| 1 | /* |
| 2 | * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "asm/macroAssembler.hpp" |
| 27 | #include "ci/ciUtilities.inline.hpp" |
| 28 | #include "classfile/systemDictionary.hpp" |
| 29 | #include "classfile/vmSymbols.hpp" |
| 30 | #include "compiler/compileBroker.hpp" |
| 31 | #include "compiler/compileLog.hpp" |
| 32 | #include "gc/shared/barrierSet.hpp" |
| 33 | #include "jfr/support/jfrIntrinsics.hpp" |
| 34 | #include "memory/resourceArea.hpp" |
| 35 | #include "oops/objArrayKlass.hpp" |
| 36 | #include "opto/addnode.hpp" |
| 37 | #include "opto/arraycopynode.hpp" |
| 38 | #include "opto/c2compiler.hpp" |
| 39 | #include "opto/callGenerator.hpp" |
| 40 | #include "opto/castnode.hpp" |
| 41 | #include "opto/cfgnode.hpp" |
| 42 | #include "opto/convertnode.hpp" |
| 43 | #include "opto/countbitsnode.hpp" |
| 44 | #include "opto/intrinsicnode.hpp" |
| 45 | #include "opto/idealKit.hpp" |
| 46 | #include "opto/mathexactnode.hpp" |
| 47 | #include "opto/movenode.hpp" |
| 48 | #include "opto/mulnode.hpp" |
| 49 | #include "opto/narrowptrnode.hpp" |
| 50 | #include "opto/opaquenode.hpp" |
| 51 | #include "opto/parse.hpp" |
| 52 | #include "opto/runtime.hpp" |
| 53 | #include "opto/rootnode.hpp" |
| 54 | #include "opto/subnode.hpp" |
| 55 | #include "prims/nativeLookup.hpp" |
| 56 | #include "prims/unsafe.hpp" |
| 57 | #include "runtime/objectMonitor.hpp" |
| 58 | #include "runtime/sharedRuntime.hpp" |
| 59 | #include "utilities/macros.hpp" |
| 60 | |
| 61 | |
| 62 | class LibraryIntrinsic : public InlineCallGenerator { |
| 63 | // Extend the set of intrinsics known to the runtime: |
| 64 | public: |
| 65 | private: |
| 66 | bool _is_virtual; |
| 67 | bool _does_virtual_dispatch; |
| 68 | int8_t _predicates_count; // Intrinsic is predicated by several conditions |
| 69 | int8_t _last_predicate; // Last generated predicate |
| 70 | vmIntrinsics::ID _intrinsic_id; |
| 71 | |
| 72 | public: |
| 73 | LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id) |
| 74 | : InlineCallGenerator(m), |
| 75 | _is_virtual(is_virtual), |
| 76 | _does_virtual_dispatch(does_virtual_dispatch), |
| 77 | _predicates_count((int8_t)predicates_count), |
| 78 | _last_predicate((int8_t)-1), |
| 79 | _intrinsic_id(id) |
| 80 | { |
| 81 | } |
| 82 | virtual bool is_intrinsic() const { return true; } |
| 83 | virtual bool is_virtual() const { return _is_virtual; } |
| 84 | virtual bool is_predicated() const { return _predicates_count > 0; } |
| 85 | virtual int predicates_count() const { return _predicates_count; } |
| 86 | virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; } |
| 87 | virtual JVMState* generate(JVMState* jvms); |
| 88 | virtual Node* generate_predicate(JVMState* jvms, int predicate); |
| 89 | vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; } |
| 90 | }; |
| 91 | |
| 92 | |
| 93 | // Local helper class for LibraryIntrinsic: |
| 94 | class LibraryCallKit : public GraphKit { |
| 95 | private: |
| 96 | LibraryIntrinsic* _intrinsic; // the library intrinsic being called |
| 97 | Node* _result; // the result node, if any |
| 98 | int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted |
| 99 | |
| 100 | const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type); |
| 101 | |
| 102 | public: |
| 103 | LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic) |
| 104 | : GraphKit(jvms), |
| 105 | _intrinsic(intrinsic), |
| 106 | _result(NULL) |
| 107 | { |
| 108 | // Check if this is a root compile. In that case we don't have a caller. |
| 109 | if (!jvms->has_method()) { |
| 110 | _reexecute_sp = sp(); |
| 111 | } else { |
| 112 | // Find out how many arguments the interpreter needs when deoptimizing |
| 113 | // and save the stack pointer value so it can used by uncommon_trap. |
| 114 | // We find the argument count by looking at the declared signature. |
| 115 | bool ignored_will_link; |
| 116 | ciSignature* declared_signature = NULL; |
| 117 | ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); |
| 118 | const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci())); |
| 119 | _reexecute_sp = sp() + nargs; // "push" arguments back on stack |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; } |
| 124 | |
| 125 | ciMethod* caller() const { return jvms()->method(); } |
| 126 | int bci() const { return jvms()->bci(); } |
| 127 | LibraryIntrinsic* intrinsic() const { return _intrinsic; } |
| 128 | vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); } |
| 129 | ciMethod* callee() const { return _intrinsic->method(); } |
| 130 | |
| 131 | bool try_to_inline(int predicate); |
| 132 | Node* try_to_predicate(int predicate); |
| 133 | |
| 134 | void push_result() { |
| 135 | // Push the result onto the stack. |
| 136 | if (!stopped() && result() != NULL) { |
| 137 | BasicType bt = result()->bottom_type()->basic_type(); |
| 138 | push_node(bt, result()); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | private: |
| 143 | void fatal_unexpected_iid(vmIntrinsics::ID iid) { |
| 144 | fatal("unexpected intrinsic %d: %s" , iid, vmIntrinsics::name_at(iid)); |
| 145 | } |
| 146 | |
| 147 | void set_result(Node* n) { assert(_result == NULL, "only set once" ); _result = n; } |
| 148 | void set_result(RegionNode* region, PhiNode* value); |
| 149 | Node* result() { return _result; } |
| 150 | |
| 151 | virtual int reexecute_sp() { return _reexecute_sp; } |
| 152 | |
| 153 | // Helper functions to inline natives |
| 154 | Node* generate_guard(Node* test, RegionNode* region, float true_prob); |
| 155 | Node* generate_slow_guard(Node* test, RegionNode* region); |
| 156 | Node* generate_fair_guard(Node* test, RegionNode* region); |
| 157 | Node* generate_negative_guard(Node* index, RegionNode* region, |
| 158 | // resulting CastII of index: |
| 159 | Node* *pos_index = NULL); |
| 160 | Node* generate_limit_guard(Node* offset, Node* subseq_length, |
| 161 | Node* array_length, |
| 162 | RegionNode* region); |
| 163 | void generate_string_range_check(Node* array, Node* offset, |
| 164 | Node* length, bool char_count); |
| 165 | Node* generate_current_thread(Node* &tls_output); |
| 166 | Node* load_mirror_from_klass(Node* klass); |
| 167 | Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null, |
| 168 | RegionNode* region, int null_path, |
| 169 | int offset); |
| 170 | Node* load_klass_from_mirror(Node* mirror, bool never_see_null, |
| 171 | RegionNode* region, int null_path) { |
| 172 | int offset = java_lang_Class::klass_offset_in_bytes(); |
| 173 | return load_klass_from_mirror_common(mirror, never_see_null, |
| 174 | region, null_path, |
| 175 | offset); |
| 176 | } |
| 177 | Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null, |
| 178 | RegionNode* region, int null_path) { |
| 179 | int offset = java_lang_Class::array_klass_offset_in_bytes(); |
| 180 | return load_klass_from_mirror_common(mirror, never_see_null, |
| 181 | region, null_path, |
| 182 | offset); |
| 183 | } |
| 184 | Node* generate_access_flags_guard(Node* kls, |
| 185 | int modifier_mask, int modifier_bits, |
| 186 | RegionNode* region); |
| 187 | Node* generate_interface_guard(Node* kls, RegionNode* region); |
| 188 | Node* generate_array_guard(Node* kls, RegionNode* region) { |
| 189 | return generate_array_guard_common(kls, region, false, false); |
| 190 | } |
| 191 | Node* generate_non_array_guard(Node* kls, RegionNode* region) { |
| 192 | return generate_array_guard_common(kls, region, false, true); |
| 193 | } |
| 194 | Node* generate_objArray_guard(Node* kls, RegionNode* region) { |
| 195 | return generate_array_guard_common(kls, region, true, false); |
| 196 | } |
| 197 | Node* generate_non_objArray_guard(Node* kls, RegionNode* region) { |
| 198 | return generate_array_guard_common(kls, region, true, true); |
| 199 | } |
| 200 | Node* generate_array_guard_common(Node* kls, RegionNode* region, |
| 201 | bool obj_array, bool not_array); |
| 202 | Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region); |
| 203 | CallJavaNode* generate_method_call(vmIntrinsics::ID method_id, |
| 204 | bool is_virtual = false, bool is_static = false); |
| 205 | CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) { |
| 206 | return generate_method_call(method_id, false, true); |
| 207 | } |
| 208 | CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) { |
| 209 | return generate_method_call(method_id, true, false); |
| 210 | } |
| 211 | Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); |
| 212 | Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); |
| 213 | |
| 214 | Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae); |
| 215 | bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae); |
