |
| 3627 | int frame_complete = __ offset(); |
| 3628 | |
| 3629 | __ set_last_Java_frame(noreg, noreg, NULL); |
| 3630 | |
| 3631 | __ mov(c_rarg0, r15_thread); |
| 3632 | |
| 3633 | __ call(RuntimeAddress(destination)); |
| 3634 | |
| 3635 | |
| 3636 | // Set an oopmap for the call site. |
| 3637 | // We need this not only for callee-saved registers, but also for volatile |
| 3638 | // registers that the compiler might be keeping live across a safepoint. |
| 3639 | |
| 3640 | oop_maps->add_gc_map( __ offset() - start, map); |
| 3641 | |
| 3642 | // rax contains the address we are going to jump to assuming no exception got installed |
| 3643 | |
| 3644 | // clear last_Java_sp |
| 3645 | __ reset_last_Java_frame(false); |
| 3646 | // check for pending exceptions |
| 3647 | Label pending; |
| 3648 | __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); |
| 3649 | __ jcc(Assembler::notEqual, pending); |
| 3650 | |
| 3651 | // get the returned Method* |
| 3652 | __ get_vm_result_2(rbx, r15_thread); |
| 3653 | __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx); |
| 3654 | |
| 3655 | __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); |
| 3656 | |
| 3657 | RegisterSaver::restore_live_registers(masm); |
| 3658 | |
| 3659 | // We are back the the original state on entry and ready to go. |
| 3660 | |
| 3661 | __ jmp(rax); |
| 3662 | |
| 3663 | // Pending exception after the safepoint |
| 3664 | |
| 3665 | __ bind(pending); |
| 3666 | |
| 3667 | RegisterSaver::restore_live_registers(masm); |
| 3668 | |
| 3669 | // exception pending => remove activation and forward to exception handler |
| 3670 | |
| 3671 | __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD); |
| 3672 | |
| 3673 | __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); |
| 3674 | __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); |
| 3675 | |
| 3676 | // ------------- |
| 3677 | // make sure all code is generated |
| 3678 | masm->flush(); |
| 3679 | |
| 3680 | // return the blob |
| 3681 | // frame_size_words or bytes?? |
| 3682 | return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); |
| 3683 | } |
| 3684 | |
| 3685 | |
| 3686 | //------------------------------Montgomery multiplication------------------------ |
| 3687 | // |
| 3688 | |
| 3689 | #ifndef _WINDOWS |
| 3690 | |
| 3691 | #define ASM_SUBTRACT |
| 3692 | |
| 3693 | #ifdef ASM_SUBTRACT |
| 3694 | // Subtract 0:b from carry:a. Return carry. |
| 3695 | static unsigned long |
| 3696 | sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) { |
| 3697 | long i = 0, cnt = len; |
| 3698 | unsigned long tmp; |
| 3699 | asm volatile("clc; " |
| 3700 | "0: ; " |
| 3701 | "mov (%[b], %[i], 8), %[tmp]; " |
| 3702 | "sbb %[tmp], (%[a], %[i], 8); " |
| 3703 | "inc %[i]; dec %[cnt]; " |
| 3704 | "jne 0b; " |
| 3705 | "mov %[carry], %[tmp]; sbb $0, %[tmp]; " |
| 3706 | : [i]"+r" (i), [cnt]"+r" (cnt), [tmp]"=&r" (tmp) |
| 3707 | : [a]"r" (a), [b]"r" (b), [carry]"r" (carry) |
| 3708 | : "memory" ); |
| 3709 | return tmp; |
| 3710 | } |
| 3711 | #else // ASM_SUBTRACT |
| 3712 | typedef int __attribute__((mode(TI))) int128; |
| 3713 | |
| 3714 | // Subtract 0:b from carry:a. Return carry. |
| 3715 | static unsigned long |
| 3716 | sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) { |
| 3717 | int128 tmp = 0; |
| 3718 | int i; |
| 3719 | for (i = 0; i < len; i++) { |
| 3720 | tmp += a[i]; |
| 3721 | tmp -= b[i]; |
| 3722 | a[i] = tmp; |
| 3723 | tmp >>= 64; |
