1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include <algorithm> |
9 | #include "include/core/SkMallocPixelRef.h" |
10 | #include "include/private/SkFloatBits.h" |
11 | #include "include/private/SkHalf.h" |
12 | #include "include/private/SkVx.h" |
13 | #include "src/core/SkColorSpacePriv.h" |
14 | #include "src/core/SkConvertPixels.h" |
15 | #include "src/core/SkReadBuffer.h" |
16 | #include "src/core/SkVM.h" |
17 | #include "src/core/SkWriteBuffer.h" |
18 | #include "src/shaders/gradients/Sk4fLinearGradient.h" |
19 | #include "src/shaders/gradients/SkGradientShaderPriv.h" |
20 | #include "src/shaders/gradients/SkLinearGradient.h" |
21 | #include "src/shaders/gradients/SkRadialGradient.h" |
22 | #include "src/shaders/gradients/SkSweepGradient.h" |
23 | #include "src/shaders/gradients/SkTwoPointConicalGradient.h" |
24 | |
25 | enum GradientSerializationFlags { |
26 | // Bits 29:31 used for various boolean flags |
27 | kHasPosition_GSF = 0x80000000, |
28 | kHasLocalMatrix_GSF = 0x40000000, |
29 | kHasColorSpace_GSF = 0x20000000, |
30 | |
31 | // Bits 12:28 unused |
32 | |
33 | // Bits 8:11 for fTileMode |
34 | kTileModeShift_GSF = 8, |
35 | kTileModeMask_GSF = 0xF, |
36 | |
37 | // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80) |
38 | kGradFlagsShift_GSF = 0, |
39 | kGradFlagsMask_GSF = 0xFF, |
40 | }; |
41 | |
42 | void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const { |
43 | uint32_t flags = 0; |
44 | if (fPos) { |
45 | flags |= kHasPosition_GSF; |
46 | } |
47 | if (fLocalMatrix) { |
48 | flags |= kHasLocalMatrix_GSF; |
49 | } |
50 | sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr; |
51 | if (colorSpaceData) { |
52 | flags |= kHasColorSpace_GSF; |
53 | } |
54 | SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF); |
55 | flags |= ((unsigned)fTileMode << kTileModeShift_GSF); |
56 | SkASSERT(fGradFlags <= kGradFlagsMask_GSF); |
57 | flags |= (fGradFlags << kGradFlagsShift_GSF); |
58 | |
59 | buffer.writeUInt(flags); |
60 | |
61 | buffer.writeColor4fArray(fColors, fCount); |
62 | if (colorSpaceData) { |
63 | buffer.writeDataAsByteArray(colorSpaceData.get()); |
64 | } |
65 | if (fPos) { |
66 | buffer.writeScalarArray(fPos, fCount); |
67 | } |
68 | if (fLocalMatrix) { |
69 | buffer.writeMatrix(*fLocalMatrix); |
70 | } |
71 | } |
72 | |
73 | template <int N, typename T, bool MEM_MOVE> |
74 | static bool validate_array(SkReadBuffer& buffer, size_t count, SkSTArray<N, T, MEM_MOVE>* array) { |
75 | if (!buffer.validateCanReadN<T>(count)) { |
76 | return false; |
77 | } |
78 | |
79 | array->resize_back(count); |
80 | return true; |
81 | } |
82 | |
83 | bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) { |
84 | // New gradient format. Includes floating point color, color space, densely packed flags |
85 | uint32_t flags = buffer.readUInt(); |
86 | |
87 | fTileMode = (SkTileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF); |
88 | fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF; |
89 | |
90 | fCount = buffer.getArrayCount(); |
91 | |
92 | if (!(validate_array(buffer, fCount, &fColorStorage) && |
93 | buffer.readColor4fArray(fColorStorage.begin(), fCount))) { |
94 | return false; |
95 | } |
96 | fColors = fColorStorage.begin(); |
97 | |
98 | if (SkToBool(flags & kHasColorSpace_GSF)) { |
99 | sk_sp<SkData> data = buffer.readByteArrayAsData(); |
100 | fColorSpace = data ? SkColorSpace::Deserialize(data->data(), data->size()) : nullptr; |
101 | } else { |
102 | fColorSpace = nullptr; |
103 | } |
104 | if (SkToBool(flags & kHasPosition_GSF)) { |
105 | if (!(validate_array(buffer, fCount, &fPosStorage) && |
106 | buffer.readScalarArray(fPosStorage.begin(), fCount))) { |
107 | return false; |
108 | } |
109 | fPos = fPosStorage.begin(); |
110 | } else { |
111 | fPos = nullptr; |
112 | } |
113 | if (SkToBool(flags & kHasLocalMatrix_GSF)) { |
114 | fLocalMatrix = &fLocalMatrixStorage; |
115 | buffer.readMatrix(&fLocalMatrixStorage); |
116 | } else { |
117 | fLocalMatrix = nullptr; |
118 | } |
119 | return buffer.isValid(); |
120 | } |
121 | |
122 | //////////////////////////////////////////////////////////////////////////////////////////// |
123 | |
124 | SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit) |
125 | : INHERITED(desc.fLocalMatrix) |
126 | , fPtsToUnit(ptsToUnit) |
127 | , fColorSpace(desc.fColorSpace ? desc.fColorSpace : SkColorSpace::MakeSRGB()) |
128 | , fColorsAreOpaque(true) |
129 | { |
130 | fPtsToUnit.getType(); // Precache so reads are threadsafe. |
131 | SkASSERT(desc.fCount > 1); |
132 | |
133 | fGradFlags = static_cast<uint8_t>(desc.fGradFlags); |
134 | |
135 | SkASSERT((unsigned)desc.fTileMode < kSkTileModeCount); |
136 | fTileMode = desc.fTileMode; |
137 | |
138 | /* Note: we let the caller skip the first and/or last position. |
139 | i.e. pos[0] = 0.3, pos[1] = 0.7 |
140 | In these cases, we insert dummy entries to ensure that the final data |
141 | will be bracketed by [0, 1]. |
142 | i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 |
143 | |
144 | Thus colorCount (the caller's value, and fColorCount (our value) may |
145 | differ by up to 2. In the above example: |
146 | colorCount = 2 |
147 | fColorCount = 4 |
148 | */ |
