1/*
2 * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.inline.hpp"
27#include "memory/allocation.inline.hpp"
28#include "oops/compressedOops.hpp"
29#include "opto/ad.hpp"
30#include "opto/block.hpp"
31#include "opto/c2compiler.hpp"
32#include "opto/callnode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/machnode.hpp"
35#include "opto/runtime.hpp"
36#include "opto/chaitin.hpp"
37#include "runtime/sharedRuntime.hpp"
38
39// Optimization - Graph Style
40
41// Check whether val is not-null-decoded compressed oop,
42// i.e. will grab into the base of the heap if it represents NULL.
43static bool accesses_heap_base_zone(Node *val) {
44 if (CompressedOops::base() != NULL) { // Implies UseCompressedOops.
45 if (val && val->is_Mach()) {
46 if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
47 // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
48 // decode NULL to point to the heap base (Decode_NN).
49 if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
50 return true;
51 }
52 }
53 // Must recognize load operation with Decode matched in memory operand.
54 // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
55 // returns true everywhere else. On PPC, no such memory operands
56 // exist, therefore we did not yet implement a check for such operands.
57 NOT_AIX(Unimplemented());
58 }
59 }
60 return false;
61}
62
63static bool needs_explicit_null_check_for_read(Node *val) {
64 // On some OSes (AIX) the page at address 0 is only write protected.
65 // If so, only Store operations will trap.
66 if (os::zero_page_read_protected()) {
67 return false; // Implicit null check will work.
68 }
69 // Also a read accessing the base of a heap-based compressed heap will trap.
70 if (accesses_heap_base_zone(val) && // Hits the base zone page.
71 CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
72 return false;
73 }
74
75 return true;
76}
77
78//------------------------------implicit_null_check----------------------------
79// Detect implicit-null-check opportunities. Basically, find NULL checks
80// with suitable memory ops nearby. Use the memory op to do the NULL check.
81// I can generate a memory op if there is not one nearby.
82// The proj is the control projection for the not-null case.
83// The val is the pointer being checked for nullness or
84// decodeHeapOop_not_null node if it did not fold into address.
85void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
86 // Assume if null check need for 0 offset then always needed
87 // Intel solaris doesn't support any null checks yet and no
88 // mechanism exists (yet) to set the switches at an os_cpu level
89 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
90
91 // Make sure the ptr-is-null path appears to be uncommon!
92 float f = block->end()->as_MachIf()->_prob;
93 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
94 if( f > PROB_UNLIKELY_MAG(4) ) return;
95
96 uint bidx = 0; // Capture index of value into memop
97 bool was_store; // Memory op is a store op
98
99 // Get the successor block for if the test ptr is non-null
100 Block* not_null_block; // this one goes with the proj
101 Block* null_block;
102 if (block->get_node(block->number_of_nodes()-1) == proj) {
103 null_block = block->_succs[0];
104 not_null_block = block->_succs[1];
105 } else {
106 assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
107 not_null_block = block->_succs[0];
108 null_block = block->_succs[1];
109 }
110 while (null_block->is_Empty() == Block::empty_with_goto) {
111 null_block = null_block->_succs[0];
112 }
113
114 // Search the exception block for an uncommon trap.
115 // (See Parse::do_if and Parse::do_ifnull for the reason
116 // we need an uncommon trap. Briefly, we need a way to
117 // detect failure of this optimization, as in 6366351.)
118 {
119 bool found_trap = false;
120 for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
121 Node* nn = null_block->get_node(i1);
122 if (nn->is_MachCall() &&
123 nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
124 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
125 if (trtype->isa_int() && trtype->is_int()->is_con()) {
126 jint tr_con = trtype->is_int()->get_con();
127 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
128 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
129 assert((int)reason < (int)BitsPerInt, "recode bit map");
130 if (is_set_nth_bit(allowed_reasons, (int) reason)
131 && action != Deoptimization::Action_none) {
132 // This uncommon trap is sure to recompile, eventually.
133 // When that happens, C->too_many_traps will prevent
134 // this transformation from happening again.
135 found_trap = true;
136 }
137 }
138 break;
139 }
140 }
141 if (!found_trap) {
142 // We did not find an uncommon trap.
143 return;
144 }
145 }
146
147 // Check for decodeHeapOop_not_null node which did not fold into address
148 bool is_decoden = ((intptr_t)val) & 1;
149 val = (Node*)(((intptr_t)val) & ~1);
150
151 assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
152 (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
153
154 // Search the successor block for a load or store who's base value is also
155 // the tested value. There may be several.
156 Node_List *out = new Node_List(Thread::current()->resource_area());
157 MachNode *best = NULL; // Best found so far
158 for (DUIterator i = val->outs(); val->has_out(i); i++) {
159 Node *m = val->out(i);
160 if( !m->is_Mach() ) continue;
161 MachNode *mach = m->as_Mach();
162 was_store = false;
163 int iop = mach->ideal_Opcode();
164 switch( iop ) {
165 case Op_LoadB:
166 case Op_LoadUB:
167 case Op_LoadUS:
168 case Op_LoadD:
169 case Op_LoadF:
170 case Op_LoadI:
171 case Op_LoadL:
172 case Op_LoadP:
173 case Op_LoadN:
174 case Op_LoadS:
175 case Op_LoadKlass:
176 case Op_LoadNKlass:
177 case Op_LoadRange:
178 case Op_LoadD_unaligned:
179 case Op_LoadL_unaligned:
180 assert(mach->in(2) == val, "should be address");
181 break;
182 case Op_StoreB:
183 case Op_StoreC:
184 case Op_StoreCM:
185 case Op_StoreD:
186 case Op_StoreF:
187 case Op_StoreI:
188 case Op_StoreL:
189 case Op_StoreP:
190 case Op_StoreN:
191 case Op_StoreNKlass:
192 was_store = true; // Memory op is a store op
193 // Stores will have their address in slot 2 (memory in slot 1).
194 // If the value being nul-checked is in another slot, it means we
195 // are storing the checked value, which does NOT check the value!
