1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #include "BsPhysXMesh.h" |
4 | #include "RTTI/BsPhysXMeshRTTI.h" |
5 | #include "Mesh/BsMeshData.h" |
6 | #include "RenderAPI/BsVertexDataDesc.h" |
7 | #include "BsPhysX.h" |
8 | #include "Math/BsAABox.h" |
9 | #include "foundation/PxAllocatorCallback.h" |
10 | #include "geometry/PxTriangleMesh.h" |
11 | #include "geometry/PxConvexMesh.h" |
12 | #include "cooking/PxConvexMeshDesc.h" |
13 | #include "extensions/PxDefaultStreams.h" |
14 | |
15 | using namespace physx; |
16 | |
17 | namespace bs |
18 | { |
19 | /** |
20 | * Attempts to cook a convex mesh from the provided mesh data. Assumes the mesh data is not null and contains vertex |
21 | * positions as well as face indices. If the method returns true the resulting convex mesh will be output in the @p |
22 | * data buffer, and its size in @p size. The data buffer will be allocated used the generic allocator and is up to the |
23 | * caller to free it. |
24 | */ |
25 | bool cookConvex(PxCooking* cooking, const SPtr<MeshData>& meshData, UINT8** data, UINT32& size) |
26 | { |
27 | SPtr<VertexDataDesc> vertexDesc = meshData->getVertexDesc(); |
28 | |
29 | // Try to create hull from points |
30 | PxConvexMeshDesc convexDesc; |
31 | convexDesc.points.count = meshData->getNumVertices(); |
32 | convexDesc.points.stride = vertexDesc->getVertexStride(); |
33 | convexDesc.points.data = meshData->getElementData(VES_POSITION); |
34 | convexDesc.flags |= PxConvexFlag::eCOMPUTE_CONVEX; |
35 | |
36 | PxDefaultMemoryOutputStream output; |
37 | if (cooking->cookConvexMesh(convexDesc, output)) |
38 | { |
39 | size = output.getSize(); |
40 | *data = (UINT8*)bs_alloc(size); |
41 | |
42 | memcpy(*data, output.getData(), size); |
43 | return true; |
44 | } |
45 | |
46 | // Try inflating the convex mesh |
47 | convexDesc.flags |= PxConvexFlag::eINFLATE_CONVEX; |
48 | if (cooking->cookConvexMesh(convexDesc, output)) |
49 | { |
50 | size = output.getSize(); |
51 | *data = (UINT8*)bs_alloc(size); |
52 | |
53 | memcpy(*data, output.getData(), size); |
54 | return true; |
55 | } |
56 | |
57 | // Nothing works, just compute an AABB |
58 | AABox box; |
59 | |
60 | auto vertIter = meshData->getVec3DataIter(VES_POSITION); |
61 | do |
62 | { |
63 | box.merge(vertIter.getValue()); |
64 | } |
65 | while (vertIter.moveNext()); |
66 | |
67 | Vector3 aabbVerts[8]; |
68 | aabbVerts[0] = box.getCorner(AABox::FAR_LEFT_BOTTOM); |
69 | aabbVerts[1] = box.getCorner(AABox::FAR_RIGHT_BOTTOM); |
70 | aabbVerts[2] = box.getCorner(AABox::FAR_RIGHT_TOP); |
71 | aabbVerts[3] = box.getCorner(AABox::FAR_LEFT_TOP); |
72 | |
73 | aabbVerts[4] = box.getCorner(AABox::NEAR_LEFT_BOTTOM); |
74 | aabbVerts[5] = box.getCorner(AABox::NEAR_RIGHT_BOTTOM); |
75 | aabbVerts[6] = box.getCorner(AABox::NEAR_RIGHT_TOP); |
76 | aabbVerts[7] = box.getCorner(AABox::NEAR_LEFT_TOP); |
77 | |
78 | convexDesc.points.count = 8; |
79 | convexDesc.points.stride = sizeof(Vector3); |
80 | convexDesc.points.data = &aabbVerts[0]; |
81 | convexDesc.flags &= ~PxConvexFlag::eINFLATE_CONVEX; |
82 | |
83 | if (cooking->cookConvexMesh(convexDesc, output)) |
84 | { |
85 | size = output.getSize(); |
86 | *data = (UINT8*)bs_alloc(size); |
87 | |
88 | memcpy(*data, output.getData(), size); |
89 | return true; |
90 | } |
91 | |
92 | return false; |
93 | } |
94 | |
95 | /** |
96 | * Attempts to cook a triangle or convex mesh from the provided mesh data. Will log a warning and return false if it is |
97 | * unable to cook the mesh. If the method returns true the resulting convex mesh will be output in the @p data buffer, |
98 | * and its size in @p size. The data buffer will be allocated used the generic allocator and is up to the caller to |
99 | * free it. |
100 | */ |