149 | fColorCount = desc.fCount; |
150 | // check if we need to add in dummy start and/or end position/colors |
151 | bool dummyFirst = false; |
152 | bool dummyLast = false; |
153 | if (desc.fPos) { |
154 | dummyFirst = desc.fPos[0] != 0; |
155 | dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1; |
156 | fColorCount += dummyFirst + dummyLast; |
157 | } |
158 | |
159 | size_t storageSize = fColorCount * (sizeof(SkColor4f) + (desc.fPos ? sizeof(SkScalar) : 0)); |
160 | fOrigColors4f = reinterpret_cast<SkColor4f*>(fStorage.reset(storageSize)); |
161 | fOrigPos = desc.fPos ? reinterpret_cast<SkScalar*>(fOrigColors4f + fColorCount) |
162 | : nullptr; |
163 | |
164 | // Now copy over the colors, adding the dummies as needed |
165 | SkColor4f* origColors = fOrigColors4f; |
166 | if (dummyFirst) { |
167 | *origColors++ = desc.fColors[0]; |
168 | } |
169 | for (int i = 0; i < desc.fCount; ++i) { |
170 | origColors[i] = desc.fColors[i]; |
171 | fColorsAreOpaque = fColorsAreOpaque && (desc.fColors[i].fA == 1); |
172 | } |
173 | if (dummyLast) { |
174 | origColors += desc.fCount; |
175 | *origColors = desc.fColors[desc.fCount - 1]; |
176 | } |
177 | |
178 | if (desc.fPos) { |
179 | SkScalar prev = 0; |
180 | SkScalar* origPosPtr = fOrigPos; |
181 | *origPosPtr++ = prev; // force the first pos to 0 |
182 | |
183 | int startIndex = dummyFirst ? 0 : 1; |
184 | int count = desc.fCount + dummyLast; |
185 | |
186 | bool uniformStops = true; |
187 | const SkScalar uniformStep = desc.fPos[startIndex] - prev; |
188 | for (int i = startIndex; i < count; i++) { |
189 | // Pin the last value to 1.0, and make sure pos is monotonic. |
190 | auto curr = (i == desc.fCount) ? 1 : SkTPin(desc.fPos[i], prev, 1.0f); |
191 | uniformStops &= SkScalarNearlyEqual(uniformStep, curr - prev); |
192 | |
193 | *origPosPtr++ = prev = curr; |
194 | } |
195 | |
196 | // If the stops are uniform, treat them as implicit. |
197 | if (uniformStops) { |
198 | fOrigPos = nullptr; |
199 | } |
200 | } |
201 | } |
202 | |
203 | SkGradientShaderBase::~SkGradientShaderBase() {} |
204 | |
205 | void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const { |
206 | Descriptor desc; |
207 | desc.fColors = fOrigColors4f; |
208 | desc.fColorSpace = fColorSpace; |
209 | desc.fPos = fOrigPos; |
210 | desc.fCount = fColorCount; |
211 | desc.fTileMode = fTileMode; |
212 | desc.fGradFlags = fGradFlags; |
213 | |
214 | const SkMatrix& m = this->getLocalMatrix(); |
215 | desc.fLocalMatrix = m.isIdentity() ? nullptr : &m; |
216 | desc.flatten(buffer); |
217 | } |
218 | |
219 | static void add_stop_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f Fs, SkPMColor4f Bs) { |
220 | (ctx->fs[0])[stop] = Fs.fR; |
221 | (ctx->fs[1])[stop] = Fs.fG; |
222 | (ctx->fs[2])[stop] = Fs.fB; |
223 | (ctx->fs[3])[stop] = Fs.fA; |
224 | |
225 | (ctx->bs[0])[stop] = Bs.fR; |
226 | (ctx->bs[1])[stop] = Bs.fG; |
227 | (ctx->bs[2])[stop] = Bs.fB; |
228 | (ctx->bs[3])[stop] = Bs.fA; |
229 | } |
230 | |
231 | static void add_const_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f color) { |
232 | add_stop_color(ctx, stop, { 0, 0, 0, 0 }, color); |
233 | } |
234 | |
235 | // Calculate a factor F and a bias B so that color = F*t + B when t is in range of |
236 | // the stop. Assume that the distance between stops is 1/gapCount. |
237 | static void init_stop_evenly( |
238 | SkRasterPipeline_GradientCtx* ctx, float gapCount, size_t stop, SkPMColor4f c_l, SkPMColor4f c_r) { |
239 | // Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar... |
240 | SkPMColor4f Fs = { |
241 | (c_r.fR - c_l.fR) * gapCount, |
242 | (c_r.fG - c_l.fG) * gapCount, |
243 | (c_r.fB - c_l.fB) * gapCount, |
244 | (c_r.fA - c_l.fA) * gapCount, |
245 | }; |
246 | SkPMColor4f Bs = { |
247 | c_l.fR - Fs.fR*(stop/gapCount), |
248 | c_l.fG - Fs.fG*(stop/gapCount), |
249 | c_l.fB - Fs.fB*(stop/gapCount), |
250 | c_l.fA - Fs.fA*(stop/gapCount), |
251 | }; |
252 | add_stop_color(ctx, stop, Fs, Bs); |
253 | } |
254 | |
255 | // For each stop we calculate a bias B and a scale factor F, such that |
256 | // for any t between stops n and n+1, the color we want is B[n] + F[n]*t. |
257 | static void init_stop_pos( |
258 | SkRasterPipeline_GradientCtx* ctx, size_t stop, float t_l, float t_r, SkPMColor4f c_l, SkPMColor4f c_r) { |
259 | // See note about Clankium's old compiler in init_stop_evenly(). |
260 | SkPMColor4f Fs = { |
261 | (c_r.fR - c_l.fR) / (t_r - t_l), |
262 | (c_r.fG - c_l.fG) / (t_r - t_l), |
263 | (c_r.fB - c_l.fB) / (t_r - t_l), |
264 | (c_r.fA - c_l.fA) / (t_r - t_l), |
265 | }; |
266 | SkPMColor4f Bs = { |
267 | c_l.fR - Fs.fR*t_l, |
268 | c_l.fG - Fs.fG*t_l, |
269 | c_l.fB - Fs.fB*t_l, |
270 | c_l.fA - Fs.fA*t_l, |
271 | }; |
272 | ctx->ts[stop] = t_l; |
273 | add_stop_color(ctx, stop, Fs, Bs); |
274 | } |
275 | |
276 | bool SkGradientShaderBase::onAppendStages(const SkStageRec& rec) const { |
277 | SkRasterPipeline* p = rec.fPipeline; |
278 | SkArenaAlloc* alloc = rec.fAlloc; |
279 | SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr; |
280 | |
281 | SkMatrix matrix; |
282 | if (!this->computeTotalInverse(rec.fCTM, rec.fLocalM, &matrix)) { |
283 | return false; |
284 | } |
285 | matrix.postConcat(fPtsToUnit); |
286 | |