| 3724 | assert(-1 <= tmp && tmp <= 0, "invariant" ); |
| 3725 | } |
| 3726 | return tmp + carry; |
| 3727 | } |
| 3728 | #endif // ! ASM_SUBTRACT |
| 3729 | |
| 3730 | // Multiply (unsigned) Long A by Long B, accumulating the double- |
| 3731 | // length result into the accumulator formed of T0, T1, and T2. |
| 3732 | #define MACC(A, B, T0, T1, T2) \ |
| 3733 | do { \ |
| 3734 | unsigned long hi, lo; \ |
| 3735 | __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ |
| 3736 | : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ |
| 3737 | : "r"(A), "a"(B) : "cc"); \ |
| 3738 | } while(0) |
| 3739 | |
| 3740 | // As above, but add twice the double-length result into the |
| 3741 | // accumulator. |
| 3742 | #define MACC2(A, B, T0, T1, T2) \ |
| 3743 | do { \ |
| 3744 | unsigned long hi, lo; \ |
| 3745 | __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \ |
| 3746 | "add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ |
| 3747 | : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ |
| 3748 | : "r"(A), "a"(B) : "cc"); \ |
| 3749 | } while(0) |
| 3750 | |
| 3751 | // Fast Montgomery multiplication. The derivation of the algorithm is |
| 3752 | // in A Cryptographic Library for the Motorola DSP56000, |
| 3753 | // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237. |
| 3754 | |
| 3755 | static void __attribute__((noinline)) |
| 3756 | montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[], |
| 3757 | unsigned long m[], unsigned long inv, int len) { |
| 3758 | unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator |
| 3759 | int i; |
| 3760 | |
| 3761 | assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply" ); |
| 3762 | |
| 3763 | for (i = 0; i < len; i++) { |
| 3764 | int j; |
| 3765 | for (j = 0; j < i; j++) { |
| 3766 | MACC(a[j], b[i-j], t0, t1, t2); |
| 3767 | MACC(m[j], n[i-j], t0, t1, t2); |
| 3768 | } |
| 3769 | MACC(a[i], b[0], t0, t1, t2); |
| 3770 | m[i] = t0 * inv; |
| 3771 | MACC(m[i], n[0], t0, t1, t2); |
| 3772 | |
| 3773 | assert(t0 == 0, "broken Montgomery multiply" ); |
| 3774 | |
| 3775 | t0 = t1; t1 = t2; t2 = 0; |
| 3776 | } |
| 3777 | |
| 3778 | for (i = len; i < 2*len; i++) { |
| 3779 | int j; |
| 3780 | for (j = i-len+1; j < len; j++) { |
| 3781 | MACC(a[j], b[i-j], t0, t1, t2); |
| 3782 | MACC(m[j], n[i-j], t0, t1, t2); |
| 3783 | } |
| 3784 | m[i-len] = t0; |
| 3785 | t0 = t1; t1 = t2; t2 = 0; |
| 3786 | } |
| 3787 | |
| 3788 | while (t0) |
| 3789 | t0 = sub(m, n, t0, len); |
| 3790 | } |
| 3791 | |
| 3792 | // Fast Montgomery squaring. This uses asymptotically 25% fewer |
| 3793 | // multiplies so it should be up to 25% faster than Montgomery |
| 3794 | // multiplication. However, its loop control is more complex and it |
| 3795 | // may actually run slower on some machines. |
| 3796 | |
| 3797 | static void __attribute__((noinline)) |
| 3798 | montgomery_square(unsigned long a[], unsigned long n[], |
| 3799 | unsigned long m[], unsigned long inv, int len) { |
| 3800 | unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator |
| 3801 | int i; |
| 3802 | |
| 3803 | assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply" ); |
| 3804 | |
| 3805 | for (i = 0; i < len; i++) { |
| 3806 | int j; |
| 3807 | int end = (i+1)/2; |
| 3808 | for (j = 0; j < end; j++) { |
| 3809 | MACC2(a[j], a[i-j], t0, t1, t2); |
| 3810 | MACC(m[j], n[i-j], t0, t1, t2); |
| 3811 | } |
| 3812 | if ((i & 1) == 0) { |
| 3813 | MACC(a[j], a[j], t0, t1, t2); |
| 3814 | } |
