| 1 | /* |
| 2 | * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "asm/macroAssembler.inline.hpp" |
| 27 | #include "memory/allocation.inline.hpp" |
| 28 | #include "oops/compressedOops.hpp" |
| 29 | #include "opto/ad.hpp" |
| 30 | #include "opto/block.hpp" |
| 31 | #include "opto/c2compiler.hpp" |
| 32 | #include "opto/callnode.hpp" |
| 33 | #include "opto/cfgnode.hpp" |
| 34 | #include "opto/machnode.hpp" |
| 35 | #include "opto/runtime.hpp" |
| 36 | #include "opto/chaitin.hpp" |
| 37 | #include "runtime/sharedRuntime.hpp" |
| 38 | |
| 39 | // Optimization - Graph Style |
| 40 | |
| 41 | // Check whether val is not-null-decoded compressed oop, |
| 42 | // i.e. will grab into the base of the heap if it represents NULL. |
| 43 | static bool accesses_heap_base_zone(Node *val) { |
| 44 | if (CompressedOops::base() != NULL) { // Implies UseCompressedOops. |
| 45 | if (val && val->is_Mach()) { |
| 46 | if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) { |
| 47 | // This assumes all Decodes with TypePtr::NotNull are matched to nodes that |
| 48 | // decode NULL to point to the heap base (Decode_NN). |
| 49 | if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) { |
| 50 | return true; |
| 51 | } |
| 52 | } |
| 53 | // Must recognize load operation with Decode matched in memory operand. |
| 54 | // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected() |
| 55 | // returns true everywhere else. On PPC, no such memory operands |
| 56 | // exist, therefore we did not yet implement a check for such operands. |
| 57 | NOT_AIX(Unimplemented()); |
| 58 | } |
| 59 | } |
| 60 | return false; |
| 61 | } |
| 62 | |
| 63 | static bool needs_explicit_null_check_for_read(Node *val) { |
| 64 | // On some OSes (AIX) the page at address 0 is only write protected. |
| 65 | // If so, only Store operations will trap. |
| 66 | if (os::zero_page_read_protected()) { |
| 67 | return false; // Implicit null check will work. |
| 68 | } |
| 69 | // Also a read accessing the base of a heap-based compressed heap will trap. |
| 70 | if (accesses_heap_base_zone(val) && // Hits the base zone page. |
| 71 | CompressedOops::use_implicit_null_checks()) { // Base zone page is protected. |
| 72 | return false; |
| 73 | } |
| 74 | |
| 75 | return true; |
| 76 | } |
| 77 | |
| 78 | //------------------------------implicit_null_check---------------------------- |
| 79 | // Detect implicit-null-check opportunities. Basically, find NULL checks |
| 80 | // with suitable memory ops nearby. Use the memory op to do the NULL check. |
| 81 | // I can generate a memory op if there is not one nearby. |
| 82 | // The proj is the control projection for the not-null case. |
| 83 | // The val is the pointer being checked for nullness or |
| 84 | // decodeHeapOop_not_null node if it did not fold into address. |
| 85 | void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) { |
| 86 | // Assume if null check need for 0 offset then always needed |
| 87 | // Intel solaris doesn't support any null checks yet and no |
| 88 | // mechanism exists (yet) to set the switches at an os_cpu level |
| 89 | if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return; |
| 90 | |
| 91 | // Make sure the ptr-is-null path appears to be uncommon! |
| 92 | float f = block->end()->as_MachIf()->_prob; |
| 93 | if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f; |
| 94 | if( f > PROB_UNLIKELY_MAG(4) ) return; |
| 95 | |
| 96 | uint bidx = 0; // Capture index of value into memop |
| 97 | bool was_store; // Memory op is a store op |
| 98 | |
| 99 | // Get the successor block for if the test ptr is non-null |
| 100 | Block* not_null_block; // this one goes with the proj |
| 101 | Block* null_block; |
| 102 | if (block->get_node(block->number_of_nodes()-1) == proj) { |
| 103 | null_block = block->_succs[0]; |
| 104 | not_null_block = block->_succs[1]; |
| 105 | } else { |
| 106 | assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other" ); |
| 107 | not_null_block = block->_succs[0]; |
| 108 | null_block = block->_succs[1]; |
| 109 | } |
| 110 | while (null_block->is_Empty() == Block::empty_with_goto) { |
| 111 | null_block = null_block->_succs[0]; |
| 112 | } |
| 113 | |
| 114 | // Search the exception block for an uncommon trap. |
| 115 | // (See Parse::do_if and Parse::do_ifnull for the reason |
| 116 | // we need an uncommon trap. Briefly, we need a way to |
| 117 | // detect failure of this optimization, as in 6366351.) |
| 118 | { |
| 119 | bool found_trap = false; |
| 120 | for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) { |
| 121 | Node* nn = null_block->get_node(i1); |
| 122 | if (nn->is_MachCall() && |
| 123 | nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { |
| 124 | const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type(); |
| 125 | if (trtype->isa_int() && trtype->is_int()->is_con()) { |
| 126 | jint tr_con = trtype->is_int()->get_con(); |
| 127 | Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); |
| 128 | Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); |
| 129 | assert((int)reason < (int)BitsPerInt, "recode bit map" ); |
| 130 | if (is_set_nth_bit(allowed_reasons, (int) reason) |
| 131 | && action != Deoptimization::Action_none) { |
| 132 | // This uncommon trap is sure to recompile, eventually. |
| 133 | // When that happens, C->too_many_traps will prevent |
| 134 | // this transformation from happening again. |
| 135 | found_trap = true; |
| 136 | } |
| 137 | } |
| 138 | break; |
| 139 | } |
| 140 | } |
| 141 | if (!found_trap) { |
| 142 | // We did not find an uncommon trap. |
| 143 | return; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | // Check for decodeHeapOop_not_null node which did not fold into address |
| 148 | bool is_decoden = ((intptr_t)val) & 1; |
| 149 | val = (Node*)(((intptr_t)val) & ~1); |
| 150 | |
| 151 | assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() && |
| 152 | (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity" ); |
| 153 | |
| 154 | // Search the successor block for a load or store who's base value is also |
| 155 | // the tested value. There may be several. |
| 156 | Node_List *out = new Node_List(Thread::current()->resource_area()); |
| 157 | MachNode *best = NULL; // Best found so far |
| 158 | for (DUIterator i = val->outs(); val->has_out(i); i++) { |
| 159 | Node *m = val->out(i); |
| 160 | if( !m->is_Mach() ) continue; |
| 161 | MachNode *mach = m->as_Mach(); |
| 162 | was_store = false; |
| 163 | int iop = mach->ideal_Opcode(); |
| 164 | switch( iop ) { |
| 165 | case Op_LoadB: |
| 166 | case Op_LoadUB: |
| 167 | case Op_LoadUS: |
| 168 | case Op_LoadD: |
| 169 | case Op_LoadF: |
| 170 | case Op_LoadI: |
| 171 | case Op_LoadL: |
| 172 | case Op_LoadP: |
| 173 | case Op_LoadN: |
| 174 | case Op_LoadS: |
| 175 | case Op_LoadKlass: |
| 176 | case Op_LoadNKlass: |
| 177 | case Op_LoadRange: |
| 178 | case Op_LoadD_unaligned: |
| 179 | case Op_LoadL_unaligned: |
| 180 | assert(mach->in(2) == val, "should be address" ); |
| 181 | break; |
| 182 | case Op_StoreB: |
| 183 | case Op_StoreC: |
| 184 | case Op_StoreCM: |
| 185 | case Op_StoreD: |
| 186 | case Op_StoreF: |
| 187 | case Op_StoreI: |
| 188 | case Op_StoreL: |
| 189 | case Op_StoreP: |
| 190 | case Op_StoreN: |
| 191 | case Op_StoreNKlass: |
