1/*
2 * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciUtilities.hpp"
27#include "compiler/compileLog.hpp"
28#include "gc/shared/barrierSet.hpp"
29#include "gc/shared/c2/barrierSetC2.hpp"
30#include "interpreter/interpreter.hpp"
31#include "memory/resourceArea.hpp"
32#include "opto/addnode.hpp"
33#include "opto/castnode.hpp"
34#include "opto/convertnode.hpp"
35#include "opto/graphKit.hpp"
36#include "opto/idealKit.hpp"
37#include "opto/intrinsicnode.hpp"
38#include "opto/locknode.hpp"
39#include "opto/machnode.hpp"
40#include "opto/opaquenode.hpp"
41#include "opto/parse.hpp"
42#include "opto/rootnode.hpp"
43#include "opto/runtime.hpp"
44#include "runtime/deoptimization.hpp"
45#include "runtime/sharedRuntime.hpp"
46
47//----------------------------GraphKit-----------------------------------------
48// Main utility constructor.
49GraphKit::GraphKit(JVMState* jvms)
50 : Phase(Phase::Parser),
51 _env(C->env()),
52 _gvn(*C->initial_gvn()),
53 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
54{
55 _exceptions = jvms->map()->next_exception();
56 if (_exceptions != NULL) jvms->map()->set_next_exception(NULL);
57 set_jvms(jvms);
58}
59
60// Private constructor for parser.
61GraphKit::GraphKit()
62 : Phase(Phase::Parser),
63 _env(C->env()),
64 _gvn(*C->initial_gvn()),
65 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
66{
67 _exceptions = NULL;
68 set_map(NULL);
69 debug_only(_sp = -99);
70 debug_only(set_bci(-99));
71}
72
73
74
75//---------------------------clean_stack---------------------------------------
76// Clear away rubbish from the stack area of the JVM state.
77// This destroys any arguments that may be waiting on the stack.
78void GraphKit::clean_stack(int from_sp) {
79 SafePointNode* map = this->map();
80 JVMState* jvms = this->jvms();
81 int stk_size = jvms->stk_size();
82 int stkoff = jvms->stkoff();
83 Node* top = this->top();
84 for (int i = from_sp; i < stk_size; i++) {
85 if (map->in(stkoff + i) != top) {
86 map->set_req(stkoff + i, top);
87 }
88 }
89}
90
91
92//--------------------------------sync_jvms-----------------------------------
93// Make sure our current jvms agrees with our parse state.
94JVMState* GraphKit::sync_jvms() const {
95 JVMState* jvms = this->jvms();
96 jvms->set_bci(bci()); // Record the new bci in the JVMState
97 jvms->set_sp(sp()); // Record the new sp in the JVMState
98 assert(jvms_in_sync(), "jvms is now in sync");
99 return jvms;
100}
101
102//--------------------------------sync_jvms_for_reexecute---------------------
103// Make sure our current jvms agrees with our parse state. This version
104// uses the reexecute_sp for reexecuting bytecodes.
105JVMState* GraphKit::sync_jvms_for_reexecute() {
106 JVMState* jvms = this->jvms();
107 jvms->set_bci(bci()); // Record the new bci in the JVMState
108 jvms->set_sp(reexecute_sp()); // Record the new sp in the JVMState
109 return jvms;
110}
111
112#ifdef ASSERT
113bool GraphKit::jvms_in_sync() const {
114 Parse* parse = is_Parse();
115 if (parse == NULL) {
116 if (bci() != jvms()->bci()) return false;
117 if (sp() != (int)jvms()->sp()) return false;
118 return true;
119 }
120 if (jvms()->method() != parse->method()) return false;
121 if (jvms()->bci() != parse->bci()) return false;
122 int jvms_sp = jvms()->sp();
123 if (jvms_sp != parse->sp()) return false;
124 int jvms_depth = jvms()->depth();
125 if (jvms_depth != parse->depth()) return false;
126 return true;
127}
128
129// Local helper checks for special internal merge points
130// used to accumulate and merge exception states.
131// They are marked by the region's in(0) edge being the map itself.
132// Such merge points must never "escape" into the parser at large,
133// until they have been handed to gvn.transform.
134static bool is_hidden_merge(Node* reg) {
135 if (reg == NULL) return false;
136 if (reg->is_Phi()) {
137 reg = reg->in(0);
138 if (reg == NULL) return false;
139 }
140 return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
141}
142
143void GraphKit::verify_map() const {
144 if (map() == NULL) return; // null map is OK
145 assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
146 assert(!map()->has_exceptions(), "call add_exception_states_from 1st");
147 assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
148}
149
150void GraphKit::verify_exception_state(SafePointNode* ex_map) {
151 assert(ex_map->next_exception() == NULL, "not already part of a chain");
152 assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
153}
154#endif
155
156//---------------------------stop_and_kill_map---------------------------------
157// Set _map to NULL, signalling a stop to further bytecode execution.
158// First smash the current map's control to a constant, to mark it dead.
159void GraphKit::stop_and_kill_map() {
160 SafePointNode* dead_map = stop();
161 if (dead_map != NULL) {
162 dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
163 assert(dead_map->is_killed(), "must be so marked");
164 }
165}
166
167
168//--------------------------------stopped--------------------------------------
169// Tell if _map is NULL, or control is top.
170bool GraphKit::stopped() {
171 if (map() == NULL) return true;
172 else if (control() == top()) return true;
173 else return false;
174}
175
176
177//-----------------------------has_ex_handler----------------------------------
178// Tell if this method or any caller method has exception handlers.
179bool GraphKit::has_ex_handler() {
180 for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
181 if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
182 return true;
183 }
184 }
185 return false;
186}
187
188//------------------------------save_ex_oop------------------------------------
189// Save an exception without blowing stack contents or other JVM state.
190void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
191 assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
192 ex_map->add_req(ex_oop);
193 debug_only(verify_exception_state(ex_map));
194}
195
196inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
197 assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
198 Node* ex_oop = ex_map->in(ex_map->req()-1);
199 if (clear_it) ex_map->del_req(ex_map->req()-1);
200 return ex_oop;
201}
202
203//-----------------------------saved_ex_oop------------------------------------
204// Recover a saved exception from its map.
205Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
206 return common_saved_ex_oop(ex_map, false);
207}
208
209//--------------------------clear_saved_ex_oop---------------------------------
210// Erase a previously saved exception from its map.
211Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
212 return common_saved_ex_oop(ex_map, true);
213}
214
215#ifdef ASSERT
216//---------------------------has_saved_ex_oop----------------------------------
217// Erase a previously saved exception from its map.
218bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
219 return ex_map->req() == ex_map->jvms()->endoff()+1;
220}
221#endif
222
223//-------------------------make_exception_state--------------------------------
224// Turn the current JVM state into an exception state, appending the ex_oop.
225SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
226 sync_jvms();
227 SafePointNode* ex_map = stop(); // do not manipulate this map any more
228 set_saved_ex_oop(ex_map, ex_oop);
229 return ex_map;
230}
231
232
233//--------------------------add_exception_state--------------------------------
234// Add an exception to my list of exceptions.
235void GraphKit::add_exception_state(SafePointNode* ex_map) {
236 if (ex_map == NULL || ex_map->control() == top()) {
237 return;
238 }
239#ifdef ASSERT
240 verify_exception_state(ex_map);
241 if (has_exceptions()) {
242 assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
243 }
244#endif
245
246 // If there is already an exception of exactly this type, merge with it.
247 // In particular, null-checks and other low-level exceptions common up here.
248 Node* ex_oop = saved_ex_oop(ex_map);
249 const Type* ex_type = _gvn.type(ex_oop);
250 if (ex_oop == top()) {
251 // No action needed.
252 return;
253 }
254 assert(ex_type->isa_instptr(), "exception must be an instance");
255 for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
256 const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
257 // We check sp also because call bytecodes can generate exceptions
258 // both before and after arguments are popped!
259 if (ex_type2 == ex_type
260 && e2->_jvms->sp() == ex_map->_jvms->sp()) {
261 combine_exception_states(ex_map, e2);
262 return;
263 }
264 }
265
266 // No pre-existing exception of the same type. Chain it on the list.
267 push_exception_state(ex_map);
268}
269
270//-----------------------add_exception_states_from-----------------------------
271void GraphKit::add_exception_states_from(JVMState* jvms) {
272 SafePointNode* ex_map = jvms->map()->next_exception();
273 if (ex_map != NULL) {
274 jvms->map()->set_next_exception(NULL);
275 for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
276 next_map = ex_map->next_exception();
277 ex_map->set_next_exception(NULL);
278 add_exception_state(ex_map);
279 }
280 }
281}
282
283//-----------------------transfer_exceptions_into_jvms-------------------------
284JVMState* GraphKit::transfer_exceptions_into_jvms() {
285 if (map() == NULL) {
286 // We need a JVMS to carry the exceptions, but the map has gone away.
287 // Create a scratch JVMS, cloned from any of the exception states...
288 if (has_exceptions()) {
289 _map = _exceptions;
290 _map = clone_map();
291 _map->set_next_exception(NULL);
292 clear_saved_ex_oop(_map);
293 debug_only(verify_map());
294 } else {
295 // ...or created from scratch
296 JVMState* jvms = new (C) JVMState(_method, NULL);
297 jvms->set_bci(_bci);
298 jvms->set_sp(_sp);
299 jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
300 set_jvms(jvms);
301 for (uint i = 0; i < map()->req(); i++) map()->init_req(i, top());
302 set_all_memory(top());
303 while (map()->req() < jvms->endoff()) map()->add_req(top());
304 }
305 // (This is a kludge, in case you didn't notice.)
306 set_control(top());
307 }
308 JVMState* jvms = sync_jvms();
309 assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
310 jvms->map()->set_next_exception(_exceptions);
311 _exceptions = NULL; // done with this set of exceptions
312 return jvms;
313}
314
315static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
316 assert(is_hidden_merge(dstphi), "must be a special merge node");
317 assert(is_hidden_merge(srcphi), "must be a special merge node");
318 uint limit = srcphi->req();
319 for (uint i = PhiNode::Input; i < limit; i++) {
320 dstphi->add_req(srcphi->in(i));
321 }
322}
323static inline void add_one_req(Node* dstphi, Node* src) {
324 assert(is_hidden_merge(dstphi), "must be a special merge node");
325 assert(!is_hidden_merge(src), "must not be a special merge node");
326 dstphi->add_req(src);
327}
328
329//-----------------------combine_exception_states------------------------------
330// This helper function combines exception states by building phis on a
331// specially marked state-merging region. These regions and phis are
332// untransformed, and can build up gradually. The region is marked by
333// having a control input of its exception map, rather than NULL. Such
334// regions do not appear except in this function, and in use_exception_state.
335void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
336 if (failing()) return; // dying anyway...
337 JVMState* ex_jvms = ex_map->_jvms;
338 assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
339 assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
340 assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
341 assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
342 assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
343 assert(ex_map->req() == phi_map->req(), "matching maps");
344 uint tos = ex_jvms->stkoff() + ex_jvms->sp();
345 Node* hidden_merge_mark = root();
346 Node* region = phi_map->control();
347 MergeMemNode* phi_mem = phi_map->merged_memory();
348 MergeMemNode* ex_mem = ex_map->merged_memory();
349 if (region->in(0) != hidden_merge_mark) {
350 // The control input is not (yet) a specially-marked region in phi_map.
351 // Make it so, and build some phis.
352 region = new RegionNode(2);
353 _gvn.set_type(region, Type::CONTROL);
354 region->set_req(0, hidden_merge_mark); // marks an internal ex-state
355 region->init_req(1, phi_map->control());
356 phi_map->set_control(region);
357 Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
358 record_for_igvn(io_phi);
359 _gvn.set_type(io_phi, Type::ABIO);
360 phi_map->set_i_o(io_phi);
361 for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
362 Node* m = mms.memory();
363 Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
364 record_for_igvn(m_phi);
365 _gvn.set_type(m_phi, Type::MEMORY);
366 mms.set_memory(m_phi);
367 }
368 }
369
370 // Either or both of phi_map and ex_map might already be converted into phis.
371 Node* ex_control = ex_map->control();
372 // if there is special marking on ex_map also, we add multiple edges from src
373 bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
374 // how wide was the destination phi_map, originally?
375 uint orig_width = region->req();
376
377 if (add_multiple) {
378 add_n_reqs(region, ex_control);
379 add_n_reqs(phi_map->i_o(), ex_map->i_o());
380 } else {
381 // ex_map has no merges, so we just add single edges everywhere
382 add_one_req(region, ex_control);
383 add_one_req(phi_map->i_o(), ex_map->i_o());
384 }
385 for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
386 if (mms.is_empty()) {
387 // get a copy of the base memory, and patch some inputs into it
388 const TypePtr* adr_type = mms.adr_type(C);
389 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
390 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
391 mms.set_memory(phi);
392 // Prepare to append interesting stuff onto the newly sliced phi:
393 while (phi->req() > orig_width) phi->del_req(phi->req()-1);
394 }
395 // Append stuff from ex_map:
396 if (add_multiple) {
397 add_n_reqs(mms.memory(), mms.memory2());
398 } else {
399 add_one_req(mms.memory(), mms.memory2());
400 }
401 }
402 uint limit = ex_map->req();
403 for (uint i = TypeFunc::Parms; i < limit; i++) {
404 // Skip everything in the JVMS after tos. (The ex_oop follows.)
405 if (i == tos) i = ex_jvms->monoff();
406 Node* src = ex_map->in(i);
407 Node* dst = phi_map->in(i);
408 if (src != dst) {
409 PhiNode* phi;
410 if (dst->in(0) != region) {
411 dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
412 record_for_igvn(phi);
413 _gvn.set_type(phi, phi->type());
414 phi_map->set_req(i, dst);
415 // Prepare to append interesting stuff onto the new phi:
416 while (dst->req() > orig_width) dst->del_req(dst->req()-1);
417 } else {
418 assert(dst->is_Phi(), "nobody else uses a hidden region");
419 phi = dst->as_Phi();
420 }
421 if (add_multiple && src->in(0) == ex_control) {
422 // Both are phis.
423 add_n_reqs(dst, src);
424 } else {
425 while (dst->req() < region->req()) add_one_req(dst, src);
426 }
427 const Type* srctype = _gvn.type(src);
428 if (phi->type() != srctype) {
429 const Type* dsttype = phi->type()->meet_speculative(srctype);
430 if (phi->type() != dsttype) {
431 phi->set_type(dsttype);
432 _gvn.set_type(phi, dsttype);
433 }
434 }
435 }
436 }
437 phi_map->merge_replaced_nodes_with(ex_map);
438}
439
440//--------------------------use_exception_state--------------------------------
441Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
442 if (failing()) { stop(); return top(); }
443 Node* region = phi_map->control();
444 Node* hidden_merge_mark = root();
445 assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
446 Node* ex_oop = clear_saved_ex_oop(phi_map);
447 if (region->in(0) == hidden_merge_mark) {
448 // Special marking for internal ex-states. Process the phis now.
449 region->set_req(0, region); // now it's an ordinary region
450 set_jvms(phi_map->jvms()); // ...so now we can use it as a map
451 // Note: Setting the jvms also sets the bci and sp.
452 set_control(_gvn.transform(region));
453 uint tos = jvms()->stkoff() + sp();
454 for (uint i = 1; i < tos; i++) {
455 Node* x = phi_map->in(i);
456 if (x->in(0) == region) {
457 assert(x->is_Phi(), "expected a special phi");
458 phi_map->set_req(i, _gvn.transform(x));
459 }
460 }
461 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
462 Node* x = mms.memory();
463 if (x->in(0) == region) {
464 assert(x->is_Phi(), "nobody else uses a hidden region");
465 mms.set_memory(_gvn.transform(x));
466 }
467 }
468 if (ex_oop->in(0) == region) {
469 assert(ex_oop->is_Phi(), "expected a special phi");
470 ex_oop = _gvn.transform(ex_oop);
471 }
472 } else {
473 set_jvms(phi_map->jvms());
474 }
475
476 assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
477 assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
478 return ex_oop;
479}
480
481//---------------------------------java_bc-------------------------------------
482Bytecodes::Code GraphKit::java_bc() const {
483 ciMethod* method = this->method();
484 int bci = this->bci();
485 if (method != NULL && bci != InvocationEntryBci)
486 return method->java_code_at_bci(bci);
487 else
488 return Bytecodes::_illegal;
489}
490
491void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
492 bool must_throw) {
493 // if the exception capability is set, then we will generate code
494 // to check the JavaThread.should_post_on_exceptions flag to see
495 // if we actually need to report exception events (for this
496 // thread). If we don't need to report exception events, we will
497 // take the normal fast path provided by add_exception_events. If
498 // exception event reporting is enabled for this thread, we will
499 // take the uncommon_trap in the BuildCutout below.
500
501 // first must access the should_post_on_exceptions_flag in this thread's JavaThread
502 Node* jthread = _gvn.transform(new ThreadLocalNode());
503 Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
504 Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
505
506 // Test the should_post_on_exceptions_flag vs. 0
507 Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
508 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
509
510 // Branch to slow_path if should_post_on_exceptions_flag was true
511 { BuildCutout unless(this, tst, PROB_MAX);
512 // Do not try anything fancy if we're notifying the VM on every throw.
513 // Cf. case Bytecodes::_athrow in parse2.cpp.
514 uncommon_trap(reason, Deoptimization::Action_none,
515 (ciKlass*)NULL, (char*)NULL, must_throw);
516 }
517
518}
519
520//------------------------------builtin_throw----------------------------------
521void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
522 bool must_throw = true;
523
524 if (env()->jvmti_can_post_on_exceptions()) {
525 // check if we must post exception events, take uncommon trap if so
526 uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
527 // here if should_post_on_exceptions is false
528 // continue on with the normal codegen
529 }
530
531 // If this particular condition has not yet happened at this
532 // bytecode, then use the uncommon trap mechanism, and allow for
533 // a future recompilation if several traps occur here.