| 3815 | for (; j < i; j++) { |
| 3816 | MACC(m[j], n[i-j], t0, t1, t2); |
| 3817 | } |
| 3818 | m[i] = t0 * inv; |
| 3819 | MACC(m[i], n[0], t0, t1, t2); |
| 3820 | |
| 3821 | assert(t0 == 0, "broken Montgomery square" ); |
| 3822 | |
| 3823 | t0 = t1; t1 = t2; t2 = 0; |
| 3824 | } |
| 3825 | |
| 3826 | for (i = len; i < 2*len; i++) { |
| 3827 | int start = i-len+1; |
| 3828 | int end = start + (len - start)/2; |
| 3829 | int j; |
| 3830 | for (j = start; j < end; j++) { |
| 3831 | MACC2(a[j], a[i-j], t0, t1, t2); |
| 3832 | MACC(m[j], n[i-j], t0, t1, t2); |
| 3833 | } |
| 3834 | if ((i & 1) == 0) { |
| 3835 | MACC(a[j], a[j], t0, t1, t2); |
| 3836 | } |
| 3837 | for (; j < len; j++) { |
| 3838 | MACC(m[j], n[i-j], t0, t1, t2); |
| 3839 | } |
| 3840 | m[i-len] = t0; |
| 3841 | t0 = t1; t1 = t2; t2 = 0; |
| 3842 | } |
| 3843 | |
| 3844 | while (t0) |
| 3845 | t0 = sub(m, n, t0, len); |
| 3846 | } |
| 3847 | |
| 3848 | // Swap words in a longword. |
| 3849 | static unsigned long swap(unsigned long x) { |
| 3850 | return (x << 32) | (x >> 32); |
| 3851 | } |
| 3852 | |
| 3853 | // Copy len longwords from s to d, word-swapping as we go. The |
| 3854 | // destination array is reversed. |
| 3855 | static void reverse_words(unsigned long *s, unsigned long *d, int len) { |
| 3856 | d += len; |
| 3857 | while(len-- > 0) { |
| 3858 | d--; |
| 3859 | *d = swap(*s); |
| 3860 | s++; |
| 3861 | } |
| 3862 | } |
| 3863 | |
| 3864 | // The threshold at which squaring is advantageous was determined |
| 3865 | // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz. |
| 3866 | #define MONTGOMERY_SQUARING_THRESHOLD 64 |
| 3867 | |
| 3868 | void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints, |
| 3869 | jint len, jlong inv, |
| 3870 | jint *m_ints) { |
| 3871 | assert(len % 2 == 0, "array length in montgomery_multiply must be even" ); |
| 3872 | int longwords = len/2; |
| 3873 | |
| 3874 | // Make very sure we don't use so much space that the stack might |
| 3875 | // overflow. 512 jints corresponds to an 16384-bit integer and |
| 3876 | // will use here a total of 8k bytes of stack space. |
| 3877 | int total_allocation = longwords * sizeof (unsigned long) * 4; |
| 3878 | guarantee(total_allocation <= 8192, "must be" ); |
| 3879 | unsigned long *scratch = (unsigned long *)alloca(total_allocation); |
| 3880 | |
| 3881 | // Local scratch arrays |
| 3882 | unsigned long |
| 3883 | *a = scratch + 0 * longwords, |
| 3884 | *b = scratch + 1 * longwords, |
| 3885 | *n = scratch + 2 * longwords, |
| 3886 | *m = scratch + 3 * longwords; |
| 3887 | |
| 3888 | reverse_words((unsigned long *)a_ints, a, longwords); |
| 3889 | reverse_words((unsigned long *)b_ints, b, longwords); |
| 3890 | reverse_words((unsigned long *)n_ints, n, longwords); |
| 3891 | |
| 3892 | ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords); |
| 3893 | |
| 3894 | reverse_words(m, (unsigned long *)m_ints, longwords); |
| 3895 | } |
| 3896 | |
| 3897 | void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints, |
| 3898 | jint len, jlong inv, |
| 3899 | jint *m_ints) { |
| 3900 | assert(len % 2 == 0, "array length in montgomery_square must be even" ); |
| 3901 | int longwords = len/2; |
| 3902 | |
| 3903 | // Make very sure we don't use so much space that the stack might |
| 3904 | // overflow. 512 jints corresponds to an 16384-bit integer and |
| 3905 | // will use here a total of 6k bytes of stack space. |