196 if( mach->in(2) != val ) continue;
197 break; // Found a memory op?
198 case Op_StrComp:
199 case Op_StrEquals:
200 case Op_StrIndexOf:
201 case Op_StrIndexOfChar:
202 case Op_AryEq:
203 case Op_StrInflatedCopy:
204 case Op_StrCompressedCopy:
205 case Op_EncodeISOArray:
206 case Op_HasNegatives:
207 // Not a legit memory op for implicit null check regardless of
208 // embedded loads
209 continue;
210 default: // Also check for embedded loads
211 if( !mach->needs_anti_dependence_check() )
212 continue; // Not an memory op; skip it
213 if( must_clone[iop] ) {
214 // Do not move nodes which produce flags because
215 // RA will try to clone it to place near branch and
216 // it will cause recompilation, see clone_node().
217 continue;
218 }
219 {
220 // Check that value is used in memory address in
221 // instructions with embedded load (CmpP val1,(val2+off)).
222 Node* base;
223 Node* index;
224 const MachOper* oper = mach->memory_inputs(base, index);
225 if (oper == NULL || oper == (MachOper*)-1) {
226 continue; // Not an memory op; skip it
227 }
228 if (val == base ||
229 (val == index && val->bottom_type()->isa_narrowoop())) {
230 break; // Found it
231 } else {
232 continue; // Skip it
233 }
234 }
235 break;
236 }
237
238 // On some OSes (AIX) the page at address 0 is only write protected.
239 // If so, only Store operations will trap.
240 // But a read accessing the base of a heap-based compressed heap will trap.
241 if (!was_store && needs_explicit_null_check_for_read(val)) {
242 continue;
243 }
244
245 // Check that node's control edge is not-null block's head or dominates it,
246 // otherwise we can't hoist it because there are other control dependencies.
247 Node* ctrl = mach->in(0);
248 if (ctrl != NULL && !(ctrl == not_null_block->head() ||
249 get_block_for_node(ctrl)->dominates(not_null_block))) {
250 continue;
251 }
252
253 // check if the offset is not too high for implicit exception
254 {
255 intptr_t offset = 0;
256 const TypePtr *adr_type = NULL; // Do not need this return value here
257 const Node* base = mach->get_base_and_disp(offset, adr_type);
258 if (base == NULL || base == NodeSentinel) {
259 // Narrow oop address doesn't have base, only index.
260 // Give up if offset is beyond page size or if heap base is not protected.
261 if (val->bottom_type()->isa_narrowoop() &&
262 (MacroAssembler::needs_explicit_null_check(offset) ||
263 !CompressedOops::use_implicit_null_checks()))
264 continue;
265 // cannot reason about it; is probably not implicit null exception
266 } else {
267 const TypePtr* tptr;
268 if (UseCompressedOops && (CompressedOops::shift() == 0 ||
269 CompressedKlassPointers::shift() == 0)) {
270 // 32-bits narrow oop can be the base of address expressions
271 tptr = base->get_ptr_type();
272 } else {
273 // only regular oops are expected here
274 tptr = base->bottom_type()->is_ptr();
275 }
276 // Give up if offset is not a compile-time constant.
277 if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
278 continue;
279 offset += tptr->_offset; // correct if base is offseted
280 // Give up if reference is beyond page size.
281 if (MacroAssembler::needs_explicit_null_check(offset))
282 continue;
283 // Give up if base is a decode node and the heap base is not protected.
284 if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
285 !CompressedOops::use_implicit_null_checks())
286 continue;
287 }
288 }
289
290 // Check ctrl input to see if the null-check dominates the memory op
291 Block *cb = get_block_for_node(mach);
292 cb = cb->_idom; // Always hoist at least 1 block
293 if( !was_store ) { // Stores can be hoisted only one block
294 while( cb->_dom_depth > (block->_dom_depth + 1))
295 cb = cb->_idom; // Hoist loads as far as we want
296 // The non-null-block should dominate the memory op, too. Live
297 // range spilling will insert a spill in the non-null-block if it is
298 // needs to spill the memory op for an implicit null check.
299 if (cb->_dom_depth == (block->_dom_depth + 1)) {
300 if (cb != not_null_block) continue;
301 cb = cb->_idom;
302 }
303 }
304 if( cb != block ) continue;
305
306 // Found a memory user; see if it can be hoisted to check-block
307 uint vidx = 0; // Capture index of value into memop
308 uint j;
309 for( j = mach->req()-1; j > 0; j-- ) {
310 if( mach->in(j) == val ) {
311 vidx = j;
312 // Ignore DecodeN val which could be hoisted to where needed.
313 if( is_decoden ) continue;
314 }
315 // Block of memory-op input
316 Block *inb = get_block_for_node(mach->in(j));
317 Block *b = block; // Start from nul check
318 while( b != inb && b->_dom_depth > inb->_dom_depth )
319 b = b->_idom; // search upwards for input
320 // See if input dominates null check
321 if( b != inb )
322 break;
323 }
324 if( j > 0 )
325 continue;
326 Block *mb = get_block_for_node(mach);
327 // Hoisting stores requires more checks for the anti-dependence case.
328 // Give up hoisting if we have to move the store past any load.
329 if( was_store ) {
330 Block *b = mb; // Start searching here for a local load
331 // mach use (faulting) trying to hoist
332 // n might be blocker to hoisting
333 while( b != block ) {
334 uint k;
335 for( k = 1; k < b->number_of_nodes(); k++ ) {
336 Node *n = b->get_node(k);
337 if( n->needs_anti_dependence_check() &&
338 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
339 break; // Found anti-dependent load
340 }
341 if( k < b->number_of_nodes() )
342 break; // Found anti-dependent load
343 // Make sure control does not do a merge (would have to check allpaths)
344 if( b->num_preds() != 2 ) break;
345 b = get_block_for_node(b->pred(1)); // Move up to predecessor block
346 }
347 if( b != block ) continue;
348 }
349
350 // Make sure this memory op is not already being used for a NullCheck
351 Node *e = mb->end();
352 if( e->is_MachNullCheck() && e->in(1) == mach )
353 continue; // Already being used as a NULL check
354
355 // Found a candidate! Pick one with least dom depth - the highest
356 // in the dom tree should be closest to the null check.