101 | bool cookMesh(const SPtr<MeshData>& meshData, PhysicsMeshType type, UINT8** data, UINT32& size) |
102 | { |
103 | if (meshData == nullptr) |
104 | return false; |
105 | |
106 | PxCooking* cooking = gPhysX().getCooking(); |
107 | if (cooking == nullptr) |
108 | { |
109 | LOGWRN("Attempting to cook a physics mesh but cooking is not enabled globally." ); |
110 | return false; |
111 | } |
112 | |
113 | SPtr<VertexDataDesc> vertexDesc = meshData->getVertexDesc(); |
114 | if (!vertexDesc->hasElement(VES_POSITION)) |
115 | { |
116 | LOGWRN("Provided PhysicsMesh mesh data has no vertex positions." ); |
117 | return false; |
118 | } |
119 | |
120 | if (type == PhysicsMeshType::Convex) |
121 | { |
122 | if(!cookConvex(cooking, meshData, data, size)) |
123 | { |
124 | LOGWRN("Failed cooking a convex mesh. Perpahs it is too complex? Maximum number of convex vertices is 256." ); |
125 | return false; |
126 | } |
127 | } |
128 | else |
129 | { |
130 | PxTriangleMeshDesc meshDesc; |
131 | meshDesc.points.count = meshData->getNumVertices(); |
132 | meshDesc.points.stride = vertexDesc->getVertexStride(); |
133 | meshDesc.points.data = meshData->getElementData(VES_POSITION); |
134 | |
135 | meshDesc.triangles.count = meshData->getNumIndices() / 3; |
136 | meshDesc.flags |= PxMeshFlag::eFLIPNORMALS; |
137 | |
138 | IndexType indexType = meshData->getIndexType(); |
139 | if (indexType == IT_32BIT) |
140 | { |
141 | meshDesc.triangles.stride = 3 * sizeof(PxU32); |
142 | meshDesc.triangles.data = meshData->getIndices32(); |
143 | } |
144 | else |
145 | { |
146 | meshDesc.triangles.stride = 3 * sizeof(PxU16); |
147 | meshDesc.triangles.data = meshData->getIndices16(); |
148 | meshDesc.flags |= PxMeshFlag::e16_BIT_INDICES; |
149 | } |
150 | |
151 | PxDefaultMemoryOutputStream output; |
152 | if (!cooking->cookTriangleMesh(meshDesc, output)) |
153 | return false; |
154 | |
155 | size = output.getSize(); |
156 | *data = (UINT8*)bs_alloc(size); |
157 | |
158 | memcpy(*data, output.getData(), size); |
159 | } |
160 | |
161 | return true; |
162 | } |
163 | |
164 | PhysXMesh::PhysXMesh(const SPtr<MeshData>& meshData, PhysicsMeshType type) |
165 | :PhysicsMesh(meshData, type) |
166 | { } |
167 | |
168 | void PhysXMesh::initialize() |
169 | { |
170 | if(mInternal == nullptr) // Could be not-null if we're deserializing |
171 | mInternal = bs_shared_ptr_new<FPhysXMesh>(mInitMeshData, mType); |
172 | |
173 | PhysicsMesh::initialize(); |
174 | } |
175 | |
176 | void PhysXMesh::destroy() |
177 | { |
178 | mInternal = nullptr; |
179 | |
180 | PhysicsMesh::destroy(); |
181 | } |
182 | |
183 | FPhysXMesh::FPhysXMesh() |
184 | :FPhysicsMesh(nullptr, PhysicsMeshType::Convex) |
185 | { |
186 | |
187 | } |
188 | |
189 | FPhysXMesh::FPhysXMesh(const SPtr<MeshData>& meshData, PhysicsMeshType type) |
190 | :FPhysicsMesh(meshData, type) |
191 | { |
192 | // Perform cooking if needed |
193 | if (meshData != nullptr) |
194 | cookMesh(meshData, mType, &mCookedData, mCookedDataSize); |
195 | |
196 | initialize(); |
197 | } |
198 | |
199 | FPhysXMesh::~FPhysXMesh() |
200 | { |
201 | if (mCookedData != nullptr) |
202 | { |
203 | bs_free(mCookedData); |
204 | |
205 | mCookedData = nullptr; |
206 | mCookedDataSize = 0; |
207 | } |
208 | |
209 | if (mTriangleMesh != nullptr) |
210 | { |
211 | mTriangleMesh->release(); |
212 | mTriangleMesh = nullptr; |
213 | } |
214 | |
215 | if (mConvexMesh != nullptr) |
216 | { |
217 | mConvexMesh->release(); |
218 | mConvexMesh = nullptr; |
219 | } |
220 | } |
221 | |
222 | void FPhysXMesh::initialize() |
223 | { |
224 | if (mCookedData != nullptr && mCookedDataSize > 0) |
225 | { |
226 | PxPhysics* physx = gPhysX().getPhysX(); |
227 | |
228 | PxDefaultMemoryInputData input(mCookedData, mCookedDataSize); |