| 192 | was_store = true; // Memory op is a store op |
| 193 | // Stores will have their address in slot 2 (memory in slot 1). |
| 194 | // If the value being nul-checked is in another slot, it means we |
| 195 | // are storing the checked value, which does NOT check the value! |
| 196 | if( mach->in(2) != val ) continue; |
| 197 | break; // Found a memory op? |
| 198 | case Op_StrComp: |
| 199 | case Op_StrEquals: |
| 200 | case Op_StrIndexOf: |
| 201 | case Op_StrIndexOfChar: |
| 202 | case Op_AryEq: |
| 203 | case Op_StrInflatedCopy: |
| 204 | case Op_StrCompressedCopy: |
| 205 | case Op_EncodeISOArray: |
| 206 | case Op_HasNegatives: |
| 207 | // Not a legit memory op for implicit null check regardless of |
| 208 | // embedded loads |
| 209 | continue; |
| 210 | default: // Also check for embedded loads |
| 211 | if( !mach->needs_anti_dependence_check() ) |
| 212 | continue; // Not an memory op; skip it |
| 213 | if( must_clone[iop] ) { |
| 214 | // Do not move nodes which produce flags because |
| 215 | // RA will try to clone it to place near branch and |
| 216 | // it will cause recompilation, see clone_node(). |
| 217 | continue; |
| 218 | } |
| 219 | { |
| 220 | // Check that value is used in memory address in |
| 221 | // instructions with embedded load (CmpP val1,(val2+off)). |
| 222 | Node* base; |
| 223 | Node* index; |
| 224 | const MachOper* oper = mach->memory_inputs(base, index); |
| 225 | if (oper == NULL || oper == (MachOper*)-1) { |
| 226 | continue; // Not an memory op; skip it |
| 227 | } |
| 228 | if (val == base || |
| 229 | (val == index && val->bottom_type()->isa_narrowoop())) { |
| 230 | break; // Found it |
| 231 | } else { |
| 232 | continue; // Skip it |
| 233 | } |
| 234 | } |
| 235 | break; |
| 236 | } |
| 237 | |
| 238 | // On some OSes (AIX) the page at address 0 is only write protected. |
| 239 | // If so, only Store operations will trap. |
| 240 | // But a read accessing the base of a heap-based compressed heap will trap. |
| 241 | if (!was_store && needs_explicit_null_check_for_read(val)) { |
| 242 | continue; |
| 243 | } |
| 244 | |
| 245 | // Check that node's control edge is not-null block's head or dominates it, |
| 246 | // otherwise we can't hoist it because there are other control dependencies. |
| 247 | Node* ctrl = mach->in(0); |
| 248 | if (ctrl != NULL && !(ctrl == not_null_block->head() || |
| 249 | get_block_for_node(ctrl)->dominates(not_null_block))) { |
| 250 | continue; |
| 251 | } |
| 252 | |
| 253 | // check if the offset is not too high for implicit exception |
| 254 | { |
| 255 | intptr_t offset = 0; |
| 256 | const TypePtr *adr_type = NULL; // Do not need this return value here |
| 257 | const Node* base = mach->get_base_and_disp(offset, adr_type); |
| 258 | if (base == NULL || base == NodeSentinel) { |
| 259 | // Narrow oop address doesn't have base, only index. |
| 260 | // Give up if offset is beyond page size or if heap base is not protected. |
| 261 | if (val->bottom_type()->isa_narrowoop() && |
| 262 | (MacroAssembler::needs_explicit_null_check(offset) || |
| 263 | !CompressedOops::use_implicit_null_checks())) |
| 264 | continue; |
| 265 | // cannot reason about it; is probably not implicit null exception |
| 266 | } else { |
| 267 | const TypePtr* tptr; |
| 268 | if (UseCompressedOops && (CompressedOops::shift() == 0 || |
| 269 | CompressedKlassPointers::shift() == 0)) { |
| 270 | // 32-bits narrow oop can be the base of address expressions |
| 271 | tptr = base->get_ptr_type(); |
| 272 | } else { |
| 273 | // only regular oops are expected here |
| 274 | tptr = base->bottom_type()->is_ptr(); |
| 275 | } |
| 276 | // Give up if offset is not a compile-time constant. |
| 277 | if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot) |
| 278 | continue; |
| 279 | offset += tptr->_offset; // correct if base is offseted |
| 280 | // Give up if reference is beyond page size. |
| 281 | if (MacroAssembler::needs_explicit_null_check(offset)) |
| 282 | continue; |
| 283 | // Give up if base is a decode node and the heap base is not protected. |
| 284 | if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN && |
| 285 | !CompressedOops::use_implicit_null_checks()) |
| 286 | continue; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | // Check ctrl input to see if the null-check dominates the memory op |
| 291 | Block *cb = get_block_for_node(mach); |
| 292 | cb = cb->_idom; // Always hoist at least 1 block |
| 293 | if( !was_store ) { // Stores can be hoisted only one block |
| 294 | while( cb->_dom_depth > (block->_dom_depth + 1)) |
| 295 | cb = cb->_idom; // Hoist loads as far as we want |
| 296 | // The non-null-block should dominate the memory op, too. Live |
| 297 | // range spilling will insert a spill in the non-null-block if it is |
| 298 | // needs to spill the memory op for an implicit null check. |
| 299 | if (cb->_dom_depth == (block->_dom_depth + 1)) { |
| 300 | if (cb != not_null_block) continue; |
| 301 | cb = cb->_idom; |
| 302 | } |
| 303 | } |
| 304 | if( cb != block ) continue; |
| 305 | |
| 306 | // Found a memory user; see if it can be hoisted to check-block |
| 307 | uint vidx = 0; // Capture index of value into memop |
| 308 | uint j; |
| 309 | for( j = mach->req()-1; j > 0; j-- ) { |
| 310 | if( mach->in(j) == val ) { |
| 311 | vidx = j; |
| 312 | // Ignore DecodeN val which could be hoisted to where needed. |
| 313 | if( is_decoden ) continue; |
| 314 | } |
| 315 | // Block of memory-op input |
| 316 | Block *inb = get_block_for_node(mach->in(j)); |
| 317 | Block *b = block; // Start from nul check |
| 318 | while( b != inb && b->_dom_depth > inb->_dom_depth ) |
| 319 | b = b->_idom; // search upwards for input |
| 320 | // See if input dominates null check |
| 321 | if( b != inb ) |
| 322 | break; |
| 323 | } |
| 324 | if( j > 0 ) |
| 325 | continue; |
| 326 | Block *mb = get_block_for_node(mach); |
| 327 | // Hoisting stores requires more checks for the anti-dependence case. |
| 328 | // Give up hoisting if we have to move the store past any load. |
| 329 | if( was_store ) { |
| 330 | Block *b = mb; // Start searching here for a local load |
| 331 | // mach use (faulting) trying to hoist |
| 332 | // n might be blocker to hoisting |
| 333 | while( b != block ) { |
| 334 | uint k; |
| 335 | for( k = 1; k < b->number_of_nodes(); k++ ) { |
| 336 | Node *n = b->get_node(k); |
| 337 | if( n->needs_anti_dependence_check() && |
| 338 | n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) ) |
| 339 | break; // Found anti-dependent load |
| 340 | } |
| 341 | if( k < b->number_of_nodes() ) |
| 342 | break; // Found anti-dependent load |
| 343 | // Make sure control does not do a merge (would have to check allpaths) |
| 344 | if( b->num_preds() != 2 ) break; |
| 345 | b = get_block_for_node(b->pred(1)); // Move up to predecessor block |
| 346 | } |
| 347 | if( b != block ) continue; |
| 348 | } |
| 349 | |
| 350 | // Make sure this memory op is not already being used for a NullCheck |
| 351 | Node *e = mb->end(); |
| 352 | if( e->is_MachNullCheck() && e->in(1) == mach ) |
| 353 | continue; // Already being used as a NULL check |
| 354 | |
| 355 | // Found a candidate! Pick one with least dom depth - the highest |
| 356 | // in the dom tree should be closest to the null check. |