534 // If the throw is hot, try to use a more complicated inline mechanism
535 // which keeps execution inside the compiled code.
536 bool treat_throw_as_hot = false;
537 ciMethodData* md = method()->method_data();
538
539 if (ProfileTraps) {
540 if (too_many_traps(reason)) {
541 treat_throw_as_hot = true;
542 }
543 // (If there is no MDO at all, assume it is early in
544 // execution, and that any deopts are part of the
545 // startup transient, and don't need to be remembered.)
546
547 // Also, if there is a local exception handler, treat all throws
548 // as hot if there has been at least one in this method.
549 if (C->trap_count(reason) != 0
550 && method()->method_data()->trap_count(reason) != 0
551 && has_ex_handler()) {
552 treat_throw_as_hot = true;
553 }
554 }
555
556 // If this throw happens frequently, an uncommon trap might cause
557 // a performance pothole. If there is a local exception handler,
558 // and if this particular bytecode appears to be deoptimizing often,
559 // let us handle the throw inline, with a preconstructed instance.
560 // Note: If the deopt count has blown up, the uncommon trap
561 // runtime is going to flush this nmethod, not matter what.
562 if (treat_throw_as_hot
563 && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
564 // If the throw is local, we use a pre-existing instance and
565 // punt on the backtrace. This would lead to a missing backtrace
566 // (a repeat of 4292742) if the backtrace object is ever asked
567 // for its backtrace.
568 // Fixing this remaining case of 4292742 requires some flavor of
569 // escape analysis. Leave that for the future.
570 ciInstance* ex_obj = NULL;
571 switch (reason) {
572 case Deoptimization::Reason_null_check:
573 ex_obj = env()->NullPointerException_instance();
574 break;
575 case Deoptimization::Reason_div0_check:
576 ex_obj = env()->ArithmeticException_instance();
577 break;
578 case Deoptimization::Reason_range_check:
579 ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
580 break;
581 case Deoptimization::Reason_class_check:
582 if (java_bc() == Bytecodes::_aastore) {
583 ex_obj = env()->ArrayStoreException_instance();
584 } else {
585 ex_obj = env()->ClassCastException_instance();
586 }
587 break;
588 default:
589 break;
590 }
591 if (failing()) { stop(); return; } // exception allocation might fail
592 if (ex_obj != NULL) {
593 // Cheat with a preallocated exception object.
594 if (C->log() != NULL)
595 C->log()->elem("hot_throw preallocated='1' reason='%s'",
596 Deoptimization::trap_reason_name(reason));
597 const TypeInstPtr* ex_con = TypeInstPtr::make(ex_obj);
598 Node* ex_node = _gvn.transform(ConNode::make(ex_con));
599
600 // Clear the detail message of the preallocated exception object.
601 // Weblogic sometimes mutates the detail message of exceptions
602 // using reflection.
603 int offset = java_lang_Throwable::get_detailMessage_offset();
604 const TypePtr* adr_typ = ex_con->add_offset(offset);
605
606 Node *adr = basic_plus_adr(ex_node, ex_node, offset);
607 const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
608 Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
609
610 add_exception_state(make_exception_state(ex_node));
611 return;
612 }
613 }
614
615 // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
616 // It won't be much cheaper than bailing to the interp., since we'll
617 // have to pass up all the debug-info, and the runtime will have to
618 // create the stack trace.
619
620 // Usual case: Bail to interpreter.
621 // Reserve the right to recompile if we haven't seen anything yet.
622
623 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
624 Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
625 if (treat_throw_as_hot
626 && (method()->method_data()->trap_recompiled_at(bci(), m)
627 || C->too_many_traps(reason))) {
628 // We cannot afford to take more traps here. Suffer in the interpreter.
629 if (C->log() != NULL)
630 C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
631 Deoptimization::trap_reason_name(reason),
632 C->trap_count(reason));
633 action = Deoptimization::Action_none;
634 }
635
636 // "must_throw" prunes the JVM state to include only the stack, if there
637 // are no local exception handlers. This should cut down on register
638 // allocation time and code size, by drastically reducing the number
639 // of in-edges on the call to the uncommon trap.
640
641 uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
642}
643
644
645//----------------------------PreserveJVMState---------------------------------
646PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
647 debug_only(kit->verify_map());
648 _kit = kit;
649 _map = kit->map(); // preserve the map
650 _sp = kit->sp();
651 kit->set_map(clone_map ? kit->clone_map() : NULL);
652#ifdef ASSERT
653 _bci = kit->bci();
654 Parse* parser = kit->is_Parse();
655 int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
656 _block = block;
657#endif
658}
659PreserveJVMState::~PreserveJVMState() {
660 GraphKit* kit = _kit;
661#ifdef ASSERT
662 assert(kit->bci() == _bci, "bci must not shift");
663 Parse* parser = kit->is_Parse();
664 int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
665 assert(block == _block, "block must not shift");
666#endif
667 kit->set_map(_map);
668 kit->set_sp(_sp);
669}
670
671
672//-----------------------------BuildCutout-------------------------------------
673BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
674 : PreserveJVMState(kit)
675{
676 assert(p->is_Con() || p->is_Bool(), "test must be a bool");
677 SafePointNode* outer_map = _map; // preserved map is caller's
678 SafePointNode* inner_map = kit->map();
679 IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
680 outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
681 inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
682}
683BuildCutout::~BuildCutout() {
684 GraphKit* kit = _kit;
685 assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
686}
687
688//---------------------------PreserveReexecuteState----------------------------
689PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
690 assert(!kit->stopped(), "must call stopped() before");
691 _kit = kit;
692 _sp = kit->sp();
693 _reexecute = kit->jvms()->_reexecute;
694}
695PreserveReexecuteState::~PreserveReexecuteState() {
696 if (_kit->stopped()) return;
697 _kit->jvms()->_reexecute = _reexecute;
698 _kit->set_sp(_sp);
699}
700
701//------------------------------clone_map--------------------------------------
702// Implementation of PreserveJVMState
703//
704// Only clone_map(...) here. If this function is only used in the
705// PreserveJVMState class we may want to get rid of this extra
706// function eventually and do it all there.
707
708SafePointNode* GraphKit::clone_map() {
709 if (map() == NULL) return NULL;
710
711 // Clone the memory edge first
712 Node* mem = MergeMemNode::make(map()->memory());
713 gvn().set_type_bottom(mem);
714
715 SafePointNode *clonemap = (SafePointNode*)map()->clone();
716 JVMState* jvms = this->jvms();
717 JVMState* clonejvms = jvms->clone_shallow(C);
718 clonemap->set_memory(mem);
719 clonemap->set_jvms(clonejvms);
720 clonejvms->set_map(clonemap);
721 record_for_igvn(clonemap);
722 gvn().set_type_bottom(clonemap);
723 return clonemap;
724}
725
726
727//-----------------------------set_map_clone-----------------------------------
728void GraphKit::set_map_clone(SafePointNode* m) {
729 _map = m;
730 _map = clone_map();
731 _map->set_next_exception(NULL);
732 debug_only(verify_map());
733}
734
735
736//----------------------------kill_dead_locals---------------------------------
737// Detect any locals which are known to be dead, and force them to top.
738void GraphKit::kill_dead_locals() {
739 // Consult the liveness information for the locals. If any
740 // of them are unused, then they can be replaced by top(). This
741 // should help register allocation time and cut down on the size
742 // of the deoptimization information.
743
744 // This call is made from many of the bytecode handling
745 // subroutines called from the Big Switch in do_one_bytecode.
746 // Every bytecode which might include a slow path is responsible
747 // for killing its dead locals. The more consistent we
748 // are about killing deads, the fewer useless phis will be
749 // constructed for them at various merge points.
750
751 // bci can be -1 (InvocationEntryBci). We return the entry
752 // liveness for the method.
753
754 if (method() == NULL || method()->code_size() == 0) {
755 // We are building a graph for a call to a native method.
756 // All locals are live.
757 return;
758 }
759
760 ResourceMark rm;
761
762 // Consult the liveness information for the locals. If any
763 // of them are unused, then they can be replaced by top(). This
764 // should help register allocation time and cut down on the size
765 // of the deoptimization information.
766 MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
767
768 int len = (int)live_locals.size();
769 assert(len <= jvms()->loc_size(), "too many live locals");
770 for (int local = 0; local < len; local++) {
771 if (!live_locals.at(local)) {
772 set_local(local, top());
773 }
774 }
775}
776
777#ifdef ASSERT
778//-------------------------dead_locals_are_killed------------------------------
779// Return true if all dead locals are set to top in the map.
780// Used to assert "clean" debug info at various points.
781bool GraphKit::dead_locals_are_killed() {
782 if (method() == NULL || method()->code_size() == 0) {
783 // No locals need to be dead, so all is as it should be.
784 return true;
785 }
786
787 // Make sure somebody called kill_dead_locals upstream.
788 ResourceMark rm;
789 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
790 if (jvms->loc_size() == 0) continue; // no locals to consult
791 SafePointNode* map = jvms->map();
792 ciMethod* method = jvms->method();
793 int bci = jvms->bci();
794 if (jvms == this->jvms()) {
795 bci = this->bci(); // it might not yet be synched
796 }
797 MethodLivenessResult live_locals = method->liveness_at_bci(bci);
798 int len = (int)live_locals.size();
799 if (!live_locals.is_valid() || len == 0)
800 // This method is trivial, or is poisoned by a breakpoint.
801 return true;
802 assert(len == jvms->loc_size(), "live map consistent with locals map");
803 for (int local = 0; local < len; local++) {
804 if (!live_locals.at(local) && map->local(jvms, local) != top()) {
805 if (PrintMiscellaneous && (Verbose || WizardMode)) {
806 tty->print_cr("Zombie local %d: ", local);
807 jvms->dump();
808 }
809 return false;
810 }
811 }
812 }
813 return true;
814}
815
816#endif //ASSERT
817
818// Helper function for enforcing certain bytecodes to reexecute if
819// deoptimization happens
820static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
821 ciMethod* cur_method = jvms->method();
822 int cur_bci = jvms->bci();
823 if (cur_method != NULL && cur_bci != InvocationEntryBci) {
824 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
825 return Interpreter::bytecode_should_reexecute(code) ||
826 (is_anewarray && code == Bytecodes::_multianewarray);
827 // Reexecute _multianewarray bytecode which was replaced with
828 // sequence of [a]newarray. See Parse::do_multianewarray().
829 //
830 // Note: interpreter should not have it set since this optimization
831 // is limited by dimensions and guarded by flag so in some cases
832 // multianewarray() runtime calls will be generated and
833 // the bytecode should not be reexecutes (stack will not be reset).
834 } else
835 return false;
836}
837
838// Helper function for adding JVMState and debug information to node
839void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
840 // Add the safepoint edges to the call (or other safepoint).
841
842 // Make sure dead locals are set to top. This
843 // should help register allocation time and cut down on the size
844 // of the deoptimization information.
845 assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
846
847 // Walk the inline list to fill in the correct set of JVMState's
848 // Also fill in the associated edges for each JVMState.
849
850 // If the bytecode needs to be reexecuted we need to put
851 // the arguments back on the stack.
852 const bool should_reexecute = jvms()->should_reexecute();
853 JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
854
855 // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
856 // undefined if the bci is different. This is normal for Parse but it
857 // should not happen for LibraryCallKit because only one bci is processed.
858 assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
859 "in LibraryCallKit the reexecute bit should not change");
860
861 // If we are guaranteed to throw, we can prune everything but the
862 // input to the current bytecode.
863 bool can_prune_locals = false;
864 uint stack_slots_not_pruned = 0;
865 int inputs = 0, depth = 0;
866 if (must_throw) {
867 assert(method() == youngest_jvms->method(), "sanity");
868 if (compute_stack_effects(inputs, depth)) {
869 can_prune_locals = true;
870 stack_slots_not_pruned = inputs;
871 }
872 }
873
874 if (env()->should_retain_local_variables()) {
875 // At any safepoint, this method can get breakpointed, which would
876 // then require an immediate deoptimization.
877 can_prune_locals = false; // do not prune locals
878 stack_slots_not_pruned = 0;
879 }
880
881 // do not scribble on the input jvms
882 JVMState* out_jvms = youngest_jvms->clone_deep(C);
883 call->set_jvms(out_jvms); // Start jvms list for call node
884
885 // For a known set of bytecodes, the interpreter should reexecute them if
886 // deoptimization happens. We set the reexecute state for them here
887 if (out_jvms->is_reexecute_undefined() && //don't change if already specified
888 should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
889 out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
890 }
891
892 // Presize the call:
893 DEBUG_ONLY(uint non_debug_edges = call->req());
894 call->add_req_batch(top(), youngest_jvms->debug_depth());
895 assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
896
897 // Set up edges so that the call looks like this:
898 // Call [state:] ctl io mem fptr retadr
899 // [parms:] parm0 ... parmN
900 // [root:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
901 // [...mid:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
902 // [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
903 // Note that caller debug info precedes callee debug info.
904
905 // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
906 uint debug_ptr = call->req();
907
908 // Loop over the map input edges associated with jvms, add them
909 // to the call node, & reset all offsets to match call node array.
910 for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
911 uint debug_end = debug_ptr;
912 uint debug_start = debug_ptr - in_jvms->debug_size();
913 debug_ptr = debug_start; // back up the ptr
914
915 uint p = debug_start; // walks forward in [debug_start, debug_end)
916 uint j, k, l;
917 SafePointNode* in_map = in_jvms->map();
918 out_jvms->set_map(call);
919
920 if (can_prune_locals) {
921 assert(in_jvms->method() == out_jvms->method(), "sanity");
922 // If the current throw can reach an exception handler in this JVMS,
923 // then we must keep everything live that can reach that handler.
924 // As a quick and dirty approximation, we look for any handlers at all.
925 if (in_jvms->method()->has_exception_handlers()) {
926 can_prune_locals = false;
927 }
928 }
929
930 // Add the Locals
931 k = in_jvms->locoff();
932 l = in_jvms->loc_size();
933 out_jvms->set_locoff(p);
934 if (!can_prune_locals) {
935 for (j = 0; j < l; j++)
936 call->set_req(p++, in_map->in(k+j));
937 } else {
938 p += l; // already set to top above by add_req_batch
939 }
940
941 // Add the Expression Stack
942 k = in_jvms->stkoff();
943 l = in_jvms->sp();
944 out_jvms->set_stkoff(p);
945 if (!can_prune_locals) {
946 for (j = 0; j < l; j++)
947 call->set_req(p++, in_map->in(k+j));
948 } else if (can_prune_locals && stack_slots_not_pruned != 0) {
949 // Divide stack into {S0,...,S1}, where S0 is set to top.
950 uint s1 = stack_slots_not_pruned;
951 stack_slots_not_pruned = 0; // for next iteration
952 if (s1 > l) s1 = l;
953 uint s0 = l - s1;
954 p += s0; // skip the tops preinstalled by add_req_batch
955 for (j = s0; j < l; j++)
956 call->set_req(p++, in_map->in(k+j));
957 } else {
958 p += l; // already set to top above by add_req_batch
959 }
960
961 // Add the Monitors
962 k = in_jvms->monoff();
963 l = in_jvms->mon_size();
964 out_jvms->set_monoff(p);
965 for (j = 0; j < l; j++)
966 call->set_req(p++, in_map->in(k+j));
967
968 // Copy any scalar object fields.
969 k = in_jvms->scloff();
970 l = in_jvms->scl_size();
971 out_jvms->set_scloff(p);
972 for (j = 0; j < l; j++)
973 call->set_req(p++, in_map->in(k+j));
974
975 // Finish the new jvms.
976 out_jvms->set_endoff(p);
977
978 assert(out_jvms->endoff() == debug_end, "fill ptr must match");
979 assert(out_jvms->depth() == in_jvms->depth(), "depth must match");
980 assert(out_jvms->loc_size() == in_jvms->loc_size(), "size must match");
981 assert(out_jvms->mon_size() == in_jvms->mon_size(), "size must match");
982 assert(out_jvms->scl_size() == in_jvms->scl_size(), "size must match");
983 assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
984
985 // Update the two tail pointers in parallel.