287 | SkRasterPipeline_<256> postPipeline; |
288 | |
289 | p->append(SkRasterPipeline::seed_shader); |
290 | p->append_matrix(alloc, matrix); |
291 | this->appendGradientStages(alloc, p, &postPipeline); |
292 | |
293 | switch(fTileMode) { |
294 | case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x_1); break; |
295 | case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x_1); break; |
296 | case SkTileMode::kDecal: |
297 | decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>(); |
298 | decal_ctx->limit_x = SkBits2Float(SkFloat2Bits(1.0f) + 1); |
299 | // reuse mask + limit_x stage, or create a custom decal_1 that just stores the mask |
300 | p->append(SkRasterPipeline::decal_x, decal_ctx); |
301 | // fall-through to clamp |
302 | case SkTileMode::kClamp: |
303 | if (!fOrigPos) { |
304 | // We clamp only when the stops are evenly spaced. |
305 | // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1. |
306 | // In that case, we must make sure we're using the general "gradient" stage, |
307 | // which is the only stage that will correctly handle unclamped t. |
308 | p->append(SkRasterPipeline::clamp_x_1); |
309 | } |
310 | break; |
311 | } |
312 | |
313 | const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag; |
314 | |
315 | // Transform all of the colors to destination color space |
316 | SkColor4fXformer xformedColors(fOrigColors4f, fColorCount, fColorSpace.get(), rec.fDstCS); |
317 | |
318 | auto prepareColor = [premulGrad, &xformedColors](int i) { |
319 | SkColor4f c = xformedColors.fColors[i]; |
320 | return premulGrad ? c.premul() |
321 | : SkPMColor4f{ c.fR, c.fG, c.fB, c.fA }; |
322 | }; |
323 | |
324 | // The two-stop case with stops at 0 and 1. |
325 | if (fColorCount == 2 && fOrigPos == nullptr) { |
326 | const SkPMColor4f c_l = prepareColor(0), |
327 | c_r = prepareColor(1); |
328 | |
329 | // See F and B below. |
330 | auto ctx = alloc->make<SkRasterPipeline_EvenlySpaced2StopGradientCtx>(); |
331 | (Sk4f::Load(c_r.vec()) - Sk4f::Load(c_l.vec())).store(ctx->f); |
332 | ( Sk4f::Load(c_l.vec())).store(ctx->b); |
333 | ctx->interpolatedInPremul = premulGrad; |
334 | |
335 | p->append(SkRasterPipeline::evenly_spaced_2_stop_gradient, ctx); |
336 | } else { |
337 | auto* ctx = alloc->make<SkRasterPipeline_GradientCtx>(); |
338 | ctx->interpolatedInPremul = premulGrad; |
339 | |
340 | // Note: In order to handle clamps in search, the search assumes a stop conceptully placed |
341 | // at -inf. Therefore, the max number of stops is fColorCount+1. |
342 | for (int i = 0; i < 4; i++) { |
343 | // Allocate at least at for the AVX2 gather from a YMM register. |
344 | ctx->fs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8)); |
345 | ctx->bs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8)); |
346 | } |
347 | |
348 | if (fOrigPos == nullptr) { |
349 | // Handle evenly distributed stops. |
350 | |
351 | size_t stopCount = fColorCount; |
352 | float gapCount = stopCount - 1; |
353 | |
354 | SkPMColor4f c_l = prepareColor(0); |
355 | for (size_t i = 0; i < stopCount - 1; i++) { |
356 | SkPMColor4f c_r = prepareColor(i + 1); |
357 | init_stop_evenly(ctx, gapCount, i, c_l, c_r); |
358 | c_l = c_r; |
359 | } |
360 | add_const_color(ctx, stopCount - 1, c_l); |
361 | |
362 | ctx->stopCount = stopCount; |
363 | p->append(SkRasterPipeline::evenly_spaced_gradient, ctx); |
364 | } else { |
365 | // Handle arbitrary stops. |
366 | |
367 | ctx->ts = alloc->makeArray<float>(fColorCount+1); |
368 | |
369 | // Remove the dummy stops inserted by SkGradientShaderBase::SkGradientShaderBase |
370 | // because they are naturally handled by the search method. |
371 | int firstStop; |
372 | int lastStop; |
373 | if (fColorCount > 2) { |
374 | firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1; |
375 | lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1] |
376 | ? fColorCount - 1 : fColorCount - 2; |
377 | } else { |
378 | firstStop = 0; |
379 | lastStop = 1; |
380 | } |
381 | |
382 | size_t stopCount = 0; |
383 | float t_l = fOrigPos[firstStop]; |
384 | SkPMColor4f c_l = prepareColor(firstStop); |
385 | add_const_color(ctx, stopCount++, c_l); |
386 | // N.B. lastStop is the index of the last stop, not one after. |
387 | for (int i = firstStop; i < lastStop; i++) { |
388 | float t_r = fOrigPos[i + 1]; |
389 | SkPMColor4f c_r = prepareColor(i + 1); |
390 | SkASSERT(t_l <= t_r); |
391 | if (t_l < t_r) { |
392 | init_stop_pos(ctx, stopCount, t_l, t_r, c_l, c_r); |
393 | stopCount += 1; |
394 | } |
395 | t_l = t_r; |
396 | c_l = c_r; |
397 | } |
398 | |
399 | ctx->ts[stopCount] = t_l; |
400 | add_const_color(ctx, stopCount++, c_l); |
401 | |
402 | ctx->stopCount = stopCount; |
403 | p->append(SkRasterPipeline::gradient, ctx); |
404 | } |
405 | } |
406 | |
407 | if (decal_ctx) { |
408 | p->append(SkRasterPipeline::check_decal_mask, decal_ctx); |
409 | } |
410 | |
411 | if (!premulGrad && !this->colorsAreOpaque()) { |
412 | p->append(SkRasterPipeline::premul); |
413 | } |
414 | |
415 | p->extend(postPipeline); |
416 | |
417 | return true; |
418 | } |
419 | |
420 | skvm::Color SkGradientShaderBase::onProgram(skvm::Builder* p, |
421 | skvm::F32 x, skvm::F32 y, skvm::Color /*paint*/, |