| 357 | if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) { |
| 358 | best = mach; |
| 359 | bidx = vidx; |
| 360 | } |
| 361 | } |
| 362 | // No candidate! |
| 363 | if (best == NULL) { |
| 364 | return; |
| 365 | } |
| 366 | |
| 367 | // ---- Found an implicit null check |
| 368 | #ifndef PRODUCT |
| 369 | extern int implicit_null_checks; |
| 370 | implicit_null_checks++; |
| 371 | #endif |
| 372 | |
| 373 | if( is_decoden ) { |
| 374 | // Check if we need to hoist decodeHeapOop_not_null first. |
| 375 | Block *valb = get_block_for_node(val); |
| 376 | if( block != valb && block->_dom_depth < valb->_dom_depth ) { |
| 377 | // Hoist it up to the end of the test block. |
| 378 | valb->find_remove(val); |
| 379 | block->add_inst(val); |
| 380 | map_node_to_block(val, block); |
| 381 | // DecodeN on x86 may kill flags. Check for flag-killing projections |
| 382 | // that also need to be hoisted. |
| 383 | for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) { |
| 384 | Node* n = val->fast_out(j); |
| 385 | if( n->is_MachProj() ) { |
| 386 | get_block_for_node(n)->find_remove(n); |
| 387 | block->add_inst(n); |
| 388 | map_node_to_block(n, block); |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | // Hoist the memory candidate up to the end of the test block. |
| 394 | Block *old_block = get_block_for_node(best); |
| 395 | old_block->find_remove(best); |
| 396 | block->add_inst(best); |
| 397 | map_node_to_block(best, block); |
| 398 | |
| 399 | // Move the control dependence if it is pinned to not-null block. |
| 400 | // Don't change it in other cases: NULL or dominating control. |
| 401 | if (best->in(0) == not_null_block->head()) { |
| 402 | // Set it to control edge of null check. |
| 403 | best->set_req(0, proj->in(0)->in(0)); |
| 404 | } |
| 405 | |
| 406 | // Check for flag-killing projections that also need to be hoisted |
| 407 | // Should be DU safe because no edge updates. |
| 408 | for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) { |
| 409 | Node* n = best->fast_out(j); |
| 410 | if( n->is_MachProj() ) { |
| 411 | get_block_for_node(n)->find_remove(n); |
| 412 | block->add_inst(n); |
| 413 | map_node_to_block(n, block); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | // proj==Op_True --> ne test; proj==Op_False --> eq test. |
| 418 | // One of two graph shapes got matched: |
| 419 | // (IfTrue (If (Bool NE (CmpP ptr NULL)))) |
| 420 | // (IfFalse (If (Bool EQ (CmpP ptr NULL)))) |
| 421 | // NULL checks are always branch-if-eq. If we see a IfTrue projection |
| 422 | // then we are replacing a 'ne' test with a 'eq' NULL check test. |
| 423 | // We need to flip the projections to keep the same semantics. |
| 424 | if( proj->Opcode() == Op_IfTrue ) { |
| 425 | // Swap order of projections in basic block to swap branch targets |
| 426 | Node *tmp1 = block->get_node(block->end_idx()+1); |
| 427 | Node *tmp2 = block->get_node(block->end_idx()+2); |
| 428 | block->map_node(tmp2, block->end_idx()+1); |
| 429 | block->map_node(tmp1, block->end_idx()+2); |
| 430 | Node *tmp = new Node(C->top()); // Use not NULL input |
| 431 | tmp1->replace_by(tmp); |
| 432 | tmp2->replace_by(tmp1); |
| 433 | tmp->replace_by(tmp2); |
| 434 | tmp->destruct(); |
| 435 | } |
| 436 | |
| 437 | // Remove the existing null check; use a new implicit null check instead. |
| 438 | // Since schedule-local needs precise def-use info, we need to correct |
| 439 | // it as well. |
| 440 | Node *old_tst = proj->in(0); |
| 441 | MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx); |
| 442 | block->map_node(nul_chk, block->end_idx()); |
| 443 | map_node_to_block(nul_chk, block); |
| 444 | // Redirect users of old_test to nul_chk |
| 445 | for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2) |
| 446 | old_tst->last_out(i2)->set_req(0, nul_chk); |
| 447 | // Clean-up any dead code |
| 448 | for (uint i3 = 0; i3 < old_tst->req(); i3++) { |
| 449 | Node* in = old_tst->in(i3); |
| 450 | old_tst->set_req(i3, NULL); |
| 451 | if (in->outcnt() == 0) { |
| 452 | // Remove dead input node |
| 453 | in->disconnect_inputs(NULL, C); |
| 454 | block->find_remove(in); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | latency_from_uses(nul_chk); |
| 459 | latency_from_uses(best); |
| 460 | |
| 461 | // insert anti-dependences to defs in this block |
| 462 | if (! best->needs_anti_dependence_check()) { |
| 463 | for (uint k = 1; k < block->number_of_nodes(); k++) { |
| 464 | Node *n = block->get_node(k); |
| 465 | if (n->needs_anti_dependence_check() && |
| 466 | n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) { |
| 467 | // Found anti-dependent load |
| 468 | insert_anti_dependences(block, n); |
| 469 | } |
| 470 | } |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | |
| 475 | //------------------------------select----------------------------------------- |
| 476 | // Select a nice fellow from the worklist to schedule next. If there is only |
| 477 | // one choice, then use it. Projections take top priority for correctness |
| 478 | // reasons - if I see a projection, then it is next. There are a number of |
| 479 | // other special cases, for instructions that consume condition codes, et al. |
| 480 | // These are chosen immediately. Some instructions are required to immediately |
| 481 | // precede the last instruction in the block, and these are taken last. Of the |
| 482 | // remaining cases (most), choose the instruction with the greatest latency |
| 483 | // (that is, the most number of pseudo-cycles required to the end of the |
| 484 | // routine). If there is a tie, choose the instruction with the most inputs. |
| 485 | Node* PhaseCFG::select( |
| 486 | Block* block, |
| 487 | Node_List &worklist, |
| 488 | GrowableArray<int> &ready_cnt, |
| 489 | VectorSet &next_call, |
| 490 | uint sched_slot, |
| 491 | intptr_t* recalc_pressure_nodes) { |
| 492 | |
| 493 | // If only a single entry on the stack, use it |
| 494 | uint cnt = worklist.size(); |
| 495 | if (cnt == 1) { |
| 496 | Node *n = worklist[0]; |
| 497 | worklist.map(0,worklist.pop()); |
| 498 | return n; |
| 499 | } |
| 500 | |
| 501 | uint choice = 0; // Bigger is most important |
| 502 | uint latency = 0; // Bigger is scheduled first |
| 503 | uint score = 0; // Bigger is better |
| 504 | int idx = -1; // Index in worklist |
| 505 | int cand_cnt = 0; // Candidate count |
| 506 | bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false; |
| 507 | |
| 508 | for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist |
| 509 | // Order in worklist is used to break ties. |
| 510 | // See caller for how this is used to delay scheduling |
| 511 | // of induction variable increments to after the other |
| 512 | // uses of the phi are scheduled. |
| 513 | Node *n = worklist[i]; // Get Node on worklist |
| 514 | |
| 515 | int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0; |
| 516 | if( n->is_Proj() || // Projections always win |
| 517 | n->Opcode()== Op_Con || // So does constant 'Top' |
| 518 | iop == Op_CreateEx || // Create-exception must start block |
| 519 | iop == Op_CheckCastPP |
| 520 | ) { |
| 521 | worklist.map(i,worklist.pop()); |
| 522 | return n; |
| 523 | } |
| 524 | |
| 525 | // Final call in a block must be adjacent to 'catch' |
| 526 | Node *e = block->end(); |