986 out_jvms = out_jvms->caller();
987 in_jvms = in_jvms->caller();
988 }
989
990 assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
991
992 // Test the correctness of JVMState::debug_xxx accessors:
993 assert(call->jvms()->debug_start() == non_debug_edges, "");
994 assert(call->jvms()->debug_end() == call->req(), "");
995 assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
996}
997
998bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
999 Bytecodes::Code code = java_bc();
1000 if (code == Bytecodes::_wide) {
1001 code = method()->java_code_at_bci(bci() + 1);
1002 }
1003
1004 BasicType rtype = T_ILLEGAL;
1005 int rsize = 0;
1006
1007 if (code != Bytecodes::_illegal) {
1008 depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1009 rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1010 if (rtype < T_CONFLICT)
1011 rsize = type2size[rtype];
1012 }
1013
1014 switch (code) {
1015 case Bytecodes::_illegal:
1016 return false;
1017
1018 case Bytecodes::_ldc:
1019 case Bytecodes::_ldc_w:
1020 case Bytecodes::_ldc2_w:
1021 inputs = 0;
1022 break;
1023
1024 case Bytecodes::_dup: inputs = 1; break;
1025 case Bytecodes::_dup_x1: inputs = 2; break;
1026 case Bytecodes::_dup_x2: inputs = 3; break;
1027 case Bytecodes::_dup2: inputs = 2; break;
1028 case Bytecodes::_dup2_x1: inputs = 3; break;
1029 case Bytecodes::_dup2_x2: inputs = 4; break;
1030 case Bytecodes::_swap: inputs = 2; break;
1031 case Bytecodes::_arraylength: inputs = 1; break;
1032
1033 case Bytecodes::_getstatic:
1034 case Bytecodes::_putstatic:
1035 case Bytecodes::_getfield:
1036 case Bytecodes::_putfield:
1037 {
1038 bool ignored_will_link;
1039 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1040 int size = field->type()->size();
1041 bool is_get = (depth >= 0), is_static = (depth & 1);
1042 inputs = (is_static ? 0 : 1);
1043 if (is_get) {
1044 depth = size - inputs;
1045 } else {
1046 inputs += size; // putxxx pops the value from the stack
1047 depth = - inputs;
1048 }
1049 }
1050 break;
1051
1052 case Bytecodes::_invokevirtual:
1053 case Bytecodes::_invokespecial:
1054 case Bytecodes::_invokestatic:
1055 case Bytecodes::_invokedynamic:
1056 case Bytecodes::_invokeinterface:
1057 {
1058 bool ignored_will_link;
1059 ciSignature* declared_signature = NULL;
1060 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1061 assert(declared_signature != NULL, "cannot be null");
1062 inputs = declared_signature->arg_size_for_bc(code);
1063 int size = declared_signature->return_type()->size();
1064 depth = size - inputs;
1065 }
1066 break;
1067
1068 case Bytecodes::_multianewarray:
1069 {
1070 ciBytecodeStream iter(method());
1071 iter.reset_to_bci(bci());
1072 iter.next();
1073 inputs = iter.get_dimensions();
1074 assert(rsize == 1, "");
1075 depth = rsize - inputs;
1076 }
1077 break;
1078
1079 case Bytecodes::_ireturn:
1080 case Bytecodes::_lreturn:
1081 case Bytecodes::_freturn:
1082 case Bytecodes::_dreturn:
1083 case Bytecodes::_areturn:
1084 assert(rsize == -depth, "");
1085 inputs = rsize;
1086 break;
1087
1088 case Bytecodes::_jsr:
1089 case Bytecodes::_jsr_w:
1090 inputs = 0;
1091 depth = 1; // S.B. depth=1, not zero
1092 break;
1093
1094 default:
1095 // bytecode produces a typed result
1096 inputs = rsize - depth;
1097 assert(inputs >= 0, "");
1098 break;
1099 }
1100
1101#ifdef ASSERT
1102 // spot check
1103 int outputs = depth + inputs;
1104 assert(outputs >= 0, "sanity");
1105 switch (code) {
1106 case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1107 case Bytecodes::_athrow: assert(inputs == 1 && outputs == 0, ""); break;
1108 case Bytecodes::_aload_0: assert(inputs == 0 && outputs == 1, ""); break;
1109 case Bytecodes::_return: assert(inputs == 0 && outputs == 0, ""); break;
1110 case Bytecodes::_drem: assert(inputs == 4 && outputs == 2, ""); break;
1111 default: break;
1112 }
1113#endif //ASSERT
1114
1115 return true;
1116}
1117
1118
1119
1120//------------------------------basic_plus_adr---------------------------------
1121Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1122 // short-circuit a common case
1123 if (offset == intcon(0)) return ptr;
1124 return _gvn.transform( new AddPNode(base, ptr, offset) );
1125}
1126
1127Node* GraphKit::ConvI2L(Node* offset) {
1128 // short-circuit a common case
1129 jint offset_con = find_int_con(offset, Type::OffsetBot);
1130 if (offset_con != Type::OffsetBot) {
1131 return longcon((jlong) offset_con);
1132 }
1133 return _gvn.transform( new ConvI2LNode(offset));
1134}
1135
1136Node* GraphKit::ConvI2UL(Node* offset) {
1137 juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1138 if (offset_con != (juint) Type::OffsetBot) {
1139 return longcon((julong) offset_con);
1140 }
1141 Node* conv = _gvn.transform( new ConvI2LNode(offset));
1142 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1143 return _gvn.transform( new AndLNode(conv, mask) );
1144}
1145
1146Node* GraphKit::ConvL2I(Node* offset) {
1147 // short-circuit a common case
1148 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1149 if (offset_con != (jlong)Type::OffsetBot) {
1150 return intcon((int) offset_con);
1151 }
1152 return _gvn.transform( new ConvL2INode(offset));
1153}
1154
1155//-------------------------load_object_klass-----------------------------------
1156Node* GraphKit::load_object_klass(Node* obj) {
1157 // Special-case a fresh allocation to avoid building nodes:
1158 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1159 if (akls != NULL) return akls;
1160 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1161 return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1162}
1163
1164//-------------------------load_array_length-----------------------------------
1165Node* GraphKit::load_array_length(Node* array) {
1166 // Special-case a fresh allocation to avoid building nodes:
1167 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1168 Node *alen;
1169 if (alloc == NULL) {
1170 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1171 alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1172 } else {
1173 alen = alloc->Ideal_length();
1174 Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1175 if (ccast != alen) {
1176 alen = _gvn.transform(ccast);
1177 }
1178 }
1179 return alen;
1180}
1181
1182//------------------------------do_null_check----------------------------------
1183// Helper function to do a NULL pointer check. Returned value is
1184// the incoming address with NULL casted away. You are allowed to use the
1185// not-null value only if you are control dependent on the test.
1186#ifndef PRODUCT
1187extern int explicit_null_checks_inserted,
1188 explicit_null_checks_elided;
1189#endif
1190Node* GraphKit::null_check_common(Node* value, BasicType type,
1191 // optional arguments for variations:
1192 bool assert_null,
1193 Node* *null_control,
1194 bool speculative) {
1195 assert(!assert_null || null_control == NULL, "not both at once");
1196 if (stopped()) return top();
1197 NOT_PRODUCT(explicit_null_checks_inserted++);
1198
1199 // Construct NULL check
1200 Node *chk = NULL;
1201 switch(type) {
1202 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1203 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break;
1204 case T_ARRAY : // fall through
1205 type = T_OBJECT; // simplify further tests
1206 case T_OBJECT : {
1207 const Type *t = _gvn.type( value );
1208
1209 const TypeOopPtr* tp = t->isa_oopptr();
1210 if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1211 // Only for do_null_check, not any of its siblings:
1212 && !assert_null && null_control == NULL) {
1213 // Usually, any field access or invocation on an unloaded oop type
1214 // will simply fail to link, since the statically linked class is
1215 // likely also to be unloaded. However, in -Xcomp mode, sometimes
1216 // the static class is loaded but the sharper oop type is not.
1217 // Rather than checking for this obscure case in lots of places,
1218 // we simply observe that a null check on an unloaded class
1219 // will always be followed by a nonsense operation, so we
1220 // can just issue the uncommon trap here.
1221 // Our access to the unloaded class will only be correct
1222 // after it has been loaded and initialized, which requires
1223 // a trip through the interpreter.
1224#ifndef PRODUCT
1225 if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1226#endif
1227 uncommon_trap(Deoptimization::Reason_unloaded,
1228 Deoptimization::Action_reinterpret,
1229 tp->klass(), "!loaded");
1230 return top();
1231 }
1232
1233 if (assert_null) {
1234 // See if the type is contained in NULL_PTR.
1235 // If so, then the value is already null.
1236 if (t->higher_equal(TypePtr::NULL_PTR)) {
1237 NOT_PRODUCT(explicit_null_checks_elided++);
1238 return value; // Elided null assert quickly!
1239 }
1240 } else {
1241 // See if mixing in the NULL pointer changes type.
1242 // If so, then the NULL pointer was not allowed in the original
1243 // type. In other words, "value" was not-null.
1244 if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1245 // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1246 NOT_PRODUCT(explicit_null_checks_elided++);
1247 return value; // Elided null check quickly!
1248 }
1249 }
1250 chk = new CmpPNode( value, null() );
1251 break;
1252 }
1253
1254 default:
1255 fatal("unexpected type: %s", type2name(type));
1256 }
1257 assert(chk != NULL, "sanity check");
1258 chk = _gvn.transform(chk);
1259
1260 BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1261 BoolNode *btst = new BoolNode( chk, btest);
1262 Node *tst = _gvn.transform( btst );
1263
1264 //-----------
1265 // if peephole optimizations occurred, a prior test existed.
1266 // If a prior test existed, maybe it dominates as we can avoid this test.
1267 if (tst != btst && type == T_OBJECT) {
1268 // At this point we want to scan up the CFG to see if we can
1269 // find an identical test (and so avoid this test altogether).
1270 Node *cfg = control();
1271 int depth = 0;
1272 while( depth < 16 ) { // Limit search depth for speed
1273 if( cfg->Opcode() == Op_IfTrue &&
1274 cfg->in(0)->in(1) == tst ) {
1275 // Found prior test. Use "cast_not_null" to construct an identical
1276 // CastPP (and hence hash to) as already exists for the prior test.
1277 // Return that casted value.
1278 if (assert_null) {
1279 replace_in_map(value, null());
1280 return null(); // do not issue the redundant test
1281 }
1282 Node *oldcontrol = control();
1283 set_control(cfg);
1284 Node *res = cast_not_null(value);
1285 set_control(oldcontrol);
1286 NOT_PRODUCT(explicit_null_checks_elided++);
1287 return res;
1288 }
1289 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1290 if (cfg == NULL) break; // Quit at region nodes
1291 depth++;
1292 }
1293 }
1294
1295 //-----------
1296 // Branch to failure if null
1297 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen
1298 Deoptimization::DeoptReason reason;
1299 if (assert_null) {
1300 reason = Deoptimization::reason_null_assert(speculative);
1301 } else if (type == T_OBJECT) {
1302 reason = Deoptimization::reason_null_check(speculative);
1303 } else {
1304 reason = Deoptimization::Reason_div0_check;
1305 }
1306 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1307 // ciMethodData::has_trap_at will return a conservative -1 if any
1308 // must-be-null assertion has failed. This could cause performance
1309 // problems for a method after its first do_null_assert failure.
1310 // Consider using 'Reason_class_check' instead?
1311
1312 // To cause an implicit null check, we set the not-null probability
1313 // to the maximum (PROB_MAX). For an explicit check the probability
1314 // is set to a smaller value.
1315 if (null_control != NULL || too_many_traps(reason)) {
1316 // probability is less likely
1317 ok_prob = PROB_LIKELY_MAG(3);
1318 } else if (!assert_null &&
1319 (ImplicitNullCheckThreshold > 0) &&
1320 method() != NULL &&
1321 (method()->method_data()->trap_count(reason)
1322 >= (uint)ImplicitNullCheckThreshold)) {
1323 ok_prob = PROB_LIKELY_MAG(3);
1324 }
1325
1326 if (null_control != NULL) {
1327 IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1328 Node* null_true = _gvn.transform( new IfFalseNode(iff));
1329 set_control( _gvn.transform( new IfTrueNode(iff)));
1330#ifndef PRODUCT
1331 if (null_true == top()) {
1332 explicit_null_checks_elided++;
1333 }
1334#endif
1335 (*null_control) = null_true;
1336 } else {
1337 BuildCutout unless(this, tst, ok_prob);
1338 // Check for optimizer eliding test at parse time
1339 if (stopped()) {
1340 // Failure not possible; do not bother making uncommon trap.
1341 NOT_PRODUCT(explicit_null_checks_elided++);
1342 } else if (assert_null) {
1343 uncommon_trap(reason,
1344 Deoptimization::Action_make_not_entrant,
1345 NULL, "assert_null");
1346 } else {
1347 replace_in_map(value, zerocon(type));
1348 builtin_throw(reason);
1349 }
1350 }
1351
1352 // Must throw exception, fall-thru not possible?
1353 if (stopped()) {
1354 return top(); // No result
1355 }
1356
1357 if (assert_null) {
1358 // Cast obj to null on this path.
1359 replace_in_map(value, zerocon(type));
1360 return zerocon(type);
1361 }
1362
1363 // Cast obj to not-null on this path, if there is no null_control.
1364 // (If there is a null_control, a non-null value may come back to haunt us.)
1365 if (type == T_OBJECT) {
1366 Node* cast = cast_not_null(value, false);
1367 if (null_control == NULL || (*null_control) == top())
1368 replace_in_map(value, cast);
1369 value = cast;
1370 }
1371
1372 return value;
1373}
1374
1375
1376//------------------------------cast_not_null----------------------------------
1377// Cast obj to not-null on this path
1378Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1379 const Type *t = _gvn.type(obj);
1380 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1381 // Object is already not-null?
1382 if( t == t_not_null ) return obj;
1383
1384 Node *cast = new CastPPNode(obj,t_not_null);
1385 cast->init_req(0, control());
1386 cast = _gvn.transform( cast );
1387
1388 // Scan for instances of 'obj' in the current JVM mapping.
1389 // These instances are known to be not-null after the test.
1390 if (do_replace_in_map)
1391 replace_in_map(obj, cast);
1392
1393 return cast; // Return casted value
1394}
1395
1396// Sometimes in intrinsics, we implicitly know an object is not null
1397// (there's no actual null check) so we can cast it to not null. In
1398// the course of optimizations, the input to the cast can become null.
1399// In that case that data path will die and we need the control path
1400// to become dead as well to keep the graph consistent. So we have to
1401// add a check for null for which one branch can't be taken. It uses
1402// an Opaque4 node that will cause the check to be removed after loop
1403// opts so the test goes away and the compiled code doesn't execute a
1404// useless check.
1405Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1406 Node* chk = _gvn.transform(new CmpPNode(value, null()));
1407 Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1408 Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1409 IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1410 _gvn.set_type(iff, iff->Value(&_gvn));
1411 Node *if_f = _gvn.transform(new IfFalseNode(iff));
1412 Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1413 Node *halt = _gvn.transform(new HaltNode(if_f, frame));
1414 C->root()->add_req(halt);
1415 Node *if_t = _gvn.transform(new IfTrueNode(iff));
1416 set_control(if_t);
1417 return cast_not_null(value, do_replace_in_map);
1418}
1419
1420
1421//--------------------------replace_in_map-------------------------------------
1422void GraphKit::replace_in_map(Node* old, Node* neww) {
1423 if (old == neww) {
1424 return;
1425 }
1426
1427 map()->replace_edge(old, neww);
1428
1429 // Note: This operation potentially replaces any edge
1430 // on the map. This includes locals, stack, and monitors
1431 // of the current (innermost) JVM state.
1432
1433 // don't let inconsistent types from profiling escape this
1434 // method
1435
1436 const Type* told = _gvn.type(old);
1437 const Type* tnew = _gvn.type(neww);
1438
1439 if (!tnew->higher_equal(told)) {
1440 return;
1441 }
1442
1443 map()->record_replaced_node(old, neww);
1444}
1445
1446
1447//=============================================================================
1448//--------------------------------memory---------------------------------------
1449Node* GraphKit::memory(uint alias_idx) {
1450 MergeMemNode* mem = merged_memory();
1451 Node* p = mem->memory_at(alias_idx);
1452 _gvn.set_type(p, Type::MEMORY); // must be mapped
1453 return p;
1454}
1455
1456//-----------------------------reset_memory------------------------------------
1457Node* GraphKit::reset_memory() {
1458 Node* mem = map()->memory();
1459 // do not use this node for any more parsing!
1460 debug_only( map()->set_memory((Node*)NULL) );
1461 return _gvn.transform( mem );
1462}
1463
1464//------------------------------set_all_memory---------------------------------
1465void GraphKit::set_all_memory(Node* newmem) {
1466 Node* mergemem = MergeMemNode::make(newmem);
1467 gvn().set_type_bottom(mergemem);
1468 map()->set_memory(mergemem);
1469}
1470
1471//------------------------------set_all_memory_call----------------------------
1472void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1473 Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1474 set_all_memory(newmem);
1475}
1476
1477//=============================================================================
1478//
1479// parser factory methods for MemNodes
1480//
1481// These are layered on top of the factory methods in LoadNode and StoreNode,
1482// and integrate with the parser's memory state and _gvn engine.
1483//
1484
1485// factory methods in "int adr_idx"
1486Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1487 int adr_idx,
1488 MemNode::MemOrd mo,
1489 LoadNode::ControlDependency control_dependency,
1490 bool require_atomic_access,
1491 bool unaligned,
1492 bool mismatched,
1493 bool unsafe) {
1494 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1495 const TypePtr* adr_type = NULL; // debug-mode-only argument
1496 debug_only(adr_type = C->get_adr_type(adr_idx));
1497 Node* mem = memory(adr_idx);
1498 Node* ld;
1499 if (require_atomic_access && bt == T_LONG) {
1500 ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe);
1501 } else if (require_atomic_access && bt == T_DOUBLE) {
1502 ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe);
1503 } else {
1504 ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched, unsafe);
1505 }
1506 ld = _gvn.transform(ld);
1507 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1508 // Improve graph before escape analysis and boxing elimination.
1509 record_for_igvn(ld);
1510 }
1511 return ld;
1512}
1513
1514Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1515 int adr_idx,
1516 MemNode::MemOrd mo,
1517 bool require_atomic_access,
1518 bool unaligned,
1519 bool mismatched,
1520 bool unsafe) {
1521 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1522 const TypePtr* adr_type = NULL;
1523 debug_only(adr_type = C->get_adr_type(adr_idx));
1524 Node *mem = memory(adr_idx);
1525 Node* st;
1526 if (require_atomic_access && bt == T_LONG) {
1527 st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1528 } else if (require_atomic_access && bt == T_DOUBLE) {
1529 st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1530 } else {
1531 st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1532 }
1533 if (unaligned) {
1534 st->as_Store()->set_unaligned_access();
1535 }
1536 if (mismatched) {
1537 st->as_Store()->set_mismatched_access();
1538 }
1539 if (unsafe) {
1540 st->as_Store()->set_unsafe_access();
1541 }
1542 st = _gvn.transform(st);
1543 set_memory(st, adr_idx);
1544 // Back-to-back stores can only remove intermediate store with DU info
1545 // so push on worklist for optimizer.
1546 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1547 record_for_igvn(st);
1548
1549 return st;
1550}
1551
1552Node* GraphKit::access_store_at(Node* obj,
1553 Node* adr,
1554 const TypePtr* adr_type,
1555 Node* val,
1556 const Type* val_type,
1557 BasicType bt,
1558 DecoratorSet decorators) {
1559 // Transformation of a value which could be NULL pointer (CastPP #NULL)
1560 // could be delayed during Parse (for example, in adjust_map_after_if()).