422 | const SkMatrix& ctm, const SkMatrix* localM, |
423 | SkFilterQuality quality, const SkColorInfo& dstInfo, |
424 | skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const { |
425 | SkMatrix inv; |
426 | if (!this->computeTotalInverse(ctm, localM, &inv)) { |
427 | return {}; |
428 | } |
429 | inv.postConcat(fPtsToUnit); |
430 | inv.normalizePerspective(); |
431 | |
432 | SkShaderBase::ApplyMatrix(p, inv, &x,&y,uniforms); |
433 | |
434 | skvm::I32 mask = p->splat(~0); |
435 | skvm::F32 t = this->transformT(p,uniforms, x,y, &mask); |
436 | |
437 | // Perhaps unexpectedly, clamping is handled naturally by our search, so we |
438 | // don't explicitly clamp t to [0,1]. That clamp would break hard stops |
439 | // right at 0 or 1 boundaries in kClamp mode. (kRepeat and kMirror always |
440 | // produce values in [0,1].) |
441 | switch(fTileMode) { |
442 | case SkTileMode::kClamp: |
443 | break; |
444 | |
445 | case SkTileMode::kDecal: |
446 | mask &= (t == clamp01(t)); |
447 | break; |
448 | |
449 | case SkTileMode::kRepeat: |
450 | t = fract(t); |
451 | break; |
452 | |
453 | case SkTileMode::kMirror: { |
454 | // t = | (t-1) - 2*(floor( (t-1)*0.5 )) - 1 | |
455 | // {-A-} {--------B-------} |
456 | skvm::F32 A = t - 1.0f, |
457 | B = floor(A * 0.5f); |
458 | t = abs(A - (B + B) - 1.0f); |
459 | } break; |
460 | } |
461 | |
462 | // Transform our colors as we want them interpolated, in dst color space, possibly premul. |
463 | SkImageInfo common = SkImageInfo::Make(fColorCount,1, kRGBA_F32_SkColorType |
464 | , kUnpremul_SkAlphaType), |
465 | src = common.makeColorSpace(fColorSpace), |
466 | dst = common.makeColorSpace(dstInfo.refColorSpace()); |
467 | if (fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) { |
468 | dst = dst.makeAlphaType(kPremul_SkAlphaType); |
469 | } |
470 | |
471 | std::vector<float> rgba(4*fColorCount); // TODO: SkSTArray? |
472 | SkConvertPixels(dst, rgba.data(), dst.minRowBytes(), |
473 | src, fOrigColors4f, src.minRowBytes()); |
474 | |
475 | // Transform our colors into a scale factor f and bias b such that for |
476 | // any t between stops i and i+1, the color we want is mad(t, f[i], b[i]). |
477 | using F4 = skvx::Vec<4,float>; |
478 | struct FB { F4 f,b; }; |
479 | skvm::Color color; |
480 | |
481 | auto uniformF = [&](float x) { return p->uniformF(uniforms->pushF(x)); }; |
482 | |
483 | if (fColorCount == 2) { |
484 | // 2-stop gradients have colors at 0 and 1, and so must be evenly spaced. |
485 | SkASSERT(fOrigPos == nullptr); |
486 | |
487 | // With 2 stops, we upload the single FB as uniforms and interpolate directly with t. |
488 | F4 lo = F4::Load(rgba.data() + 0), |
489 | hi = F4::Load(rgba.data() + 4); |
490 | F4 F = hi - lo, |
491 | B = lo; |
492 | |
493 | auto T = clamp01(t); |
494 | color = { |
495 | T * uniformF(F[0]) + uniformF(B[0]), |
496 | T * uniformF(F[1]) + uniformF(B[1]), |
497 | T * uniformF(F[2]) + uniformF(B[2]), |
498 | T * uniformF(F[3]) + uniformF(B[3]), |
499 | }; |
500 | } else { |
501 | // To handle clamps in search we add a conceptual stop at t=-inf, so we |
502 | // may need up to fColorCount+1 FBs and fColorCount t stops between them: |
503 | // |
504 | // FBs: [color 0] [color 0->1] [color 1->2] [color 2->3] ... |
505 | // stops: (-inf) t0 t1 t2 ... |
506 | // |
507 | // Both these arrays could end up shorter if any hard stops share the same t. |
508 | FB* fb = alloc->makeArrayDefault<FB>(fColorCount+1); |
509 | std::vector<float> stops; // TODO: SkSTArray? |
510 | stops.reserve(fColorCount); |
511 | |
512 | // Here's our conceptual stop at t=-inf covering all t<=0, clamping to our first color. |
513 | float t_lo = this->getPos(0); |
514 | F4 color_lo = F4::Load(rgba.data()); |
515 | fb[0] = { 0.0f, color_lo }; |
516 | // N.B. No stops[] entry for this implicit -inf. |
517 | |
518 | // Now the non-edge cases, calculating scale and bias between adjacent normal stops. |
519 | for (int i = 1; i < fColorCount; i++) { |
520 | float t_hi = this->getPos(i); |
521 | F4 color_hi = F4::Load(rgba.data() + 4*i); |
522 | |
523 | // If t_lo == t_hi, we're on a hard stop, and transition immediately to the next color. |
524 | SkASSERT(t_lo <= t_hi); |
525 | if (t_lo < t_hi) { |
526 | F4 f = (color_hi - color_lo) / (t_hi - t_lo), |
527 | b = color_lo - f*t_lo; |
528 | stops.push_back(t_lo); |
529 | fb[stops.size()] = {f,b}; |
530 | } |
531 | |
532 | t_lo = t_hi; |
533 | color_lo = color_hi; |
534 | } |
535 | // Anything >= our final t clamps to our final color. |
536 | stops.push_back(t_lo); |
537 | fb[stops.size()] = { 0.0f, color_lo }; |
538 | |
539 | // We'll gather FBs from that array we just created. |
540 | skvm::Uniform fbs = uniforms->pushPtr(fb); |
541 | |
542 | // Find the two stops we need to interpolate. |
543 | skvm::I32 ix; |
544 | if (fOrigPos == nullptr) { |
545 | // Evenly spaced stops... we can calculate ix directly. |
546 | // Of note: we need to clamp t and skip over that conceptual -inf stop we made up. |
547 | ix = trunc(clamp01(t) * uniformF(stops.size() - 1) + 1.0f); |
548 | } else { |
549 | // Starting ix at 0 bakes in our conceptual first stop at -inf. |
550 | // TODO: good place to experiment with a loop in skvm.... stops.size() can be huge. |