| 216 | bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae); |
| 217 | bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae); |
| 218 | Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, |
| 219 | RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae); |
| 220 | bool inline_string_indexOfChar(); |
| 221 | bool inline_string_equals(StrIntrinsicNode::ArgEnc ae); |
| 222 | bool inline_string_toBytesU(); |
| 223 | bool inline_string_getCharsU(); |
| 224 | bool inline_string_copy(bool compress); |
| 225 | bool inline_string_char_access(bool is_store); |
| 226 | Node* round_double_node(Node* n); |
| 227 | bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName); |
| 228 | bool inline_math_native(vmIntrinsics::ID id); |
| 229 | bool inline_math(vmIntrinsics::ID id); |
| 230 | bool inline_double_math(vmIntrinsics::ID id); |
| 231 | template <typename OverflowOp> |
| 232 | bool inline_math_overflow(Node* arg1, Node* arg2); |
| 233 | void inline_math_mathExact(Node* math, Node* test); |
| 234 | bool inline_math_addExactI(bool is_increment); |
| 235 | bool inline_math_addExactL(bool is_increment); |
| 236 | bool inline_math_multiplyExactI(); |
| 237 | bool inline_math_multiplyExactL(); |
| 238 | bool inline_math_multiplyHigh(); |
| 239 | bool inline_math_negateExactI(); |
| 240 | bool inline_math_negateExactL(); |
| 241 | bool inline_math_subtractExactI(bool is_decrement); |
| 242 | bool inline_math_subtractExactL(bool is_decrement); |
| 243 | bool inline_min_max(vmIntrinsics::ID id); |
| 244 | bool inline_notify(vmIntrinsics::ID id); |
| 245 | Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y); |
| 246 | // This returns Type::AnyPtr, RawPtr, or OopPtr. |
| 247 | int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type); |
| 248 | Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false); |
| 249 | |
| 250 | typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind; |
| 251 | DecoratorSet mo_decorator_for_access_kind(AccessKind kind); |
| 252 | bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned); |
| 253 | static bool klass_needs_init_guard(Node* kls); |
| 254 | bool inline_unsafe_allocate(); |
| 255 | bool inline_unsafe_newArray(bool uninitialized); |
| 256 | bool inline_unsafe_copyMemory(); |
| 257 | bool inline_native_currentThread(); |
| 258 | |
| 259 | bool inline_native_time_funcs(address method, const char* funcName); |
| 260 | #ifdef JFR_HAVE_INTRINSICS |
| 261 | bool inline_native_classID(); |
| 262 | bool inline_native_getEventWriter(); |
| 263 | #endif |
| 264 | bool inline_native_isInterrupted(); |
| 265 | bool inline_native_Class_query(vmIntrinsics::ID id); |
| 266 | bool inline_native_subtype_check(); |
| 267 | bool inline_native_getLength(); |
| 268 | bool inline_array_copyOf(bool is_copyOfRange); |
| 269 | bool inline_array_equals(StrIntrinsicNode::ArgEnc ae); |
| 270 | bool inline_preconditions_checkIndex(); |
| 271 | void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array); |
| 272 | bool inline_native_clone(bool is_virtual); |
| 273 | bool inline_native_Reflection_getCallerClass(); |
| 274 | // Helper function for inlining native object hash method |
| 275 | bool inline_native_hashcode(bool is_virtual, bool is_static); |
| 276 | bool inline_native_getClass(); |
| 277 | |
| 278 | // Helper functions for inlining arraycopy |
| 279 | bool inline_arraycopy(); |
| 280 | AllocateArrayNode* tightly_coupled_allocation(Node* ptr, |
| 281 | RegionNode* slow_region); |
| 282 | JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp); |
| 283 | void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp, |
| 284 | uint new_idx); |
| 285 | |
| 286 | typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind; |
| 287 | bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind); |
| 288 | bool inline_unsafe_fence(vmIntrinsics::ID id); |
| 289 | bool inline_onspinwait(); |
| 290 | bool inline_fp_conversions(vmIntrinsics::ID id); |
| 291 | bool inline_number_methods(vmIntrinsics::ID id); |
| 292 | bool inline_reference_get(); |
| 293 | bool inline_Class_cast(); |
| 294 | bool inline_aescrypt_Block(vmIntrinsics::ID id); |
| 295 | bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id); |
| 296 | bool inline_counterMode_AESCrypt(vmIntrinsics::ID id); |
| 297 | Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting); |
| 298 | Node* inline_counterMode_AESCrypt_predicate(); |
| 299 | Node* get_key_start_from_aescrypt_object(Node* aescrypt_object); |
| 300 | Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object); |
| 301 | bool inline_ghash_processBlocks(); |
| 302 | bool inline_base64_encodeBlock(); |
| 303 | bool inline_sha_implCompress(vmIntrinsics::ID id); |
| 304 | bool inline_digestBase_implCompressMB(int predicate); |
| 305 | bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA, |
| 306 | bool long_state, address stubAddr, const char *stubName, |
| 307 | Node* src_start, Node* ofs, Node* limit); |
| 308 | Node* get_state_from_sha_object(Node *sha_object); |
| 309 | Node* get_state_from_sha5_object(Node *sha_object); |
| 310 | Node* inline_digestBase_implCompressMB_predicate(int predicate); |
| 311 | bool inline_encodeISOArray(); |
| 312 | bool inline_updateCRC32(); |
| 313 | bool inline_updateBytesCRC32(); |
| 314 | bool inline_updateByteBufferCRC32(); |
| 315 | Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class); |
| 316 | bool inline_updateBytesCRC32C(); |
| 317 | bool inline_updateDirectByteBufferCRC32C(); |
| 318 | bool inline_updateBytesAdler32(); |
| 319 | bool inline_updateByteBufferAdler32(); |
| 320 | bool inline_multiplyToLen(); |
| 321 | bool inline_hasNegatives(); |
| 322 | bool inline_squareToLen(); |
| 323 | bool inline_mulAdd(); |
| 324 | bool inline_montgomeryMultiply(); |
| 325 | bool inline_montgomerySquare(); |
| 326 | bool inline_vectorizedMismatch(); |
| 327 | bool inline_fma(vmIntrinsics::ID id); |
| 328 | bool inline_character_compare(vmIntrinsics::ID id); |
| 329 | bool inline_fp_min_max(vmIntrinsics::ID id); |
| 330 | |
| 331 | bool inline_profileBoolean(); |
| 332 | bool inline_isCompileConstant(); |
| 333 | void clear_upper_avx() { |
| 334 | #ifdef X86 |
| 335 | if (UseAVX >= 2) { |
| 336 | C->set_clear_upper_avx(true); |
| 337 | } |
| 338 | #endif |
| 339 | } |
| 340 | }; |
| 341 | |
| 342 | //---------------------------make_vm_intrinsic---------------------------- |
| 343 | CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { |
| 344 | vmIntrinsics::ID id = m->intrinsic_id(); |
| 345 | assert(id != vmIntrinsics::_none, "must be a VM intrinsic" ); |
| 346 | |
| 347 | if (!m->is_loaded()) { |
| 348 | // Do not attempt to inline unloaded methods. |
| 349 | return NULL; |
| 350 | } |
| 351 | |
| 352 | C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); |
| 353 | bool is_available = false; |
| 354 | |
| 355 | { |
| 356 | // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag |
| 357 | // the compiler must transition to '_thread_in_vm' state because both |
| 358 | // methods access VM-internal data. |
| 359 | VM_ENTRY_MARK; |
| 360 | methodHandle mh(THREAD, m->get_Method()); |
| 361 | is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) && |
| 362 | !C->directive()->is_intrinsic_disabled(mh) && |
| 363 | !vmIntrinsics::is_disabled_by_flags(mh); |
| 364 | |
| 365 | } |
| 366 | |
| 367 | if (is_available) { |
| 368 | assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility" ); |
| 369 | assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?" ); |
| 370 | return new LibraryIntrinsic(m, is_virtual, |
| 371 | vmIntrinsics::predicates_needed(id), |
| 372 | vmIntrinsics::does_virtual_dispatch(id), |
| 373 | (vmIntrinsics::ID) id); |
| 374 | } else { |
| 375 | return NULL; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | //----------------------register_library_intrinsics----------------------- |
| 380 | // Initialize this file's data structures, for each Compile instance. |
| 381 | void Compile::register_library_intrinsics() { |
| 382 | // Nothing to do here. |
| 383 | } |
| 384 | |
| 385 | JVMState* LibraryIntrinsic::generate(JVMState* jvms) { |
| 386 | LibraryCallKit kit(jvms, this); |
| 387 | Compile* C = kit.C; |
| 388 | int nodes = C->unique(); |
| 389 | #ifndef PRODUCT |
| 390 | if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| 391 | char buf[1000]; |
| 392 | const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); |
| 393 | tty->print_cr("Intrinsic %s" , str); |
| 394 | } |
| 395 | #endif |
| 396 | ciMethod* callee = kit.callee(); |
| 397 | const int bci = kit.bci(); |
| 398 | |
| 399 | // Try to inline the intrinsic. |