1561 // Execute transformation here to avoid barrier generation in such case.
1562 if (_gvn.type(val) == TypePtr::NULL_PTR) {
1563 val = _gvn.makecon(TypePtr::NULL_PTR);
1564 }
1565
1566 if (stopped()) {
1567 return top(); // Dead path ?
1568 }
1569
1570 assert(val != NULL, "not dead path");
1571
1572 C2AccessValuePtr addr(adr, adr_type);
1573 C2AccessValue value(val, val_type);
1574 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1575 if (access.is_raw()) {
1576 return _barrier_set->BarrierSetC2::store_at(access, value);
1577 } else {
1578 return _barrier_set->store_at(access, value);
1579 }
1580}
1581
1582Node* GraphKit::access_load_at(Node* obj, // containing obj
1583 Node* adr, // actual adress to store val at
1584 const TypePtr* adr_type,
1585 const Type* val_type,
1586 BasicType bt,
1587 DecoratorSet decorators) {
1588 if (stopped()) {
1589 return top(); // Dead path ?
1590 }
1591
1592 C2AccessValuePtr addr(adr, adr_type);
1593 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1594 if (access.is_raw()) {
1595 return _barrier_set->BarrierSetC2::load_at(access, val_type);
1596 } else {
1597 return _barrier_set->load_at(access, val_type);
1598 }
1599}
1600
1601Node* GraphKit::access_load(Node* adr, // actual adress to load val at
1602 const Type* val_type,
1603 BasicType bt,
1604 DecoratorSet decorators) {
1605 if (stopped()) {
1606 return top(); // Dead path ?
1607 }
1608
1609 C2AccessValuePtr addr(adr, NULL);
1610 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, NULL, addr);
1611 if (access.is_raw()) {
1612 return _barrier_set->BarrierSetC2::load_at(access, val_type);
1613 } else {
1614 return _barrier_set->load_at(access, val_type);
1615 }
1616}
1617
1618Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1619 Node* adr,
1620 const TypePtr* adr_type,
1621 int alias_idx,
1622 Node* expected_val,
1623 Node* new_val,
1624 const Type* value_type,
1625 BasicType bt,
1626 DecoratorSet decorators) {
1627 C2AccessValuePtr addr(adr, adr_type);
1628 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1629 bt, obj, addr, alias_idx);
1630 if (access.is_raw()) {
1631 return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1632 } else {
1633 return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1634 }
1635}
1636
1637Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1638 Node* adr,
1639 const TypePtr* adr_type,
1640 int alias_idx,
1641 Node* expected_val,
1642 Node* new_val,
1643 const Type* value_type,
1644 BasicType bt,
1645 DecoratorSet decorators) {
1646 C2AccessValuePtr addr(adr, adr_type);
1647 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1648 bt, obj, addr, alias_idx);
1649 if (access.is_raw()) {
1650 return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1651 } else {
1652 return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1653 }
1654}
1655
1656Node* GraphKit::access_atomic_xchg_at(Node* obj,
1657 Node* adr,
1658 const TypePtr* adr_type,
1659 int alias_idx,
1660 Node* new_val,
1661 const Type* value_type,
1662 BasicType bt,
1663 DecoratorSet decorators) {
1664 C2AccessValuePtr addr(adr, adr_type);
1665 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1666 bt, obj, addr, alias_idx);
1667 if (access.is_raw()) {
1668 return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1669 } else {
1670 return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1671 }
1672}
1673
1674Node* GraphKit::access_atomic_add_at(Node* obj,
1675 Node* adr,
1676 const TypePtr* adr_type,
1677 int alias_idx,
1678 Node* new_val,
1679 const Type* value_type,
1680 BasicType bt,
1681 DecoratorSet decorators) {
1682 C2AccessValuePtr addr(adr, adr_type);
1683 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1684 if (access.is_raw()) {
1685 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1686 } else {
1687 return _barrier_set->atomic_add_at(access, new_val, value_type);
1688 }
1689}
1690
1691void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1692 return _barrier_set->clone(this, src, dst, size, is_array);
1693}
1694
1695Node* GraphKit::access_resolve(Node* n, DecoratorSet decorators) {
1696 // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1697 if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1698 decorators |= ACCESS_READ | ACCESS_WRITE;
1699 }
1700 return _barrier_set->resolve(this, n, decorators);
1701}
1702
1703//-------------------------array_element_address-------------------------
1704Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1705 const TypeInt* sizetype, Node* ctrl) {
1706 uint shift = exact_log2(type2aelembytes(elembt));
1707 uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1708
1709 // short-circuit a common case (saves lots of confusing waste motion)
1710 jint idx_con = find_int_con(idx, -1);
1711 if (idx_con >= 0) {
1712 intptr_t offset = header + ((intptr_t)idx_con << shift);
1713 return basic_plus_adr(ary, offset);
1714 }
1715
1716 // must be correct type for alignment purposes
1717 Node* base = basic_plus_adr(ary, header);
1718 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1719 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1720 return basic_plus_adr(ary, base, scale);
1721}
1722
1723//-------------------------load_array_element-------------------------
1724Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1725 const Type* elemtype = arytype->elem();
1726 BasicType elembt = elemtype->array_element_basic_type();
1727 Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1728 if (elembt == T_NARROWOOP) {
1729 elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1730 }
1731 Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1732 return ld;
1733}
1734
1735//-------------------------set_arguments_for_java_call-------------------------
1736// Arguments (pre-popped from the stack) are taken from the JVMS.
1737void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1738 // Add the call arguments:
1739 uint nargs = call->method()->arg_size();
1740 for (uint i = 0; i < nargs; i++) {
1741 Node* arg = argument(i);
1742 call->init_req(i + TypeFunc::Parms, arg);
1743 }
1744}
1745
1746//---------------------------set_edges_for_java_call---------------------------
1747// Connect a newly created call into the current JVMS.
1748// A return value node (if any) is returned from set_edges_for_java_call.
1749void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1750
1751 // Add the predefined inputs:
1752 call->init_req( TypeFunc::Control, control() );
1753 call->init_req( TypeFunc::I_O , i_o() );
1754 call->init_req( TypeFunc::Memory , reset_memory() );
1755 call->init_req( TypeFunc::FramePtr, frameptr() );
1756 call->init_req( TypeFunc::ReturnAdr, top() );
1757
1758 add_safepoint_edges(call, must_throw);
1759
1760 Node* xcall = _gvn.transform(call);
1761
1762 if (xcall == top()) {
1763 set_control(top());
1764 return;
1765 }
1766 assert(xcall == call, "call identity is stable");
1767
1768 // Re-use the current map to produce the result.
1769
1770 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1771 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj)));
1772 set_all_memory_call(xcall, separate_io_proj);
1773
1774 //return xcall; // no need, caller already has it
1775}
1776
1777Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1778 if (stopped()) return top(); // maybe the call folded up?
1779
1780 // Capture the return value, if any.
1781 Node* ret;
1782 if (call->method() == NULL ||
1783 call->method()->return_type()->basic_type() == T_VOID)
1784 ret = top();
1785 else ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1786
1787 // Note: Since any out-of-line call can produce an exception,
1788 // we always insert an I_O projection from the call into the result.
1789
1790 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1791
1792 if (separate_io_proj) {
1793 // The caller requested separate projections be used by the fall
1794 // through and exceptional paths, so replace the projections for
1795 // the fall through path.
1796 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1797 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1798 }
1799 return ret;
1800}
1801
1802//--------------------set_predefined_input_for_runtime_call--------------------
1803// Reading and setting the memory state is way conservative here.
1804// The real problem is that I am not doing real Type analysis on memory,
1805// so I cannot distinguish card mark stores from other stores. Across a GC
1806// point the Store Barrier and the card mark memory has to agree. I cannot
1807// have a card mark store and its barrier split across the GC point from
1808// either above or below. Here I get that to happen by reading ALL of memory.
1809// A better answer would be to separate out card marks from other memory.
1810// For now, return the input memory state, so that it can be reused
1811// after the call, if this call has restricted memory effects.
1812Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1813 // Set fixed predefined input arguments
1814 Node* memory = reset_memory();
1815 Node* m = narrow_mem == NULL ? memory : narrow_mem;
1816 call->init_req( TypeFunc::Control, control() );
1817 call->init_req( TypeFunc::I_O, top() ); // does no i/o
1818 call->init_req( TypeFunc::Memory, m ); // may gc ptrs
1819 call->init_req( TypeFunc::FramePtr, frameptr() );
1820 call->init_req( TypeFunc::ReturnAdr, top() );
1821 return memory;
1822}
1823
1824//-------------------set_predefined_output_for_runtime_call--------------------
1825// Set control and memory (not i_o) from the call.
1826// If keep_mem is not NULL, use it for the output state,
1827// except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1828// If hook_mem is NULL, this call produces no memory effects at all.
1829// If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1830// then only that memory slice is taken from the call.
1831// In the last case, we must put an appropriate memory barrier before
1832// the call, so as to create the correct anti-dependencies on loads
1833// preceding the call.
1834void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1835 Node* keep_mem,
1836 const TypePtr* hook_mem) {
1837 // no i/o
1838 set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1839 if (keep_mem) {
1840 // First clone the existing memory state
1841 set_all_memory(keep_mem);
1842 if (hook_mem != NULL) {
1843 // Make memory for the call
1844 Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1845 // Set the RawPtr memory state only. This covers all the heap top/GC stuff
1846 // We also use hook_mem to extract specific effects from arraycopy stubs.
1847 set_memory(mem, hook_mem);
1848 }
1849 // ...else the call has NO memory effects.
1850
1851 // Make sure the call advertises its memory effects precisely.
1852 // This lets us build accurate anti-dependences in gcm.cpp.
1853 assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1854 "call node must be constructed correctly");
1855 } else {
1856 assert(hook_mem == NULL, "");
1857 // This is not a "slow path" call; all memory comes from the call.
1858 set_all_memory_call(call);
1859 }
1860}
1861
1862// Keep track of MergeMems feeding into other MergeMems
1863static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
1864 if (!mem->is_MergeMem()) {
1865 return;
1866 }
1867 for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
1868 Node* use = i.get();
1869 if (use->is_MergeMem()) {
1870 wl.push(use);
1871 }
1872 }
1873}
1874
1875// Replace the call with the current state of the kit.
1876void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1877 JVMState* ejvms = NULL;
1878 if (has_exceptions()) {
1879 ejvms = transfer_exceptions_into_jvms();
1880 }
1881
1882 ReplacedNodes replaced_nodes = map()->replaced_nodes();
1883 ReplacedNodes replaced_nodes_exception;
1884 Node* ex_ctl = top();
1885
1886 SafePointNode* final_state = stop();
1887
1888 // Find all the needed outputs of this call
1889 CallProjections callprojs;
1890 call->extract_projections(&callprojs, true);
1891
1892 Unique_Node_List wl;
1893 Node* init_mem = call->in(TypeFunc::Memory);
1894 Node* final_mem = final_state->in(TypeFunc::Memory);
1895 Node* final_ctl = final_state->in(TypeFunc::Control);
1896 Node* final_io = final_state->in(TypeFunc::I_O);
1897
1898 // Replace all the old call edges with the edges from the inlining result
1899 if (callprojs.fallthrough_catchproj != NULL) {
1900 C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1901 }
1902 if (callprojs.fallthrough_memproj != NULL) {
1903 if (final_mem->is_MergeMem()) {
1904 // Parser's exits MergeMem was not transformed but may be optimized
1905 final_mem = _gvn.transform(final_mem);
1906 }
1907 C->gvn_replace_by(callprojs.fallthrough_memproj, final_mem);
1908 add_mergemem_users_to_worklist(wl, final_mem);
1909 }
1910 if (callprojs.fallthrough_ioproj != NULL) {
1911 C->gvn_replace_by(callprojs.fallthrough_ioproj, final_io);
1912 }
1913
1914 // Replace the result with the new result if it exists and is used
1915 if (callprojs.resproj != NULL && result != NULL) {
1916 C->gvn_replace_by(callprojs.resproj, result);
1917 }
1918
1919 if (ejvms == NULL) {
1920 // No exception edges to simply kill off those paths
1921 if (callprojs.catchall_catchproj != NULL) {
1922 C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1923 }
1924 if (callprojs.catchall_memproj != NULL) {
1925 C->gvn_replace_by(callprojs.catchall_memproj, C->top());
1926 }
1927 if (callprojs.catchall_ioproj != NULL) {
1928 C->gvn_replace_by(callprojs.catchall_ioproj, C->top());
1929 }
1930 // Replace the old exception object with top
1931 if (callprojs.exobj != NULL) {
1932 C->gvn_replace_by(callprojs.exobj, C->top());
1933 }
1934 } else {
1935 GraphKit ekit(ejvms);
1936
1937 // Load my combined exception state into the kit, with all phis transformed:
1938 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1939 replaced_nodes_exception = ex_map->replaced_nodes();
1940
1941 Node* ex_oop = ekit.use_exception_state(ex_map);
1942
1943 if (callprojs.catchall_catchproj != NULL) {
1944 C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1945 ex_ctl = ekit.control();
1946 }
1947 if (callprojs.catchall_memproj != NULL) {
1948 Node* ex_mem = ekit.reset_memory();
1949 C->gvn_replace_by(callprojs.catchall_memproj, ex_mem);
1950 add_mergemem_users_to_worklist(wl, ex_mem);
1951 }
1952 if (callprojs.catchall_ioproj != NULL) {
1953 C->gvn_replace_by(callprojs.catchall_ioproj, ekit.i_o());
1954 }
1955
1956 // Replace the old exception object with the newly created one
1957 if (callprojs.exobj != NULL) {
1958 C->gvn_replace_by(callprojs.exobj, ex_oop);
1959 }
1960 }
1961
1962 // Disconnect the call from the graph
1963 call->disconnect_inputs(NULL, C);
1964 C->gvn_replace_by(call, C->top());
1965
1966 // Clean up any MergeMems that feed other MergeMems since the
1967 // optimizer doesn't like that.
1968 while (wl.size() > 0) {
1969 _gvn.transform(wl.pop());
1970 }
1971
1972 if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1973 replaced_nodes.apply(C, final_ctl);
1974 }
1975 if (!ex_ctl->is_top() && do_replaced_nodes) {
1976 replaced_nodes_exception.apply(C, ex_ctl);
1977 }
1978}
1979
1980
1981//------------------------------increment_counter------------------------------
1982// for statistics: increment a VM counter by 1
1983
1984void GraphKit::increment_counter(address counter_addr) {
1985 Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1986 increment_counter(adr1);
1987}
1988
1989void GraphKit::increment_counter(Node* counter_addr) {
1990 int adr_type = Compile::AliasIdxRaw;
1991 Node* ctrl = control();
1992 Node* cnt = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1993 Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1994 store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1995}
1996
1997
1998//------------------------------uncommon_trap----------------------------------
1999// Bail out to the interpreter in mid-method. Implemented by calling the
2000// uncommon_trap blob. This helper function inserts a runtime call with the
2001// right debug info.
2002void GraphKit::uncommon_trap(int trap_request,
2003 ciKlass* klass, const char* comment,
2004 bool must_throw,
2005 bool keep_exact_action) {
2006 if (failing()) stop();
2007 if (stopped()) return; // trap reachable?
2008
2009 // Note: If ProfileTraps is true, and if a deopt. actually
2010 // occurs here, the runtime will make sure an MDO exists. There is
2011 // no need to call method()->ensure_method_data() at this point.
2012
2013 // Set the stack pointer to the right value for reexecution:
2014 set_sp(reexecute_sp());
2015
2016#ifdef ASSERT
2017 if (!must_throw) {
2018 // Make sure the stack has at least enough depth to execute
2019 // the current bytecode.
2020 int inputs, ignored_depth;
2021 if (compute_stack_effects(inputs, ignored_depth)) {
2022 assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2023 Bytecodes::name(java_bc()), sp(), inputs);
2024 }
2025 }
2026#endif
2027
2028 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2029 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2030
2031 switch (action) {
2032 case Deoptimization::Action_maybe_recompile:
2033 case Deoptimization::Action_reinterpret:
2034 // Temporary fix for 6529811 to allow virtual calls to be sure they
2035 // get the chance to go from mono->bi->mega
2036 if (!keep_exact_action &&
2037 Deoptimization::trap_request_index(trap_request) < 0 &&
2038 too_many_recompiles(reason)) {
2039 // This BCI is causing too many recompilations.
2040 if (C->log() != NULL) {
2041 C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2042 Deoptimization::trap_reason_name(reason),
2043 Deoptimization::trap_action_name(action));
2044 }
2045 action = Deoptimization::Action_none;
2046 trap_request = Deoptimization::make_trap_request(reason, action);
2047 } else {
2048 C->set_trap_can_recompile(true);
2049 }
2050 break;
2051 case Deoptimization::Action_make_not_entrant:
2052 C->set_trap_can_recompile(true);
2053 break;
2054 case Deoptimization::Action_none:
2055 case Deoptimization::Action_make_not_compilable:
2056 break;
2057 default:
2058#ifdef ASSERT
2059 fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2060#endif
2061 break;
2062 }
2063
2064 if (TraceOptoParse) {
2065 char buf[100];
2066 tty->print_cr("Uncommon trap %s at bci:%d",
2067 Deoptimization::format_trap_request(buf, sizeof(buf),
2068 trap_request), bci());
2069 }
2070
2071 CompileLog* log = C->log();
2072 if (log != NULL) {
2073 int kid = (klass == NULL)? -1: log->identify(klass);
2074 log->begin_elem("uncommon_trap bci='%d'", bci());
2075 char buf[100];
2076 log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2077 trap_request));
2078 if (kid >= 0) log->print(" klass='%d'", kid);
2079 if (comment != NULL) log->print(" comment='%s'", comment);
2080 log->end_elem();
2081 }
2082
2083 // Make sure any guarding test views this path as very unlikely
2084 Node *i0 = control()->in(0);
2085 if (i0 != NULL && i0->is_If()) { // Found a guarding if test?