551 | ix = p->splat(0); |
552 | for (float stop : stops) { |
553 | // ix += (t >= stop) ? +1 : 0 ~~> |
554 | // ix -= (t >= stop) ? -1 : 0 |
555 | ix -= (t >= uniformF(stop)); |
556 | } |
557 | // TODO: we could skip any of the dummy stops GradientShaderBase's ctor added |
558 | // to ensure the full [0,1] span is covered. This linear search doesn't need |
559 | // them for correctness, and it'd be up to two fewer stops to check. |
560 | // N.B. we do still need those stops for the fOrigPos == nullptr direct math path. |
561 | } |
562 | |
563 | // A scale factor and bias for each lane, 8 total. |
564 | // TODO: simpler, faster, tidier to push 8 uniform pointers, one for each struct lane? |
565 | ix = shl(ix, 3); |
566 | skvm::F32 Fr = gatherF(fbs, ix + 0); |
567 | skvm::F32 Fg = gatherF(fbs, ix + 1); |
568 | skvm::F32 Fb = gatherF(fbs, ix + 2); |
569 | skvm::F32 Fa = gatherF(fbs, ix + 3); |
570 | |
571 | skvm::F32 Br = gatherF(fbs, ix + 4); |
572 | skvm::F32 Bg = gatherF(fbs, ix + 5); |
573 | skvm::F32 Bb = gatherF(fbs, ix + 6); |
574 | skvm::F32 Ba = gatherF(fbs, ix + 7); |
575 | |
576 | // This is what we've been building towards! |
577 | color = { |
578 | t * Fr + Br, |
579 | t * Fg + Bg, |
580 | t * Fb + Bb, |
581 | t * Fa + Ba, |
582 | }; |
583 | } |
584 | |
585 | // If we interpolated unpremul, premul now to match our output convention. |
586 | if (0 == (fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) |
587 | && !fColorsAreOpaque) { |
588 | color = premul(color); |
589 | } |
590 | |
591 | return { |
592 | bit_cast(mask & bit_cast(color.r)), |
593 | bit_cast(mask & bit_cast(color.g)), |
594 | bit_cast(mask & bit_cast(color.b)), |
595 | bit_cast(mask & bit_cast(color.a)), |
596 | }; |
597 | } |
598 | |
599 | |
600 | bool SkGradientShaderBase::isOpaque() const { |
601 | return fColorsAreOpaque && (this->getTileMode() != SkTileMode::kDecal); |
602 | } |
603 | |
604 | static unsigned rounded_divide(unsigned numer, unsigned denom) { |
605 | return (numer + (denom >> 1)) / denom; |
606 | } |
607 | |
608 | bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const { |
609 | // we just compute an average color. |
610 | // possibly we could weight this based on the proportional width for each color |
611 | // assuming they are not evenly distributed in the fPos array. |
612 | int r = 0; |
613 | int g = 0; |
614 | int b = 0; |
615 | const int n = fColorCount; |
616 | // TODO: use linear colors? |
617 | for (int i = 0; i < n; ++i) { |
618 | SkColor c = this->getLegacyColor(i); |
619 | r += SkColorGetR(c); |
620 | g += SkColorGetG(c); |
621 | b += SkColorGetB(c); |
622 | } |
623 | *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n)); |
624 | return true; |
625 | } |
626 | |
627 | SkColor4fXformer::SkColor4fXformer(const SkColor4f* colors, int colorCount, |
628 | SkColorSpace* src, SkColorSpace* dst) { |
629 | fColors = colors; |
630 | |
631 | if (dst && !SkColorSpace::Equals(src, dst)) { |
632 | fStorage.reset(colorCount); |
633 | |
634 | auto info = SkImageInfo::Make(colorCount,1, kRGBA_F32_SkColorType, kUnpremul_SkAlphaType); |
635 | |
636 | SkConvertPixels(info.makeColorSpace(sk_ref_sp(dst)), fStorage.begin(), info.minRowBytes(), |
637 | info.makeColorSpace(sk_ref_sp(src)), fColors , info.minRowBytes()); |
638 | |
639 | fColors = fStorage.begin(); |
640 | } |
641 | } |
642 | |
643 | void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const { |
644 | if (info) { |
645 | if (info->fColorCount >= fColorCount) { |
646 | if (info->fColors) { |
647 | for (int i = 0; i < fColorCount; ++i) { |
648 | info->fColors[i] = this->getLegacyColor(i); |
649 | } |
650 | } |
651 | if (info->fColorOffsets) { |
652 | for (int i = 0; i < fColorCount; ++i) { |
653 | info->fColorOffsets[i] = this->getPos(i); |
654 | } |
655 | } |
656 | } |
657 | info->fColorCount = fColorCount; |
658 | info->fTileMode = fTileMode; |
659 | info->fGradientFlags = fGradFlags; |
660 | } |
661 | } |
662 | |
663 | /////////////////////////////////////////////////////////////////////////////// |
664 | /////////////////////////////////////////////////////////////////////////////// |
665 | |
666 | // Return true if these parameters are valid/legal/safe to construct a gradient |
667 | // |
668 | static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count, |
669 | SkTileMode tileMode) { |
670 | return nullptr != colors && count >= 1 && (unsigned)tileMode < kSkTileModeCount; |
671 | } |
672 | |
673 | static void desc_init(SkGradientShaderBase::Descriptor* desc, |
674 | const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace, |
675 | const SkScalar pos[], int colorCount, |
676 | SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) { |
677 | SkASSERT(colorCount > 1); |
678 | |
679 | desc->fColors = colors; |
680 | desc->fColorSpace = std::move(colorSpace); |
681 | desc->fPos = pos; |
682 | desc->fCount = colorCount; |
683 | desc->fTileMode = mode; |
684 | desc->fGradFlags = flags; |
685 | desc->fLocalMatrix = localMatrix; |
686 | } |
687 | |
688 | static SkColor4f average_gradient_color(const SkColor4f colors[], const SkScalar pos[], |
689 | int colorCount) { |
690 | // The gradient is a piecewise linear interpolation between colors. For a given interval, |