| 3906 | int total_allocation = longwords * sizeof (unsigned long) * 3; |
| 3907 | guarantee(total_allocation <= 8192, "must be" ); |
| 3908 | unsigned long *scratch = (unsigned long *)alloca(total_allocation); |
| 3909 | |
| 3910 | // Local scratch arrays |
| 3911 | unsigned long |
| 3912 | *a = scratch + 0 * longwords, |
| 3913 | *n = scratch + 1 * longwords, |
| 3914 | *m = scratch + 2 * longwords; |
| 3915 | |
| 3916 | reverse_words((unsigned long *)a_ints, a, longwords); |
| 3917 | reverse_words((unsigned long *)n_ints, n, longwords); |
| 3918 | |
| 3919 | if (len >= MONTGOMERY_SQUARING_THRESHOLD) { |
| 3920 | ::montgomery_square(a, n, m, (unsigned long)inv, longwords); |
| 3921 | } else { |
| 3922 | ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords); |
| 3923 | } |
| 3924 | |
| 3925 | reverse_words(m, (unsigned long *)m_ints, longwords); |
| 3926 | } |
| 3927 | |
| 3928 | #endif // WINDOWS |
| 3929 | |
| 3930 | #ifdef COMPILER2 |
| 3931 | // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame |
| 3932 | // |
| 3933 | //------------------------------generate_exception_blob--------------------------- |
| 3934 | // creates exception blob at the end |
| 3935 | // Using exception blob, this code is jumped from a compiled method. |
| 3936 | // (see emit_exception_handler in x86_64.ad file) |
| 3937 | // |
| 3938 | // Given an exception pc at a call we call into the runtime for the |
| 3939 | // handler in this method. This handler might merely restore state |
| 3940 | // (i.e. callee save registers) unwind the frame and jump to the |
| 3941 | // exception handler for the nmethod if there is no Java level handler |
| 3942 | // for the nmethod. |
| 3943 | // |
| 3944 | // This code is entered with a jmp. |
| 3945 | // |
| 3946 | // Arguments: |
| 3947 | // rax: exception oop |
| 3948 | // rdx: exception pc |
| 3949 | // |
| 3950 | // Results: |
| 3951 | // rax: exception oop |
| 3952 | // rdx: exception pc in caller or ??? |
| 3953 | // destination: exception handler of caller |
| 3954 | // |
| 3955 | // Note: the exception pc MUST be at a call (precise debug information) |
| 3956 | // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved. |
| 3957 | // |
| 3958 | |
| 3959 | void OptoRuntime::generate_exception_blob() { |
| 3960 | assert(!OptoRuntime::is_callee_saved_register(RDX_num), "" ); |
| 3961 | assert(!OptoRuntime::is_callee_saved_register(RAX_num), "" ); |
| 3962 | assert(!OptoRuntime::is_callee_saved_register(RCX_num), "" ); |
| 3963 | |
| 3964 | assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned" ); |
| 3965 | |
| 3966 | // Allocate space for the code |
| 3967 | ResourceMark rm; |
| 3968 | // Setup code generation tools |
| 3969 | CodeBuffer buffer("exception_blob" , 2048, 1024); |
| 3970 | MacroAssembler* masm = new MacroAssembler(&buffer); |
| 3971 | |
| 3972 | |
| 3973 | address start = __ pc(); |
| 3974 | |
| 3975 | // Exception pc is 'return address' for stack walker |
| 3976 | __ push(rdx); |
| 3977 | __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog |
| 3978 | |
| 3979 | // Save callee-saved registers. See x86_64.ad. |
| 3980 | |
| 3981 | // rbp is an implicitly saved callee saved register (i.e., the calling |
| 3982 | // convention will save/restore it in the prolog/epilog). Other than that |
| 3983 | // there are no callee save registers now that adapter frames are gone. |
| 3984 | |
| 3985 | __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); |
| 3986 | |