| 527 | if( e->is_Catch() && e->in(0)->in(0) == n ) |
| 528 | continue; |
| 529 | |
| 530 | // Memory op for an implicit null check has to be at the end of the block |
| 531 | if( e->is_MachNullCheck() && e->in(1) == n ) |
| 532 | continue; |
| 533 | |
| 534 | // Schedule IV increment last. |
| 535 | if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) { |
| 536 | // Cmp might be matched into CountedLoopEnd node. |
| 537 | Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e; |
| 538 | if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) { |
| 539 | continue; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | uint n_choice = 2; |
| 544 | |
| 545 | // See if this instruction is consumed by a branch. If so, then (as the |
| 546 | // branch is the last instruction in the basic block) force it to the |
| 547 | // end of the basic block |
| 548 | if ( must_clone[iop] ) { |
| 549 | // See if any use is a branch |
| 550 | bool found_machif = false; |
| 551 | |
| 552 | for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { |
| 553 | Node* use = n->fast_out(j); |
| 554 | |
| 555 | // The use is a conditional branch, make them adjacent |
| 556 | if (use->is_MachIf() && get_block_for_node(use) == block) { |
| 557 | found_machif = true; |
| 558 | break; |
| 559 | } |
| 560 | |
| 561 | // More than this instruction pending for successor to be ready, |
| 562 | // don't choose this if other opportunities are ready |
| 563 | if (ready_cnt.at(use->_idx) > 1) |
| 564 | n_choice = 1; |
| 565 | } |
| 566 | |
| 567 | // loop terminated, prefer not to use this instruction |
| 568 | if (found_machif) |
| 569 | continue; |
| 570 | } |
| 571 | |
| 572 | // See if this has a predecessor that is "must_clone", i.e. sets the |
| 573 | // condition code. If so, choose this first |
| 574 | for (uint j = 0; j < n->req() ; j++) { |
| 575 | Node *inn = n->in(j); |
| 576 | if (inn) { |
| 577 | if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) { |
| 578 | n_choice = 3; |
| 579 | break; |
| 580 | } |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // MachTemps should be scheduled last so they are near their uses |
| 585 | if (n->is_MachTemp()) { |
| 586 | n_choice = 1; |
| 587 | } |
| 588 | |
| 589 | uint n_latency = get_latency_for_node(n); |
| 590 | uint n_score = n->req(); // Many inputs get high score to break ties |
| 591 | |
| 592 | if (OptoRegScheduling && block_size_threshold_ok) { |
| 593 | if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) { |
| 594 | _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit()); |
| 595 | _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit()); |
| 596 | // simulate the notion that we just picked this node to schedule |
| 597 | n->add_flag(Node::Flag_is_scheduled); |
| 598 | // now caculate its effect upon the graph if we did |
| 599 | adjust_register_pressure(n, block, recalc_pressure_nodes, false); |
| 600 | // return its state for finalize in case somebody else wins |
| 601 | n->remove_flag(Node::Flag_is_scheduled); |
| 602 | // now save the two final pressure components of register pressure, limiting pressure calcs to short size |
| 603 | short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure(); |
| 604 | short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure(); |
| 605 | recalc_pressure_nodes[n->_idx] = int_pressure; |
| 606 | recalc_pressure_nodes[n->_idx] |= (float_pressure << 16); |
| 607 | } |
| 608 | |
| 609 | if (_scheduling_for_pressure) { |
| 610 | latency = n_latency; |
| 611 | if (n_choice != 3) { |
| 612 | // Now evaluate each register pressure component based on threshold in the score. |
| 613 | // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks |
| 614 | // on a single instruction, but we might see it shrink on both banks. |
| 615 | // For each use of register that has a register class that is over the high pressure limit, we build n_score up for |
| 616 | // live ranges that terminate on this instruction. |
| 617 | if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) { |
| 618 | short int_pressure = (short)recalc_pressure_nodes[n->_idx]; |
| 619 | n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score; |
| 620 | } |
| 621 | if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) { |
| 622 | short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16); |
| 623 | n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score; |
| 624 | } |
| 625 | } else { |
| 626 | // make sure we choose these candidates |
| 627 | score = 0; |
| 628 | } |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | // Keep best latency found |
| 633 | cand_cnt++; |
| 634 | if (choice < n_choice || |
| 635 | (choice == n_choice && |
| 636 | ((StressLCM && Compile::randomized_select(cand_cnt)) || |
| 637 | (!StressLCM && |
| 638 | (latency < n_latency || |
| 639 | (latency == n_latency && |
| 640 | (score < n_score))))))) { |
| 641 | choice = n_choice; |
| 642 | latency = n_latency; |
| 643 | score = n_score; |
| 644 | idx = i; // Also keep index in worklist |
| 645 | } |
| 646 | } // End of for all ready nodes in worklist |
| 647 | |
| 648 | guarantee(idx >= 0, "index should be set" ); |
| 649 | Node *n = worklist[(uint)idx]; // Get the winner |
| 650 | |
| 651 | worklist.map((uint)idx, worklist.pop()); // Compress worklist |
| 652 | return n; |
| 653 | } |
| 654 | |
| 655 | //-------------------------adjust_register_pressure---------------------------- |
| 656 | void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) { |
| 657 | PhaseLive* liveinfo = _regalloc->get_live(); |
| 658 | IndexSet* liveout = liveinfo->live(block); |
| 659 | // first adjust the register pressure for the sources |
| 660 | for (uint i = 1; i < n->req(); i++) { |
| 661 | bool lrg_ends = false; |
| 662 | Node *src_n = n->in(i); |
| 663 | if (src_n == NULL) continue; |
| 664 | if (!src_n->is_Mach()) continue; |
| 665 | uint src = _regalloc->_lrg_map.find(src_n); |
| 666 | if (src == 0) continue; |
| 667 | LRG& lrg_src = _regalloc->lrgs(src); |
| 668 | // detect if the live range ends or not |
| 669 | if (liveout->member(src) == false) { |
| 670 | lrg_ends = true; |
| 671 | for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) { |
| 672 | Node* m = src_n->fast_out(j); // Get user |
| 673 | if (m == n) continue; |
| 674 | if (!m->is_Mach()) continue; |
| 675 | MachNode *mach = m->as_Mach(); |
| 676 | bool src_matches = false; |
| 677 | int iop = mach->ideal_Opcode(); |
| 678 | |
| 679 | switch (iop) { |
| 680 | case Op_StoreB: |
| 681 | case Op_StoreC: |
| 682 | case Op_StoreCM: |
| 683 | case Op_StoreD: |
| 684 | case Op_StoreF: |
| 685 | case Op_StoreI: |
| 686 | case Op_StoreL: |
| 687 | case Op_StoreP: |
| 688 | case Op_StoreN: |
| 689 | case Op_StoreVector: |
| 690 | case Op_StoreNKlass: |
| 691 | for (uint k = 1; k < m->req(); k++) { |
| 692 | Node *in = m->in(k); |
| 693 | if (in == src_n) { |
| 694 | src_matches = true; |
| 695 | break; |
| 696 | } |
| 697 | } |
| 698 | break; |
| 699 | |
| 700 | default: |
| 701 | src_matches = true; |
| 702 | break; |
| 703 | } |
| 704 | |
| 705 | // If we have a store as our use, ignore the non source operands |
| 706 | if (src_matches == false) continue; |
| 707 | |
| 708 | // Mark every unscheduled use which is not n with a recalculation |