229 | if (mType == PhysicsMeshType::Convex) |
230 | mConvexMesh = physx->createConvexMesh(input); |
231 | else |
232 | mTriangleMesh = physx->createTriangleMesh(input); |
233 | } |
234 | } |
235 | |
236 | SPtr<MeshData> FPhysXMesh::getMeshData() const |
237 | { |
238 | SPtr<VertexDataDesc> vertexDesc = VertexDataDesc::create(); |
239 | vertexDesc->addVertElem(VET_FLOAT3, VES_POSITION); |
240 | |
241 | if (mConvexMesh == nullptr && mTriangleMesh == nullptr) |
242 | return MeshData::create(0, 0, vertexDesc); |
243 | |
244 | UINT32 numVertices = 0; |
245 | UINT32 numIndices = 0; |
246 | |
247 | if(mConvexMesh != nullptr) |
248 | { |
249 | numVertices = mConvexMesh->getNbVertices(); |
250 | |
251 | UINT32 numPolygons = mConvexMesh->getNbPolygons(); |
252 | for (UINT32 i = 0; i < numPolygons; i++) |
253 | { |
254 | PxHullPolygon face; |
255 | bool status = mConvexMesh->getPolygonData(i, face); |
256 | assert(status); |
257 | |
258 | numIndices += (face.mNbVerts - 2) * 3; |
259 | } |
260 | } |
261 | else // Triangle |
262 | { |
263 | numVertices = mTriangleMesh->getNbVertices(); |
264 | numIndices = mTriangleMesh->getNbTriangles() * 3; |
265 | } |
266 | |
267 | SPtr<MeshData> meshData = MeshData::create(numVertices, numIndices, vertexDesc); |
268 | |
269 | auto posIter = meshData->getVec3DataIter(VES_POSITION); |
270 | UINT32* outIndices = meshData->getIndices32(); |
271 | |
272 | if (mConvexMesh != nullptr) |
273 | { |
274 | const PxVec3* convexVertices = mConvexMesh->getVertices(); |
275 | const UINT8* convexIndices = mConvexMesh->getIndexBuffer(); |
276 | |
277 | for (UINT32 i = 0; i < numVertices; i++) |
278 | posIter.addValue(fromPxVector(convexVertices[i])); |
279 | |
280 | UINT32 numPolygons = mConvexMesh->getNbPolygons(); |
281 | for (UINT32 i = 0; i < numPolygons; i++) |
282 | { |
283 | PxHullPolygon face; |
284 | bool status = mConvexMesh->getPolygonData(i, face); |
285 | assert(status); |
286 | |
287 | const PxU8* faceIndices = convexIndices + face.mIndexBase; |
288 | for (UINT32 j = 2; j < face.mNbVerts; j++) |
289 | { |
290 | *outIndices++ = faceIndices[0]; |
291 | *outIndices++ = faceIndices[j]; |
292 | *outIndices++ = faceIndices[j - 1]; |
293 | } |
294 | } |
295 | } |
296 | else |
297 | { |
298 | const PxVec3* vertices = mTriangleMesh->getVertices(); |
299 | for (UINT32 i = 0; i < numVertices; i++) |
300 | posIter.addValue(fromPxVector(vertices[i])); |
301 | |
302 | if(mTriangleMesh->getTriangleMeshFlags() & PxTriangleMeshFlag::e16_BIT_INDICES) |
303 | { |
304 | const UINT16* indices = (const UINT16*)mTriangleMesh->getTriangles(); |
305 | |
306 | UINT32 numTriangles = numIndices / 3; |
307 | for (UINT32 i = 0; i < numTriangles; i++) |
308 | { |
309 | // Flip triangles as PhysX keeps them opposite to what framework expects |
310 | outIndices[i * 3 + 0] = (UINT32)indices[i * 3 + 0]; |
311 | outIndices[i * 3 + 1] = (UINT32)indices[i * 3 + 2]; |
312 | outIndices[i * 3 + 2] = (UINT32)indices[i * 3 + 1]; |
313 | } |
314 | } |
315 | else |
316 | { |
317 | const UINT32* indices = (const UINT32*)mTriangleMesh->getTriangles(); |
318 | |
319 | UINT32 numTriangles = numIndices / 3; |
320 | for (UINT32 i = 0; i < numTriangles; i++) |
321 | { |
322 | // Flip triangles as PhysX keeps them opposite to what framework expects |
323 | outIndices[i * 3 + 0] = indices[i * 3 + 0]; |
324 | outIndices[i * 3 + 1] = indices[i * 3 + 2]; |
325 | outIndices[i * 3 + 2] = indices[i * 3 + 1]; |
326 | } |
327 | } |
328 | } |
329 | |
330 | return meshData; |
331 | } |
332 | |
333 | RTTITypeBase* FPhysXMesh::getRTTIStatic() |
334 | { |
335 | return FPhysXMeshRTTI::instance(); |
336 | } |
337 | |
338 | RTTITypeBase* FPhysXMesh::getRTTI() const |
339 | { |
340 | return getRTTIStatic(); |
341 | } |
342 | } |