| 400 | if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) && |
| 401 | kit.try_to_inline(_last_predicate)) { |
| 402 | const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" |
| 403 | : "(intrinsic)" ; |
| 404 | CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); |
| 405 | if (C->print_intrinsics() || C->print_inlining()) { |
| 406 | C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); |
| 407 | } |
| 408 | C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); |
| 409 | if (C->log()) { |
| 410 | C->log()->elem("intrinsic id='%s'%s nodes='%d'" , |
| 411 | vmIntrinsics::name_at(intrinsic_id()), |
| 412 | (is_virtual() ? " virtual='1'" : "" ), |
| 413 | C->unique() - nodes); |
| 414 | } |
| 415 | // Push the result from the inlined method onto the stack. |
| 416 | kit.push_result(); |
| 417 | C->print_inlining_update(this); |
| 418 | return kit.transfer_exceptions_into_jvms(); |
| 419 | } |
| 420 | |
| 421 | // The intrinsic bailed out |
| 422 | if (jvms->has_method()) { |
| 423 | // Not a root compile. |
| 424 | const char* msg; |
| 425 | if (callee->intrinsic_candidate()) { |
| 426 | msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)" ; |
| 427 | } else { |
| 428 | msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" |
| 429 | : "failed to inline (intrinsic), method not annotated" ; |
| 430 | } |
| 431 | CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); |
| 432 | if (C->print_intrinsics() || C->print_inlining()) { |
| 433 | C->print_inlining(callee, jvms->depth() - 1, bci, msg); |
| 434 | } |
| 435 | } else { |
| 436 | // Root compile |
| 437 | ResourceMark rm; |
| 438 | stringStream msg_stream; |
| 439 | msg_stream.print("Did not generate intrinsic %s%s at bci:%d in" , |
| 440 | vmIntrinsics::name_at(intrinsic_id()), |
| 441 | is_virtual() ? " (virtual)" : "" , bci); |
| 442 | const char *msg = msg_stream.as_string(); |
| 443 | log_debug(jit, inlining)("%s" , msg); |
| 444 | if (C->print_intrinsics() || C->print_inlining()) { |
| 445 | tty->print("%s" , msg); |
| 446 | } |
| 447 | } |
| 448 | C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); |
| 449 | C->print_inlining_update(this); |
| 450 | return NULL; |
| 451 | } |
| 452 | |
| 453 | Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { |
| 454 | LibraryCallKit kit(jvms, this); |
| 455 | Compile* C = kit.C; |
| 456 | int nodes = C->unique(); |
| 457 | _last_predicate = predicate; |
| 458 | #ifndef PRODUCT |
| 459 | assert(is_predicated() && predicate < predicates_count(), "sanity" ); |
| 460 | if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| 461 | char buf[1000]; |
| 462 | const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); |
| 463 | tty->print_cr("Predicate for intrinsic %s" , str); |
| 464 | } |
| 465 | #endif |
| 466 | ciMethod* callee = kit.callee(); |
| 467 | const int bci = kit.bci(); |
| 468 | |
| 469 | Node* slow_ctl = kit.try_to_predicate(predicate); |
| 470 | if (!kit.failing()) { |
| 471 | const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" |
| 472 | : "(intrinsic, predicate)" ; |
| 473 | CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); |
| 474 | if (C->print_intrinsics() || C->print_inlining()) { |
| 475 | C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); |
| 476 | } |
| 477 | C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); |
| 478 | if (C->log()) { |
| 479 | C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'" , |
| 480 | vmIntrinsics::name_at(intrinsic_id()), |
| 481 | (is_virtual() ? " virtual='1'" : "" ), |
| 482 | C->unique() - nodes); |
| 483 | } |
| 484 | return slow_ctl; // Could be NULL if the check folds. |
| 485 | } |
| 486 | |
| 487 | // The intrinsic bailed out |
| 488 | if (jvms->has_method()) { |
| 489 | // Not a root compile. |
| 490 | const char* msg = "failed to generate predicate for intrinsic" ; |
| 491 | CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); |
| 492 | if (C->print_intrinsics() || C->print_inlining()) { |
| 493 | C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); |
| 494 | } |
| 495 | } else { |
| 496 | // Root compile |
| 497 | ResourceMark rm; |
| 498 | stringStream msg_stream; |
| 499 | msg_stream.print("Did not generate intrinsic %s%s at bci:%d in" , |
| 500 | vmIntrinsics::name_at(intrinsic_id()), |
| 501 | is_virtual() ? " (virtual)" : "" , bci); |
| 502 | const char *msg = msg_stream.as_string(); |
| 503 | log_debug(jit, inlining)("%s" , msg); |
| 504 | if (C->print_intrinsics() || C->print_inlining()) { |
| 505 | C->print_inlining_stream()->print("%s" , msg); |
| 506 | } |
| 507 | } |
| 508 | C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); |
| 509 | return NULL; |
| 510 | } |
| 511 | |
| 512 | bool LibraryCallKit::try_to_inline(int predicate) { |
| 513 | // Handle symbolic names for otherwise undistinguished boolean switches: |
| 514 | const bool is_store = true; |
| 515 | const bool is_compress = true; |
| 516 | const bool is_static = true; |
| 517 | const bool is_volatile = true; |
| 518 | |
| 519 | if (!jvms()->has_method()) { |
| 520 | // Root JVMState has a null method. |
| 521 | assert(map()->memory()->Opcode() == Op_Parm, "" ); |
| 522 | // Insert the memory aliasing node |
| 523 | set_all_memory(reset_memory()); |
| 524 | } |
| 525 | assert(merged_memory(), "" ); |
| 526 | |
| 527 | |
| 528 | switch (intrinsic_id()) { |
| 529 | case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); |
| 530 | case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); |
| 531 | case vmIntrinsics::_getClass: return inline_native_getClass(); |
| 532 | |
| 533 | case vmIntrinsics::_dsin: |
| 534 | case vmIntrinsics::_dcos: |
| 535 | case vmIntrinsics::_dtan: |
| 536 | case vmIntrinsics::_dabs: |
| 537 | case vmIntrinsics::_fabs: |
| 538 | case vmIntrinsics::_iabs: |
| 539 | case vmIntrinsics::_labs: |
| 540 | case vmIntrinsics::_datan2: |
| 541 | case vmIntrinsics::_dsqrt: |
| 542 | case vmIntrinsics::_dexp: |
| 543 | case vmIntrinsics::_dlog: |
| 544 | case vmIntrinsics::_dlog10: |
| 545 | case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id()); |
| 546 | |
| 547 | case vmIntrinsics::_min: |
| 548 | case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); |
| 549 | |
| 550 | case vmIntrinsics::_notify: |
| 551 | case vmIntrinsics::_notifyAll: |
| 552 | return inline_notify(intrinsic_id()); |
| 553 | |
| 554 | case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); |
| 555 | case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); |
| 556 | case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); |
| 557 | case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); |
| 558 | case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); |
| 559 | case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); |
| 560 | case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); |
| 561 | case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); |
| 562 | case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); |
| 563 | case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); |
| 564 | case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); |
| 565 | case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); |
| 566 | case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); |
| 567 | |
| 568 | case vmIntrinsics::_arraycopy: return inline_arraycopy(); |
| 569 | |
| 570 | case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); |
| 571 | case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); |
| 572 | case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); |
| 573 | case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); |
| 574 | |
| 575 | case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); |
| 576 | case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); |
| 577 | case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); |
| 578 | case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); |
| 579 | case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); |
| 580 | case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); |
| 581 | case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(); |
| 582 | |
| 583 | case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); |
| 584 | case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); |
| 585 | |
| 586 | case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); |
| 587 | case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); |
| 588 | case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); |
| 589 | case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); |
| 590 | |
| 591 | case vmIntrinsics::_compressStringC: |