2086 IfNode *iff = i0->as_If();
2087 float f = iff->_prob; // Get prob
2088 if (control()->Opcode() == Op_IfTrue) {
2089 if (f > PROB_UNLIKELY_MAG(4))
2090 iff->_prob = PROB_MIN;
2091 } else {
2092 if (f < PROB_LIKELY_MAG(4))
2093 iff->_prob = PROB_MAX;
2094 }
2095 }
2096
2097 // Clear out dead values from the debug info.
2098 kill_dead_locals();
2099
2100 // Now insert the uncommon trap subroutine call
2101 address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2102 const TypePtr* no_memory_effects = NULL;
2103 // Pass the index of the class to be loaded
2104 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2105 (must_throw ? RC_MUST_THROW : 0),
2106 OptoRuntime::uncommon_trap_Type(),
2107 call_addr, "uncommon_trap", no_memory_effects,
2108 intcon(trap_request));
2109 assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2110 "must extract request correctly from the graph");
2111 assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2112
2113 call->set_req(TypeFunc::ReturnAdr, returnadr());
2114 // The debug info is the only real input to this call.
2115
2116 // Halt-and-catch fire here. The above call should never return!
2117 HaltNode* halt = new HaltNode(control(), frameptr());
2118 _gvn.set_type_bottom(halt);
2119 root()->add_req(halt);
2120
2121 stop_and_kill_map();
2122}
2123
2124
2125//--------------------------just_allocated_object------------------------------
2126// Report the object that was just allocated.
2127// It must be the case that there are no intervening safepoints.
2128// We use this to determine if an object is so "fresh" that
2129// it does not require card marks.
2130Node* GraphKit::just_allocated_object(Node* current_control) {
2131 Node* ctrl = current_control;
2132 // Object::<init> is invoked after allocation, most of invoke nodes
2133 // will be reduced, but a region node is kept in parse time, we check
2134 // the pattern and skip the region node if it degraded to a copy.
2135 if (ctrl != NULL && ctrl->is_Region() && ctrl->req() == 2 &&
2136 ctrl->as_Region()->is_copy()) {
2137 ctrl = ctrl->as_Region()->is_copy();
2138 }
2139 if (C->recent_alloc_ctl() == ctrl) {
2140 return C->recent_alloc_obj();
2141 }
2142 return NULL;
2143}
2144
2145
2146void GraphKit::round_double_arguments(ciMethod* dest_method) {
2147 // (Note: TypeFunc::make has a cache that makes this fast.)
2148 const TypeFunc* tf = TypeFunc::make(dest_method);
2149 int nargs = tf->domain()->cnt() - TypeFunc::Parms;
2150 for (int j = 0; j < nargs; j++) {
2151 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2152 if( targ->basic_type() == T_DOUBLE ) {
2153 // If any parameters are doubles, they must be rounded before
2154 // the call, dstore_rounding does gvn.transform
2155 Node *arg = argument(j);
2156 arg = dstore_rounding(arg);
2157 set_argument(j, arg);
2158 }
2159 }
2160}
2161
2162/**
2163 * Record profiling data exact_kls for Node n with the type system so
2164 * that it can propagate it (speculation)
2165 *
2166 * @param n node that the type applies to
2167 * @param exact_kls type from profiling
2168 * @param maybe_null did profiling see null?
2169 *
2170 * @return node with improved type
2171 */
2172Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2173 const Type* current_type = _gvn.type(n);
2174 assert(UseTypeSpeculation, "type speculation must be on");
2175
2176 const TypePtr* speculative = current_type->speculative();
2177
2178 // Should the klass from the profile be recorded in the speculative type?
2179 if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2180 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2181 const TypeOopPtr* xtype = tklass->as_instance_type();
2182 assert(xtype->klass_is_exact(), "Should be exact");
2183 // Any reason to believe n is not null (from this profiling or a previous one)?
2184 assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2185 const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2186 // record the new speculative type's depth
2187 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2188 speculative = speculative->with_inline_depth(jvms()->depth());
2189 } else if (current_type->would_improve_ptr(ptr_kind)) {
2190 // Profiling report that null was never seen so we can change the
2191 // speculative type to non null ptr.
2192 if (ptr_kind == ProfileAlwaysNull) {
2193 speculative = TypePtr::NULL_PTR;
2194 } else {
2195 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2196 const TypePtr* ptr = TypePtr::NOTNULL;
2197 if (speculative != NULL) {
2198 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2199 } else {
2200 speculative = ptr;
2201 }
2202 }
2203 }
2204
2205 if (speculative != current_type->speculative()) {
2206 // Build a type with a speculative type (what we think we know
2207 // about the type but will need a guard when we use it)
2208 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2209 // We're changing the type, we need a new CheckCast node to carry
2210 // the new type. The new type depends on the control: what
2211 // profiling tells us is only valid from here as far as we can
2212 // tell.
2213 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2214 cast = _gvn.transform(cast);
2215 replace_in_map(n, cast);
2216 n = cast;
2217 }
2218
2219 return n;
2220}
2221
2222/**
2223 * Record profiling data from receiver profiling at an invoke with the
2224 * type system so that it can propagate it (speculation)
2225 *
2226 * @param n receiver node
2227 *
2228 * @return node with improved type
2229 */
2230Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2231 if (!UseTypeSpeculation) {
2232 return n;
2233 }
2234 ciKlass* exact_kls = profile_has_unique_klass();
2235 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2236 if ((java_bc() == Bytecodes::_checkcast ||
2237 java_bc() == Bytecodes::_instanceof ||
2238 java_bc() == Bytecodes::_aastore) &&
2239 method()->method_data()->is_mature()) {
2240 ciProfileData* data = method()->method_data()->bci_to_data(bci());
2241 if (data != NULL) {
2242 if (!data->as_BitData()->null_seen()) {
2243 ptr_kind = ProfileNeverNull;
2244 } else {
2245 assert(data->is_ReceiverTypeData(), "bad profile data type");
2246 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2247 uint i = 0;
2248 for (; i < call->row_limit(); i++) {
2249 ciKlass* receiver = call->receiver(i);
2250 if (receiver != NULL) {
2251 break;
2252 }
2253 }
2254 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2255 }
2256 }
2257 }
2258 return record_profile_for_speculation(n, exact_kls, ptr_kind);
2259}
2260
2261/**
2262 * Record profiling data from argument profiling at an invoke with the
2263 * type system so that it can propagate it (speculation)
2264 *
2265 * @param dest_method target method for the call
2266 * @param bc what invoke bytecode is this?
2267 */
2268void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2269 if (!UseTypeSpeculation) {
2270 return;
2271 }
2272 const TypeFunc* tf = TypeFunc::make(dest_method);
2273 int nargs = tf->domain()->cnt() - TypeFunc::Parms;
2274 int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2275 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2276 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2277 if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2278 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2279 ciKlass* better_type = NULL;
2280 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2281 record_profile_for_speculation(argument(j), better_type, ptr_kind);
2282 }
2283 i++;
2284 }
2285 }
2286}
2287
2288/**
2289 * Record profiling data from parameter profiling at an invoke with
2290 * the type system so that it can propagate it (speculation)
2291 */
2292void GraphKit::record_profiled_parameters_for_speculation() {
2293 if (!UseTypeSpeculation) {
2294 return;
2295 }
2296 for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2297 if (_gvn.type(local(i))->isa_oopptr()) {
2298 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2299 ciKlass* better_type = NULL;
2300 if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2301 record_profile_for_speculation(local(i), better_type, ptr_kind);
2302 }
2303 j++;
2304 }
2305 }
2306}
2307
2308/**
2309 * Record profiling data from return value profiling at an invoke with
2310 * the type system so that it can propagate it (speculation)
2311 */
2312void GraphKit::record_profiled_return_for_speculation() {
2313 if (!UseTypeSpeculation) {
2314 return;
2315 }
2316 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2317 ciKlass* better_type = NULL;
2318 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2319 // If profiling reports a single type for the return value,
2320 // feed it to the type system so it can propagate it as a
2321 // speculative type
2322 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2323 }
2324}
2325
2326void GraphKit::round_double_result(ciMethod* dest_method) {
2327 // A non-strict method may return a double value which has an extended
2328 // exponent, but this must not be visible in a caller which is 'strict'
2329 // If a strict caller invokes a non-strict callee, round a double result
2330
2331 BasicType result_type = dest_method->return_type()->basic_type();
2332 assert( method() != NULL, "must have caller context");
2333 if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2334 // Destination method's return value is on top of stack
2335 // dstore_rounding() does gvn.transform
2336 Node *result = pop_pair();
2337 result = dstore_rounding(result);
2338 push_pair(result);
2339 }
2340}
2341
2342// rounding for strict float precision conformance
2343Node* GraphKit::precision_rounding(Node* n) {
2344 return UseStrictFP && _method->flags().is_strict()
2345 && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2346 ? _gvn.transform( new RoundFloatNode(0, n) )
2347 : n;
2348}
2349
2350// rounding for strict double precision conformance
2351Node* GraphKit::dprecision_rounding(Node *n) {
2352 return UseStrictFP && _method->flags().is_strict()
2353 && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2354 ? _gvn.transform( new RoundDoubleNode(0, n) )
2355 : n;
2356}
2357
2358// rounding for non-strict double stores
2359Node* GraphKit::dstore_rounding(Node* n) {
2360 return Matcher::strict_fp_requires_explicit_rounding
2361 && UseSSE <= 1
2362 ? _gvn.transform( new RoundDoubleNode(0, n) )
2363 : n;
2364}
2365
2366//=============================================================================
2367// Generate a fast path/slow path idiom. Graph looks like:
2368// [foo] indicates that 'foo' is a parameter
2369//
2370// [in] NULL
2371// \ /
2372// CmpP
2373// Bool ne
2374// If
2375// / \
2376// True False-<2>
2377// / |
2378// / cast_not_null
2379// Load | | ^
2380// [fast_test] | |
2381// gvn to opt_test | |
2382// / \ | <1>
2383// True False |
2384// | \\ |
2385// [slow_call] \[fast_result]
2386// Ctl Val \ \
2387// | \ \
2388// Catch <1> \ \
2389// / \ ^ \ \
2390// Ex No_Ex | \ \
2391// | \ \ | \ <2> \
2392// ... \ [slow_res] | | \ [null_result]
2393// \ \--+--+--- | |
2394// \ | / \ | /
2395// --------Region Phi
2396//
2397//=============================================================================
2398// Code is structured as a series of driver functions all called 'do_XXX' that
2399// call a set of helper functions. Helper functions first, then drivers.
2400
2401//------------------------------null_check_oop---------------------------------
2402// Null check oop. Set null-path control into Region in slot 3.
2403// Make a cast-not-nullness use the other not-null control. Return cast.
2404Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2405 bool never_see_null,
2406 bool safe_for_replace,
2407 bool speculative) {
2408 // Initial NULL check taken path
2409 (*null_control) = top();
2410 Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2411
2412 // Generate uncommon_trap:
2413 if (never_see_null && (*null_control) != top()) {
2414 // If we see an unexpected null at a check-cast we record it and force a
2415 // recompile; the offending check-cast will be compiled to handle NULLs.
2416 // If we see more than one offending BCI, then all checkcasts in the
2417 // method will be compiled to handle NULLs.
2418 PreserveJVMState pjvms(this);
2419 set_control(*null_control);
2420 replace_in_map(value, null());
2421 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2422 uncommon_trap(reason,
2423 Deoptimization::Action_make_not_entrant);
2424 (*null_control) = top(); // NULL path is dead
2425 }
2426 if ((*null_control) == top() && safe_for_replace) {
2427 replace_in_map(value, cast);
2428 }
2429
2430 // Cast away null-ness on the result
2431 return cast;
2432}
2433
2434//------------------------------opt_iff----------------------------------------
2435// Optimize the fast-check IfNode. Set the fast-path region slot 2.
2436// Return slow-path control.
2437Node* GraphKit::opt_iff(Node* region, Node* iff) {
2438 IfNode *opt_iff = _gvn.transform(iff)->as_If();
2439
2440 // Fast path taken; set region slot 2
2441 Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2442 region->init_req(2,fast_taken); // Capture fast-control
2443
2444 // Fast path not-taken, i.e. slow path
2445 Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2446 return slow_taken;
2447}
2448
2449//-----------------------------make_runtime_call-------------------------------
2450Node* GraphKit::make_runtime_call(int flags,
2451 const TypeFunc* call_type, address call_addr,
2452 const char* call_name,
2453 const TypePtr* adr_type,
2454 // The following parms are all optional.
2455 // The first NULL ends the list.
2456 Node* parm0, Node* parm1,
2457 Node* parm2, Node* parm3,
2458 Node* parm4, Node* parm5,
2459 Node* parm6, Node* parm7) {
2460 assert(call_addr != NULL, "must not call NULL targets");
2461
2462 // Slow-path call
2463 bool is_leaf = !(flags & RC_NO_LEAF);
2464 bool has_io = (!is_leaf && !(flags & RC_NO_IO));
2465 if (call_name == NULL) {
2466 assert(!is_leaf, "must supply name for leaf");
2467 call_name = OptoRuntime::stub_name(call_addr);
2468 }
2469 CallNode* call;
2470 if (!is_leaf) {
2471 call = new CallStaticJavaNode(call_type, call_addr, call_name,
2472 bci(), adr_type);
2473 } else if (flags & RC_NO_FP) {
2474 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2475 } else {
2476 call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2477 }
2478
2479 // The following is similar to set_edges_for_java_call,
2480 // except that the memory effects of the call are restricted to AliasIdxRaw.
2481
2482 // Slow path call has no side-effects, uses few values
2483 bool wide_in = !(flags & RC_NARROW_MEM);
2484 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2485
2486 Node* prev_mem = NULL;
2487 if (wide_in) {
2488 prev_mem = set_predefined_input_for_runtime_call(call);
2489 } else {
2490 assert(!wide_out, "narrow in => narrow out");
2491 Node* narrow_mem = memory(adr_type);
2492 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2493 }
2494
2495 // Hook each parm in order. Stop looking at the first NULL.
2496 if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2497 if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2498 if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2499 if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2500 if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2501 if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2502 if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2503 if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2504 /* close each nested if ===> */ } } } } } } } }
2505 assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2506
2507 if (!is_leaf) {
2508 // Non-leaves can block and take safepoints:
2509 add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2510 }
2511 // Non-leaves can throw exceptions:
2512 if (has_io) {
2513 call->set_req(TypeFunc::I_O, i_o());
2514 }
2515
2516 if (flags & RC_UNCOMMON) {
2517 // Set the count to a tiny probability. Cf. Estimate_Block_Frequency.
2518 // (An "if" probability corresponds roughly to an unconditional count.
2519 // Sort of.)
2520 call->set_cnt(PROB_UNLIKELY_MAG(4));
2521 }
2522
2523 Node* c = _gvn.transform(call);
2524 assert(c == call, "cannot disappear");
2525
2526 if (wide_out) {
2527 // Slow path call has full side-effects.
2528 set_predefined_output_for_runtime_call(call);
2529 } else {
2530 // Slow path call has few side-effects, and/or sets few values.
2531 set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2532 }
2533
2534 if (has_io) {
2535 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2536 }
2537 return call;
2538
2539}
2540
2541//------------------------------merge_memory-----------------------------------
2542// Merge memory from one path into the current memory state.
2543void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2544 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2545 Node* old_slice = mms.force_memory();
2546 Node* new_slice = mms.memory2();
2547 if (old_slice != new_slice) {
2548 PhiNode* phi;
2549 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2550 if (mms.is_empty()) {
2551 // clone base memory Phi's inputs for this memory slice
2552 assert(old_slice == mms.base_memory(), "sanity");
2553 phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2554 _gvn.set_type(phi, Type::MEMORY);
2555 for (uint i = 1; i < phi->req(); i++) {
2556 phi->init_req(i, old_slice->in(i));
2557 }
2558 } else {
2559 phi = old_slice->as_Phi(); // Phi was generated already
2560 }
2561 } else {
2562 phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2563 _gvn.set_type(phi, Type::MEMORY);
2564 }
2565 phi->set_req(new_path, new_slice);
2566 mms.set_memory(phi);
2567 }
2568 }
2569}
2570
2571//------------------------------make_slow_call_ex------------------------------
2572// Make the exception handler hookups for the slow call
2573void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2574 if (stopped()) return;
2575
2576 // Make a catch node with just two handlers: fall-through and catch-all
2577 Node* i_o = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2578 Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2579 Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2580 Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index, CatchProjNode::no_handler_bci) );
2581
2582 { PreserveJVMState pjvms(this);
2583 set_control(excp);
2584 set_i_o(i_o);
2585
2586 if (excp != top()) {
2587 if (deoptimize) {
2588 // Deoptimize if an exception is caught. Don't construct exception state in this case.
2589 uncommon_trap(Deoptimization::Reason_unhandled,
2590 Deoptimization::Action_none);
2591 } else {
2592 // Create an exception state also.
2593 // Use an exact type if the caller has a specific exception.
2594 const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2595 Node* ex_oop = new CreateExNode(ex_type, control(), i_o);
2596 add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2597 }
2598 }
2599 }
2600
2601 // Get the no-exception control from the CatchNode.
2602 set_control(norm);
2603}
2604
2605static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2606 Node* cmp = NULL;
2607 switch(bt) {
2608 case T_INT: cmp = new CmpINode(in1, in2); break;
2609 case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2610 default: fatal("unexpected comparison type %s", type2name(bt));
2611 }
2612 gvn->transform(cmp);
2613 Node* bol = gvn->transform(new BoolNode(cmp, test));
2614 IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2615 gvn->transform(iff);
2616 if (!bol->is_Con()) gvn->record_for_igvn(iff);
2617 return iff;
2618}
2619
2620
2621//-------------------------------gen_subtype_check-----------------------------
2622// Generate a subtyping check. Takes as input the subtype and supertype.