691 | // the integral between the two endpoints is 0.5 * (ci + cj) * (pj - pi), which provides that |
692 | // intervals average color. The overall average color is thus the sum of each piece. The thing |
693 | // to keep in mind is that the provided gradient definition may implicitly use p=0 and p=1. |
694 | Sk4f blend(0.0); |
695 | // Bake 1/(colorCount - 1) uniform stop difference into this scale factor |
696 | SkScalar wScale = pos ? 0.5 : 0.5 / (colorCount - 1); |
697 | for (int i = 0; i < colorCount - 1; ++i) { |
698 | // Calculate the average color for the interval between pos(i) and pos(i+1) |
699 | Sk4f c0 = Sk4f::Load(&colors[i]); |
700 | Sk4f c1 = Sk4f::Load(&colors[i + 1]); |
701 | // when pos == null, there are colorCount uniformly distributed stops, going from 0 to 1, |
702 | // so pos[i + 1] - pos[i] = 1/(colorCount-1) |
703 | SkScalar w = pos ? (pos[i + 1] - pos[i]) : SK_Scalar1; |
704 | blend += wScale * w * (c1 + c0); |
705 | } |
706 | |
707 | // Now account for any implicit intervals at the start or end of the stop definitions |
708 | if (pos) { |
709 | if (pos[0] > 0.0) { |
710 | // The first color is fixed between p = 0 to pos[0], so 0.5 * (ci + cj) * (pj - pi) |
711 | // becomes 0.5 * (c + c) * (pj - 0) = c * pj |
712 | Sk4f c = Sk4f::Load(&colors[0]); |
713 | blend += pos[0] * c; |
714 | } |
715 | if (pos[colorCount - 1] < SK_Scalar1) { |
716 | // The last color is fixed between pos[n-1] to p = 1, so 0.5 * (ci + cj) * (pj - pi) |
717 | // becomes 0.5 * (c + c) * (1 - pi) = c * (1 - pi) |
718 | Sk4f c = Sk4f::Load(&colors[colorCount - 1]); |
719 | blend += (1 - pos[colorCount - 1]) * c; |
720 | } |
721 | } |
722 | |
723 | SkColor4f avg; |
724 | blend.store(&avg); |
725 | return avg; |
726 | } |
727 | |
728 | // The default SkScalarNearlyZero threshold of .0024 is too big and causes regressions for svg |
729 | // gradients defined in the wild. |
730 | static constexpr SkScalar kDegenerateThreshold = SK_Scalar1 / (1 << 15); |
731 | |
732 | // Except for special circumstances of clamped gradients, every gradient shape--when degenerate-- |
733 | // can be mapped to the same fallbacks. The specific shape factories must account for special |
734 | // clamped conditions separately, this will always return the last color for clamped gradients. |
735 | static sk_sp<SkShader> make_degenerate_gradient(const SkColor4f colors[], const SkScalar pos[], |
736 | int colorCount, sk_sp<SkColorSpace> colorSpace, |
737 | SkTileMode mode) { |
738 | switch(mode) { |
739 | case SkTileMode::kDecal: |
740 | // normally this would reject the area outside of the interpolation region, so since |
741 | // inside region is empty when the radii are equal, the entire draw region is empty |
742 | return SkShaders::Empty(); |
743 | case SkTileMode::kRepeat: |
744 | case SkTileMode::kMirror: |
745 | // repeat and mirror are treated the same: the border colors are never visible, |
746 | // but approximate the final color as infinite repetitions of the colors, so |
747 | // it can be represented as the average color of the gradient. |
748 | return SkShaders::Color( |
749 | average_gradient_color(colors, pos, colorCount), std::move(colorSpace)); |
750 | case SkTileMode::kClamp: |
751 | // Depending on how the gradient shape degenerates, there may be a more specialized |
752 | // fallback representation for the factories to use, but this is a reasonable default. |
753 | return SkShaders::Color(colors[colorCount - 1], std::move(colorSpace)); |
754 | } |
755 | SkDEBUGFAIL("Should not be reached" ); |
756 | return nullptr; |
757 | } |
758 | |
759 | // assumes colors is SkColor4f* and pos is SkScalar* |
760 | #define EXPAND_1_COLOR(count) \ |
761 | SkColor4f tmp[2]; \ |
762 | do { \ |
763 | if (1 == count) { \ |
764 | tmp[0] = tmp[1] = colors[0]; \ |
765 | colors = tmp; \ |
766 | pos = nullptr; \ |
767 | count = 2; \ |
768 | } \ |
769 | } while (0) |
770 | |
771 | struct ColorStopOptimizer { |
772 | ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos, int count, SkTileMode mode) |
773 | : fColors(colors) |
774 | , fPos(pos) |
775 | , fCount(count) { |
776 | |
777 | if (!pos || count != 3) { |
778 | return; |
779 | } |
780 | |
781 | if (SkScalarNearlyEqual(pos[0], 0.0f) && |
782 | SkScalarNearlyEqual(pos[1], 0.0f) && |
783 | SkScalarNearlyEqual(pos[2], 1.0f)) { |
784 | |
785 | if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode || |
786 | colors[0] == colors[1]) { |
787 | |
788 | // Ignore the leftmost color/pos. |
789 | fColors += 1; |
790 | fPos += 1; |
791 | fCount = 2; |
792 | } |
793 | } else if (SkScalarNearlyEqual(pos[0], 0.0f) && |
794 | SkScalarNearlyEqual(pos[1], 1.0f) && |
795 | SkScalarNearlyEqual(pos[2], 1.0f)) { |
796 | |
797 | if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode || |
798 | colors[1] == colors[2]) { |
799 | |
800 | // Ignore the rightmost color/pos. |
801 | fCount = 2; |
802 | } |
803 | } |
804 | } |
805 | |
806 | const SkColor4f* fColors; |
807 | const SkScalar* fPos; |
808 | int fCount; |
809 | }; |
810 | |
811 | struct ColorConverter { |
812 | ColorConverter(const SkColor* colors, int count) { |
813 | const float ONE_OVER_255 = 1.f / 255; |
814 | for (int i = 0; i < count; ++i) { |