| 592 | case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); |
| 593 | case vmIntrinsics::_inflateStringC: |
| 594 | case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); |
| 595 | |
| 596 | case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); |
| 597 | case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); |
| 598 | case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); |
| 599 | case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); |
| 600 | case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); |
| 601 | case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); |
| 602 | case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); |
| 603 | case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); |
| 604 | case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); |
| 605 | |
| 606 | case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); |
| 607 | case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); |
| 608 | case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); |
| 609 | case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); |
| 610 | case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); |
| 611 | case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); |
| 612 | case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); |
| 613 | case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); |
| 614 | case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); |
| 615 | |
| 616 | case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); |
| 617 | case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); |
| 618 | case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); |
| 619 | case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); |
| 620 | case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); |
| 621 | case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); |
| 622 | case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); |
| 623 | case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); |
| 624 | case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); |
| 625 | |
| 626 | case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); |
| 627 | case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); |
| 628 | case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); |
| 629 | case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); |
| 630 | case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); |
| 631 | case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); |
| 632 | case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); |
| 633 | case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); |
| 634 | case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); |
| 635 | |
| 636 | case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); |
| 637 | case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); |
| 638 | case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); |
| 639 | case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); |
| 640 | |
| 641 | case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); |
| 642 | case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); |
| 643 | case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); |
| 644 | case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); |
| 645 | |
| 646 | case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); |
| 647 | case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); |
| 648 | case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); |
| 649 | case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); |
| 650 | case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); |
| 651 | case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); |
| 652 | case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); |
| 653 | case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); |
| 654 | case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); |
| 655 | |
| 656 | case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); |
| 657 | case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); |
| 658 | case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); |
| 659 | case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); |
| 660 | case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); |
| 661 | case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); |
| 662 | case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); |
| 663 | case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); |
| 664 | case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); |
| 665 | |
| 666 | case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); |
| 667 | case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); |
| 668 | case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); |
| 669 | case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); |
| 670 | case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); |
| 671 | case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); |
| 672 | case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); |
| 673 | case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); |
| 674 | case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); |
| 675 | |
| 676 | case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); |
| 677 | case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); |
| 678 | case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); |
| 679 | case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); |
| 680 | case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); |
| 681 | case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); |
| 682 | case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); |
| 683 | case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); |
| 684 | case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); |
| 685 | |
| 686 | case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); |
| 687 | case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); |
| 688 | case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); |
| 689 | case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); |
| 690 | case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); |
| 691 | |
| 692 | case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); |
| 693 | case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); |
| 694 | case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); |
| 695 | case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); |
| 696 | case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); |
| 697 | case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); |
| 698 | case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); |
| 699 | case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); |
| 700 | case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); |
| 701 | case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); |
| 702 | case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); |
| 703 | case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); |
| 704 | case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); |
| 705 | case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); |
| 706 | case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); |
| 707 | case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); |
| 708 | case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); |
| 709 | case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); |
| 710 | case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); |
| 711 | case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); |
| 712 | |
| 713 | case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); |
| 714 | case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); |
| 715 | case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); |
| 716 | case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); |
| 717 | case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); |
| 718 | case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); |
| 719 | case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); |
| 720 | case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); |
| 721 | case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); |
| 722 | case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); |
| 723 | case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); |
| 724 | case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); |
| 725 | case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); |
| 726 | case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); |
