1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/utils/SkShadowUtils.h" |
9 | |
10 | #include "include/core/SkCanvas.h" |
11 | #include "include/core/SkColorFilter.h" |
12 | #include "include/core/SkMaskFilter.h" |
13 | #include "include/core/SkPath.h" |
14 | #include "include/core/SkString.h" |
15 | #include "include/core/SkVertices.h" |
16 | #include "include/private/SkColorData.h" |
17 | #include "include/private/SkIDChangeListener.h" |
18 | #include "include/utils/SkRandom.h" |
19 | #include "src/core/SkBlurMask.h" |
20 | #include "src/core/SkColorFilterPriv.h" |
21 | #include "src/core/SkDevice.h" |
22 | #include "src/core/SkDrawShadowInfo.h" |
23 | #include "src/core/SkEffectPriv.h" |
24 | #include "src/core/SkPathPriv.h" |
25 | #include "src/core/SkRasterPipeline.h" |
26 | #include "src/core/SkResourceCache.h" |
27 | #include "src/core/SkTLazy.h" |
28 | #include "src/core/SkVM.h" |
29 | #include "src/core/SkVerticesPriv.h" |
30 | #include "src/utils/SkShadowTessellator.h" |
31 | #include <new> |
32 | #if SK_SUPPORT_GPU |
33 | #include "src/gpu/effects/generated/GrBlurredEdgeFragmentProcessor.h" |
34 | #include "src/gpu/geometry/GrShape.h" |
35 | #endif |
36 | |
37 | /** |
38 | * Gaussian color filter -- produces a Gaussian ramp based on the color's B value, |
39 | * then blends with the color's G value. |
40 | * Final result is black with alpha of Gaussian(B)*G. |
41 | * The assumption is that the original color's alpha is 1. |
42 | */ |
43 | class SkGaussianColorFilter : public SkColorFilter { |
44 | public: |
45 | SkGaussianColorFilter() : INHERITED() {} |
46 | |
47 | #if SK_SUPPORT_GPU |
48 | std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(GrRecordingContext*, |
49 | const GrColorInfo&) const override; |
50 | #endif |
51 | |
52 | protected: |
53 | void flatten(SkWriteBuffer&) const override {} |
54 | bool onAppendStages(const SkStageRec& rec, bool shaderIsOpaque) const override { |
55 | rec.fPipeline->append(SkRasterPipeline::gauss_a_to_rgba); |
56 | return true; |
57 | } |
58 | |
59 | skvm::Color onProgram(skvm::Builder* p, skvm::Color c, SkColorSpace* dstCS, skvm::Uniforms*, |
60 | SkArenaAlloc*) const override { |
61 | // x = 1 - x; |
62 | // exp(-x * x * 4) - 0.018f; |
63 | // ... now approximate with quartic |
64 | // |
65 | skvm::F32 x = p->splat(-2.26661229133605957031f); |
66 | x = c.a * x + 2.89795351028442382812f; |
67 | x = c.a * x + 0.21345567703247070312f; |
68 | x = c.a * x + 0.15489584207534790039f; |
69 | x = c.a * x + 0.00030726194381713867f; |
70 | return {x, x, x, x}; |
71 | } |
72 | |
73 | private: |
74 | SK_FLATTENABLE_HOOKS(SkGaussianColorFilter) |
75 | |
76 | typedef SkColorFilter INHERITED; |
77 | }; |
78 | |
79 | sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) { |
80 | return SkColorFilterPriv::MakeGaussian(); |
81 | } |
82 | |
83 | #if SK_SUPPORT_GPU |
84 | |
85 | std::unique_ptr<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor( |
86 | GrRecordingContext*, const GrColorInfo&) const { |
87 | return GrBlurredEdgeFragmentProcessor::Make(GrBlurredEdgeFragmentProcessor::Mode::kGaussian); |
88 | } |
89 | #endif |
90 | |
91 | sk_sp<SkColorFilter> SkColorFilterPriv::MakeGaussian() { |
92 | return sk_sp<SkColorFilter>(new SkGaussianColorFilter); |
93 | } |
94 | |
95 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
96 | |
97 | namespace { |
98 | |
99 | uint64_t resource_cache_shared_id() { |
100 | return 0x2020776f64616873llu; // 'shadow ' |
101 | } |
102 | |
103 | /** Factory for an ambient shadow mesh with particular shadow properties. */ |
104 | struct AmbientVerticesFactory { |
105 | SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. |
106 | bool fTransparent; |
107 | SkVector fOffset; |
108 | |
109 | bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const { |
110 | if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) { |
111 | return false; |
112 | } |
113 | *translate = that.fOffset; |
114 | return true; |
115 | } |
116 | |
117 | sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm, |
118 | SkVector* translate) const { |
119 | SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); |
120 | // pick a canonical place to generate shadow |
121 | SkMatrix noTrans(ctm); |
122 | if (!ctm.hasPerspective()) { |
123 | noTrans[SkMatrix::kMTransX] = 0; |