357 if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
358 best = mach;
359 bidx = vidx;
360 }
361 }
362 // No candidate!
363 if (best == NULL) {
364 return;
365 }
366
367 // ---- Found an implicit null check
368#ifndef PRODUCT
369 extern int implicit_null_checks;
370 implicit_null_checks++;
371#endif
372
373 if( is_decoden ) {
374 // Check if we need to hoist decodeHeapOop_not_null first.
375 Block *valb = get_block_for_node(val);
376 if( block != valb && block->_dom_depth < valb->_dom_depth ) {
377 // Hoist it up to the end of the test block.
378 valb->find_remove(val);
379 block->add_inst(val);
380 map_node_to_block(val, block);
381 // DecodeN on x86 may kill flags. Check for flag-killing projections
382 // that also need to be hoisted.
383 for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
384 Node* n = val->fast_out(j);
385 if( n->is_MachProj() ) {
386 get_block_for_node(n)->find_remove(n);
387 block->add_inst(n);
388 map_node_to_block(n, block);
389 }
390 }
391 }
392 }
393 // Hoist the memory candidate up to the end of the test block.
394 Block *old_block = get_block_for_node(best);
395 old_block->find_remove(best);
396 block->add_inst(best);
397 map_node_to_block(best, block);
398
399 // Move the control dependence if it is pinned to not-null block.
400 // Don't change it in other cases: NULL or dominating control.
401 if (best->in(0) == not_null_block->head()) {
402 // Set it to control edge of null check.
403 best->set_req(0, proj->in(0)->in(0));
404 }
405
406 // Check for flag-killing projections that also need to be hoisted
407 // Should be DU safe because no edge updates.
408 for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
409 Node* n = best->fast_out(j);
410 if( n->is_MachProj() ) {
411 get_block_for_node(n)->find_remove(n);
412 block->add_inst(n);
413 map_node_to_block(n, block);
414 }
415 }
416
417 // proj==Op_True --> ne test; proj==Op_False --> eq test.
418 // One of two graph shapes got matched:
419 // (IfTrue (If (Bool NE (CmpP ptr NULL))))
420 // (IfFalse (If (Bool EQ (CmpP ptr NULL))))
421 // NULL checks are always branch-if-eq. If we see a IfTrue projection
422 // then we are replacing a 'ne' test with a 'eq' NULL check test.
423 // We need to flip the projections to keep the same semantics.
424 if( proj->Opcode() == Op_IfTrue ) {
425 // Swap order of projections in basic block to swap branch targets
426 Node *tmp1 = block->get_node(block->end_idx()+1);
427 Node *tmp2 = block->get_node(block->end_idx()+2);
428 block->map_node(tmp2, block->end_idx()+1);
429 block->map_node(tmp1, block->end_idx()+2);
430 Node *tmp = new Node(C->top()); // Use not NULL input
431 tmp1->replace_by(tmp);
432 tmp2->replace_by(tmp1);
433 tmp->replace_by(tmp2);
434 tmp->destruct();
435 }
436
437 // Remove the existing null check; use a new implicit null check instead.
438 // Since schedule-local needs precise def-use info, we need to correct
439 // it as well.
440 Node *old_tst = proj->in(0);
441 MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
442 block->map_node(nul_chk, block->end_idx());
443 map_node_to_block(nul_chk, block);
444 // Redirect users of old_test to nul_chk
445 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
446 old_tst->last_out(i2)->set_req(0, nul_chk);
447 // Clean-up any dead code
448 for (uint i3 = 0; i3 < old_tst->req(); i3++) {
449 Node* in = old_tst->in(i3);
450 old_tst->set_req(i3, NULL);
451 if (in->outcnt() == 0) {
452 // Remove dead input node
453 in->disconnect_inputs(NULL, C);
454 block->find_remove(in);
455 }
456 }
457
458 latency_from_uses(nul_chk);
459 latency_from_uses(best);
460
461 // insert anti-dependences to defs in this block
462 if (! best->needs_anti_dependence_check()) {
463 for (uint k = 1; k < block->number_of_nodes(); k++) {
464 Node *n = block->get_node(k);
465 if (n->needs_anti_dependence_check() &&
466 n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
467 // Found anti-dependent load
468 insert_anti_dependences(block, n);
469 }
470 }
471 }
472}
473
474
475//------------------------------select-----------------------------------------
476// Select a nice fellow from the worklist to schedule next. If there is only
477// one choice, then use it. Projections take top priority for correctness
478// reasons - if I see a projection, then it is next. There are a number of
479// other special cases, for instructions that consume condition codes, et al.
480// These are chosen immediately. Some instructions are required to immediately
481// precede the last instruction in the block, and these are taken last. Of the
482// remaining cases (most), choose the instruction with the greatest latency
483// (that is, the most number of pseudo-cycles required to the end of the
484// routine). If there is a tie, choose the instruction with the most inputs.
485Node* PhaseCFG::select(
486 Block* block,
487 Node_List &worklist,
488 GrowableArray<int> &ready_cnt,
489 VectorSet &next_call,
490 uint sched_slot,
491 intptr_t* recalc_pressure_nodes) {
492
493 // If only a single entry on the stack, use it
494 uint cnt = worklist.size();
495 if (cnt == 1) {
496 Node *n = worklist[0];
497 worklist.map(0,worklist.pop());
498 return n;
499 }
500
501 uint choice = 0; // Bigger is most important
502 uint latency = 0; // Bigger is scheduled first
503 uint score = 0; // Bigger is better
504 int idx = -1; // Index in worklist
505 int cand_cnt = 0; // Candidate count
506 bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
507
508 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
509 // Order in worklist is used to break ties.