2623// Returns 2 values: sets the default control() to the true path and returns
2624// the false path. Only reads invariant memory; sets no (visible) memory.
2625// The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2626// but that's not exposed to the optimizer. This call also doesn't take in an
2627// Object; if you wish to check an Object you need to load the Object's class
2628// prior to coming here.
2629Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2630 Compile* C = gvn->C;
2631
2632 if ((*ctrl)->is_top()) {
2633 return C->top();
2634 }
2635
2636 // Fast check for identical types, perhaps identical constants.
2637 // The types can even be identical non-constants, in cases
2638 // involving Array.newInstance, Object.clone, etc.
2639 if (subklass == superklass)
2640 return C->top(); // false path is dead; no test needed.
2641
2642 if (gvn->type(superklass)->singleton()) {
2643 ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2644 ciKlass* subk = gvn->type(subklass)->is_klassptr()->klass();
2645
2646 // In the common case of an exact superklass, try to fold up the
2647 // test before generating code. You may ask, why not just generate
2648 // the code and then let it fold up? The answer is that the generated
2649 // code will necessarily include null checks, which do not always
2650 // completely fold away. If they are also needless, then they turn
2651 // into a performance loss. Example:
2652 // Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2653 // Here, the type of 'fa' is often exact, so the store check
2654 // of fa[1]=x will fold up, without testing the nullness of x.
2655 switch (C->static_subtype_check(superk, subk)) {
2656 case Compile::SSC_always_false:
2657 {
2658 Node* always_fail = *ctrl;
2659 *ctrl = gvn->C->top();
2660 return always_fail;
2661 }
2662 case Compile::SSC_always_true:
2663 return C->top();
2664 case Compile::SSC_easy_test:
2665 {
2666 // Just do a direct pointer compare and be done.
2667 IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2668 *ctrl = gvn->transform(new IfTrueNode(iff));
2669 return gvn->transform(new IfFalseNode(iff));
2670 }
2671 case Compile::SSC_full_test:
2672 break;
2673 default:
2674 ShouldNotReachHere();
2675 }
2676 }
2677
2678 // %%% Possible further optimization: Even if the superklass is not exact,
2679 // if the subklass is the unique subtype of the superklass, the check
2680 // will always succeed. We could leave a dependency behind to ensure this.
2681
2682 // First load the super-klass's check-offset
2683 Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2684 Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2685 Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2686 int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2687 bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2688
2689 // Load from the sub-klass's super-class display list, or a 1-word cache of
2690 // the secondary superclass list, or a failing value with a sentinel offset
2691 // if the super-klass is an interface or exceptionally deep in the Java
2692 // hierarchy and we have to scan the secondary superclass list the hard way.
2693 // Worst-case type is a little odd: NULL is allowed as a result (usually
2694 // klass loads can never produce a NULL).
2695 Node *chk_off_X = chk_off;
2696#ifdef _LP64
2697 chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2698#endif
2699 Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2700 // For some types like interfaces the following loadKlass is from a 1-word
2701 // cache which is mutable so can't use immutable memory. Other
2702 // types load from the super-class display table which is immutable.
2703 m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2704 Node *kmem = might_be_cache ? m : C->immutable_memory();
2705 Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2706
2707 // Compile speed common case: ARE a subtype and we canNOT fail
2708 if( superklass == nkls )
2709 return C->top(); // false path is dead; no test needed.
2710
2711 // See if we get an immediate positive hit. Happens roughly 83% of the
2712 // time. Test to see if the value loaded just previously from the subklass
2713 // is exactly the superklass.
2714 IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2715 Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2716 *ctrl = gvn->transform(new IfFalseNode(iff1));
2717
2718 // Compile speed common case: Check for being deterministic right now. If
2719 // chk_off is a constant and not equal to cacheoff then we are NOT a
2720 // subklass. In this case we need exactly the 1 test above and we can
2721 // return those results immediately.
2722 if (!might_be_cache) {
2723 Node* not_subtype_ctrl = *ctrl;
2724 *ctrl = iftrue1; // We need exactly the 1 test above
2725 return not_subtype_ctrl;
2726 }
2727
2728 // Gather the various success & failures here
2729 RegionNode *r_ok_subtype = new RegionNode(4);
2730 gvn->record_for_igvn(r_ok_subtype);
2731 RegionNode *r_not_subtype = new RegionNode(3);
2732 gvn->record_for_igvn(r_not_subtype);
2733
2734 r_ok_subtype->init_req(1, iftrue1);
2735
2736 // Check for immediate negative hit. Happens roughly 11% of the time (which
2737 // is roughly 63% of the remaining cases). Test to see if the loaded
2738 // check-offset points into the subklass display list or the 1-element
2739 // cache. If it points to the display (and NOT the cache) and the display
2740 // missed then it's not a subtype.
2741 Node *cacheoff = gvn->intcon(cacheoff_con);
2742 IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2743 r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2744 *ctrl = gvn->transform(new IfFalseNode(iff2));
2745
2746 // Check for self. Very rare to get here, but it is taken 1/3 the time.
2747 // No performance impact (too rare) but allows sharing of secondary arrays
2748 // which has some footprint reduction.
2749 IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2750 r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2751 *ctrl = gvn->transform(new IfFalseNode(iff3));
2752
2753 // -- Roads not taken here: --
2754 // We could also have chosen to perform the self-check at the beginning
2755 // of this code sequence, as the assembler does. This would not pay off
2756 // the same way, since the optimizer, unlike the assembler, can perform
2757 // static type analysis to fold away many successful self-checks.
2758 // Non-foldable self checks work better here in second position, because
2759 // the initial primary superclass check subsumes a self-check for most
2760 // types. An exception would be a secondary type like array-of-interface,
2761 // which does not appear in its own primary supertype display.
2762 // Finally, we could have chosen to move the self-check into the
2763 // PartialSubtypeCheckNode, and from there out-of-line in a platform
2764 // dependent manner. But it is worthwhile to have the check here,
2765 // where it can be perhaps be optimized. The cost in code space is
2766 // small (register compare, branch).
2767
2768 // Now do a linear scan of the secondary super-klass array. Again, no real
2769 // performance impact (too rare) but it's gotta be done.
2770 // Since the code is rarely used, there is no penalty for moving it
2771 // out of line, and it can only improve I-cache density.
2772 // The decision to inline or out-of-line this final check is platform
2773 // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2774 Node* psc = gvn->transform(
2775 new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2776
2777 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2778 r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2779 r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2780
2781 // Return false path; set default control to true path.
2782 *ctrl = gvn->transform(r_ok_subtype);
2783 return gvn->transform(r_not_subtype);
2784}
2785
2786// Profile-driven exact type check:
2787Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2788 float prob,
2789 Node* *casted_receiver) {
2790 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2791 Node* recv_klass = load_object_klass(receiver);
2792 Node* want_klass = makecon(tklass);
2793 Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2794 Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2795 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2796 set_control( _gvn.transform( new IfTrueNode (iff) ));
2797 Node* fail = _gvn.transform( new IfFalseNode(iff) );
2798
2799 const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2800 assert(recv_xtype->klass_is_exact(), "");
2801
2802 // Subsume downstream occurrences of receiver with a cast to
2803 // recv_xtype, since now we know what the type will be.
2804 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2805 (*casted_receiver) = _gvn.transform(cast);
2806 // (User must make the replace_in_map call.)
2807
2808 return fail;
2809}
2810
2811//------------------------------subtype_check_receiver-------------------------
2812Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2813 Node** casted_receiver) {
2814 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2815 Node* recv_klass = load_object_klass(receiver);
2816 Node* want_klass = makecon(tklass);
2817
2818 Node* slow_ctl = gen_subtype_check(recv_klass, want_klass);
2819
2820 // Cast receiver after successful check
2821 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2822 Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2823 (*casted_receiver) = _gvn.transform(cast);
2824
2825 return slow_ctl;
2826}
2827
2828//------------------------------seems_never_null-------------------------------
2829// Use null_seen information if it is available from the profile.
2830// If we see an unexpected null at a type check we record it and force a
2831// recompile; the offending check will be recompiled to handle NULLs.
2832// If we see several offending BCIs, then all checks in the
2833// method will be recompiled.
2834bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2835 speculating = !_gvn.type(obj)->speculative_maybe_null();
2836 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2837 if (UncommonNullCast // Cutout for this technique
2838 && obj != null() // And not the -Xcomp stupid case?
2839 && !too_many_traps(reason)
2840 ) {
2841 if (speculating) {
2842 return true;
2843 }
2844 if (data == NULL)
2845 // Edge case: no mature data. Be optimistic here.
2846 return true;
2847 // If the profile has not seen a null, assume it won't happen.
2848 assert(java_bc() == Bytecodes::_checkcast ||
2849 java_bc() == Bytecodes::_instanceof ||
2850 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2851 return !data->as_BitData()->null_seen();
2852 }
2853 speculating = false;
2854 return false;
2855}
2856
2857void GraphKit::guard_klass_being_initialized(Node* klass) {
2858 int init_state_off = in_bytes(InstanceKlass::init_state_offset());
2859 Node* adr = basic_plus_adr(top(), klass, init_state_off);
2860 Node* init_state = LoadNode::make(_gvn, NULL, immutable_memory(), adr,
2861 adr->bottom_type()->is_ptr(), TypeInt::BYTE,
2862 T_BYTE, MemNode::unordered);
2863 init_state = _gvn.transform(init_state);
2864
2865 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
2866
2867 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
2868 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2869
2870 { BuildCutout unless(this, tst, PROB_MAX);
2871 uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
2872 }
2873}
2874
2875void GraphKit::guard_init_thread(Node* klass) {
2876 int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
2877 Node* adr = basic_plus_adr(top(), klass, init_thread_off);
2878
2879 Node* init_thread = LoadNode::make(_gvn, NULL, immutable_memory(), adr,
2880 adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
2881 T_ADDRESS, MemNode::unordered);
2882 init_thread = _gvn.transform(init_thread);
2883
2884 Node* cur_thread = _gvn.transform(new ThreadLocalNode());
2885
2886 Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
2887 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2888
2889 { BuildCutout unless(this, tst, PROB_MAX);
2890 uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
2891 }
2892}
2893
2894void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
2895 if (ik->is_being_initialized()) {
2896 if (C->needs_clinit_barrier(ik, context)) {
2897 Node* klass = makecon(TypeKlassPtr::make(ik));
2898 guard_klass_being_initialized(klass);
2899 guard_init_thread(klass);
2900 insert_mem_bar(Op_MemBarCPUOrder);
2901 }
2902 } else if (ik->is_initialized()) {
2903 return; // no barrier needed
2904 } else {
2905 uncommon_trap(Deoptimization::Reason_uninitialized,
2906 Deoptimization::Action_reinterpret,
2907 NULL);
2908 }
2909}
2910
2911//------------------------maybe_cast_profiled_receiver-------------------------
2912// If the profile has seen exactly one type, narrow to exactly that type.
2913// Subsequent type checks will always fold up.
2914Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2915 ciKlass* require_klass,
2916 ciKlass* spec_klass,
2917 bool safe_for_replace) {
2918 if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2919
2920 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2921
2922 // Make sure we haven't already deoptimized from this tactic.
2923 if (too_many_traps_or_recompiles(reason))
2924 return NULL;
2925
2926 // (No, this isn't a call, but it's enough like a virtual call
2927 // to use the same ciMethod accessor to get the profile info...)
2928 // If we have a speculative type use it instead of profiling (which
2929 // may not help us)
2930 ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2931 if (exact_kls != NULL) {// no cast failures here
2932 if (require_klass == NULL ||
2933 C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2934 // If we narrow the type to match what the type profile sees or
2935 // the speculative type, we can then remove the rest of the
2936 // cast.
2937 // This is a win, even if the exact_kls is very specific,
2938 // because downstream operations, such as method calls,
2939 // will often benefit from the sharper type.
2940 Node* exact_obj = not_null_obj; // will get updated in place...
2941 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0,
2942 &exact_obj);
2943 { PreserveJVMState pjvms(this);
2944 set_control(slow_ctl);
2945 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2946 }
2947 if (safe_for_replace) {
2948 replace_in_map(not_null_obj, exact_obj);
2949 }
2950 return exact_obj;
2951 }
2952 // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2953 }
2954
2955 return NULL;
2956}
2957
2958/**
2959 * Cast obj to type and emit guard unless we had too many traps here
2960 * already
2961 *
2962 * @param obj node being casted
2963 * @param type type to cast the node to
2964 * @param not_null true if we know node cannot be null
2965 */
2966Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2967 ciKlass* type,
2968 bool not_null) {
2969 if (stopped()) {
2970 return obj;
2971 }
2972
2973 // type == NULL if profiling tells us this object is always null
2974 if (type != NULL) {
2975 Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2976 Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2977
2978 if (!too_many_traps_or_recompiles(null_reason) &&
2979 !too_many_traps_or_recompiles(class_reason)) {
2980 Node* not_null_obj = NULL;
2981 // not_null is true if we know the object is not null and
2982 // there's no need for a null check
2983 if (!not_null) {
2984 Node* null_ctl = top();
2985 not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2986 assert(null_ctl->is_top(), "no null control here");
2987 } else {
2988 not_null_obj = obj;
2989 }
2990
2991 Node* exact_obj = not_null_obj;
2992 ciKlass* exact_kls = type;
2993 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0,
2994 &exact_obj);
2995 {
2996 PreserveJVMState pjvms(this);
2997 set_control(slow_ctl);
2998 uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2999 }
3000 replace_in_map(not_null_obj, exact_obj);
3001 obj = exact_obj;
3002 }
3003 } else {
3004 if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3005 Node* exact_obj = null_assert(obj);
3006 replace_in_map(obj, exact_obj);
3007 obj = exact_obj;
3008 }
3009 }
3010 return obj;
3011}
3012
3013//-------------------------------gen_instanceof--------------------------------
3014// Generate an instance-of idiom. Used by both the instance-of bytecode
3015// and the reflective instance-of call.
3016Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3017 kill_dead_locals(); // Benefit all the uncommon traps
3018 assert( !stopped(), "dead parse path should be checked in callers" );
3019 assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3020 "must check for not-null not-dead klass in callers");
3021
3022 // Make the merge point
3023 enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3024 RegionNode* region = new RegionNode(PATH_LIMIT);
3025 Node* phi = new PhiNode(region, TypeInt::BOOL);
3026 C->set_has_split_ifs(true); // Has chance for split-if optimization
3027
3028 ciProfileData* data = NULL;
3029 if (java_bc() == Bytecodes::_instanceof) { // Only for the bytecode
3030 data = method()->method_data()->bci_to_data(bci());
3031 }
3032 bool speculative_not_null = false;
3033 bool never_see_null = (ProfileDynamicTypes // aggressive use of profile
3034 && seems_never_null(obj, data, speculative_not_null));
3035
3036 // Null check; get casted pointer; set region slot 3
3037 Node* null_ctl = top();
3038 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3039
3040 // If not_null_obj is dead, only null-path is taken
3041 if (stopped()) { // Doing instance-of on a NULL?
3042 set_control(null_ctl);
3043 return intcon(0);
3044 }
3045 region->init_req(_null_path, null_ctl);
3046 phi ->init_req(_null_path, intcon(0)); // Set null path value
3047 if (null_ctl == top()) {
3048 // Do this eagerly, so that pattern matches like is_diamond_phi
3049 // will work even during parsing.
3050 assert(_null_path == PATH_LIMIT-1, "delete last");
3051 region->del_req(_null_path);
3052 phi ->del_req(_null_path);
3053 }
3054
3055 // Do we know the type check always succeed?
3056 bool known_statically = false;
3057 if (_gvn.type(superklass)->singleton()) {
3058 ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
3059 ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
3060 if (subk != NULL && subk->is_loaded()) {
3061 int static_res = C->static_subtype_check(superk, subk);
3062 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3063 }
3064 }
3065
3066 if (!known_statically) {
3067 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3068 // We may not have profiling here or it may not help us. If we
3069 // have a speculative type use it to perform an exact cast.
3070 ciKlass* spec_obj_type = obj_type->speculative_type();
3071 if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
3072 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
3073 if (stopped()) { // Profile disagrees with this path.
3074 set_control(null_ctl); // Null is the only remaining possibility.
3075 return intcon(0);
3076 }
3077 if (cast_obj != NULL) {
3078 not_null_obj = cast_obj;
3079 }
3080 }
3081 }
3082
3083 // Load the object's klass
3084 Node* obj_klass = load_object_klass(not_null_obj);
3085
3086 // Generate the subtype check
3087 Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
3088
3089 // Plug in the success path to the general merge in slot 1.
3090 region->init_req(_obj_path, control());
3091 phi ->init_req(_obj_path, intcon(1));
3092
3093 // Plug in the failing path to the general merge in slot 2.
3094 region->init_req(_fail_path, not_subtype_ctrl);
3095 phi ->init_req(_fail_path, intcon(0));
3096
3097 // Return final merged results
3098 set_control( _gvn.transform(region) );
3099 record_for_igvn(region);
3100
3101 // If we know the type check always succeeds then we don't use the
3102 // profiling data at this bytecode. Don't lose it, feed it to the
3103 // type system as a speculative type.
3104 if (safe_for_replace) {
3105 Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3106 replace_in_map(obj, casted_obj);
3107 }
3108
3109 return _gvn.transform(phi);
3110}
3111
3112//-------------------------------gen_checkcast---------------------------------
3113// Generate a checkcast idiom. Used by both the checkcast bytecode and the
3114// array store bytecode. Stack must be as-if BEFORE doing the bytecode so the
3115// uncommon-trap paths work. Adjust stack after this call.
3116// If failure_control is supplied and not null, it is filled in with
3117// the control edge for the cast failure. Otherwise, an appropriate
3118// uncommon trap or exception is thrown.
3119Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3120 Node* *failure_control) {
3121 kill_dead_locals(); // Benefit all the uncommon traps
3122 const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3123 const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3124
3125 // Fast cutout: Check the case that the cast is vacuously true.