124 | noTrans[SkMatrix::kMTransY] = 0; |
125 | } |
126 | *translate = fOffset; |
127 | return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent); |
128 | } |
129 | }; |
130 | |
131 | /** Factory for an spot shadow mesh with particular shadow properties. */ |
132 | struct SpotVerticesFactory { |
133 | enum class OccluderType { |
134 | // The umbra cannot be dropped out because either the occluder is not opaque, |
135 | // or the center of the umbra is visible. |
136 | kTransparent, |
137 | // The umbra can be dropped where it is occluded. |
138 | kOpaquePartialUmbra, |
139 | // It is known that the entire umbra is occluded. |
140 | kOpaqueNoUmbra |
141 | }; |
142 | |
143 | SkVector fOffset; |
144 | SkPoint fLocalCenter; |
145 | SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. |
146 | SkPoint3 fDevLightPos; |
147 | SkScalar fLightRadius; |
148 | OccluderType fOccluderType; |
149 | |
150 | bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const { |
151 | if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ || |
152 | fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) { |
153 | return false; |
154 | } |
155 | switch (fOccluderType) { |
156 | case OccluderType::kTransparent: |
157 | case OccluderType::kOpaqueNoUmbra: |
158 | // 'this' and 'that' will either both have no umbra removed or both have all the |
159 | // umbra removed. |
160 | *translate = that.fOffset; |
161 | return true; |
162 | case OccluderType::kOpaquePartialUmbra: |
163 | // In this case we partially remove the umbra differently for 'this' and 'that' |
164 | // if the offsets don't match. |
165 | if (fOffset == that.fOffset) { |
166 | translate->set(0, 0); |
167 | return true; |
168 | } |
169 | return false; |
170 | } |
171 | SK_ABORT("Uninitialized occluder type?" ); |
172 | } |
173 | |
174 | sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm, |
175 | SkVector* translate) const { |
176 | bool transparent = OccluderType::kTransparent == fOccluderType; |
177 | SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); |
178 | if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) { |
179 | translate->set(0, 0); |
180 | return SkShadowTessellator::MakeSpot(path, ctm, zParams, |
181 | fDevLightPos, fLightRadius, transparent); |
182 | } else { |
183 | // pick a canonical place to generate shadow, with light centered over path |
184 | SkMatrix noTrans(ctm); |
185 | noTrans[SkMatrix::kMTransX] = 0; |
186 | noTrans[SkMatrix::kMTransY] = 0; |
187 | SkPoint devCenter(fLocalCenter); |
188 | noTrans.mapPoints(&devCenter, 1); |
189 | SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ); |
190 | *translate = fOffset; |
191 | return SkShadowTessellator::MakeSpot(path, noTrans, zParams, |
192 | centerLightPos, fLightRadius, transparent); |
193 | } |
194 | } |
195 | }; |
196 | |
197 | /** |
198 | * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache |
199 | * records are immutable this is not itself a Rec. When we need to update it we return this on |
200 | * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add |
201 | * a new Rec with an adjusted size for any deletions/additions. |
202 | */ |
203 | class CachedTessellations : public SkRefCnt { |
204 | public: |
205 | size_t size() const { return fAmbientSet.size() + fSpotSet.size(); } |
206 | |
207 | sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, |
208 | SkVector* translate) const { |
209 | return fAmbientSet.find(ambient, matrix, translate); |
210 | } |
211 | |
212 | sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient, |
213 | const SkMatrix& matrix, SkVector* translate) { |
214 | return fAmbientSet.add(devPath, ambient, matrix, translate); |
215 | } |
216 | |
217 | sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix, |
218 | SkVector* translate) const { |
219 | return fSpotSet.find(spot, matrix, translate); |
220 | } |
221 | |
222 | sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot, |
223 | const SkMatrix& matrix, SkVector* translate) { |
224 | return fSpotSet.add(devPath, spot, matrix, translate); |
225 | } |
226 | |
227 | private: |
228 | template <typename FACTORY, int MAX_ENTRIES> |
229 | class Set { |
230 | public: |
231 | size_t size() const { return fSize; } |
232 | |
233 | sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, |
234 | SkVector* translate) const { |