| 727 | case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); |
| 728 | |
| 729 | case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); |
| 730 | case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); |
| 731 | case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); |
| 732 | case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); |
| 733 | |
| 734 | case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); |
| 735 | case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); |
| 736 | case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); |
| 737 | case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); |
| 738 | case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); |
| 739 | |
| 740 | case vmIntrinsics::_loadFence: |
| 741 | case vmIntrinsics::_storeFence: |
| 742 | case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); |
| 743 | |
| 744 | case vmIntrinsics::_onSpinWait: return inline_onspinwait(); |
| 745 | |
| 746 | case vmIntrinsics::_currentThread: return inline_native_currentThread(); |
| 747 | case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted(); |
| 748 | |
| 749 | #ifdef JFR_HAVE_INTRINSICS |
| 750 | case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime" ); |
| 751 | case vmIntrinsics::_getClassId: return inline_native_classID(); |
| 752 | case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); |
| 753 | #endif |
| 754 | case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis" ); |
| 755 | case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime" ); |
| 756 | case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); |
| 757 | case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); |
| 758 | case vmIntrinsics::_getLength: return inline_native_getLength(); |
| 759 | case vmIntrinsics::_copyOf: return inline_array_copyOf(false); |
| 760 | case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); |
| 761 | case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); |
| 762 | case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); |
| 763 | case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(); |
| 764 | case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); |
| 765 | |
| 766 | case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); |
| 767 | case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); |
| 768 | |
| 769 | case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); |
| 770 | |
| 771 | case vmIntrinsics::_isInstance: |
| 772 | case vmIntrinsics::_getModifiers: |
| 773 | case vmIntrinsics::_isInterface: |
| 774 | case vmIntrinsics::_isArray: |
| 775 | case vmIntrinsics::_isPrimitive: |
| 776 | case vmIntrinsics::_getSuperclass: |
| 777 | case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); |
| 778 | |
| 779 | case vmIntrinsics::_floatToRawIntBits: |
| 780 | case vmIntrinsics::_floatToIntBits: |
| 781 | case vmIntrinsics::_intBitsToFloat: |
| 782 | case vmIntrinsics::_doubleToRawLongBits: |
| 783 | case vmIntrinsics::_doubleToLongBits: |
| 784 | case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); |
| 785 | |
| 786 | case vmIntrinsics::_numberOfLeadingZeros_i: |
| 787 | case vmIntrinsics::_numberOfLeadingZeros_l: |
| 788 | case vmIntrinsics::_numberOfTrailingZeros_i: |
| 789 | case vmIntrinsics::_numberOfTrailingZeros_l: |
| 790 | case vmIntrinsics::_bitCount_i: |
| 791 | case vmIntrinsics::_bitCount_l: |
| 792 | case vmIntrinsics::_reverseBytes_i: |
| 793 | case vmIntrinsics::_reverseBytes_l: |
| 794 | case vmIntrinsics::_reverseBytes_s: |
| 795 | case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); |
| 796 | |
| 797 | case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); |
| 798 | |
| 799 | case vmIntrinsics::_Reference_get: return inline_reference_get(); |
| 800 | |
| 801 | case vmIntrinsics::_Class_cast: return inline_Class_cast(); |
| 802 | |
| 803 | case vmIntrinsics::_aescrypt_encryptBlock: |
| 804 | case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); |
| 805 | |
| 806 | case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: |
| 807 | case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: |
| 808 | return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); |
| 809 | |
| 810 | case vmIntrinsics::_counterMode_AESCrypt: |
| 811 | return inline_counterMode_AESCrypt(intrinsic_id()); |
| 812 | |
| 813 | case vmIntrinsics::_sha_implCompress: |
| 814 | case vmIntrinsics::_sha2_implCompress: |
| 815 | case vmIntrinsics::_sha5_implCompress: |
| 816 | return inline_sha_implCompress(intrinsic_id()); |
| 817 | |
| 818 | case vmIntrinsics::_digestBase_implCompressMB: |
| 819 | return inline_digestBase_implCompressMB(predicate); |
| 820 | |
| 821 | case vmIntrinsics::_multiplyToLen: |
| 822 | return inline_multiplyToLen(); |
| 823 | |
| 824 | case vmIntrinsics::_squareToLen: |
| 825 | return inline_squareToLen(); |
| 826 | |
| 827 | case vmIntrinsics::_mulAdd: |
| 828 | return inline_mulAdd(); |
| 829 | |
| 830 | case vmIntrinsics::_montgomeryMultiply: |
| 831 | return inline_montgomeryMultiply(); |
| 832 | case vmIntrinsics::_montgomerySquare: |
| 833 | return inline_montgomerySquare(); |
| 834 | |
| 835 | case vmIntrinsics::_vectorizedMismatch: |
| 836 | return inline_vectorizedMismatch(); |
| 837 | |
| 838 | case vmIntrinsics::_ghash_processBlocks: |
| 839 | return inline_ghash_processBlocks(); |
| 840 | case vmIntrinsics::_base64_encodeBlock: |
| 841 | return inline_base64_encodeBlock(); |
| 842 | |
| 843 | case vmIntrinsics::_encodeISOArray: |
| 844 | case vmIntrinsics::_encodeByteISOArray: |
| 845 | return inline_encodeISOArray(); |
| 846 | |
| 847 | case vmIntrinsics::_updateCRC32: |
| 848 | return inline_updateCRC32(); |
| 849 | case vmIntrinsics::_updateBytesCRC32: |
| 850 | return inline_updateBytesCRC32(); |
| 851 | case vmIntrinsics::_updateByteBufferCRC32: |
| 852 | return inline_updateByteBufferCRC32(); |
| 853 | |
| 854 | case vmIntrinsics::_updateBytesCRC32C: |
| 855 | return inline_updateBytesCRC32C(); |
| 856 | case vmIntrinsics::_updateDirectByteBufferCRC32C: |
| 857 | return inline_updateDirectByteBufferCRC32C(); |
| 858 | |
| 859 | case vmIntrinsics::_updateBytesAdler32: |
| 860 | return inline_updateBytesAdler32(); |
| 861 | case vmIntrinsics::_updateByteBufferAdler32: |
| 862 | return inline_updateByteBufferAdler32(); |
| 863 | |
| 864 | case vmIntrinsics::_profileBoolean: |
| 865 | return inline_profileBoolean(); |
| 866 | case vmIntrinsics::_isCompileConstant: |
| 867 | return inline_isCompileConstant(); |
| 868 | |
| 869 | case vmIntrinsics::_hasNegatives: |
| 870 | return inline_hasNegatives(); |
| 871 | |
| 872 | case vmIntrinsics::_fmaD: |
| 873 | case vmIntrinsics::_fmaF: |
| 874 | return inline_fma(intrinsic_id()); |
| 875 | |
| 876 | case vmIntrinsics::_isDigit: |
| 877 | case vmIntrinsics::_isLowerCase: |
| 878 | case vmIntrinsics::_isUpperCase: |
| 879 | case vmIntrinsics::_isWhitespace: |
| 880 | return inline_character_compare(intrinsic_id()); |
| 881 | |
| 882 | case vmIntrinsics::_maxF: |
| 883 | case vmIntrinsics::_minF: |
| 884 | case vmIntrinsics::_maxD: |
| 885 | case vmIntrinsics::_minD: |
| 886 | return inline_fp_min_max(intrinsic_id()); |
| 887 | |
| 888 | default: |
| 889 | // If you get here, it may be that someone has added a new intrinsic |
| 890 | // to the list in vmSymbols.hpp without implementing it here. |
| 891 | #ifndef PRODUCT |
| 892 | if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { |
| 893 | tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)" , |
| 894 | vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); |
| 895 | } |
| 896 | #endif |
| 897 | return false; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | Node* LibraryCallKit::try_to_predicate(int predicate) { |
| 902 | if (!jvms()->has_method()) { |
| 903 | // Root JVMState has a null method. |
| 904 | assert(map()->memory()->Opcode() == Op_Parm, "" ); |
| 905 | // Insert the memory aliasing node |
| 906 | set_all_memory(reset_memory()); |
| 907 | } |
| 908 | assert(merged_memory(), "" ); |
| 909 | |
| 910 | switch (intrinsic_id()) { |
| 911 | case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: |
| 912 | return inline_cipherBlockChaining_AESCrypt_predicate(false); |
| 913 | case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: |
| 914 | return inline_cipherBlockChaining_AESCrypt_predicate(true); |
| 915 | case vmIntrinsics::_counterMode_AESCrypt: |
| 916 | return inline_counterMode_AESCrypt_predicate(); |
| 917 | case vmIntrinsics::_digestBase_implCompressMB: |
| 918 | return inline_digestBase_implCompressMB_predicate(predicate); |
| 919 | |
| 920 | default: |