| 709 | if ((get_block_for_node(m) == block) && (!m->is_scheduled())) { |
| 710 | if (finalize_mode && !m->is_Phi()) { |
| 711 | recalc_pressure_nodes[m->_idx] = 0x7fff7fff; |
| 712 | } |
| 713 | lrg_ends = false; |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | // if none, this live range ends and we can adjust register pressure |
| 718 | if (lrg_ends) { |
| 719 | if (finalize_mode) { |
| 720 | _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure); |
| 721 | } else { |
| 722 | _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure); |
| 723 | } |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | // now add the register pressure from the dest and evaluate which heuristic we should use: |
| 728 | // 1.) The default, latency scheduling |
| 729 | // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks |
| 730 | uint dst = _regalloc->_lrg_map.find(n); |
| 731 | if (dst != 0) { |
| 732 | LRG& lrg_dst = _regalloc->lrgs(dst); |
| 733 | if (finalize_mode) { |
| 734 | _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure); |
| 735 | // check to see if we fall over the register pressure cliff here |
| 736 | if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) { |
| 737 | _scheduling_for_pressure = true; |
| 738 | } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) { |
| 739 | _scheduling_for_pressure = true; |
| 740 | } else { |
| 741 | // restore latency scheduling mode |
| 742 | _scheduling_for_pressure = false; |
| 743 | } |
| 744 | } else { |
| 745 | _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure); |
| 746 | } |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | //------------------------------set_next_call---------------------------------- |
| 751 | void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) { |
| 752 | if( next_call.test_set(n->_idx) ) return; |
| 753 | for( uint i=0; i<n->len(); i++ ) { |
| 754 | Node *m = n->in(i); |
| 755 | if( !m ) continue; // must see all nodes in block that precede call |
| 756 | if (get_block_for_node(m) == block) { |
| 757 | set_next_call(block, m, next_call); |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | //------------------------------needed_for_next_call--------------------------- |
| 763 | // Set the flag 'next_call' for each Node that is needed for the next call to |
| 764 | // be scheduled. This flag lets me bias scheduling so Nodes needed for the |
| 765 | // next subroutine call get priority - basically it moves things NOT needed |
| 766 | // for the next call till after the call. This prevents me from trying to |
| 767 | // carry lots of stuff live across a call. |
| 768 | void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) { |
| 769 | // Find the next control-defining Node in this block |
| 770 | Node* call = NULL; |
| 771 | for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) { |
| 772 | Node* m = this_call->fast_out(i); |
| 773 | if (get_block_for_node(m) == block && // Local-block user |
| 774 | m != this_call && // Not self-start node |
| 775 | m->is_MachCall()) { |
| 776 | call = m; |
| 777 | break; |
| 778 | } |
| 779 | } |
| 780 | if (call == NULL) return; // No next call (e.g., block end is near) |
| 781 | // Set next-call for all inputs to this call |
| 782 | set_next_call(block, call, next_call); |
| 783 | } |
| 784 | |
| 785 | //------------------------------add_call_kills------------------------------------- |
| 786 | // helper function that adds caller save registers to MachProjNode |
| 787 | static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) { |
| 788 | // Fill in the kill mask for the call |
| 789 | for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) { |
| 790 | if( !regs.Member(r) ) { // Not already defined by the call |
| 791 | // Save-on-call register? |
| 792 | if ((save_policy[r] == 'C') || |
| 793 | (save_policy[r] == 'A') || |
| 794 | ((save_policy[r] == 'E') && exclude_soe)) { |
| 795 | proj->_rout.Insert(r); |
| 796 | } |
| 797 | } |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | |
| 802 | //------------------------------sched_call------------------------------------- |
| 803 | uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) { |
| 804 | RegMask regs; |
| 805 | |
| 806 | // Schedule all the users of the call right now. All the users are |
| 807 | // projection Nodes, so they must be scheduled next to the call. |
| 808 | // Collect all the defined registers. |
| 809 | for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) { |
| 810 | Node* n = mcall->fast_out(i); |
| 811 | assert( n->is_MachProj(), "" ); |
| 812 | int n_cnt = ready_cnt.at(n->_idx)-1; |
| 813 | ready_cnt.at_put(n->_idx, n_cnt); |
| 814 | assert( n_cnt == 0, "" ); |
| 815 | // Schedule next to call |
| 816 | block->map_node(n, node_cnt++); |
| 817 | // Collect defined registers |
| 818 | regs.OR(n->out_RegMask()); |
| 819 | // Check for scheduling the next control-definer |
| 820 | if( n->bottom_type() == Type::CONTROL ) |
| 821 | // Warm up next pile of heuristic bits |
| 822 | needed_for_next_call(block, n, next_call); |
| 823 | |
| 824 | // Children of projections are now all ready |
| 825 | for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { |
| 826 | Node* m = n->fast_out(j); // Get user |
| 827 | if(get_block_for_node(m) != block) { |
| 828 | continue; |
| 829 | } |
| 830 | if( m->is_Phi() ) continue; |
| 831 | int m_cnt = ready_cnt.at(m->_idx) - 1; |
| 832 | ready_cnt.at_put(m->_idx, m_cnt); |
| 833 | if( m_cnt == 0 ) |
| 834 | worklist.push(m); |
| 835 | } |
| 836 | |
| 837 | } |
| 838 | |
| 839 | // Act as if the call defines the Frame Pointer. |
| 840 | // Certainly the FP is alive and well after the call. |
| 841 | regs.Insert(_matcher.c_frame_pointer()); |
| 842 | |
| 843 | // Set all registers killed and not already defined by the call. |
| 844 | uint r_cnt = mcall->tf()->range()->cnt(); |
| 845 | int op = mcall->ideal_Opcode(); |
| 846 | MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj ); |
| 847 | map_node_to_block(proj, block); |
| 848 | block->insert_node(proj, node_cnt++); |
| 849 | |
| 850 | // Select the right register save policy. |
| 851 | const char *save_policy = NULL; |
| 852 | switch (op) { |
| 853 | case Op_CallRuntime: |
| 854 | case Op_CallLeaf: |
| 855 | case Op_CallLeafNoFP: |
| 856 | // Calling C code so use C calling convention |
| 857 | save_policy = _matcher._c_reg_save_policy; |
| 858 | break; |
| 859 | |
| 860 | case Op_CallStaticJava: |
| 861 | case Op_CallDynamicJava: |
| 862 | // Calling Java code so use Java calling convention |
| 863 | save_policy = _matcher._register_save_policy; |
| 864 | break; |
| 865 | |
| 866 | default: |
| 867 | ShouldNotReachHere(); |
| 868 | } |
| 869 | |
| 870 | // When using CallRuntime mark SOE registers as killed by the call |
| 871 | // so values that could show up in the RegisterMap aren't live in a |
| 872 | // callee saved register since the register wouldn't know where to |
| 873 | // find them. CallLeaf and CallLeafNoFP are ok because they can't |
| 874 | // have debug info on them. Strictly speaking this only needs to be |
| 875 | // done for oops since idealreg2debugmask takes care of debug info |
| 876 | // references but there no way to handle oops differently than other |
| 877 | // pointers as far as the kill mask goes. |
| 878 | bool exclude_soe = op == Op_CallRuntime; |