235 | for (int i = 0; i < MAX_ENTRIES; ++i) { |
236 | if (fEntries[i].fFactory.isCompatible(factory, translate)) { |
237 | const SkMatrix& m = fEntries[i].fMatrix; |
238 | if (matrix.hasPerspective() || m.hasPerspective()) { |
239 | if (matrix != fEntries[i].fMatrix) { |
240 | continue; |
241 | } |
242 | } else if (matrix.getScaleX() != m.getScaleX() || |
243 | matrix.getSkewX() != m.getSkewX() || |
244 | matrix.getScaleY() != m.getScaleY() || |
245 | matrix.getSkewY() != m.getSkewY()) { |
246 | continue; |
247 | } |
248 | return fEntries[i].fVertices; |
249 | } |
250 | } |
251 | return nullptr; |
252 | } |
253 | |
254 | sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix, |
255 | SkVector* translate) { |
256 | sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate); |
257 | if (!vertices) { |
258 | return nullptr; |
259 | } |
260 | int i; |
261 | if (fCount < MAX_ENTRIES) { |
262 | i = fCount++; |
263 | } else { |
264 | i = fRandom.nextULessThan(MAX_ENTRIES); |
265 | fSize -= fEntries[i].fVertices->approximateSize(); |
266 | } |
267 | fEntries[i].fFactory = factory; |
268 | fEntries[i].fVertices = vertices; |
269 | fEntries[i].fMatrix = matrix; |
270 | fSize += vertices->approximateSize(); |
271 | return vertices; |
272 | } |
273 | |
274 | private: |
275 | struct Entry { |
276 | FACTORY fFactory; |
277 | sk_sp<SkVertices> fVertices; |
278 | SkMatrix fMatrix; |
279 | }; |
280 | Entry fEntries[MAX_ENTRIES]; |
281 | int fCount = 0; |
282 | size_t fSize = 0; |
283 | SkRandom fRandom; |
284 | }; |
285 | |
286 | Set<AmbientVerticesFactory, 4> fAmbientSet; |
287 | Set<SpotVerticesFactory, 4> fSpotSet; |
288 | }; |
289 | |
290 | /** |
291 | * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular |
292 | * path. The key represents the path's geometry and not any shadow params. |
293 | */ |
294 | class CachedTessellationsRec : public SkResourceCache::Rec { |
295 | public: |
296 | CachedTessellationsRec(const SkResourceCache::Key& key, |
297 | sk_sp<CachedTessellations> tessellations) |
298 | : fTessellations(std::move(tessellations)) { |
299 | fKey.reset(new uint8_t[key.size()]); |
300 | memcpy(fKey.get(), &key, key.size()); |
301 | } |
302 | |
303 | const Key& getKey() const override { |
304 | return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); |
305 | } |
306 | |
307 | size_t bytesUsed() const override { return fTessellations->size(); } |
308 | |
309 | const char* getCategory() const override { return "tessellated shadow masks" ; } |
310 | |
311 | sk_sp<CachedTessellations> refTessellations() const { return fTessellations; } |
312 | |
313 | template <typename FACTORY> |
314 | sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, |
315 | SkVector* translate) const { |
316 | return fTessellations->find(factory, matrix, translate); |
317 | } |
318 | |
319 | private: |
320 | std::unique_ptr<uint8_t[]> fKey; |
321 | sk_sp<CachedTessellations> fTessellations; |
322 | }; |
323 | |
324 | /** |
325 | * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the |
326 | * vertices and a translation vector. If the CachedTessellations does not contain a suitable |
327 | * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations |
328 | * to the caller. The caller will update it and reinsert it back into the cache. |
329 | */ |
330 | template <typename FACTORY> |
331 | struct FindContext { |
332 | FindContext(const SkMatrix* viewMatrix, const FACTORY* factory) |
333 | : fViewMatrix(viewMatrix), fFactory(factory) {} |
334 | const SkMatrix* const fViewMatrix; |
335 | // If this is valid after Find is called then we found the vertices and they should be drawn |
336 | // with fTranslate applied. |
337 | sk_sp<SkVertices> fVertices; |
338 | SkVector fTranslate = {0, 0}; |
339 | |
340 | // If this is valid after Find then the caller should add the vertices to the tessellation set |
341 | // and create a new CachedTessellationsRec and insert it into SkResourceCache. |
342 | sk_sp<CachedTessellations> fTessellationsOnFailure; |
343 | |
344 | const FACTORY* fFactory; |
345 | }; |
346 | |
347 | /** |
348 | * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of |
349 | * the FindContext are used to determine if the vertices are reusable. If so the vertices and |
350 | * necessary translation vector are set on the FindContext. |