815 | fColors4f.push_back({ |
816 | SkColorGetR(colors[i]) * ONE_OVER_255, |
817 | SkColorGetG(colors[i]) * ONE_OVER_255, |
818 | SkColorGetB(colors[i]) * ONE_OVER_255, |
819 | SkColorGetA(colors[i]) * ONE_OVER_255 }); |
820 | } |
821 | } |
822 | |
823 | SkSTArray<2, SkColor4f, true> fColors4f; |
824 | }; |
825 | |
826 | sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2], |
827 | const SkColor colors[], |
828 | const SkScalar pos[], int colorCount, |
829 | SkTileMode mode, |
830 | uint32_t flags, |
831 | const SkMatrix* localMatrix) { |
832 | ColorConverter converter(colors, colorCount); |
833 | return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags, |
834 | localMatrix); |
835 | } |
836 | |
837 | sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2], |
838 | const SkColor4f colors[], |
839 | sk_sp<SkColorSpace> colorSpace, |
840 | const SkScalar pos[], int colorCount, |
841 | SkTileMode mode, |
842 | uint32_t flags, |
843 | const SkMatrix* localMatrix) { |
844 | if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) { |
845 | return nullptr; |
846 | } |
847 | if (!valid_grad(colors, pos, colorCount, mode)) { |
848 | return nullptr; |
849 | } |
850 | if (1 == colorCount) { |
851 | return SkShaders::Color(colors[0], std::move(colorSpace)); |
852 | } |
853 | if (localMatrix && !localMatrix->invert(nullptr)) { |
854 | return nullptr; |
855 | } |
856 | |
857 | if (SkScalarNearlyZero((pts[1] - pts[0]).length(), kDegenerateThreshold)) { |
858 | // Degenerate gradient, the only tricky complication is when in clamp mode, the limit of |
859 | // the gradient approaches two half planes of solid color (first and last). However, they |
860 | // are divided by the line perpendicular to the start and end point, which becomes undefined |
861 | // once start and end are exactly the same, so just use the end color for a stable solution. |
862 | return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode); |
863 | } |
864 | |
865 | ColorStopOptimizer opt(colors, pos, colorCount, mode); |
866 | |
867 | SkGradientShaderBase::Descriptor desc; |
868 | desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
869 | localMatrix); |
870 | return sk_make_sp<SkLinearGradient>(pts, desc); |
871 | } |
872 | |
873 | sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, |
874 | const SkColor colors[], |
875 | const SkScalar pos[], int colorCount, |
876 | SkTileMode mode, |
877 | uint32_t flags, |
878 | const SkMatrix* localMatrix) { |
879 | ColorConverter converter(colors, colorCount); |
880 | return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, |
881 | flags, localMatrix); |
882 | } |
883 | |
884 | sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, |
885 | const SkColor4f colors[], |
886 | sk_sp<SkColorSpace> colorSpace, |
887 | const SkScalar pos[], int colorCount, |
888 | SkTileMode mode, |
889 | uint32_t flags, |
890 | const SkMatrix* localMatrix) { |
891 | if (radius < 0) { |
892 | return nullptr; |
893 | } |
894 | if (!valid_grad(colors, pos, colorCount, mode)) { |
895 | return nullptr; |
896 | } |
897 | if (1 == colorCount) { |
898 | return SkShaders::Color(colors[0], std::move(colorSpace)); |
899 | } |
900 | if (localMatrix && !localMatrix->invert(nullptr)) { |
901 | return nullptr; |
902 | } |
903 | |
904 | if (SkScalarNearlyZero(radius, kDegenerateThreshold)) { |
905 | // Degenerate gradient optimization, and no special logic needed for clamped radial gradient |
906 | return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode); |
907 | } |
908 | |
909 | ColorStopOptimizer opt(colors, pos, colorCount, mode); |
910 | |
911 | SkGradientShaderBase::Descriptor desc; |
912 | desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
913 | localMatrix); |
914 | return sk_make_sp<SkRadialGradient>(center, radius, desc); |
915 | } |
916 | |
917 | sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start, |
918 | SkScalar startRadius, |
919 | const SkPoint& end, |
920 | SkScalar endRadius, |
921 | const SkColor colors[], |
922 | const SkScalar pos[], |
923 | int colorCount, |
924 | SkTileMode mode, |
925 | uint32_t flags, |
926 | const SkMatrix* localMatrix) { |
927 | ColorConverter converter(colors, colorCount); |
928 | return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(), |
929 | nullptr, pos, colorCount, mode, flags, localMatrix); |
930 | } |
931 | |
932 | sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start, |
933 | SkScalar startRadius, |
934 | const SkPoint& end, |
935 | SkScalar endRadius, |
936 | const SkColor4f colors[], |
937 | sk_sp<SkColorSpace> colorSpace, |
938 | const SkScalar pos[], |
939 | int colorCount, |
940 | SkTileMode mode, |
941 | uint32_t flags, |
942 | const SkMatrix* localMatrix) { |
943 | if (startRadius < 0 || endRadius < 0) { |
944 | return nullptr; |
945 | } |
946 | if (!valid_grad(colors, pos, colorCount, mode)) { |
947 | return nullptr; |
948 | } |
949 | if (SkScalarNearlyZero((start - end).length(), kDegenerateThreshold)) { |
950 | // If the center positions are the same, then the gradient is the radial variant of a 2 pt |
951 | // conical gradient, an actual radial gradient (startRadius == 0), or it is fully degenerate |