| 3987 | // Store exception in Thread object. We cannot pass any arguments to the |
| 3988 | // handle_exception call, since we do not want to make any assumption |
| 3989 | // about the size of the frame where the exception happened in. |
| 3990 | // c_rarg0 is either rdi (Linux) or rcx (Windows). |
| 3991 | __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax); |
| 3992 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); |
| 3993 | |
| 3994 | // This call does all the hard work. It checks if an exception handler |
| 3995 | // exists in the method. |
| 3996 | // If so, it returns the handler address. |
| 3997 | // If not, it prepares for stack-unwinding, restoring the callee-save |
| 3998 | // registers of the frame being removed. |
| 3999 | // |
| 4000 | // address OptoRuntime::handle_exception_C(JavaThread* thread) |
| 4001 | |
| 4002 | // At a method handle call, the stack may not be properly aligned |
| 4003 | // when returning with an exception. |
| 4004 | address the_pc = __ pc(); |
| 4005 | __ set_last_Java_frame(noreg, noreg, the_pc); |
| 4006 | __ mov(c_rarg0, r15_thread); |
| 4007 | __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack |
| 4008 | __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); |
| 4009 | |
| 4010 | // Set an oopmap for the call site. This oopmap will only be used if we |
| 4011 | // are unwinding the stack. Hence, all locations will be dead. |
| 4012 | // Callee-saved registers will be the same as the frame above (i.e., |
| 4013 | // handle_exception_stub), since they were restored when we got the |
| 4014 | // exception. |
| 4015 | |
| 4016 | OopMapSet* oop_maps = new OopMapSet(); |
| 4017 | |
| 4018 | oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); |
| 4019 | |
| 4020 | __ reset_last_Java_frame(false); |
| 4021 | |
| 4022 | // Restore callee-saved registers |
| 4023 | |
| 4024 | // rbp is an implicitly saved callee-saved register (i.e., the calling |
| 4025 | // convention will save restore it in prolog/epilog) Other than that |
| 4026 | // there are no callee save registers now that adapter frames are gone. |
| 4027 | |
| 4028 | __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt)); |
| 4029 | |
| 4030 | __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog |
| 4031 | __ pop(rdx); // No need for exception pc anymore |
| 4032 | |
| 4033 | // rax: exception handler |
| 4034 | |
| 4035 | // We have a handler in rax (could be deopt blob). |
| 4036 | __ mov(r8, rax); |
| 4037 | |
| 4038 | // Get the exception oop |
| 4039 | __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); |
| 4040 | // Get the exception pc in case we are deoptimized |
| 4041 | __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); |
| 4042 | #ifdef ASSERT |
| 4043 | __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD); |
| 4044 | __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD); |
| 4045 | #endif |
| 4046 | // Clear the exception oop so GC no longer processes it as a root. |
| 4047 | __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD); |
| 4048 | |
| 4049 | // rax: exception oop |
| 4050 | // r8: exception handler |
| 4051 | // rdx: exception pc |
| 4052 | // Jump to handler |
| 4053 | |
| 4054 | __ jmp(r8); |
| 4055 | |
| 4056 | // Make sure all code is generated |
| 4057 | masm->flush(); |
| 4058 | |
| 4059 | // Set exception blob |
| 4060 | _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); |
| 4061 | } |
| 4062 | #endif // COMPILER2 |
| 4063 | |