| 921 | // If you get here, it may be that someone has added a new intrinsic |
| 922 | // to the list in vmSymbols.hpp without implementing it here. |
| 923 | #ifndef PRODUCT |
| 924 | if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { |
| 925 | tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)" , |
| 926 | vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); |
| 927 | } |
| 928 | #endif |
| 929 | Node* slow_ctl = control(); |
| 930 | set_control(top()); // No fast path instrinsic |
| 931 | return slow_ctl; |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | //------------------------------set_result------------------------------- |
| 936 | // Helper function for finishing intrinsics. |
| 937 | void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { |
| 938 | record_for_igvn(region); |
| 939 | set_control(_gvn.transform(region)); |
| 940 | set_result( _gvn.transform(value)); |
| 941 | assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity" ); |
| 942 | } |
| 943 | |
| 944 | //------------------------------generate_guard--------------------------- |
| 945 | // Helper function for generating guarded fast-slow graph structures. |
| 946 | // The given 'test', if true, guards a slow path. If the test fails |
| 947 | // then a fast path can be taken. (We generally hope it fails.) |
| 948 | // In all cases, GraphKit::control() is updated to the fast path. |
| 949 | // The returned value represents the control for the slow path. |
| 950 | // The return value is never 'top'; it is either a valid control |
| 951 | // or NULL if it is obvious that the slow path can never be taken. |
| 952 | // Also, if region and the slow control are not NULL, the slow edge |
| 953 | // is appended to the region. |
| 954 | Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { |
| 955 | if (stopped()) { |
| 956 | // Already short circuited. |
| 957 | return NULL; |
| 958 | } |
| 959 | |
| 960 | // Build an if node and its projections. |
| 961 | // If test is true we take the slow path, which we assume is uncommon. |
| 962 | if (_gvn.type(test) == TypeInt::ZERO) { |
| 963 | // The slow branch is never taken. No need to build this guard. |
| 964 | return NULL; |
| 965 | } |
| 966 | |
| 967 | IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); |
| 968 | |
| 969 | Node* if_slow = _gvn.transform(new IfTrueNode(iff)); |
| 970 | if (if_slow == top()) { |
| 971 | // The slow branch is never taken. No need to build this guard. |
| 972 | return NULL; |
| 973 | } |
| 974 | |
| 975 | if (region != NULL) |
| 976 | region->add_req(if_slow); |
| 977 | |
| 978 | Node* if_fast = _gvn.transform(new IfFalseNode(iff)); |
| 979 | set_control(if_fast); |
| 980 | |
| 981 | return if_slow; |
| 982 | } |
| 983 | |
| 984 | inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { |
| 985 | return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); |
| 986 | } |
| 987 | inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { |
| 988 | return generate_guard(test, region, PROB_FAIR); |
| 989 | } |
| 990 | |
| 991 | inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, |
| 992 | Node* *pos_index) { |
| 993 | if (stopped()) |
| 994 | return NULL; // already stopped |
| 995 | if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] |
| 996 | return NULL; // index is already adequately typed |
| 997 | Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); |
| 998 | Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); |
| 999 | Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); |
| 1000 | if (is_neg != NULL && pos_index != NULL) { |
| 1001 | // Emulate effect of Parse::adjust_map_after_if. |
| 1002 | Node* ccast = new CastIINode(index, TypeInt::POS); |
| 1003 | ccast->set_req(0, control()); |
| 1004 | (*pos_index) = _gvn.transform(ccast); |
| 1005 | } |
| 1006 | return is_neg; |
| 1007 | } |
| 1008 | |
| 1009 | // Make sure that 'position' is a valid limit index, in [0..length]. |
| 1010 | // There are two equivalent plans for checking this: |
| 1011 | // A. (offset + copyLength) unsigned<= arrayLength |
| 1012 | // B. offset <= (arrayLength - copyLength) |
| 1013 | // We require that all of the values above, except for the sum and |
| 1014 | // difference, are already known to be non-negative. |
| 1015 | // Plan A is robust in the face of overflow, if offset and copyLength |
| 1016 | // are both hugely positive. |
| 1017 | // |
| 1018 | // Plan B is less direct and intuitive, but it does not overflow at |
| 1019 | // all, since the difference of two non-negatives is always |
| 1020 | // representable. Whenever Java methods must perform the equivalent |
| 1021 | // check they generally use Plan B instead of Plan A. |
| 1022 | // For the moment we use Plan A. |
| 1023 | inline Node* LibraryCallKit::generate_limit_guard(Node* offset, |
| 1024 | Node* subseq_length, |
| 1025 | Node* array_length, |
| 1026 | RegionNode* region) { |
| 1027 | if (stopped()) |
| 1028 | return NULL; // already stopped |
| 1029 | bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; |
| 1030 | if (zero_offset && subseq_length->eqv_uncast(array_length)) |
| 1031 | return NULL; // common case of whole-array copy |
| 1032 | Node* last = subseq_length; |
| 1033 | if (!zero_offset) // last += offset |
| 1034 | last = _gvn.transform(new AddINode(last, offset)); |
| 1035 | Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); |
| 1036 | Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); |
| 1037 | Node* is_over = generate_guard(bol_lt, region, PROB_MIN); |
| 1038 | return is_over; |
| 1039 | } |
| 1040 | |
| 1041 | // Emit range checks for the given String.value byte array |
| 1042 | void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { |
| 1043 | if (stopped()) { |
| 1044 | return; // already stopped |
| 1045 | } |
| 1046 | RegionNode* bailout = new RegionNode(1); |
| 1047 | record_for_igvn(bailout); |
| 1048 | if (char_count) { |
| 1049 | // Convert char count to byte count |
| 1050 | count = _gvn.transform(new LShiftINode(count, intcon(1))); |
| 1051 | } |
| 1052 | |
| 1053 | // Offset and count must not be negative |
| 1054 | generate_negative_guard(offset, bailout); |
| 1055 | generate_negative_guard(count, bailout); |
| 1056 | // Offset + count must not exceed length of array |
| 1057 | generate_limit_guard(offset, count, load_array_length(array), bailout); |
| 1058 | |
| 1059 | if (bailout->req() > 1) { |
| 1060 | PreserveJVMState pjvms(this); |
| 1061 | set_control(_gvn.transform(bailout)); |
| 1062 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 1063 | Deoptimization::Action_maybe_recompile); |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | //--------------------------generate_current_thread-------------------- |
| 1068 | Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { |
| 1069 | ciKlass* thread_klass = env()->Thread_klass(); |
| 1070 | const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); |
| 1071 | Node* thread = _gvn.transform(new ThreadLocalNode()); |
| 1072 | Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); |
| 1073 | Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered); |
| 1074 | tls_output = thread; |
| 1075 | return threadObj; |
| 1076 | } |
| 1077 | |
| 1078 | |
| 1079 | //------------------------------make_string_method_node------------------------ |
| 1080 | // Helper method for String intrinsic functions. This version is called with |
| 1081 | // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded |
| 1082 | // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes |
| 1083 | // containing the lengths of str1 and str2. |
| 1084 | Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { |
| 1085 | Node* result = NULL; |
| 1086 | switch (opcode) { |
| 1087 | case Op_StrIndexOf: |
| 1088 | result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), |
| 1089 | str1_start, cnt1, str2_start, cnt2, ae); |
| 1090 | break; |
| 1091 | case Op_StrComp: |
| 1092 | result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), |
| 1093 | str1_start, cnt1, str2_start, cnt2, ae); |
| 1094 | break; |
| 1095 | case Op_StrEquals: |
| 1096 | // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). |
| 1097 | // Use the constant length if there is one because optimized match rule may exist. |
| 1098 | result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), |
| 1099 | str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); |
| 1100 | break; |
| 1101 | default: |
| 1102 | ShouldNotReachHere(); |
| 1103 | return NULL; |
| 1104 | } |
| 1105 | |
| 1106 | // All these intrinsics have checks. |
| 1107 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 1108 | clear_upper_avx(); |
| 1109 | |