| 879 | |
| 880 | // If the call is a MethodHandle invoke, we need to exclude the |
| 881 | // register which is used to save the SP value over MH invokes from |
| 882 | // the mask. Otherwise this register could be used for |
| 883 | // deoptimization information. |
| 884 | if (op == Op_CallStaticJava) { |
| 885 | MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall; |
| 886 | if (mcallstaticjava->_method_handle_invoke) |
| 887 | proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask()); |
| 888 | } |
| 889 | |
| 890 | add_call_kills(proj, regs, save_policy, exclude_soe); |
| 891 | |
| 892 | return node_cnt; |
| 893 | } |
| 894 | |
| 895 | |
| 896 | //------------------------------schedule_local--------------------------------- |
| 897 | // Topological sort within a block. Someday become a real scheduler. |
| 898 | bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) { |
| 899 | // Already "sorted" are the block start Node (as the first entry), and |
| 900 | // the block-ending Node and any trailing control projections. We leave |
| 901 | // these alone. PhiNodes and ParmNodes are made to follow the block start |
| 902 | // Node. Everything else gets topo-sorted. |
| 903 | |
| 904 | #ifndef PRODUCT |
| 905 | if (trace_opto_pipelining()) { |
| 906 | tty->print_cr("# --- schedule_local B%d, before: ---" , block->_pre_order); |
| 907 | for (uint i = 0;i < block->number_of_nodes(); i++) { |
| 908 | tty->print("# " ); |
| 909 | block->get_node(i)->fast_dump(); |
| 910 | } |
| 911 | tty->print_cr("#" ); |
| 912 | } |
| 913 | #endif |
| 914 | |
| 915 | // RootNode is already sorted |
| 916 | if (block->number_of_nodes() == 1) { |
| 917 | return true; |
| 918 | } |
| 919 | |
| 920 | bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false; |
| 921 | |
| 922 | // We track the uses of local definitions as input dependences so that |
| 923 | // we know when a given instruction is avialable to be scheduled. |
| 924 | uint i; |
| 925 | if (OptoRegScheduling && block_size_threshold_ok) { |
| 926 | for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc |
| 927 | Node *n = block->get_node(i); |
| 928 | n->remove_flag(Node::Flag_is_scheduled); |
| 929 | if (!n->is_Phi()) { |
| 930 | recalc_pressure_nodes[n->_idx] = 0x7fff7fff; |
| 931 | } |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | // Move PhiNodes and ParmNodes from 1 to cnt up to the start |
| 936 | uint node_cnt = block->end_idx(); |
| 937 | uint phi_cnt = 1; |
| 938 | for( i = 1; i<node_cnt; i++ ) { // Scan for Phi |
| 939 | Node *n = block->get_node(i); |
| 940 | if( n->is_Phi() || // Found a PhiNode or ParmNode |
| 941 | (n->is_Proj() && n->in(0) == block->head()) ) { |
| 942 | // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt |
| 943 | block->map_node(block->get_node(phi_cnt), i); |
| 944 | block->map_node(n, phi_cnt++); // swap Phi/Parm up front |
| 945 | if (OptoRegScheduling && block_size_threshold_ok) { |
| 946 | // mark n as scheduled |
| 947 | n->add_flag(Node::Flag_is_scheduled); |
| 948 | } |
| 949 | } else { // All others |
| 950 | // Count block-local inputs to 'n' |
| 951 | uint cnt = n->len(); // Input count |
| 952 | uint local = 0; |
| 953 | for( uint j=0; j<cnt; j++ ) { |
| 954 | Node *m = n->in(j); |
| 955 | if( m && get_block_for_node(m) == block && !m->is_top() ) |
| 956 | local++; // One more block-local input |
| 957 | } |
| 958 | ready_cnt.at_put(n->_idx, local); // Count em up |
| 959 | |
| 960 | #ifdef ASSERT |
| 961 | if( UseConcMarkSweepGC || UseG1GC ) { |
| 962 | if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) { |
| 963 | // Check the precedence edges |
| 964 | for (uint prec = n->req(); prec < n->len(); prec++) { |
| 965 | Node* oop_store = n->in(prec); |
| 966 | if (oop_store != NULL) { |
| 967 | assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark" ); |
| 968 | } |
| 969 | } |
| 970 | } |
| 971 | } |
| 972 | #endif |
| 973 | |
| 974 | // A few node types require changing a required edge to a precedence edge |
| 975 | // before allocation. |
| 976 | if( n->is_Mach() && n->req() > TypeFunc::Parms && |
| 977 | (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire || |
| 978 | n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) { |
| 979 | // MemBarAcquire could be created without Precedent edge. |
| 980 | // del_req() replaces the specified edge with the last input edge |
| 981 | // and then removes the last edge. If the specified edge > number of |
| 982 | // edges the last edge will be moved outside of the input edges array |
| 983 | // and the edge will be lost. This is why this code should be |
| 984 | // executed only when Precedent (== TypeFunc::Parms) edge is present. |
| 985 | Node *x = n->in(TypeFunc::Parms); |
| 986 | if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) { |
| 987 | // Old edge to node within same block will get removed, but no precedence |
| 988 | // edge will get added because it already exists. Update ready count. |
| 989 | int cnt = ready_cnt.at(n->_idx); |
| 990 | assert(cnt > 1, "MemBar node %d must not get ready here" , n->_idx); |
| 991 | ready_cnt.at_put(n->_idx, cnt-1); |
| 992 | } |
| 993 | n->del_req(TypeFunc::Parms); |
| 994 | n->add_prec(x); |
| 995 | } |
| 996 | } |
| 997 | } |
| 998 | for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count |
| 999 | ready_cnt.at_put(block->get_node(i2)->_idx, 0); |
| 1000 | |
| 1001 | // All the prescheduled guys do not hold back internal nodes |
| 1002 | uint i3; |
| 1003 | for (i3 = 0; i3 < phi_cnt; i3++) { // For all pre-scheduled |
| 1004 | Node *n = block->get_node(i3); // Get pre-scheduled |
| 1005 | for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { |
| 1006 | Node* m = n->fast_out(j); |
| 1007 | if (get_block_for_node(m) == block) { // Local-block user |
| 1008 | int m_cnt = ready_cnt.at(m->_idx)-1; |
| 1009 | if (OptoRegScheduling && block_size_threshold_ok) { |
| 1010 | // mark m as scheduled |
| 1011 | if (m_cnt < 0) { |
| 1012 | m->add_flag(Node::Flag_is_scheduled); |
| 1013 | } |
| 1014 | } |
| 1015 | ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count |
| 1016 | } |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | Node_List delay; |
| 1021 | // Make a worklist |
| 1022 | Node_List worklist; |
| 1023 | for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist |
| 1024 | Node *m = block->get_node(i4); |
| 1025 | if( !ready_cnt.at(m->_idx) ) { // Zero ready count? |
| 1026 | if (m->is_iteratively_computed()) { |
| 1027 | // Push induction variable increments last to allow other uses |
| 1028 | // of the phi to be scheduled first. The select() method breaks |
| 1029 | // ties in scheduling by worklist order. |
| 1030 | delay.push(m); |
| 1031 | } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) { |
| 1032 | // Force the CreateEx to the top of the list so it's processed |
| 1033 | // first and ends up at the start of the block. |
| 1034 | worklist.insert(0, m); |
| 1035 | } else { |
| 1036 | worklist.push(m); // Then on to worklist! |
| 1037 | } |
| 1038 | } |
| 1039 | } |
| 1040 | while (delay.size()) { |
| 1041 | Node* d = delay.pop(); |
| 1042 | worklist.push(d); |
| 1043 | } |
| 1044 | |
| 1045 | if (OptoRegScheduling && block_size_threshold_ok) { |