510 // See caller for how this is used to delay scheduling
511 // of induction variable increments to after the other
512 // uses of the phi are scheduled.
513 Node *n = worklist[i]; // Get Node on worklist
514
515 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
516 if( n->is_Proj() || // Projections always win
517 n->Opcode()== Op_Con || // So does constant 'Top'
518 iop == Op_CreateEx || // Create-exception must start block
519 iop == Op_CheckCastPP
520 ) {
521 worklist.map(i,worklist.pop());
522 return n;
523 }
524
525 // Final call in a block must be adjacent to 'catch'
526 Node *e = block->end();
527 if( e->is_Catch() && e->in(0)->in(0) == n )
528 continue;
529
530 // Memory op for an implicit null check has to be at the end of the block
531 if( e->is_MachNullCheck() && e->in(1) == n )
532 continue;
533
534 // Schedule IV increment last.
535 if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
536 // Cmp might be matched into CountedLoopEnd node.
537 Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
538 if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
539 continue;
540 }
541 }
542
543 uint n_choice = 2;
544
545 // See if this instruction is consumed by a branch. If so, then (as the
546 // branch is the last instruction in the basic block) force it to the
547 // end of the basic block
548 if ( must_clone[iop] ) {
549 // See if any use is a branch
550 bool found_machif = false;
551
552 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
553 Node* use = n->fast_out(j);
554
555 // The use is a conditional branch, make them adjacent
556 if (use->is_MachIf() && get_block_for_node(use) == block) {
557 found_machif = true;
558 break;
559 }
560
561 // More than this instruction pending for successor to be ready,
562 // don't choose this if other opportunities are ready
563 if (ready_cnt.at(use->_idx) > 1)
564 n_choice = 1;
565 }
566
567 // loop terminated, prefer not to use this instruction
568 if (found_machif)
569 continue;
570 }
571
572 // See if this has a predecessor that is "must_clone", i.e. sets the
573 // condition code. If so, choose this first
574 for (uint j = 0; j < n->req() ; j++) {
575 Node *inn = n->in(j);
576 if (inn) {
577 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
578 n_choice = 3;
579 break;
580 }
581 }
582 }
583
584 // MachTemps should be scheduled last so they are near their uses
585 if (n->is_MachTemp()) {
586 n_choice = 1;
587 }
588
589 uint n_latency = get_latency_for_node(n);
590 uint n_score = n->req(); // Many inputs get high score to break ties
591
592 if (OptoRegScheduling && block_size_threshold_ok) {
593 if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
594 _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
595 _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
596 // simulate the notion that we just picked this node to schedule
597 n->add_flag(Node::Flag_is_scheduled);
598 // now caculate its effect upon the graph if we did
599 adjust_register_pressure(n, block, recalc_pressure_nodes, false);
600 // return its state for finalize in case somebody else wins
601 n->remove_flag(Node::Flag_is_scheduled);
602 // now save the two final pressure components of register pressure, limiting pressure calcs to short size
603 short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
604 short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
605 recalc_pressure_nodes[n->_idx] = int_pressure;
606 recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
607 }
608
609 if (_scheduling_for_pressure) {
610 latency = n_latency;
611 if (n_choice != 3) {
612 // Now evaluate each register pressure component based on threshold in the score.
613 // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
614 // on a single instruction, but we might see it shrink on both banks.
615 // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
616 // live ranges that terminate on this instruction.
617 if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
618 short int_pressure = (short)recalc_pressure_nodes[n->_idx];
619 n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
620 }
621 if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
622 short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
623 n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
624 }
625 } else {
626 // make sure we choose these candidates
627 score = 0;
628 }
629 }
630 }
631
632 // Keep best latency found
633 cand_cnt++;
634 if (choice < n_choice ||
635 (choice == n_choice &&
636 ((StressLCM && Compile::randomized_select(cand_cnt)) ||
637 (!StressLCM &&
638 (latency < n_latency ||
639 (latency == n_latency &&
640 (score < n_score))))))) {
641 choice = n_choice;
642 latency = n_latency;
643 score = n_score;
644 idx = i; // Also keep index in worklist
645 }
646 } // End of for all ready nodes in worklist
647
648 guarantee(idx >= 0, "index should be set");
649 Node *n = worklist[(uint)idx]; // Get the winner
650
651 worklist.map((uint)idx, worklist.pop()); // Compress worklist
652 return n;
653}
654
655//-------------------------adjust_register_pressure----------------------------
656void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
657 PhaseLive* liveinfo = _regalloc->get_live();
658 IndexSet* liveout = liveinfo->live(block);
659 // first adjust the register pressure for the sources
660 for (uint i = 1; i < n->req(); i++) {
661 bool lrg_ends = false;
662 Node *src_n = n->in(i);
663 if (src_n == NULL) continue;
664 if (!src_n->is_Mach()) continue;
665 uint src = _regalloc->_lrg_map.find(src_n);
666 if (src == 0) continue;
667 LRG& lrg_src = _regalloc->lrgs(src);
668 // detect if the live range ends or not
669 if (liveout->member(src) == false) {
670 lrg_ends = true;
671 for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
672 Node* m = src_n->fast_out(j); // Get user
673 if (m == n) continue;
674 if (!m->is_Mach()) continue;
675 MachNode *mach = m->as_Mach();
676 bool src_matches = false;
677 int iop = mach->ideal_Opcode();
678
679 switch (iop) {
680 case Op_StoreB:
681 case Op_StoreC:
682 case Op_StoreCM:
683 case Op_StoreD:
684 case Op_StoreF:
685 case Op_StoreI:
686 case Op_StoreL:
687 case Op_StoreP:
688 case Op_StoreN:
689 case Op_StoreVector:
690 case Op_StoreNKlass:
691 for (uint k = 1; k < m->req(); k++) {
692 Node *in = m->in(k);
693 if (in == src_n) {
694 src_matches = true;
695 break;
696 }
697 }
698 break;
699
700 default:
701 src_matches = true;
702 break;
703 }
704
705 // If we have a store as our use, ignore the non source operands
706 if (src_matches == false) continue;