351 | */ |
352 | template <typename FACTORY> |
353 | bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) { |
354 | FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx; |
355 | const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec); |
356 | findContext->fVertices = |
357 | rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate); |
358 | if (findContext->fVertices) { |
359 | return true; |
360 | } |
361 | // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been |
362 | // manipulated we will add a new Rec. |
363 | findContext->fTessellationsOnFailure = rec.refTessellations(); |
364 | return false; |
365 | } |
366 | |
367 | class ShadowedPath { |
368 | public: |
369 | ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix) |
370 | : fPath(path) |
371 | , fViewMatrix(viewMatrix) |
372 | #if SK_SUPPORT_GPU |
373 | , fShapeForKey(*path, GrStyle::SimpleFill()) |
374 | #endif |
375 | {} |
376 | |
377 | const SkPath& path() const { return *fPath; } |
378 | const SkMatrix& viewMatrix() const { return *fViewMatrix; } |
379 | #if SK_SUPPORT_GPU |
380 | /** Negative means the vertices should not be cached for this path. */ |
381 | int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); } |
382 | void writeKey(void* key) const { |
383 | fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key)); |
384 | } |
385 | bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); } |
386 | #else |
387 | int keyBytes() const { return -1; } |
388 | void writeKey(void* key) const { SK_ABORT("Should never be called" ); } |
389 | bool isRRect(SkRRect* rrect) { return false; } |
390 | #endif |
391 | |
392 | private: |
393 | const SkPath* fPath; |
394 | const SkMatrix* fViewMatrix; |
395 | #if SK_SUPPORT_GPU |
396 | GrShape fShapeForKey; |
397 | #endif |
398 | }; |
399 | |
400 | // This creates a domain of keys in SkResourceCache used by this file. |
401 | static void* kNamespace; |
402 | |
403 | // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. |
404 | class ShadowInvalidator : public SkIDChangeListener { |
405 | public: |
406 | ShadowInvalidator(const SkResourceCache::Key& key) { |
407 | fKey.reset(new uint8_t[key.size()]); |
408 | memcpy(fKey.get(), &key, key.size()); |
409 | } |
410 | |
411 | private: |
412 | const SkResourceCache::Key& getKey() const { |
413 | return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); |
414 | } |
415 | |
416 | // always purge |
417 | static bool FindVisitor(const SkResourceCache::Rec&, void*) { |
418 | return false; |
419 | } |
420 | |
421 | void changed() override { |
422 | SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr); |
423 | } |
424 | |
425 | std::unique_ptr<uint8_t[]> fKey; |
426 | }; |
427 | |
428 | /** |
429 | * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless |
430 | * they are first found in SkResourceCache. |
431 | */ |
432 | template <typename FACTORY> |
433 | bool draw_shadow(const FACTORY& factory, |
434 | std::function<void(const SkVertices*, SkBlendMode, const SkPaint&, |
435 | SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color) { |
436 | FindContext<FACTORY> context(&path.viewMatrix(), &factory); |
437 | |
438 | SkResourceCache::Key* key = nullptr; |
439 | SkAutoSTArray<32 * 4, uint8_t> keyStorage; |
440 | int keyDataBytes = path.keyBytes(); |
441 | if (keyDataBytes >= 0) { |
442 | keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key)); |
443 | key = new (keyStorage.begin()) SkResourceCache::Key(); |
444 | path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key))); |
445 | key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes); |
446 | SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context); |
447 | } |
448 | |
449 | sk_sp<SkVertices> vertices; |
450 | bool foundInCache = SkToBool(context.fVertices); |
451 | if (foundInCache) { |
452 | vertices = std::move(context.fVertices); |
453 | } else { |
454 | // TODO: handle transforming the path as part of the tessellator |
455 | if (key) { |
456 | // Update or initialize a tessellation set and add it to the cache. |
457 | sk_sp<CachedTessellations> tessellations; |
458 | if (context.fTessellationsOnFailure) { |
459 | tessellations = std::move(context.fTessellationsOnFailure); |
460 | } else { |
461 | tessellations.reset(new CachedTessellations()); |
462 | } |