| 1046 | // To stage register pressure calculations we need to examine the live set variables |
| 1047 | // breaking them up by register class to compartmentalize the calculations. |
| 1048 | uint float_pressure = Matcher::float_pressure(FLOATPRESSURE); |
| 1049 | _regalloc->_sched_int_pressure.init(INTPRESSURE); |
| 1050 | _regalloc->_sched_float_pressure.init(float_pressure); |
| 1051 | _regalloc->_scratch_int_pressure.init(INTPRESSURE); |
| 1052 | _regalloc->_scratch_float_pressure.init(float_pressure); |
| 1053 | |
| 1054 | _regalloc->compute_entry_block_pressure(block); |
| 1055 | } |
| 1056 | |
| 1057 | // Warm up the 'next_call' heuristic bits |
| 1058 | needed_for_next_call(block, block->head(), next_call); |
| 1059 | |
| 1060 | #ifndef PRODUCT |
| 1061 | if (trace_opto_pipelining()) { |
| 1062 | for (uint j=0; j< block->number_of_nodes(); j++) { |
| 1063 | Node *n = block->get_node(j); |
| 1064 | int idx = n->_idx; |
| 1065 | tty->print("# ready cnt:%3d " , ready_cnt.at(idx)); |
| 1066 | tty->print("latency:%3d " , get_latency_for_node(n)); |
| 1067 | tty->print("%4d: %s\n" , idx, n->Name()); |
| 1068 | } |
| 1069 | } |
| 1070 | #endif |
| 1071 | |
| 1072 | uint max_idx = (uint)ready_cnt.length(); |
| 1073 | // Pull from worklist and schedule |
| 1074 | while( worklist.size() ) { // Worklist is not ready |
| 1075 | |
| 1076 | #ifndef PRODUCT |
| 1077 | if (trace_opto_pipelining()) { |
| 1078 | tty->print("# ready list:" ); |
| 1079 | for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist |
| 1080 | Node *n = worklist[i]; // Get Node on worklist |
| 1081 | tty->print(" %d" , n->_idx); |
| 1082 | } |
| 1083 | tty->cr(); |
| 1084 | } |
| 1085 | #endif |
| 1086 | |
| 1087 | // Select and pop a ready guy from worklist |
| 1088 | Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes); |
| 1089 | block->map_node(n, phi_cnt++); // Schedule him next |
| 1090 | |
| 1091 | if (OptoRegScheduling && block_size_threshold_ok) { |
| 1092 | n->add_flag(Node::Flag_is_scheduled); |
| 1093 | |
| 1094 | // Now adjust the resister pressure with the node we selected |
| 1095 | if (!n->is_Phi()) { |
| 1096 | adjust_register_pressure(n, block, recalc_pressure_nodes, true); |
| 1097 | } |
| 1098 | } |
| 1099 | |
| 1100 | #ifndef PRODUCT |
| 1101 | if (trace_opto_pipelining()) { |
| 1102 | tty->print("# select %d: %s" , n->_idx, n->Name()); |
| 1103 | tty->print(", latency:%d" , get_latency_for_node(n)); |
| 1104 | n->dump(); |
| 1105 | if (Verbose) { |
| 1106 | tty->print("# ready list:" ); |
| 1107 | for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist |
| 1108 | Node *n = worklist[i]; // Get Node on worklist |
| 1109 | tty->print(" %d" , n->_idx); |
| 1110 | } |
| 1111 | tty->cr(); |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | #endif |
| 1116 | if( n->is_MachCall() ) { |
| 1117 | MachCallNode *mcall = n->as_MachCall(); |
| 1118 | phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call); |
| 1119 | continue; |
| 1120 | } |
| 1121 | |
| 1122 | if (n->is_Mach() && n->as_Mach()->has_call()) { |
| 1123 | RegMask regs; |
| 1124 | regs.Insert(_matcher.c_frame_pointer()); |
| 1125 | regs.OR(n->out_RegMask()); |
| 1126 | |
| 1127 | MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj ); |
| 1128 | map_node_to_block(proj, block); |
| 1129 | block->insert_node(proj, phi_cnt++); |
| 1130 | |
| 1131 | add_call_kills(proj, regs, _matcher._c_reg_save_policy, false); |
| 1132 | } |
| 1133 | |
| 1134 | // Children are now all ready |
| 1135 | for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) { |
| 1136 | Node* m = n->fast_out(i5); // Get user |
| 1137 | if (get_block_for_node(m) != block) { |
| 1138 | continue; |
| 1139 | } |
| 1140 | if( m->is_Phi() ) continue; |
| 1141 | if (m->_idx >= max_idx) { // new node, skip it |
| 1142 | assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types" ); |
| 1143 | continue; |
| 1144 | } |
| 1145 | int m_cnt = ready_cnt.at(m->_idx) - 1; |
| 1146 | ready_cnt.at_put(m->_idx, m_cnt); |
| 1147 | if( m_cnt == 0 ) |
| 1148 | worklist.push(m); |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | if( phi_cnt != block->end_idx() ) { |
| 1153 | // did not schedule all. Retry, Bailout, or Die |
| 1154 | if (C->subsume_loads() == true && !C->failing()) { |
| 1155 | // Retry with subsume_loads == false |
| 1156 | // If this is the first failure, the sentinel string will "stick" |
| 1157 | // to the Compile object, and the C2Compiler will see it and retry. |
| 1158 | C->record_failure(C2Compiler::retry_no_subsuming_loads()); |
| 1159 | } else { |
| 1160 | assert(false, "graph should be schedulable" ); |
| 1161 | } |
| 1162 | // assert( phi_cnt == end_idx(), "did not schedule all" ); |
| 1163 | return false; |
| 1164 | } |
| 1165 | |
| 1166 | if (OptoRegScheduling && block_size_threshold_ok) { |
| 1167 | _regalloc->compute_exit_block_pressure(block); |
| 1168 | block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure(); |
| 1169 | block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure(); |
| 1170 | } |
| 1171 | |
| 1172 | #ifndef PRODUCT |
| 1173 | if (trace_opto_pipelining()) { |
| 1174 | tty->print_cr("#" ); |
| 1175 | tty->print_cr("# after schedule_local" ); |
| 1176 | for (uint i = 0;i < block->number_of_nodes();i++) { |
| 1177 | tty->print("# " ); |
| 1178 | block->get_node(i)->fast_dump(); |
| 1179 | } |
| 1180 | tty->print_cr("# " ); |
| 1181 | |
| 1182 | if (OptoRegScheduling && block_size_threshold_ok) { |
| 1183 | tty->print_cr("# pressure info : %d" , block->_pre_order); |
| 1184 | _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info" ); |
| 1185 | _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info" ); |
| 1186 | } |
| 1187 | tty->cr(); |
| 1188 | } |
| 1189 | #endif |
| 1190 | |
| 1191 | return true; |
| 1192 | } |
| 1193 | |
| 1194 | //--------------------------catch_cleanup_fix_all_inputs----------------------- |
| 1195 | static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) { |
| 1196 | for (uint l = 0; l < use->len(); l++) { |
| 1197 | if (use->in(l) == old_def) { |
| 1198 | if (l < use->req()) { |
| 1199 | use->set_req(l, new_def); |
| 1200 | } else { |
| 1201 | use->rm_prec(l); |
| 1202 | use->add_prec(new_def); |
| 1203 | l--; |
| 1204 | } |
| 1205 | } |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | //------------------------------catch_cleanup_find_cloned_def------------------ |
| 1210 | Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) { |
| 1211 | assert( use_blk != def_blk, "Inter-block cleanup only" ); |
| 1212 | |
| 1213 | // The use is some block below the Catch. Find and return the clone of the def |
| 1214 | // that dominates the use. If there is no clone in a dominating block, then |
| 1215 | // create a phi for the def in a dominating block. |
| 1216 | |
| 1217 | // Find which successor block dominates this use. The successor |
| 1218 | // blocks must all be single-entry (from the Catch only; I will have |
| 1219 | // split blocks to make this so), hence they all dominate. |
| 1220 | while( use_blk->_dom_depth > def_blk->_dom_depth+1 ) |
| 1221 | use_blk = use_blk->_idom; |
| 1222 | |
| 1223 | // Find the successor |
| 1224 | Node *fixup = NULL; |
| 1225 | |
| 1226 | uint j; |
| 1227 | for( j = 0; j < def_blk->_num_succs; j++ ) |
| 1228 | if( use_blk == def_blk->_succs[j] ) |