707
708 // Mark every unscheduled use which is not n with a recalculation
709 if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
710 if (finalize_mode && !m->is_Phi()) {
711 recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
712 }
713 lrg_ends = false;
714 }
715 }
716 }
717 // if none, this live range ends and we can adjust register pressure
718 if (lrg_ends) {
719 if (finalize_mode) {
720 _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
721 } else {
722 _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
723 }
724 }
725 }
726
727 // now add the register pressure from the dest and evaluate which heuristic we should use:
728 // 1.) The default, latency scheduling
729 // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
730 uint dst = _regalloc->_lrg_map.find(n);
731 if (dst != 0) {
732 LRG& lrg_dst = _regalloc->lrgs(dst);
733 if (finalize_mode) {
734 _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
735 // check to see if we fall over the register pressure cliff here
736 if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
737 _scheduling_for_pressure = true;
738 } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
739 _scheduling_for_pressure = true;
740 } else {
741 // restore latency scheduling mode
742 _scheduling_for_pressure = false;
743 }
744 } else {
745 _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
746 }
747 }
748}
749
750//------------------------------set_next_call----------------------------------
751void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
752 if( next_call.test_set(n->_idx) ) return;
753 for( uint i=0; i<n->len(); i++ ) {
754 Node *m = n->in(i);
755 if( !m ) continue; // must see all nodes in block that precede call
756 if (get_block_for_node(m) == block) {
757 set_next_call(block, m, next_call);
758 }
759 }
760}
761
762//------------------------------needed_for_next_call---------------------------
763// Set the flag 'next_call' for each Node that is needed for the next call to
764// be scheduled. This flag lets me bias scheduling so Nodes needed for the
765// next subroutine call get priority - basically it moves things NOT needed
766// for the next call till after the call. This prevents me from trying to
767// carry lots of stuff live across a call.
768void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
769 // Find the next control-defining Node in this block
770 Node* call = NULL;
771 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
772 Node* m = this_call->fast_out(i);
773 if (get_block_for_node(m) == block && // Local-block user
774 m != this_call && // Not self-start node
775 m->is_MachCall()) {
776 call = m;
777 break;
778 }
779 }
780 if (call == NULL) return; // No next call (e.g., block end is near)
781 // Set next-call for all inputs to this call
782 set_next_call(block, call, next_call);
783}
784
785//------------------------------add_call_kills-------------------------------------
786// helper function that adds caller save registers to MachProjNode
787static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
788 // Fill in the kill mask for the call
789 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
790 if( !regs.Member(r) ) { // Not already defined by the call
791 // Save-on-call register?
792 if ((save_policy[r] == 'C') ||
793 (save_policy[r] == 'A') ||
794 ((save_policy[r] == 'E') && exclude_soe)) {
795 proj->_rout.Insert(r);
796 }
797 }
798 }
799}
800
801
802//------------------------------sched_call-------------------------------------
803uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
804 RegMask regs;
805
806 // Schedule all the users of the call right now. All the users are
807 // projection Nodes, so they must be scheduled next to the call.
808 // Collect all the defined registers.
809 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
810 Node* n = mcall->fast_out(i);
811 assert( n->is_MachProj(), "" );
812 int n_cnt = ready_cnt.at(n->_idx)-1;
813 ready_cnt.at_put(n->_idx, n_cnt);
814 assert( n_cnt == 0, "" );
815 // Schedule next to call
816 block->map_node(n, node_cnt++);
817 // Collect defined registers
818 regs.OR(n->out_RegMask());
819 // Check for scheduling the next control-definer
820 if( n->bottom_type() == Type::CONTROL )
821 // Warm up next pile of heuristic bits
822 needed_for_next_call(block, n, next_call);
823
824 // Children of projections are now all ready
825 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
826 Node* m = n->fast_out(j); // Get user
827 if(get_block_for_node(m) != block) {
828 continue;
829 }
830 if( m->is_Phi() ) continue;
831 int m_cnt = ready_cnt.at(m->_idx) - 1;
832 ready_cnt.at_put(m->_idx, m_cnt);
833 if( m_cnt == 0 )
834 worklist.push(m);
835 }
836
837 }
838
839 // Act as if the call defines the Frame Pointer.
840 // Certainly the FP is alive and well after the call.
841 regs.Insert(_matcher.c_frame_pointer());
842
843 // Set all registers killed and not already defined by the call.
844 uint r_cnt = mcall->tf()->range()->cnt();
845 int op = mcall->ideal_Opcode();
846 MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
847 map_node_to_block(proj, block);
848 block->insert_node(proj, node_cnt++);
849
850 // Select the right register save policy.
851 const char *save_policy = NULL;
852 switch (op) {
853 case Op_CallRuntime:
854 case Op_CallLeaf:
855 case Op_CallLeafNoFP:
856 // Calling C code so use C calling convention
857 save_policy = _matcher._c_reg_save_policy;
858 break;
859
860 case Op_CallStaticJava:
861 case Op_CallDynamicJava:
862 // Calling Java code so use Java calling convention
863 save_policy = _matcher._register_save_policy;
864 break;
865
866 default:
867 ShouldNotReachHere();
868 }
869
870 // When using CallRuntime mark SOE registers as killed by the call
871 // so values that could show up in the RegisterMap aren't live in a
872 // callee saved register since the register wouldn't know where to
873 // find them. CallLeaf and CallLeafNoFP are ok because they can't
874 // have debug info on them. Strictly speaking this only needs to be
875 // done for oops since idealreg2debugmask takes care of debug info
876 // references but there no way to handle oops differently than other
877 // pointers as far as the kill mask goes.
878 bool exclude_soe = op == Op_CallRuntime;
879
880 // If the call is a MethodHandle invoke, we need to exclude the
881 // register which is used to save the SP value over MH invokes from
882 // the mask. Otherwise this register could be used for
883 // deoptimization information.