463 | vertices = tessellations->add(path.path(), factory, path.viewMatrix(), |
464 | &context.fTranslate); |
465 | if (!vertices) { |
466 | return false; |
467 | } |
468 | auto rec = new CachedTessellationsRec(*key, std::move(tessellations)); |
469 | SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key)); |
470 | SkResourceCache::Add(rec); |
471 | } else { |
472 | vertices = factory.makeVertices(path.path(), path.viewMatrix(), |
473 | &context.fTranslate); |
474 | if (!vertices) { |
475 | return false; |
476 | } |
477 | } |
478 | } |
479 | |
480 | SkPaint paint; |
481 | // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of |
482 | // that against our 'color' param. |
483 | paint.setColorFilter( |
484 | SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed( |
485 | SkColorFilterPriv::MakeGaussian())); |
486 | |
487 | drawProc(vertices.get(), SkBlendMode::kModulate, paint, |
488 | context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective()); |
489 | |
490 | return true; |
491 | } |
492 | } |
493 | |
494 | static bool tilted(const SkPoint3& zPlaneParams) { |
495 | return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY); |
496 | } |
497 | |
498 | static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) { |
499 | SkPoint3 result; |
500 | m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX); |
501 | result.fZ = pt.fZ; |
502 | return result; |
503 | } |
504 | |
505 | void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor, |
506 | SkColor* outAmbientColor, SkColor* outSpotColor) { |
507 | // For tonal color we only compute color values for the spot shadow. |
508 | // The ambient shadow is greyscale only. |
509 | |
510 | // Ambient |
511 | *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0); |
512 | |
513 | // Spot |
514 | int spotR = SkColorGetR(inSpotColor); |
515 | int spotG = SkColorGetG(inSpotColor); |
516 | int spotB = SkColorGetB(inSpotColor); |
517 | int max = std::max(std::max(spotR, spotG), spotB); |
518 | int min = std::min(std::min(spotR, spotG), spotB); |
519 | SkScalar luminance = 0.5f*(max + min)/255.f; |
520 | SkScalar origA = SkColorGetA(inSpotColor)/255.f; |
521 | |
522 | // We compute a color alpha value based on the luminance of the color, scaled by an |
523 | // adjusted alpha value. We want the following properties to match the UX examples |
524 | // (assuming a = 0.25) and to ensure that we have reasonable results when the color |
525 | // is black and/or the alpha is 0: |
526 | // f(0, a) = 0 |
527 | // f(luminance, 0) = 0 |
528 | // f(1, 0.25) = .5 |
529 | // f(0.5, 0.25) = .4 |
530 | // f(1, 1) = 1 |
531 | // The following functions match this as closely as possible. |
532 | SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA; |
533 | SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance; |
534 | colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f); |
535 | |
536 | // Similarly, we set the greyscale alpha based on luminance and alpha so that |
537 | // f(0, a) = a |
538 | // f(luminance, 0) = 0 |
539 | // f(1, 0.25) = 0.15 |
540 | SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f); |
541 | |
542 | // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an |
543 | // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a) |
544 | // which is an adjusted value of 'a'. Assuming SrcOver, a background color of B_rgb, and |
545 | // ignoring edge falloff, this becomes |
546 | // |
547 | // (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb |
548 | // |
549 | // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and |
550 | // set the alpha to (S_a + C_a - S_a*C_a). |
551 | SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha); |
552 | SkScalar tonalAlpha = colorScale + greyscaleAlpha; |
553 | SkScalar unPremulScale = colorScale / tonalAlpha; |
554 | *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f, |
555 | unPremulScale*spotR, |
556 | unPremulScale*spotG, |
557 | unPremulScale*spotB); |
558 | } |
559 | |
560 | // Draw an offset spot shadow and outlining ambient shadow for the given path. |
561 | void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, |
562 | const SkPoint3& devLightPos, SkScalar lightRadius, |
563 | SkColor ambientColor, SkColor spotColor, |
564 | uint32_t flags) { |
565 | SkMatrix inverse; |
566 | if (!canvas->getTotalMatrix().invert(&inverse)) { |