3126 // This detects the common cases where the test will short-circuit
3127 // away completely. We do this before we perform the null check,
3128 // because if the test is going to turn into zero code, we don't
3129 // want a residual null check left around. (Causes a slowdown,
3130 // for example, in some objArray manipulations, such as a[i]=a[j].)
3131 if (tk->singleton()) {
3132 const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3133 if (objtp != NULL && objtp->klass() != NULL) {
3134 switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3135 case Compile::SSC_always_true:
3136 // If we know the type check always succeed then we don't use
3137 // the profiling data at this bytecode. Don't lose it, feed it
3138 // to the type system as a speculative type.
3139 return record_profiled_receiver_for_speculation(obj);
3140 case Compile::SSC_always_false:
3141 // It needs a null check because a null will *pass* the cast check.
3142 // A non-null value will always produce an exception.
3143 return null_assert(obj);
3144 }
3145 }
3146 }
3147
3148 ciProfileData* data = NULL;
3149 bool safe_for_replace = false;
3150 if (failure_control == NULL) { // use MDO in regular case only
3151 assert(java_bc() == Bytecodes::_aastore ||
3152 java_bc() == Bytecodes::_checkcast,
3153 "interpreter profiles type checks only for these BCs");
3154 data = method()->method_data()->bci_to_data(bci());
3155 safe_for_replace = true;
3156 }
3157
3158 // Make the merge point
3159 enum { _obj_path = 1, _null_path, PATH_LIMIT };
3160 RegionNode* region = new RegionNode(PATH_LIMIT);
3161 Node* phi = new PhiNode(region, toop);
3162 C->set_has_split_ifs(true); // Has chance for split-if optimization
3163
3164 // Use null-cast information if it is available
3165 bool speculative_not_null = false;
3166 bool never_see_null = ((failure_control == NULL) // regular case only
3167 && seems_never_null(obj, data, speculative_not_null));
3168
3169 // Null check; get casted pointer; set region slot 3
3170 Node* null_ctl = top();
3171 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3172
3173 // If not_null_obj is dead, only null-path is taken
3174 if (stopped()) { // Doing instance-of on a NULL?
3175 set_control(null_ctl);
3176 return null();
3177 }
3178 region->init_req(_null_path, null_ctl);
3179 phi ->init_req(_null_path, null()); // Set null path value
3180 if (null_ctl == top()) {
3181 // Do this eagerly, so that pattern matches like is_diamond_phi
3182 // will work even during parsing.
3183 assert(_null_path == PATH_LIMIT-1, "delete last");
3184 region->del_req(_null_path);
3185 phi ->del_req(_null_path);
3186 }
3187
3188 Node* cast_obj = NULL;
3189 if (tk->klass_is_exact()) {
3190 // The following optimization tries to statically cast the speculative type of the object
3191 // (for example obtained during profiling) to the type of the superklass and then do a
3192 // dynamic check that the type of the object is what we expect. To work correctly
3193 // for checkcast and aastore the type of superklass should be exact.
3194 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3195 // We may not have profiling here or it may not help us. If we have
3196 // a speculative type use it to perform an exact cast.
3197 ciKlass* spec_obj_type = obj_type->speculative_type();
3198 if (spec_obj_type != NULL || data != NULL) {
3199 cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3200 if (cast_obj != NULL) {
3201 if (failure_control != NULL) // failure is now impossible
3202 (*failure_control) = top();
3203 // adjust the type of the phi to the exact klass:
3204 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3205 }
3206 }
3207 }
3208
3209 if (cast_obj == NULL) {
3210 // Load the object's klass
3211 Node* obj_klass = load_object_klass(not_null_obj);
3212
3213 // Generate the subtype check
3214 Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3215
3216 // Plug in success path into the merge
3217 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3218 // Failure path ends in uncommon trap (or may be dead - failure impossible)
3219 if (failure_control == NULL) {
3220 if (not_subtype_ctrl != top()) { // If failure is possible
3221 PreserveJVMState pjvms(this);
3222 set_control(not_subtype_ctrl);
3223 builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3224 }
3225 } else {
3226 (*failure_control) = not_subtype_ctrl;
3227 }
3228 }
3229
3230 region->init_req(_obj_path, control());
3231 phi ->init_req(_obj_path, cast_obj);
3232
3233 // A merge of NULL or Casted-NotNull obj
3234 Node* res = _gvn.transform(phi);
3235
3236 // Note I do NOT always 'replace_in_map(obj,result)' here.
3237 // if( tk->klass()->can_be_primary_super() )
3238 // This means that if I successfully store an Object into an array-of-String
3239 // I 'forget' that the Object is really now known to be a String. I have to
3240 // do this because we don't have true union types for interfaces - if I store
3241 // a Baz into an array-of-Interface and then tell the optimizer it's an
3242 // Interface, I forget that it's also a Baz and cannot do Baz-like field
3243 // references to it. FIX THIS WHEN UNION TYPES APPEAR!
3244 // replace_in_map( obj, res );
3245
3246 // Return final merged results
3247 set_control( _gvn.transform(region) );
3248 record_for_igvn(region);
3249
3250 return record_profiled_receiver_for_speculation(res);
3251}
3252
3253//------------------------------next_monitor-----------------------------------
3254// What number should be given to the next monitor?
3255int GraphKit::next_monitor() {
3256 int current = jvms()->monitor_depth()* C->sync_stack_slots();
3257 int next = current + C->sync_stack_slots();
3258 // Keep the toplevel high water mark current:
3259 if (C->fixed_slots() < next) C->set_fixed_slots(next);
3260 return current;
3261}
3262
3263//------------------------------insert_mem_bar---------------------------------
3264// Memory barrier to avoid floating things around
3265// The membar serves as a pinch point between both control and all memory slices.
3266Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3267 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3268 mb->init_req(TypeFunc::Control, control());
3269 mb->init_req(TypeFunc::Memory, reset_memory());
3270 Node* membar = _gvn.transform(mb);
3271 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3272 set_all_memory_call(membar);
3273 return membar;
3274}
3275
3276//-------------------------insert_mem_bar_volatile----------------------------
3277// Memory barrier to avoid floating things around
3278// The membar serves as a pinch point between both control and memory(alias_idx).
3279// If you want to make a pinch point on all memory slices, do not use this
3280// function (even with AliasIdxBot); use insert_mem_bar() instead.
3281Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3282 // When Parse::do_put_xxx updates a volatile field, it appends a series
3283 // of MemBarVolatile nodes, one for *each* volatile field alias category.
3284 // The first membar is on the same memory slice as the field store opcode.
3285 // This forces the membar to follow the store. (Bug 6500685 broke this.)
3286 // All the other membars (for other volatile slices, including AliasIdxBot,
3287 // which stands for all unknown volatile slices) are control-dependent
3288 // on the first membar. This prevents later volatile loads or stores
3289 // from sliding up past the just-emitted store.
3290
3291 MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3292 mb->set_req(TypeFunc::Control,control());
3293 if (alias_idx == Compile::AliasIdxBot) {
3294 mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3295 } else {
3296 assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3297 mb->set_req(TypeFunc::Memory, memory(alias_idx));
3298 }
3299 Node* membar = _gvn.transform(mb);
3300 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3301 if (alias_idx == Compile::AliasIdxBot) {
3302 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3303 } else {
3304 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3305 }
3306 return membar;
3307}
3308
3309void GraphKit::insert_store_load_for_barrier() {
3310 Node* mem = reset_memory();
3311 MemBarNode* mb = MemBarNode::make(C, Op_MemBarVolatile, Compile::AliasIdxRaw);
3312 mb->init_req(TypeFunc::Control, control());
3313 mb->init_req(TypeFunc::Memory, mem);
3314 Node* membar = _gvn.transform(mb);
3315 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3316 Node* newmem = _gvn.transform(new ProjNode(membar, TypeFunc::Memory));
3317 set_all_memory(mem);
3318 set_memory(newmem, Compile::AliasIdxRaw);
3319}
3320
3321//------------------------------shared_lock------------------------------------
3322// Emit locking code.
3323FastLockNode* GraphKit::shared_lock(Node* obj) {
3324 // bci is either a monitorenter bc or InvocationEntryBci
3325 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3326 assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3327
3328 if( !GenerateSynchronizationCode )
3329 return NULL; // Not locking things?
3330 if (stopped()) // Dead monitor?
3331 return NULL;
3332
3333 assert(dead_locals_are_killed(), "should kill locals before sync. point");
3334
3335 obj = access_resolve(obj, ACCESS_READ | ACCESS_WRITE);
3336
3337 // Box the stack location
3338 Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3339 Node* mem = reset_memory();
3340
3341 FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3342 if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3343 // Create the counters for this fast lock.
3344 flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3345 }
3346
3347 // Create the rtm counters for this fast lock if needed.
3348 flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3349
3350 // Add monitor to debug info for the slow path. If we block inside the
3351 // slow path and de-opt, we need the monitor hanging around
3352 map()->push_monitor( flock );
3353
3354 const TypeFunc *tf = LockNode::lock_type();
3355 LockNode *lock = new LockNode(C, tf);
3356
3357 lock->init_req( TypeFunc::Control, control() );
3358 lock->init_req( TypeFunc::Memory , mem );
3359 lock->init_req( TypeFunc::I_O , top() ) ; // does no i/o
3360 lock->init_req( TypeFunc::FramePtr, frameptr() );
3361 lock->init_req( TypeFunc::ReturnAdr, top() );
3362
3363 lock->init_req(TypeFunc::Parms + 0, obj);
3364 lock->init_req(TypeFunc::Parms + 1, box);
3365 lock->init_req(TypeFunc::Parms + 2, flock);
3366 add_safepoint_edges(lock);
3367
3368 lock = _gvn.transform( lock )->as_Lock();
3369
3370 // lock has no side-effects, sets few values
3371 set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3372
3373 insert_mem_bar(Op_MemBarAcquireLock);
3374
3375 // Add this to the worklist so that the lock can be eliminated
3376 record_for_igvn(lock);
3377
3378#ifndef PRODUCT
3379 if (PrintLockStatistics) {
3380 // Update the counter for this lock. Don't bother using an atomic
3381 // operation since we don't require absolute accuracy.
3382 lock->create_lock_counter(map()->jvms());
3383 increment_counter(lock->counter()->addr());
3384 }
3385#endif
3386
3387 return flock;
3388}
3389
3390
3391//------------------------------shared_unlock----------------------------------
3392// Emit unlocking code.
3393void GraphKit::shared_unlock(Node* box, Node* obj) {
3394 // bci is either a monitorenter bc or InvocationEntryBci
3395 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3396 assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3397
3398 if( !GenerateSynchronizationCode )
3399 return;
3400 if (stopped()) { // Dead monitor?
3401 map()->pop_monitor(); // Kill monitor from debug info
3402 return;
3403 }
3404
3405 // Memory barrier to avoid floating things down past the locked region
3406 insert_mem_bar(Op_MemBarReleaseLock);
3407
3408 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3409 UnlockNode *unlock = new UnlockNode(C, tf);
3410#ifdef ASSERT
3411 unlock->set_dbg_jvms(sync_jvms());
3412#endif
3413 uint raw_idx = Compile::AliasIdxRaw;
3414 unlock->init_req( TypeFunc::Control, control() );
3415 unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3416 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o
3417 unlock->init_req( TypeFunc::FramePtr, frameptr() );
3418 unlock->init_req( TypeFunc::ReturnAdr, top() );
3419
3420 unlock->init_req(TypeFunc::Parms + 0, obj);
3421 unlock->init_req(TypeFunc::Parms + 1, box);
3422 unlock = _gvn.transform(unlock)->as_Unlock();
3423
3424 Node* mem = reset_memory();
3425
3426 // unlock has no side-effects, sets few values
3427 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3428
3429 // Kill monitor from debug info
3430 map()->pop_monitor( );
3431}
3432
3433//-------------------------------get_layout_helper-----------------------------
3434// If the given klass is a constant or known to be an array,
3435// fetch the constant layout helper value into constant_value
3436// and return (Node*)NULL. Otherwise, load the non-constant
3437// layout helper value, and return the node which represents it.
3438// This two-faced routine is useful because allocation sites
3439// almost always feature constant types.
3440Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3441 const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3442 if (!StressReflectiveCode && inst_klass != NULL) {
3443 ciKlass* klass = inst_klass->klass();
3444 bool xklass = inst_klass->klass_is_exact();
3445 if (xklass || klass->is_array_klass()) {
3446 jint lhelper = klass->layout_helper();
3447 if (lhelper != Klass::_lh_neutral_value) {
3448 constant_value = lhelper;
3449 return (Node*) NULL;
3450 }
3451 }
3452 }
3453 constant_value = Klass::_lh_neutral_value; // put in a known value
3454 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3455 return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3456}
3457
3458// We just put in an allocate/initialize with a big raw-memory effect.
3459// Hook selected additional alias categories on the initialization.
3460static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3461 MergeMemNode* init_in_merge,
3462 Node* init_out_raw) {
3463 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3464 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3465
3466 Node* prevmem = kit.memory(alias_idx);
3467 init_in_merge->set_memory_at(alias_idx, prevmem);
3468 kit.set_memory(init_out_raw, alias_idx);
3469}
3470
3471//---------------------------set_output_for_allocation-------------------------
3472Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3473 const TypeOopPtr* oop_type,
3474 bool deoptimize_on_exception) {
3475 int rawidx = Compile::AliasIdxRaw;
3476 alloc->set_req( TypeFunc::FramePtr, frameptr() );
3477 add_safepoint_edges(alloc);
3478 Node* allocx = _gvn.transform(alloc);
3479 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3480 // create memory projection for i_o
3481 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3482 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3483
3484 // create a memory projection as for the normal control path
3485 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3486 set_memory(malloc, rawidx);
3487
3488 // a normal slow-call doesn't change i_o, but an allocation does
3489 // we create a separate i_o projection for the normal control path
3490 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3491 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3492
3493 // put in an initialization barrier
3494 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3495 rawoop)->as_Initialize();
3496 assert(alloc->initialization() == init, "2-way macro link must work");
3497 assert(init ->allocation() == alloc, "2-way macro link must work");
3498 {
3499 // Extract memory strands which may participate in the new object's
3500 // initialization, and source them from the new InitializeNode.
3501 // This will allow us to observe initializations when they occur,
3502 // and link them properly (as a group) to the InitializeNode.
3503 assert(init->in(InitializeNode::Memory) == malloc, "");
3504 MergeMemNode* minit_in = MergeMemNode::make(malloc);
3505 init->set_req(InitializeNode::Memory, minit_in);
3506 record_for_igvn(minit_in); // fold it up later, if possible
3507 Node* minit_out = memory(rawidx);
3508 assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3509 // Add an edge in the MergeMem for the header fields so an access
3510 // to one of those has correct memory state
3511 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3512 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3513 if (oop_type->isa_aryptr()) {
3514 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3515 int elemidx = C->get_alias_index(telemref);
3516 hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3517 } else if (oop_type->isa_instptr()) {
3518 ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3519 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3520 ciField* field = ik->nonstatic_field_at(i);
3521 if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3522 continue; // do not bother to track really large numbers of fields
3523 // Find (or create) the alias category for this field:
3524 int fieldidx = C->alias_type(field)->index();
3525 hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3526 }
3527 }
3528 }
3529
3530 // Cast raw oop to the real thing...
3531 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3532 javaoop = _gvn.transform(javaoop);
3533 C->set_recent_alloc(control(), javaoop);
3534 assert(just_allocated_object(control()) == javaoop, "just allocated");
3535
3536#ifdef ASSERT
3537 { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3538 assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3539 "Ideal_allocation works");
3540 assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3541 "Ideal_allocation works");
3542 if (alloc->is_AllocateArray()) {
3543 assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3544 "Ideal_allocation works");
3545 assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3546 "Ideal_allocation works");
3547 } else {
3548 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3549 }
3550 }
3551#endif //ASSERT
3552
3553 return javaoop;
3554}
3555
3556//---------------------------new_instance--------------------------------------
3557// This routine takes a klass_node which may be constant (for a static type)
3558// or may be non-constant (for reflective code). It will work equally well
3559// for either, and the graph will fold nicely if the optimizer later reduces
3560// the type to a constant.
3561// The optional arguments are for specialized use by intrinsics:
3562// - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3563// - If 'return_size_val', report the the total object size to the caller.
3564// - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3565Node* GraphKit::new_instance(Node* klass_node,
3566 Node* extra_slow_test,
3567 Node* *return_size_val,
3568 bool deoptimize_on_exception) {
3569 // Compute size in doublewords
3570 // The size is always an integral number of doublewords, represented
3571 // as a positive bytewise size stored in the klass's layout_helper.
3572 // The layout_helper also encodes (in a low bit) the need for a slow path.
3573 jint layout_con = Klass::_lh_neutral_value;
3574 Node* layout_val = get_layout_helper(klass_node, layout_con);
3575 int layout_is_con = (layout_val == NULL);
3576
3577 if (extra_slow_test == NULL) extra_slow_test = intcon(0);
3578 // Generate the initial go-slow test. It's either ALWAYS (return a
3579 // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3580 // case) a computed value derived from the layout_helper.
3581 Node* initial_slow_test = NULL;
3582 if (layout_is_con) {
3583 assert(!StressReflectiveCode, "stress mode does not use these paths");
3584 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3585 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3586 } else { // reflective case
3587 // This reflective path is used by Unsafe.allocateInstance.
3588 // (It may be stress-tested by specifying StressReflectiveCode.)
3589 // Basically, we want to get into the VM is there's an illegal argument.
3590 Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3591 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3592 if (extra_slow_test != intcon(0)) {
3593 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3594 }
3595 // (Macro-expander will further convert this to a Bool, if necessary.)
3596 }
3597
3598 // Find the size in bytes. This is easy; it's the layout_helper.
3599 // The size value must be valid even if the slow path is taken.