884 if (op == Op_CallStaticJava) {
885 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
886 if (mcallstaticjava->_method_handle_invoke)
887 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
888 }
889
890 add_call_kills(proj, regs, save_policy, exclude_soe);
891
892 return node_cnt;
893}
894
895
896//------------------------------schedule_local---------------------------------
897// Topological sort within a block. Someday become a real scheduler.
898bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
899 // Already "sorted" are the block start Node (as the first entry), and
900 // the block-ending Node and any trailing control projections. We leave
901 // these alone. PhiNodes and ParmNodes are made to follow the block start
902 // Node. Everything else gets topo-sorted.
903
904#ifndef PRODUCT
905 if (trace_opto_pipelining()) {
906 tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
907 for (uint i = 0;i < block->number_of_nodes(); i++) {
908 tty->print("# ");
909 block->get_node(i)->fast_dump();
910 }
911 tty->print_cr("#");
912 }
913#endif
914
915 // RootNode is already sorted
916 if (block->number_of_nodes() == 1) {
917 return true;
918 }
919
920 bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
921
922 // We track the uses of local definitions as input dependences so that
923 // we know when a given instruction is avialable to be scheduled.
924 uint i;
925 if (OptoRegScheduling && block_size_threshold_ok) {
926 for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
927 Node *n = block->get_node(i);
928 n->remove_flag(Node::Flag_is_scheduled);
929 if (!n->is_Phi()) {
930 recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
931 }
932 }
933 }
934
935 // Move PhiNodes and ParmNodes from 1 to cnt up to the start
936 uint node_cnt = block->end_idx();
937 uint phi_cnt = 1;
938 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
939 Node *n = block->get_node(i);
940 if( n->is_Phi() || // Found a PhiNode or ParmNode
941 (n->is_Proj() && n->in(0) == block->head()) ) {
942 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
943 block->map_node(block->get_node(phi_cnt), i);
944 block->map_node(n, phi_cnt++); // swap Phi/Parm up front
945 if (OptoRegScheduling && block_size_threshold_ok) {
946 // mark n as scheduled
947 n->add_flag(Node::Flag_is_scheduled);
948 }
949 } else { // All others
950 // Count block-local inputs to 'n'
951 uint cnt = n->len(); // Input count
952 uint local = 0;
953 for( uint j=0; j<cnt; j++ ) {
954 Node *m = n->in(j);
955 if( m && get_block_for_node(m) == block && !m->is_top() )
956 local++; // One more block-local input
957 }
958 ready_cnt.at_put(n->_idx, local); // Count em up
959
960#ifdef ASSERT
961 if( UseConcMarkSweepGC || UseG1GC ) {
962 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
963 // Check the precedence edges
964 for (uint prec = n->req(); prec < n->len(); prec++) {
965 Node* oop_store = n->in(prec);
966 if (oop_store != NULL) {
967 assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
968 }
969 }
970 }
971 }
972#endif
973
974 // A few node types require changing a required edge to a precedence edge
975 // before allocation.
976 if( n->is_Mach() && n->req() > TypeFunc::Parms &&
977 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
978 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
979 // MemBarAcquire could be created without Precedent edge.
980 // del_req() replaces the specified edge with the last input edge
981 // and then removes the last edge. If the specified edge > number of
982 // edges the last edge will be moved outside of the input edges array
983 // and the edge will be lost. This is why this code should be
984 // executed only when Precedent (== TypeFunc::Parms) edge is present.
985 Node *x = n->in(TypeFunc::Parms);
986 if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
987 // Old edge to node within same block will get removed, but no precedence
988 // edge will get added because it already exists. Update ready count.
989 int cnt = ready_cnt.at(n->_idx);
990 assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
991 ready_cnt.at_put(n->_idx, cnt-1);
992 }
993 n->del_req(TypeFunc::Parms);
994 n->add_prec(x);
995 }
996 }
997 }
998 for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
999 ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1000
1001 // All the prescheduled guys do not hold back internal nodes
1002 uint i3;
1003 for (i3 = 0; i3 < phi_cnt; i3++) { // For all pre-scheduled
1004 Node *n = block->get_node(i3); // Get pre-scheduled
1005 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1006 Node* m = n->fast_out(j);
1007 if (get_block_for_node(m) == block) { // Local-block user
1008 int m_cnt = ready_cnt.at(m->_idx)-1;
1009 if (OptoRegScheduling && block_size_threshold_ok) {
1010 // mark m as scheduled
1011 if (m_cnt < 0) {
1012 m->add_flag(Node::Flag_is_scheduled);
1013 }
1014 }
1015 ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
1016 }
1017 }
1018 }
1019
1020 Node_List delay;
1021 // Make a worklist
1022 Node_List worklist;
1023 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
1024 Node *m = block->get_node(i4);
1025 if( !ready_cnt.at(m->_idx) ) { // Zero ready count?
1026 if (m->is_iteratively_computed()) {
1027 // Push induction variable increments last to allow other uses
1028 // of the phi to be scheduled first. The select() method breaks
1029 // ties in scheduling by worklist order.
1030 delay.push(m);
1031 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1032 // Force the CreateEx to the top of the list so it's processed
1033 // first and ends up at the start of the block.
1034 worklist.insert(0, m);
1035 } else {
1036 worklist.push(m); // Then on to worklist!
1037 }
1038 }
1039 }
1040 while (delay.size()) {
1041 Node* d = delay.pop();
1042 worklist.push(d);
1043 }
1044
1045 if (OptoRegScheduling && block_size_threshold_ok) {
1046 // To stage register pressure calculations we need to examine the live set variables
1047 // breaking them up by register class to compartmentalize the calculations.