| 1229 | break; |
| 1230 | |
| 1231 | if( j == def_blk->_num_succs ) { |
| 1232 | // Block at same level in dom-tree is not a successor. It needs a |
| 1233 | // PhiNode, the PhiNode uses from the def and IT's uses need fixup. |
| 1234 | Node_Array inputs = new Node_List(Thread::current()->resource_area()); |
| 1235 | for(uint k = 1; k < use_blk->num_preds(); k++) { |
| 1236 | Block* block = get_block_for_node(use_blk->pred(k)); |
| 1237 | inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx)); |
| 1238 | } |
| 1239 | |
| 1240 | // Check to see if the use_blk already has an identical phi inserted. |
| 1241 | // If it exists, it will be at the first position since all uses of a |
| 1242 | // def are processed together. |
| 1243 | Node *phi = use_blk->get_node(1); |
| 1244 | if( phi->is_Phi() ) { |
| 1245 | fixup = phi; |
| 1246 | for (uint k = 1; k < use_blk->num_preds(); k++) { |
| 1247 | if (phi->in(k) != inputs[k]) { |
| 1248 | // Not a match |
| 1249 | fixup = NULL; |
| 1250 | break; |
| 1251 | } |
| 1252 | } |
| 1253 | } |
| 1254 | |
| 1255 | // If an existing PhiNode was not found, make a new one. |
| 1256 | if (fixup == NULL) { |
| 1257 | Node *new_phi = PhiNode::make(use_blk->head(), def); |
| 1258 | use_blk->insert_node(new_phi, 1); |
| 1259 | map_node_to_block(new_phi, use_blk); |
| 1260 | for (uint k = 1; k < use_blk->num_preds(); k++) { |
| 1261 | new_phi->set_req(k, inputs[k]); |
| 1262 | } |
| 1263 | fixup = new_phi; |
| 1264 | } |
| 1265 | |
| 1266 | } else { |
| 1267 | // Found the use just below the Catch. Make it use the clone. |
| 1268 | fixup = use_blk->get_node(n_clone_idx); |
| 1269 | } |
| 1270 | |
| 1271 | return fixup; |
| 1272 | } |
| 1273 | |
| 1274 | //--------------------------catch_cleanup_intra_block-------------------------- |
| 1275 | // Fix all input edges in use that reference "def". The use is in the same |
| 1276 | // block as the def and both have been cloned in each successor block. |
| 1277 | static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) { |
| 1278 | |
| 1279 | // Both the use and def have been cloned. For each successor block, |
| 1280 | // get the clone of the use, and make its input the clone of the def |
| 1281 | // found in that block. |
| 1282 | |
| 1283 | uint use_idx = blk->find_node(use); |
| 1284 | uint offset_idx = use_idx - beg; |
| 1285 | for( uint k = 0; k < blk->_num_succs; k++ ) { |
| 1286 | // Get clone in each successor block |
| 1287 | Block *sb = blk->_succs[k]; |
| 1288 | Node *clone = sb->get_node(offset_idx+1); |
| 1289 | assert( clone->Opcode() == use->Opcode(), "" ); |
| 1290 | |
| 1291 | // Make use-clone reference the def-clone |
| 1292 | catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx)); |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | //------------------------------catch_cleanup_inter_block--------------------- |
| 1297 | // Fix all input edges in use that reference "def". The use is in a different |
| 1298 | // block than the def. |
| 1299 | void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) { |
| 1300 | if( !use_blk ) return; // Can happen if the use is a precedence edge |
| 1301 | |
| 1302 | Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx); |
| 1303 | catch_cleanup_fix_all_inputs(use, def, new_def); |
| 1304 | } |
| 1305 | |
| 1306 | //------------------------------call_catch_cleanup----------------------------- |
| 1307 | // If we inserted any instructions between a Call and his CatchNode, |
| 1308 | // clone the instructions on all paths below the Catch. |
| 1309 | void PhaseCFG::call_catch_cleanup(Block* block) { |
| 1310 | |
| 1311 | // End of region to clone |
| 1312 | uint end = block->end_idx(); |
| 1313 | if( !block->get_node(end)->is_Catch() ) return; |
| 1314 | // Start of region to clone |
| 1315 | uint beg = end; |
| 1316 | while(!block->get_node(beg-1)->is_MachProj() || |
| 1317 | !block->get_node(beg-1)->in(0)->is_MachCall() ) { |
| 1318 | beg--; |
| 1319 | assert(beg > 0,"Catch cleanup walking beyond block boundary" ); |
| 1320 | } |
| 1321 | // Range of inserted instructions is [beg, end) |
| 1322 | if( beg == end ) return; |
| 1323 | |
| 1324 | // Clone along all Catch output paths. Clone area between the 'beg' and |
| 1325 | // 'end' indices. |
| 1326 | for( uint i = 0; i < block->_num_succs; i++ ) { |
| 1327 | Block *sb = block->_succs[i]; |
| 1328 | // Clone the entire area; ignoring the edge fixup for now. |
| 1329 | for( uint j = end; j > beg; j-- ) { |
| 1330 | Node *clone = block->get_node(j-1)->clone(); |
| 1331 | sb->insert_node(clone, 1); |
| 1332 | map_node_to_block(clone, sb); |
| 1333 | if (clone->needs_anti_dependence_check()) { |
| 1334 | insert_anti_dependences(sb, clone); |
| 1335 | } |
| 1336 | } |
| 1337 | } |
| 1338 | |
| 1339 | |
| 1340 | // Fixup edges. Check the def-use info per cloned Node |
| 1341 | for(uint i2 = beg; i2 < end; i2++ ) { |
| 1342 | uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block |
| 1343 | Node *n = block->get_node(i2); // Node that got cloned |
| 1344 | // Need DU safe iterator because of edge manipulation in calls. |
| 1345 | Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area()); |
| 1346 | for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) { |
| 1347 | out->push(n->fast_out(j1)); |
| 1348 | } |
| 1349 | uint max = out->size(); |
| 1350 | for (uint j = 0; j < max; j++) {// For all users |
| 1351 | Node *use = out->pop(); |
| 1352 | Block *buse = get_block_for_node(use); |
| 1353 | if( use->is_Phi() ) { |
| 1354 | for( uint k = 1; k < use->req(); k++ ) |
| 1355 | if( use->in(k) == n ) { |
| 1356 | Block* b = get_block_for_node(buse->pred(k)); |
| 1357 | Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx); |
| 1358 | use->set_req(k, fixup); |
| 1359 | } |
| 1360 | } else { |
| 1361 | if (block == buse) { |
| 1362 | catch_cleanup_intra_block(use, n, block, beg, n_clone_idx); |
| 1363 | } else { |
| 1364 | catch_cleanup_inter_block(use, buse, n, block, n_clone_idx); |
| 1365 | } |
| 1366 | } |
| 1367 | } // End for all users |
| 1368 | |
| 1369 | } // End of for all Nodes in cloned area |
| 1370 | |
| 1371 | // Remove the now-dead cloned ops |
| 1372 | for(uint i3 = beg; i3 < end; i3++ ) { |
| 1373 | block->get_node(beg)->disconnect_inputs(NULL, C); |
| 1374 | block->remove_node(beg); |
| 1375 | } |
| 1376 | |
| 1377 | // If the successor blocks have a CreateEx node, move it back to the top |
| 1378 | for(uint i4 = 0; i4 < block->_num_succs; i4++ ) { |
| 1379 | Block *sb = block->_succs[i4]; |
| 1380 | uint new_cnt = end - beg; |
| 1381 | // Remove any newly created, but dead, nodes. |
| 1382 | for( uint j = new_cnt; j > 0; j-- ) { |
| 1383 | Node *n = sb->get_node(j); |
| 1384 | if (n->outcnt() == 0 && |
| 1385 | (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){ |
| 1386 | n->disconnect_inputs(NULL, C); |
| 1387 | sb->remove_node(j); |
| 1388 | new_cnt--; |
| 1389 | } |
| 1390 | } |
| 1391 | // If any newly created nodes remain, move the CreateEx node to the top |
| 1392 | if (new_cnt > 0) { |
| 1393 | Node *cex = sb->get_node(1+new_cnt); |
| 1394 | if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) { |
| 1395 | sb->remove_node(1+new_cnt); |
| 1396 | sb->insert_node(cex, 1); |
| 1397 | } |
| 1398 | } |
| 1399 | } |
| 1400 | } |
| 1401 | |