567 | return; |
568 | } |
569 | SkPoint pt = inverse.mapXY(devLightPos.fX, devLightPos.fY); |
570 | |
571 | SkDrawShadowRec rec; |
572 | rec.fZPlaneParams = zPlaneParams; |
573 | rec.fLightPos = { pt.fX, pt.fY, devLightPos.fZ }; |
574 | rec.fLightRadius = lightRadius; |
575 | rec.fAmbientColor = ambientColor; |
576 | rec.fSpotColor = spotColor; |
577 | rec.fFlags = flags; |
578 | |
579 | canvas->private_draw_shadow_rec(path, rec); |
580 | } |
581 | |
582 | static bool validate_rec(const SkDrawShadowRec& rec) { |
583 | return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() && |
584 | SkScalarIsFinite(rec.fLightRadius); |
585 | } |
586 | |
587 | void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) { |
588 | auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint, |
589 | SkScalar tx, SkScalar ty, bool hasPerspective) { |
590 | if (vertices->priv().vertexCount()) { |
591 | // For perspective shadows we've already computed the shadow in world space, |
592 | // and we can't translate it without changing it. Otherwise we concat the |
593 | // change in translation from the cached version. |
594 | SkAutoDeviceTransformRestore adr( |
595 | this, |
596 | hasPerspective ? SkMatrix::I() |
597 | : SkMatrix::Concat(this->localToDevice(), |
598 | SkMatrix::MakeTrans(tx, ty))); |
599 | this->drawVertices(vertices, mode, paint); |
600 | } |
601 | }; |
602 | |
603 | if (!validate_rec(rec)) { |
604 | return; |
605 | } |
606 | |
607 | SkMatrix viewMatrix = this->localToDevice(); |
608 | SkAutoDeviceTransformRestore adr(this, SkMatrix::I()); |
609 | |
610 | ShadowedPath shadowedPath(&path, &viewMatrix); |
611 | |
612 | bool tiltZPlane = tilted(rec.fZPlaneParams); |
613 | bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag); |
614 | bool uncached = tiltZPlane || path.isVolatile(); |
615 | |
616 | SkPoint3 zPlaneParams = rec.fZPlaneParams; |
617 | SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos); |
618 | float lightRadius = rec.fLightRadius; |
619 | |
620 | if (SkColorGetA(rec.fAmbientColor) > 0) { |
621 | bool success = false; |
622 | if (uncached) { |
623 | sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix, |
624 | zPlaneParams, |
625 | transparent); |
626 | if (vertices) { |
627 | SkPaint paint; |
628 | // Run the vertex color through a GaussianColorFilter and then modulate the |
629 | // grayscale result of that against our 'color' param. |
630 | paint.setColorFilter( |
631 | SkColorFilters::Blend(rec.fAmbientColor, |
632 | SkBlendMode::kModulate)->makeComposed( |
633 | SkColorFilterPriv::MakeGaussian())); |
634 | this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint); |
635 | success = true; |
636 | } |
637 | } |
638 | |
639 | if (!success) { |
640 | AmbientVerticesFactory factory; |
641 | factory.fOccluderHeight = zPlaneParams.fZ; |
642 | factory.fTransparent = transparent; |
643 | if (viewMatrix.hasPerspective()) { |
644 | factory.fOffset.set(0, 0); |
645 | } else { |
646 | factory.fOffset.fX = viewMatrix.getTranslateX(); |
647 | factory.fOffset.fY = viewMatrix.getTranslateY(); |
648 | } |
649 | |
650 | if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) { |
651 | // Pretransform the path to avoid transforming the stroke, below. |
652 | SkPath devSpacePath; |
653 | path.transform(viewMatrix, &devSpacePath); |
654 | devSpacePath.setIsVolatile(true); |
655 | |
656 | // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of |
657 | // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a'). |
658 | // |
659 | // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f') |
660 | // can be calculated by interpolating: |
661 | // |
662 | // original edge outer edge |
663 | // | |<---------- r ------>| |
664 | // |<------|--- f -------------->| |
665 | // | | | |
666 | // alpha = 1 alpha = a alpha = 0 |
667 | // |
668 | // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2. |
669 | // |
670 | // We now need to outset the path to place the new edge in the center of the |
671 | // blur region: |
672 | // |
673 | // original new |
674 | // | |<------|--- r ------>| |
675 | // |<------|--- f -|------------>| |
676 | // | |<- o ->|<--- f/2 --->| |
677 | // |
678 | // r = o + f/2, so o = r - f/2 |
679 | // |
680 | // We outset by using the stroker, so the strokeWidth is o/2. |
681 | // |