1048 uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1049 _regalloc->_sched_int_pressure.init(INTPRESSURE);
1050 _regalloc->_sched_float_pressure.init(float_pressure);
1051 _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1052 _regalloc->_scratch_float_pressure.init(float_pressure);
1053
1054 _regalloc->compute_entry_block_pressure(block);
1055 }
1056
1057 // Warm up the 'next_call' heuristic bits
1058 needed_for_next_call(block, block->head(), next_call);
1059
1060#ifndef PRODUCT
1061 if (trace_opto_pipelining()) {
1062 for (uint j=0; j< block->number_of_nodes(); j++) {
1063 Node *n = block->get_node(j);
1064 int idx = n->_idx;
1065 tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
1066 tty->print("latency:%3d ", get_latency_for_node(n));
1067 tty->print("%4d: %s\n", idx, n->Name());
1068 }
1069 }
1070#endif
1071
1072 uint max_idx = (uint)ready_cnt.length();
1073 // Pull from worklist and schedule
1074 while( worklist.size() ) { // Worklist is not ready
1075
1076#ifndef PRODUCT
1077 if (trace_opto_pipelining()) {
1078 tty->print("# ready list:");
1079 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1080 Node *n = worklist[i]; // Get Node on worklist
1081 tty->print(" %d", n->_idx);
1082 }
1083 tty->cr();
1084 }
1085#endif
1086
1087 // Select and pop a ready guy from worklist
1088 Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1089 block->map_node(n, phi_cnt++); // Schedule him next
1090
1091 if (OptoRegScheduling && block_size_threshold_ok) {
1092 n->add_flag(Node::Flag_is_scheduled);
1093
1094 // Now adjust the resister pressure with the node we selected
1095 if (!n->is_Phi()) {
1096 adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1097 }
1098 }
1099
1100#ifndef PRODUCT
1101 if (trace_opto_pipelining()) {
1102 tty->print("# select %d: %s", n->_idx, n->Name());
1103 tty->print(", latency:%d", get_latency_for_node(n));
1104 n->dump();
1105 if (Verbose) {
1106 tty->print("# ready list:");
1107 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1108 Node *n = worklist[i]; // Get Node on worklist
1109 tty->print(" %d", n->_idx);
1110 }
1111 tty->cr();
1112 }
1113 }
1114
1115#endif
1116 if( n->is_MachCall() ) {
1117 MachCallNode *mcall = n->as_MachCall();
1118 phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1119 continue;
1120 }
1121
1122 if (n->is_Mach() && n->as_Mach()->has_call()) {
1123 RegMask regs;
1124 regs.Insert(_matcher.c_frame_pointer());
1125 regs.OR(n->out_RegMask());
1126
1127 MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1128 map_node_to_block(proj, block);
1129 block->insert_node(proj, phi_cnt++);
1130
1131 add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1132 }
1133
1134 // Children are now all ready
1135 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1136 Node* m = n->fast_out(i5); // Get user
1137 if (get_block_for_node(m) != block) {
1138 continue;
1139 }
1140 if( m->is_Phi() ) continue;
1141 if (m->_idx >= max_idx) { // new node, skip it
1142 assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1143 continue;
1144 }
1145 int m_cnt = ready_cnt.at(m->_idx) - 1;
1146 ready_cnt.at_put(m->_idx, m_cnt);
1147 if( m_cnt == 0 )
1148 worklist.push(m);
1149 }
1150 }
1151
1152 if( phi_cnt != block->end_idx() ) {
1153 // did not schedule all. Retry, Bailout, or Die
1154 if (C->subsume_loads() == true && !C->failing()) {
1155 // Retry with subsume_loads == false
1156 // If this is the first failure, the sentinel string will "stick"
1157 // to the Compile object, and the C2Compiler will see it and retry.
1158 C->record_failure(C2Compiler::retry_no_subsuming_loads());
1159 } else {
1160 assert(false, "graph should be schedulable");
1161 }
1162 // assert( phi_cnt == end_idx(), "did not schedule all" );
1163 return false;
1164 }
1165
1166 if (OptoRegScheduling && block_size_threshold_ok) {
1167 _regalloc->compute_exit_block_pressure(block);
1168 block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1169 block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1170 }
1171
1172#ifndef PRODUCT
1173 if (trace_opto_pipelining()) {
1174 tty->print_cr("#");
1175 tty->print_cr("# after schedule_local");
1176 for (uint i = 0;i < block->number_of_nodes();i++) {
1177 tty->print("# ");
1178 block->get_node(i)->fast_dump();
1179 }
1180 tty->print_cr("# ");
1181
1182 if (OptoRegScheduling && block_size_threshold_ok) {
1183 tty->print_cr("# pressure info : %d", block->_pre_order);
1184 _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1185 _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1186 }
1187 tty->cr();
1188 }
1189#endif
1190
1191 return true;
1192}
1193
1194//--------------------------catch_cleanup_fix_all_inputs-----------------------
1195static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1196 for (uint l = 0; l < use->len(); l++) {
1197 if (use->in(l) == old_def) {
1198 if (l < use->req()) {
1199 use->set_req(l, new_def);
1200 } else {
1201 use->rm_prec(l);
1202 use->add_prec(new_def);
1203 l--;
1204 }
1205 }
1206 }
1207}
1208
1209//------------------------------catch_cleanup_find_cloned_def------------------
1210Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1211 assert( use_blk != def_blk, "Inter-block cleanup only");
1212
1213 // The use is some block below the Catch. Find and return the clone of the def
1214 // that dominates the use. If there is no clone in a dominating block, then
1215 // create a phi for the def in a dominating block.
1216
1217 // Find which successor block dominates this use. The successor
1218 // blocks must all be single-entry (from the Catch only; I will have
1219 // split blocks to make this so), hence they all dominate.
1220 while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1221 use_blk = use_blk->_idom;
1222
1223 // Find the successor
1224 Node *fixup = NULL;
1225
1226 uint j;
1227 for( j = 0; j < def_blk->_num_succs; j++ )
1228 if( use_blk == def_blk->_succs[j] )
1229 break;
1230
1231 if( j == def_blk->_num_succs ) {
1232 // Block at same level in dom-tree is not a successor. It needs a
1233 // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1234 Node_Array inputs = new Node_List(Thread::current()->resource_area());
1235 for(uint k = 1; k < use_blk->num_preds(); k++) {
1236 Block* block = get_block_for_node(use_blk->pred(k));
1237 inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1238 }
1239
1240 // Check to see if the use_blk already has an identical phi inserted.