952 | // (startRadius == endRadius). |
953 | if (SkScalarNearlyEqual(startRadius, endRadius, kDegenerateThreshold)) { |
954 | // Degenerate case, where the interpolation region area approaches zero. The proper |
955 | // behavior depends on the tile mode, which is consistent with the default degenerate |
956 | // gradient behavior, except when mode = clamp and the radii > 0. |
957 | if (mode == SkTileMode::kClamp && endRadius > kDegenerateThreshold) { |
958 | // The interpolation region becomes an infinitely thin ring at the radius, so the |
959 | // final gradient will be the first color repeated from p=0 to 1, and then a hard |
960 | // stop switching to the last color at p=1. |
961 | static constexpr SkScalar circlePos[3] = {0, 1, 1}; |
962 | SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]}; |
963 | return MakeRadial(start, endRadius, reColors, std::move(colorSpace), |
964 | circlePos, 3, mode, flags, localMatrix); |
965 | } else { |
966 | // Otherwise use the default degenerate case |
967 | return make_degenerate_gradient( |
968 | colors, pos, colorCount, std::move(colorSpace), mode); |
969 | } |
970 | } else if (SkScalarNearlyZero(startRadius, kDegenerateThreshold)) { |
971 | // We can treat this gradient as radial, which is faster. If we got here, we know |
972 | // that endRadius is not equal to 0, so this produces a meaningful gradient |
973 | return MakeRadial(start, endRadius, colors, std::move(colorSpace), pos, colorCount, |
974 | mode, flags, localMatrix); |
975 | } |
976 | // Else it's the 2pt conical radial variant with no degenerate radii, so fall through to the |
977 | // regular 2pt constructor. |
978 | } |
979 | |
980 | if (localMatrix && !localMatrix->invert(nullptr)) { |
981 | return nullptr; |
982 | } |
983 | EXPAND_1_COLOR(colorCount); |
984 | |
985 | ColorStopOptimizer opt(colors, pos, colorCount, mode); |
986 | |
987 | SkGradientShaderBase::Descriptor desc; |
988 | desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
989 | localMatrix); |
990 | return SkTwoPointConicalGradient::Create(start, startRadius, end, endRadius, desc); |
991 | } |
992 | |
993 | sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, |
994 | const SkColor colors[], |
995 | const SkScalar pos[], |
996 | int colorCount, |
997 | SkTileMode mode, |
998 | SkScalar startAngle, |
999 | SkScalar endAngle, |
1000 | uint32_t flags, |
1001 | const SkMatrix* localMatrix) { |
1002 | ColorConverter converter(colors, colorCount); |
1003 | return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount, |
1004 | mode, startAngle, endAngle, flags, localMatrix); |
1005 | } |
1006 | |
1007 | sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, |
1008 | const SkColor4f colors[], |
1009 | sk_sp<SkColorSpace> colorSpace, |
1010 | const SkScalar pos[], |
1011 | int colorCount, |
1012 | SkTileMode mode, |
1013 | SkScalar startAngle, |
1014 | SkScalar endAngle, |
1015 | uint32_t flags, |
1016 | const SkMatrix* localMatrix) { |
1017 | if (!valid_grad(colors, pos, colorCount, mode)) { |
1018 | return nullptr; |
1019 | } |
1020 | if (1 == colorCount) { |
1021 | return SkShaders::Color(colors[0], std::move(colorSpace)); |
1022 | } |
1023 | if (!SkScalarIsFinite(startAngle) || !SkScalarIsFinite(endAngle) || startAngle > endAngle) { |
1024 | return nullptr; |
1025 | } |
1026 | if (localMatrix && !localMatrix->invert(nullptr)) { |
1027 | return nullptr; |
1028 | } |
1029 | |
1030 | if (SkScalarNearlyEqual(startAngle, endAngle, kDegenerateThreshold)) { |
1031 | // Degenerate gradient, which should follow default degenerate behavior unless it is |
1032 | // clamped and the angle is greater than 0. |
1033 | if (mode == SkTileMode::kClamp && endAngle > kDegenerateThreshold) { |
1034 | // In this case, the first color is repeated from 0 to the angle, then a hardstop |
1035 | // switches to the last color (all other colors are compressed to the infinitely thin |
1036 | // interpolation region). |
1037 | static constexpr SkScalar clampPos[3] = {0, 1, 1}; |
1038 | SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]}; |
1039 | return MakeSweep(cx, cy, reColors, std::move(colorSpace), clampPos, 3, mode, 0, |
1040 | endAngle, flags, localMatrix); |
1041 | } else { |
1042 | return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode); |
1043 | } |
1044 | } |
1045 | |
1046 | if (startAngle <= 0 && endAngle >= 360) { |
1047 | // If the t-range includes [0,1], then we can always use clamping (presumably faster). |
1048 | mode = SkTileMode::kClamp; |
1049 | } |
1050 | |
1051 | ColorStopOptimizer opt(colors, pos, colorCount, mode); |
1052 | |
1053 | SkGradientShaderBase::Descriptor desc; |
1054 | desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags, |
1055 | localMatrix); |
1056 | |
1057 | const SkScalar t0 = startAngle / 360, |
1058 | t1 = endAngle / 360; |
1059 | |
1060 | return sk_make_sp<SkSweepGradient>(SkPoint::Make(cx, cy), t0, t1, desc); |
1061 | } |
1062 | |
1063 | void SkGradientShader::RegisterFlattenables() { |
1064 | SK_REGISTER_FLATTENABLE(SkLinearGradient); |
1065 | SK_REGISTER_FLATTENABLE(SkRadialGradient); |
1066 | SK_REGISTER_FLATTENABLE(SkSweepGradient); |
1067 | SK_REGISTER_FLATTENABLE(SkTwoPointConicalGradient); |
1068 | } |
1069 | |