682 | SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ); |
683 | SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ); |
684 | SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA; |
685 | SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius); |
686 | |
687 | // Now draw with blur |
688 | SkPaint paint; |
689 | paint.setColor(rec.fAmbientColor); |
690 | paint.setStrokeWidth(strokeWidth); |
691 | paint.setStyle(SkPaint::kStrokeAndFill_Style); |
692 | SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius); |
693 | bool respectCTM = false; |
694 | paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); |
695 | this->drawPath(devSpacePath, paint); |
696 | } |
697 | } |
698 | } |
699 | |
700 | if (SkColorGetA(rec.fSpotColor) > 0) { |
701 | bool success = false; |
702 | if (uncached) { |
703 | sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, |
704 | zPlaneParams, |
705 | devLightPos, lightRadius, |
706 | transparent); |
707 | if (vertices) { |
708 | SkPaint paint; |
709 | // Run the vertex color through a GaussianColorFilter and then modulate the |
710 | // grayscale result of that against our 'color' param. |
711 | paint.setColorFilter( |
712 | SkColorFilters::Blend(rec.fSpotColor, |
713 | SkBlendMode::kModulate)->makeComposed( |
714 | SkColorFilterPriv::MakeGaussian())); |
715 | this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint); |
716 | success = true; |
717 | } |
718 | } |
719 | |
720 | if (!success) { |
721 | SpotVerticesFactory factory; |
722 | factory.fOccluderHeight = zPlaneParams.fZ; |
723 | factory.fDevLightPos = devLightPos; |
724 | factory.fLightRadius = lightRadius; |
725 | |
726 | SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY()); |
727 | factory.fLocalCenter = center; |
728 | viewMatrix.mapPoints(¢er, 1); |
729 | SkScalar radius, scale; |
730 | SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX, |
731 | devLightPos.fY - center.fY, devLightPos.fZ, |
732 | lightRadius, &radius, &scale, &factory.fOffset); |
733 | SkRect devBounds; |
734 | viewMatrix.mapRect(&devBounds, path.getBounds()); |
735 | if (transparent || |
736 | SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() || |
737 | SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) { |
738 | // if the translation of the shadow is big enough we're going to end up |
739 | // filling the entire umbra, so we can treat these as all the same |
740 | factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; |
741 | } else if (factory.fOffset.length()*scale + scale < radius) { |
742 | // if we don't translate more than the blur distance, can assume umbra is covered |
743 | factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra; |
744 | } else if (path.isConvex()) { |
745 | factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra; |
746 | } else { |
747 | factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; |
748 | } |
749 | // need to add this after we classify the shadow |
750 | factory.fOffset.fX += viewMatrix.getTranslateX(); |
751 | factory.fOffset.fY += viewMatrix.getTranslateY(); |
752 | |
753 | SkColor color = rec.fSpotColor; |
754 | #ifdef DEBUG_SHADOW_CHECKS |
755 | switch (factory.fOccluderType) { |
756 | case SpotVerticesFactory::OccluderType::kTransparent: |
757 | color = 0xFFD2B48C; // tan for transparent |
758 | break; |
759 | case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra: |
760 | color = 0xFFFFA500; // orange for opaque |
761 | break; |
762 | case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra: |
763 | color = 0xFFE5E500; // corn yellow for covered |
764 | break; |
765 | } |
766 | #endif |
767 | if (!draw_shadow(factory, drawVertsProc, shadowedPath, color)) { |
768 | // draw with blur |
769 | SkMatrix shadowMatrix; |
770 | if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius, |
771 | viewMatrix, zPlaneParams, |
772 | path.getBounds(), |
773 | &shadowMatrix, &radius)) { |
774 | return; |
775 | } |
776 | SkAutoDeviceTransformRestore adr(this, shadowMatrix); |
777 | |
778 | SkPaint paint; |
779 | paint.setColor(rec.fSpotColor); |
780 | SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius); |
781 | bool respectCTM = false; |
782 | paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); |
783 | this->drawPath(path, paint); |
784 | } |
785 | } |
786 | } |
787 | } |
788 | |