3600 Node* size = NULL;
3601 if (layout_is_con) {
3602 size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3603 } else { // reflective case
3604 // This reflective path is used by clone and Unsafe.allocateInstance.
3605 size = ConvI2X(layout_val);
3606
3607 // Clear the low bits to extract layout_helper_size_in_bytes:
3608 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3609 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3610 size = _gvn.transform( new AndXNode(size, mask) );
3611 }
3612 if (return_size_val != NULL) {
3613 (*return_size_val) = size;
3614 }
3615
3616 // This is a precise notnull oop of the klass.
3617 // (Actually, it need not be precise if this is a reflective allocation.)
3618 // It's what we cast the result to.
3619 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3620 if (!tklass) tklass = TypeKlassPtr::OBJECT;
3621 const TypeOopPtr* oop_type = tklass->as_instance_type();
3622
3623 // Now generate allocation code
3624
3625 // The entire memory state is needed for slow path of the allocation
3626 // since GC and deoptimization can happened.
3627 Node *mem = reset_memory();
3628 set_all_memory(mem); // Create new memory state
3629
3630 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3631 control(), mem, i_o(),
3632 size, klass_node,
3633 initial_slow_test);
3634
3635 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3636}
3637
3638//-------------------------------new_array-------------------------------------
3639// helper for both newarray and anewarray
3640// The 'length' parameter is (obviously) the length of the array.
3641// See comments on new_instance for the meaning of the other arguments.
3642Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable)
3643 Node* length, // number of array elements
3644 int nargs, // number of arguments to push back for uncommon trap
3645 Node* *return_size_val,
3646 bool deoptimize_on_exception) {
3647 jint layout_con = Klass::_lh_neutral_value;
3648 Node* layout_val = get_layout_helper(klass_node, layout_con);
3649 int layout_is_con = (layout_val == NULL);
3650
3651 if (!layout_is_con && !StressReflectiveCode &&
3652 !too_many_traps(Deoptimization::Reason_class_check)) {
3653 // This is a reflective array creation site.
3654 // Optimistically assume that it is a subtype of Object[],
3655 // so that we can fold up all the address arithmetic.
3656 layout_con = Klass::array_layout_helper(T_OBJECT);
3657 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3658 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3659 { BuildCutout unless(this, bol_lh, PROB_MAX);
3660 inc_sp(nargs);
3661 uncommon_trap(Deoptimization::Reason_class_check,
3662 Deoptimization::Action_maybe_recompile);
3663 }
3664 layout_val = NULL;
3665 layout_is_con = true;
3666 }
3667
3668 // Generate the initial go-slow test. Make sure we do not overflow
3669 // if length is huge (near 2Gig) or negative! We do not need
3670 // exact double-words here, just a close approximation of needed
3671 // double-words. We can't add any offset or rounding bits, lest we
3672 // take a size -1 of bytes and make it positive. Use an unsigned
3673 // compare, so negative sizes look hugely positive.
3674 int fast_size_limit = FastAllocateSizeLimit;
3675 if (layout_is_con) {
3676 assert(!StressReflectiveCode, "stress mode does not use these paths");
3677 // Increase the size limit if we have exact knowledge of array type.
3678 int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3679 fast_size_limit <<= (LogBytesPerLong - log2_esize);
3680 }
3681
3682 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3683 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3684
3685 // --- Size Computation ---
3686 // array_size = round_to_heap(array_header + (length << elem_shift));
3687 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3688 // and align_to(x, y) == ((x + y-1) & ~(y-1))
3689 // The rounding mask is strength-reduced, if possible.
3690 int round_mask = MinObjAlignmentInBytes - 1;
3691 Node* header_size = NULL;
3692 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3693 // (T_BYTE has the weakest alignment and size restrictions...)
3694 if (layout_is_con) {
3695 int hsize = Klass::layout_helper_header_size(layout_con);
3696 int eshift = Klass::layout_helper_log2_element_size(layout_con);
3697 BasicType etype = Klass::layout_helper_element_type(layout_con);
3698 if ((round_mask & ~right_n_bits(eshift)) == 0)
3699 round_mask = 0; // strength-reduce it if it goes away completely
3700 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3701 assert(header_size_min <= hsize, "generic minimum is smallest");
3702 header_size_min = hsize;
3703 header_size = intcon(hsize + round_mask);
3704 } else {
3705 Node* hss = intcon(Klass::_lh_header_size_shift);
3706 Node* hsm = intcon(Klass::_lh_header_size_mask);
3707 Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3708 hsize = _gvn.transform( new AndINode(hsize, hsm) );
3709 Node* mask = intcon(round_mask);
3710 header_size = _gvn.transform( new AddINode(hsize, mask) );
3711 }
3712
3713 Node* elem_shift = NULL;
3714 if (layout_is_con) {
3715 int eshift = Klass::layout_helper_log2_element_size(layout_con);
3716 if (eshift != 0)
3717 elem_shift = intcon(eshift);
3718 } else {
3719 // There is no need to mask or shift this value.
3720 // The semantics of LShiftINode include an implicit mask to 0x1F.
3721 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3722 elem_shift = layout_val;
3723 }
3724
3725 // Transition to native address size for all offset calculations:
3726 Node* lengthx = ConvI2X(length);
3727 Node* headerx = ConvI2X(header_size);
3728#ifdef _LP64
3729 { const TypeInt* tilen = _gvn.find_int_type(length);
3730 if (tilen != NULL && tilen->_lo < 0) {
3731 // Add a manual constraint to a positive range. Cf. array_element_address.
3732 jint size_max = fast_size_limit;
3733 if (size_max > tilen->_hi) size_max = tilen->_hi;
3734 const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3735
3736 // Only do a narrow I2L conversion if the range check passed.
3737 IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3738 _gvn.transform(iff);
3739 RegionNode* region = new RegionNode(3);
3740 _gvn.set_type(region, Type::CONTROL);
3741 lengthx = new PhiNode(region, TypeLong::LONG);
3742 _gvn.set_type(lengthx, TypeLong::LONG);
3743
3744 // Range check passed. Use ConvI2L node with narrow type.
3745 Node* passed = IfFalse(iff);
3746 region->init_req(1, passed);
3747 // Make I2L conversion control dependent to prevent it from
3748 // floating above the range check during loop optimizations.
3749 lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3750
3751 // Range check failed. Use ConvI2L with wide type because length may be invalid.
3752 region->init_req(2, IfTrue(iff));
3753 lengthx->init_req(2, ConvI2X(length));
3754
3755 set_control(region);
3756 record_for_igvn(region);
3757 record_for_igvn(lengthx);
3758 }
3759 }
3760#endif
3761
3762 // Combine header size (plus rounding) and body size. Then round down.
3763 // This computation cannot overflow, because it is used only in two
3764 // places, one where the length is sharply limited, and the other
3765 // after a successful allocation.
3766 Node* abody = lengthx;
3767 if (elem_shift != NULL)
3768 abody = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3769 Node* size = _gvn.transform( new AddXNode(headerx, abody) );
3770 if (round_mask != 0) {
3771 Node* mask = MakeConX(~round_mask);
3772 size = _gvn.transform( new AndXNode(size, mask) );
3773 }
3774 // else if round_mask == 0, the size computation is self-rounding
3775
3776 if (return_size_val != NULL) {
3777 // This is the size
3778 (*return_size_val) = size;
3779 }
3780
3781 // Now generate allocation code
3782
3783 // The entire memory state is needed for slow path of the allocation
3784 // since GC and deoptimization can happened.
3785 Node *mem = reset_memory();
3786 set_all_memory(mem); // Create new memory state
3787
3788 if (initial_slow_test->is_Bool()) {
3789 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3790 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3791 }
3792
3793 // Create the AllocateArrayNode and its result projections
3794 AllocateArrayNode* alloc
3795 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3796 control(), mem, i_o(),
3797 size, klass_node,
3798 initial_slow_test,
3799 length);
3800
3801 // Cast to correct type. Note that the klass_node may be constant or not,
3802 // and in the latter case the actual array type will be inexact also.
3803 // (This happens via a non-constant argument to inline_native_newArray.)
3804 // In any case, the value of klass_node provides the desired array type.
3805 const TypeInt* length_type = _gvn.find_int_type(length);
3806 const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3807 if (ary_type->isa_aryptr() && length_type != NULL) {
3808 // Try to get a better type than POS for the size
3809 ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3810 }
3811
3812 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3813
3814 // Cast length on remaining path to be as narrow as possible
3815 if (map()->find_edge(length) >= 0) {
3816 Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3817 if (ccast != length) {
3818 _gvn.set_type_bottom(ccast);
3819 record_for_igvn(ccast);
3820 replace_in_map(length, ccast);
3821 }
3822 }
3823
3824 return javaoop;
3825}
3826
3827// The following "Ideal_foo" functions are placed here because they recognize
3828// the graph shapes created by the functions immediately above.
3829
3830//---------------------------Ideal_allocation----------------------------------
3831// Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3832AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3833 if (ptr == NULL) { // reduce dumb test in callers
3834 return NULL;
3835 }
3836
3837 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
3838 ptr = bs->step_over_gc_barrier(ptr);
3839
3840 if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3841 ptr = ptr->in(1);
3842 if (ptr == NULL) return NULL;
3843 }
3844 // Return NULL for allocations with several casts:
3845 // j.l.reflect.Array.newInstance(jobject, jint)
3846 // Object.clone()
3847 // to keep more precise type from last cast.
3848 if (ptr->is_Proj()) {
3849 Node* allo = ptr->in(0);
3850 if (allo != NULL && allo->is_Allocate()) {
3851 return allo->as_Allocate();
3852 }
3853 }
3854 // Report failure to match.
3855 return NULL;
3856}
3857
3858// Fancy version which also strips off an offset (and reports it to caller).
3859AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3860 intptr_t& offset) {
3861 Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3862 if (base == NULL) return NULL;
3863 return Ideal_allocation(base, phase);
3864}
3865
3866// Trace Initialize <- Proj[Parm] <- Allocate
3867AllocateNode* InitializeNode::allocation() {
3868 Node* rawoop = in(InitializeNode::RawAddress);
3869 if (rawoop->is_Proj()) {
3870 Node* alloc = rawoop->in(0);
3871 if (alloc->is_Allocate()) {
3872 return alloc->as_Allocate();
3873 }
3874 }
3875 return NULL;
3876}
3877
3878// Trace Allocate -> Proj[Parm] -> Initialize
3879InitializeNode* AllocateNode::initialization() {
3880 ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
3881 if (rawoop == NULL) return NULL;
3882 for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3883 Node* init = rawoop->fast_out(i);
3884 if (init->is_Initialize()) {
3885 assert(init->as_Initialize()->allocation() == this, "2-way link");
3886 return init->as_Initialize();
3887 }
3888 }
3889 return NULL;
3890}
3891
3892//----------------------------- loop predicates ---------------------------
3893
3894//------------------------------add_predicate_impl----------------------------
3895void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3896 // Too many traps seen?
3897 if (too_many_traps(reason)) {
3898#ifdef ASSERT
3899 if (TraceLoopPredicate) {
3900 int tc = C->trap_count(reason);
3901 tty->print("too many traps=%s tcount=%d in ",
3902 Deoptimization::trap_reason_name(reason), tc);
3903 method()->print(); // which method has too many predicate traps
3904 tty->cr();
3905 }
3906#endif
3907 // We cannot afford to take more traps here,
3908 // do not generate predicate.
3909 return;
3910 }
3911
3912 Node *cont = _gvn.intcon(1);
3913 Node* opq = _gvn.transform(new Opaque1Node(C, cont));
3914 Node *bol = _gvn.transform(new Conv2BNode(opq));
3915 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3916 Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3917 C->add_predicate_opaq(opq);
3918 {
3919 PreserveJVMState pjvms(this);
3920 set_control(iffalse);
3921 inc_sp(nargs);
3922 uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3923 }
3924 Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3925 set_control(iftrue);
3926}
3927
3928//------------------------------add_predicate---------------------------------
3929void GraphKit::add_predicate(int nargs) {
3930 if (UseLoopPredicate) {
3931 add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3932 }
3933 if (UseProfiledLoopPredicate) {
3934 add_predicate_impl(Deoptimization::Reason_profile_predicate, nargs);
3935 }
3936 // loop's limit check predicate should be near the loop.
3937 add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3938}
3939
3940void GraphKit::sync_kit(IdealKit& ideal) {
3941 set_all_memory(ideal.merged_memory());
3942 set_i_o(ideal.i_o());
3943 set_control(ideal.ctrl());
3944}
3945
3946void GraphKit::final_sync(IdealKit& ideal) {
3947 // Final sync IdealKit and graphKit.
3948 sync_kit(ideal);
3949}
3950
3951Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
3952 Node* len = load_array_length(load_String_value(str, set_ctrl));
3953 Node* coder = load_String_coder(str, set_ctrl);
3954 // Divide length by 2 if coder is UTF16
3955 return _gvn.transform(new RShiftINode(len, coder));
3956}
3957
3958Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
3959 int value_offset = java_lang_String::value_offset_in_bytes();
3960 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3961 false, NULL, 0);
3962 const TypePtr* value_field_type = string_type->add_offset(value_offset);
3963 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
3964 TypeAry::make(TypeInt::BYTE, TypeInt::POS),
3965 ciTypeArrayKlass::make(T_BYTE), true, 0);
3966 Node* p = basic_plus_adr(str, str, value_offset);
3967 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
3968 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
3969 return load;
3970}
3971
3972Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
3973 if (!CompactStrings) {
3974 return intcon(java_lang_String::CODER_UTF16);
3975 }
3976 int coder_offset = java_lang_String::coder_offset_in_bytes();
3977 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3978 false, NULL, 0);
3979 const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3980
3981 Node* p = basic_plus_adr(str, str, coder_offset);
3982 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
3983 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
3984 return load;
3985}
3986
3987void GraphKit::store_String_value(Node* str, Node* value) {
3988 int value_offset = java_lang_String::value_offset_in_bytes();
3989 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3990 false, NULL, 0);
3991 const TypePtr* value_field_type = string_type->add_offset(value_offset);
3992
3993 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type,
3994 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
3995}
3996
3997void GraphKit::store_String_coder(Node* str, Node* value) {
3998 int coder_offset = java_lang_String::coder_offset_in_bytes();
3999 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4000 false, NULL, 0);
4001 const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4002
4003 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4004 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4005}
4006
4007// Capture src and dst memory state with a MergeMemNode
4008Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4009 if (src_type == dst_type) {
4010 // Types are equal, we don't need a MergeMemNode
4011 return memory(src_type);
4012 }
4013 MergeMemNode* merge = MergeMemNode::make(map()->memory());
4014 record_for_igvn(merge); // fold it up later, if possible
4015 int src_idx = C->get_alias_index(src_type);
4016 int dst_idx = C->get_alias_index(dst_type);
4017 merge->set_memory_at(src_idx, memory(src_idx));
4018 merge->set_memory_at(dst_idx, memory(dst_idx));
4019 return merge;
4020}
4021
4022Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4023 assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4024 assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4025 // If input and output memory types differ, capture both states to preserve
4026 // the dependency between preceding and subsequent loads/stores.
4027 // For example, the following program:
4028 // StoreB
4029 // compress_string
4030 // LoadB
4031 // has this memory graph (use->def):
4032 // LoadB -> compress_string -> CharMem
4033 // ... -> StoreB -> ByteMem
4034 // The intrinsic hides the dependency between LoadB and StoreB, causing
4035 // the load to read from memory not containing the result of the StoreB.
4036 // The correct memory graph should look like this:
4037 // LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4038 Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4039 StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4040 Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4041 set_memory(res_mem, TypeAryPtr::BYTES);
4042 return str;
4043}
4044
4045void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4046 assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4047 assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4048 // Capture src and dst memory (see comment in 'compress_string').
4049 Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4050 StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4051 set_memory(_gvn.transform(str), dst_type);
4052}
4053
4054void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4055 /**
4056 * int i_char = start;
4057 * for (int i_byte = 0; i_byte < count; i_byte++) {
4058 * dst[i_char++] = (char)(src[i_byte] & 0xff);
4059 * }
4060 */
4061 src = access_resolve(src, ACCESS_READ);
4062 dst = access_resolve(dst, ACCESS_WRITE);
4063 add_predicate();
4064 RegionNode* head = new RegionNode(3);
4065 head->init_req(1, control());
4066 gvn().set_type(head, Type::CONTROL);
4067 record_for_igvn(head);
4068
4069 Node* i_byte = new PhiNode(head, TypeInt::INT);
4070 i_byte->init_req(1, intcon(0));
4071 gvn().set_type(i_byte, TypeInt::INT);
4072 record_for_igvn(i_byte);
4073
4074 Node* i_char = new PhiNode(head, TypeInt::INT);
4075 i_char->init_req(1, start);
4076 gvn().set_type(i_char, TypeInt::INT);
4077 record_for_igvn(i_char);
4078
4079 Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4080 gvn().set_type(mem, Type::MEMORY);
4081 record_for_igvn(mem);
4082 set_control(head);
4083 set_memory(mem, TypeAryPtr::BYTES);
4084 Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4085 Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4086 AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4087 false, false, true /* mismatched */);
4088
4089 IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4090 head->init_req(2, IfTrue(iff));
4091 mem->init_req(2, st);
4092 i_byte->init_req(2, AddI(i_byte, intcon(1)));
4093 i_char->init_req(2, AddI(i_char, intcon(2)));
4094
4095 set_control(IfFalse(iff));
4096 set_memory(st, TypeAryPtr::BYTES);
4097}
4098
4099Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4100 if (!field->is_constant()) {
4101 return NULL; // Field not marked as constant.
4102 }
4103 ciInstance* holder = NULL;
4104 if (!field->is_static()) {
4105 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4106 if (const_oop != NULL && const_oop->is_instance()) {
4107 holder = const_oop->as_instance();
4108 }
4109 }
4110 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4111 /*is_unsigned_load=*/false);
4112 if (con_type != NULL) {
4113 return makecon(con_type);
4114 }
4115 return NULL;
4116}
4117