1241 // If it exists, it will be at the first position since all uses of a
1242 // def are processed together.
1243 Node *phi = use_blk->get_node(1);
1244 if( phi->is_Phi() ) {
1245 fixup = phi;
1246 for (uint k = 1; k < use_blk->num_preds(); k++) {
1247 if (phi->in(k) != inputs[k]) {
1248 // Not a match
1249 fixup = NULL;
1250 break;
1251 }
1252 }
1253 }
1254
1255 // If an existing PhiNode was not found, make a new one.
1256 if (fixup == NULL) {
1257 Node *new_phi = PhiNode::make(use_blk->head(), def);
1258 use_blk->insert_node(new_phi, 1);
1259 map_node_to_block(new_phi, use_blk);
1260 for (uint k = 1; k < use_blk->num_preds(); k++) {
1261 new_phi->set_req(k, inputs[k]);
1262 }
1263 fixup = new_phi;
1264 }
1265
1266 } else {
1267 // Found the use just below the Catch. Make it use the clone.
1268 fixup = use_blk->get_node(n_clone_idx);
1269 }
1270
1271 return fixup;
1272}
1273
1274//--------------------------catch_cleanup_intra_block--------------------------
1275// Fix all input edges in use that reference "def". The use is in the same
1276// block as the def and both have been cloned in each successor block.
1277static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1278
1279 // Both the use and def have been cloned. For each successor block,
1280 // get the clone of the use, and make its input the clone of the def
1281 // found in that block.
1282
1283 uint use_idx = blk->find_node(use);
1284 uint offset_idx = use_idx - beg;
1285 for( uint k = 0; k < blk->_num_succs; k++ ) {
1286 // Get clone in each successor block
1287 Block *sb = blk->_succs[k];
1288 Node *clone = sb->get_node(offset_idx+1);
1289 assert( clone->Opcode() == use->Opcode(), "" );
1290
1291 // Make use-clone reference the def-clone
1292 catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1293 }
1294}
1295
1296//------------------------------catch_cleanup_inter_block---------------------
1297// Fix all input edges in use that reference "def". The use is in a different
1298// block than the def.
1299void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1300 if( !use_blk ) return; // Can happen if the use is a precedence edge
1301
1302 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1303 catch_cleanup_fix_all_inputs(use, def, new_def);
1304}
1305
1306//------------------------------call_catch_cleanup-----------------------------
1307// If we inserted any instructions between a Call and his CatchNode,
1308// clone the instructions on all paths below the Catch.
1309void PhaseCFG::call_catch_cleanup(Block* block) {
1310
1311 // End of region to clone
1312 uint end = block->end_idx();
1313 if( !block->get_node(end)->is_Catch() ) return;
1314 // Start of region to clone
1315 uint beg = end;
1316 while(!block->get_node(beg-1)->is_MachProj() ||
1317 !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1318 beg--;
1319 assert(beg > 0,"Catch cleanup walking beyond block boundary");
1320 }
1321 // Range of inserted instructions is [beg, end)
1322 if( beg == end ) return;
1323
1324 // Clone along all Catch output paths. Clone area between the 'beg' and
1325 // 'end' indices.
1326 for( uint i = 0; i < block->_num_succs; i++ ) {
1327 Block *sb = block->_succs[i];
1328 // Clone the entire area; ignoring the edge fixup for now.
1329 for( uint j = end; j > beg; j-- ) {
1330 Node *clone = block->get_node(j-1)->clone();
1331 sb->insert_node(clone, 1);
1332 map_node_to_block(clone, sb);
1333 if (clone->needs_anti_dependence_check()) {
1334 insert_anti_dependences(sb, clone);
1335 }
1336 }
1337 }
1338
1339
1340 // Fixup edges. Check the def-use info per cloned Node
1341 for(uint i2 = beg; i2 < end; i2++ ) {
1342 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1343 Node *n = block->get_node(i2); // Node that got cloned
1344 // Need DU safe iterator because of edge manipulation in calls.
1345 Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1346 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1347 out->push(n->fast_out(j1));
1348 }
1349 uint max = out->size();
1350 for (uint j = 0; j < max; j++) {// For all users
1351 Node *use = out->pop();
1352 Block *buse = get_block_for_node(use);
1353 if( use->is_Phi() ) {
1354 for( uint k = 1; k < use->req(); k++ )
1355 if( use->in(k) == n ) {
1356 Block* b = get_block_for_node(buse->pred(k));
1357 Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1358 use->set_req(k, fixup);
1359 }
1360 } else {
1361 if (block == buse) {
1362 catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1363 } else {
1364 catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1365 }
1366 }
1367 } // End for all users
1368
1369 } // End of for all Nodes in cloned area
1370
1371 // Remove the now-dead cloned ops
1372 for(uint i3 = beg; i3 < end; i3++ ) {
1373 block->get_node(beg)->disconnect_inputs(NULL, C);
1374 block->remove_node(beg);
1375 }
1376
1377 // If the successor blocks have a CreateEx node, move it back to the top
1378 for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1379 Block *sb = block->_succs[i4];
1380 uint new_cnt = end - beg;
1381 // Remove any newly created, but dead, nodes.
1382 for( uint j = new_cnt; j > 0; j-- ) {
1383 Node *n = sb->get_node(j);
1384 if (n->outcnt() == 0 &&
1385 (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1386 n->disconnect_inputs(NULL, C);
1387 sb->remove_node(j);
1388 new_cnt--;
1389 }
1390 }
1391 // If any newly created nodes remain, move the CreateEx node to the top
1392 if (new_cnt > 0) {
1393 Node *cex = sb->get_node(1+new_cnt);
1394 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1395 sb->remove_node(1+new_cnt);
1396 sb->insert_node(cex, 1);
1397 }
1398 }
1399 }
1400}
1401