| 1110 | return _gvn.transform(result); |
| 1111 | } |
| 1112 | |
| 1113 | //------------------------------inline_string_compareTo------------------------ |
| 1114 | bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { |
| 1115 | Node* arg1 = argument(0); |
| 1116 | Node* arg2 = argument(1); |
| 1117 | |
| 1118 | arg1 = must_be_not_null(arg1, true); |
| 1119 | arg2 = must_be_not_null(arg2, true); |
| 1120 | |
| 1121 | arg1 = access_resolve(arg1, ACCESS_READ); |
| 1122 | arg2 = access_resolve(arg2, ACCESS_READ); |
| 1123 | |
| 1124 | // Get start addr and length of first argument |
| 1125 | Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); |
| 1126 | Node* arg1_cnt = load_array_length(arg1); |
| 1127 | |
| 1128 | // Get start addr and length of second argument |
| 1129 | Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); |
| 1130 | Node* arg2_cnt = load_array_length(arg2); |
| 1131 | |
| 1132 | Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); |
| 1133 | set_result(result); |
| 1134 | return true; |
| 1135 | } |
| 1136 | |
| 1137 | //------------------------------inline_string_equals------------------------ |
| 1138 | bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { |
| 1139 | Node* arg1 = argument(0); |
| 1140 | Node* arg2 = argument(1); |
| 1141 | |
| 1142 | // paths (plus control) merge |
| 1143 | RegionNode* region = new RegionNode(3); |
| 1144 | Node* phi = new PhiNode(region, TypeInt::BOOL); |
| 1145 | |
| 1146 | if (!stopped()) { |
| 1147 | |
| 1148 | arg1 = must_be_not_null(arg1, true); |
| 1149 | arg2 = must_be_not_null(arg2, true); |
| 1150 | |
| 1151 | arg1 = access_resolve(arg1, ACCESS_READ); |
| 1152 | arg2 = access_resolve(arg2, ACCESS_READ); |
| 1153 | |
| 1154 | // Get start addr and length of first argument |
| 1155 | Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); |
| 1156 | Node* arg1_cnt = load_array_length(arg1); |
| 1157 | |
| 1158 | // Get start addr and length of second argument |
| 1159 | Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); |
| 1160 | Node* arg2_cnt = load_array_length(arg2); |
| 1161 | |
| 1162 | // Check for arg1_cnt != arg2_cnt |
| 1163 | Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); |
| 1164 | Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); |
| 1165 | Node* if_ne = generate_slow_guard(bol, NULL); |
| 1166 | if (if_ne != NULL) { |
| 1167 | phi->init_req(2, intcon(0)); |
| 1168 | region->init_req(2, if_ne); |
| 1169 | } |
| 1170 | |
| 1171 | // Check for count == 0 is done by assembler code for StrEquals. |
| 1172 | |
| 1173 | if (!stopped()) { |
| 1174 | Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); |
| 1175 | phi->init_req(1, equals); |
| 1176 | region->init_req(1, control()); |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | // post merge |
| 1181 | set_control(_gvn.transform(region)); |
| 1182 | record_for_igvn(region); |
| 1183 | |
| 1184 | set_result(_gvn.transform(phi)); |
| 1185 | return true; |
| 1186 | } |
| 1187 | |
| 1188 | //------------------------------inline_array_equals---------------------------- |
| 1189 | bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { |
| 1190 | assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types" ); |
| 1191 | Node* arg1 = argument(0); |
| 1192 | Node* arg2 = argument(1); |
| 1193 | |
| 1194 | arg1 = access_resolve(arg1, ACCESS_READ); |
| 1195 | arg2 = access_resolve(arg2, ACCESS_READ); |
| 1196 | |
| 1197 | const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; |
| 1198 | set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); |
| 1199 | clear_upper_avx(); |
| 1200 | |
| 1201 | return true; |
| 1202 | } |
| 1203 | |
| 1204 | //------------------------------inline_hasNegatives------------------------------ |
| 1205 | bool LibraryCallKit::inline_hasNegatives() { |
| 1206 | if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| 1207 | return false; |
| 1208 | } |
| 1209 | |
| 1210 | assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters" ); |
| 1211 | // no receiver since it is static method |
| 1212 | Node* ba = argument(0); |
| 1213 | Node* offset = argument(1); |
| 1214 | Node* len = argument(2); |
| 1215 | |
| 1216 | ba = must_be_not_null(ba, true); |
| 1217 | |
| 1218 | // Range checks |
| 1219 | generate_string_range_check(ba, offset, len, false); |
| 1220 | if (stopped()) { |
| 1221 | return true; |
| 1222 | } |
| 1223 | ba = access_resolve(ba, ACCESS_READ); |
| 1224 | Node* ba_start = array_element_address(ba, offset, T_BYTE); |
| 1225 | Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); |
| 1226 | set_result(_gvn.transform(result)); |
| 1227 | return true; |
| 1228 | } |
| 1229 | |
| 1230 | bool LibraryCallKit::inline_preconditions_checkIndex() { |
| 1231 | Node* index = argument(0); |
| 1232 | Node* length = argument(1); |
| 1233 | if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { |
| 1234 | return false; |
| 1235 | } |
| 1236 | |
| 1237 | Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0))); |
| 1238 | Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); |
| 1239 | |
| 1240 | { |
| 1241 | BuildCutout unless(this, len_pos_bol, PROB_MAX); |
| 1242 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 1243 | Deoptimization::Action_make_not_entrant); |
| 1244 | } |
| 1245 | |
| 1246 | if (stopped()) { |
| 1247 | return false; |
| 1248 | } |
| 1249 | |
| 1250 | Node* rc_cmp = _gvn.transform(new CmpUNode(index, length)); |
| 1251 | BoolTest::mask btest = BoolTest::lt; |
| 1252 | Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); |
| 1253 | RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); |
| 1254 | _gvn.set_type(rc, rc->Value(&_gvn)); |
| 1255 | if (!rc_bool->is_Con()) { |
| 1256 | record_for_igvn(rc); |
| 1257 | } |
| 1258 | set_control(_gvn.transform(new IfTrueNode(rc))); |
| 1259 | { |
| 1260 | PreserveJVMState pjvms(this); |
| 1261 | set_control(_gvn.transform(new IfFalseNode(rc))); |
| 1262 | uncommon_trap(Deoptimization::Reason_range_check, |
| 1263 | Deoptimization::Action_make_not_entrant); |
| 1264 | } |
| 1265 | |
| 1266 | if (stopped()) { |
| 1267 | return false; |
| 1268 | } |
| 1269 | |
| 1270 | Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax)); |
| 1271 | result->set_req(0, control()); |
| 1272 | result = _gvn.transform(result); |
| 1273 | set_result(result); |
| 1274 | replace_in_map(index, result); |
| 1275 | clear_upper_avx(); |
| 1276 | return true; |
| 1277 | } |
| 1278 | |
| 1279 | //------------------------------inline_string_indexOf------------------------ |
| 1280 | bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { |
| 1281 | if (!Matcher::match_rule_supported(Op_StrIndexOf)) { |
| 1282 | return false; |
| 1283 | } |
| 1284 | Node* src = argument(0); |
| 1285 | Node* tgt = argument(1); |
| 1286 | |
| 1287 | // Make the merge point |
| 1288 | RegionNode* result_rgn = new RegionNode(4); |
| 1289 | Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); |
| 1290 | |
| 1291 | src = must_be_not_null(src, true); |
| 1292 | tgt = must_be_not_null(tgt, true); |
| 1293 | |
| 1294 | src = access_resolve(src, ACCESS_READ); |
| 1295 | tgt = access_resolve(tgt, ACCESS_READ); |
| 1296 | |
| 1297 | // Get start addr and length of source string |
| 1298 | Node* src_start = array_element_address(src, intcon(0), T_BYTE); |
| 1299 | Node* src_count = load_array_length(src); |
| 1300 | |
| 1301 | // Get start addr and length of substring |
| 1302 | Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); |
| 1303 | Node* tgt_count = load_array_length(tgt); |
| 1304 | |
| 1305 | if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { |
| 1306 | // Divide src size by 2 if String is UTF16 encoded |
| 1307 | src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); |
| 1308 | } |
| 1309 | if (ae == StrIntrinsicNode::UU) { |
| 1310 | // Divide substring size by 2 if String is UTF16 encoded |
| 1311 | tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); |
| 1312 | } |
| 1313 | |
| 1314 | Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); |
| 1315 | if (result != NULL) { |
| 1316 | result_phi->init_req(3, result); |
| 1317 | result_rgn->init_req(3, control()); |
| 1318 | } |
| 1319 | set_control(_gvn.transform(result_rgn)); |
| 1320 | record_for_igvn(result_rgn); |
| 1321 | set_result(_gvn.transform(result_phi)); |
| 1322 | |
| 1323 | return true; |
| 1324 | } |
| 1325 | |
| 1326 | //-----------------------------inline_string_indexOf----------------------- |
| 1327 | bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { |
| 1328 | if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| 1329 | return false; |
| 1330 | } |
| 1331 | if (!Matcher::match_rule_supported(Op_StrIndexOf)) { |
| 1332 | return false; |
| 1333 | } |
| 1334 | assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments" ); |
| 1335 | Node* src = argument(0); // byte[] |
| 1336 | Node* src_count = argument(1); // char count |
| 1337 | Node* tgt = argument(2); // byte[] |
| 1338 | Node* tgt_count = argument(3); // char count |
| 1339 | Node* from_index = argument(4); // char index |
| 1340 | |
| 1341 | src = must_be_not_null(src, true); |
| 1342 | tgt = must_be_not_null(tgt, true); |
| 1343 | |
| 1344 | src = access_resolve(src, ACCESS_READ); |
| 1345 | tgt = access_resolve(tgt, ACCESS_READ); |
| 1346 | |
| 1347 | // Multiply byte array index by 2 if String is UTF16 encoded |
| 1348 | Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); |
| 1349 | src_count = _gvn.transform(new SubINode(src_count, from_index)); |
| 1350 | Node* src_start = array_element_address(src, src_offset, T_BYTE); |
| 1351 | Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); |
| 1352 | |
| 1353 | // Range checks |
| 1354 | generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); |
| 1355 | generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); |
| 1356 | if (stopped()) { |
| 1357 | return true; |
| 1358 | } |
| 1359 | |
| 1360 | RegionNode* region = new RegionNode(5); |
| 1361 | Node* phi = new PhiNode(region, TypeInt::INT); |
| 1362 | |
| 1363 | Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); |
| 1364 | if (result != NULL) { |
| 1365 | // The result is index relative to from_index if substring was found, -1 otherwise. |
| 1366 | // Generate code which will fold into cmove. |
| 1367 | Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); |
| 1368 | Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); |
| 1369 | |
| 1370 | Node* if_lt = generate_slow_guard(bol, NULL); |
| 1371 | if (if_lt != NULL) { |
| 1372 | // result == -1 |
| 1373 | phi->init_req(3, result); |
| 1374 | region->init_req(3, if_lt); |
| 1375 | } |
| 1376 | if (!stopped()) { |
| 1377 | result = _gvn.transform(new AddINode(result, from_index)); |
| 1378 | phi->init_req(4, result); |
| 1379 | region->init_req(4, control()); |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | set_control(_gvn.transform(region)); |
| 1384 | record_for_igvn(region); |
| 1385 | set_result(_gvn.transform(phi)); |
| 1386 | clear_upper_avx(); |
| 1387 | |
| 1388 | return true; |
| 1389 | } |
| 1390 | |
| 1391 | // Create StrIndexOfNode with fast path checks |
| 1392 | Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, |
| 1393 | RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { |
| 1394 | // Check for substr count > string count |
| 1395 | Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); |
| 1396 | Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); |
| 1397 | Node* if_gt = generate_slow_guard(bol, NULL); |
| 1398 | if (if_gt != NULL) { |
| 1399 | phi->init_req(1, intcon(-1)); |
| 1400 | region->init_req(1, if_gt); |
| 1401 | } |
| 1402 | if (!stopped()) { |
| 1403 | // Check for substr count == 0 |
| 1404 | cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); |
| 1405 | bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); |
| 1406 | Node* if_zero = generate_slow_guard(bol, NULL); |
| 1407 | if (if_zero != NULL) { |
| 1408 | phi->init_req(2, intcon(0)); |
| 1409 | region->init_req(2, if_zero); |
| 1410 | } |
| 1411 | } |
| 1412 | if (!stopped()) { |
| 1413 | return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); |
| 1414 | } |
| 1415 | return NULL; |
| 1416 | } |
| 1417 | |
| 1418 | //-----------------------------inline_string_indexOfChar----------------------- |
| 1419 | bool LibraryCallKit::inline_string_indexOfChar() { |
| 1420 | if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| 1421 | return false; |
| 1422 | } |
| 1423 | if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { |
| 1424 | return false; |
| 1425 | } |
| 1426 | assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments" ); |
| 1427 | Node* src = argument(0); // byte[] |
| 1428 | Node* tgt = argument(1); // tgt is int ch |
| 1429 | Node* from_index = argument(2); |
| 1430 | Node* max = argument(3); |
| 1431 | |
| 1432 | src = must_be_not_null(src, true); |
| 1433 | src = access_resolve(src, ACCESS_READ); |
| 1434 | |
| 1435 | Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1))); |
| 1436 | Node* src_start = array_element_address(src, src_offset, T_BYTE); |
| 1437 | Node* src_count = _gvn.transform(new SubINode(max, from_index)); |
| 1438 | |
| 1439 | // Range checks |
| 1440 | generate_string_range_check(src, src_offset, src_count, true); |
| 1441 | if (stopped()) { |
| 1442 | return true; |
| 1443 | } |
| 1444 | |
| 1445 | RegionNode* region = new RegionNode(3); |
| 1446 | Node* phi = new PhiNode(region, TypeInt::INT); |
| 1447 | |
| 1448 | Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none); |
| 1449 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 1450 | _gvn.transform(result); |
| 1451 | |
| 1452 | Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); |
| 1453 | Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); |
| 1454 | |
| 1455 | Node* if_lt = generate_slow_guard(bol, NULL); |
| 1456 | if (if_lt != NULL) { |
| 1457 | // result == -1 |
| 1458 | phi->init_req(2, result); |
| 1459 | region->init_req(2, if_lt); |
| 1460 | } |
| 1461 | if (!stopped()) { |
| 1462 | result = _gvn.transform(new AddINode(result, from_index)); |
| 1463 | phi->init_req(1, result); |
| 1464 | region->init_req(1, control()); |
| 1465 | } |
| 1466 | set_control(_gvn.transform(region)); |
| 1467 | record_for_igvn(region); |
| 1468 | set_result(_gvn.transform(phi)); |
| 1469 | |
| 1470 | return true; |
| 1471 | } |
| 1472 | //---------------------------inline_string_copy--------------------- |
| 1473 | // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) |
| 1474 | // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) |
| 1475 | // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) |
| 1476 | // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) |
| 1477 | // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) |
| 1478 | // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) |
| 1479 | bool LibraryCallKit::inline_string_copy(bool compress) { |
| 1480 | if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| 1481 | return false; |
| 1482 | } |
| 1483 | int nargs = 5; // 2 oops, 3 ints |
| 1484 | assert(callee()->signature()->size() == nargs, "string copy has 5 arguments" ); |
| 1485 | |
| 1486 | Node* src = argument(0); |
| 1487 | Node* src_offset = argument(1); |
| 1488 | Node* dst = argument(2); |
| 1489 | Node* dst_offset = argument(3); |
| 1490 | Node* length = argument(4); |
| 1491 | |
| 1492 | // Check for allocation before we add nodes that would confuse |
| 1493 | // tightly_coupled_allocation() |
| 1494 | AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); |
| 1495 | |
| 1496 | // Figure out the size and type of the elements we will be copying. |
| 1497 | const Type* src_type = src->Value(&_gvn); |
| 1498 | const Type* dst_type = dst->Value(&_gvn); |
| 1499 | BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 1500 | BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 1501 | assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || |
| 1502 | (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), |
| 1503 | "Unsupported array types for inline_string_copy" ); |
| 1504 | |
| 1505 | src = must_be_not_null(src, true); |
| 1506 | dst = must_be_not_null(dst, true); |
| 1507 | |
| 1508 | // Convert char[] offsets to byte[] offsets |
| 1509 | bool convert_src = (compress && src_elem == T_BYTE); |
| 1510 | bool convert_dst = (!compress && dst_elem == T_BYTE); |
| 1511 | if (convert_src) { |
| 1512 | src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); |
| 1513 | } else if (convert_dst) { |
| 1514 | dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); |
| 1515 | } |
| 1516 | |
| 1517 | // Range checks |
| 1518 | generate_string_range_check(src, src_offset, length, convert_src); |
| 1519 | generate_string_range_check(dst, dst_offset, length, convert_dst); |
| 1520 | if (stopped()) { |
| 1521 | return true; |
| 1522 | } |
| 1523 | |
| 1524 | src = access_resolve(src, ACCESS_READ); |
| 1525 | dst = access_resolve(dst, ACCESS_WRITE); |
| 1526 | |
| 1527 | Node* src_start = array_element_address(src, src_offset, src_elem); |
| 1528 | Node* dst_start = array_element_address(dst, dst_offset, dst_elem); |
| 1529 | // 'src_start' points to src array + scaled offset |
| 1530 | // 'dst_start' points to dst array + scaled offset |
| 1531 | Node* count = NULL; |
| 1532 | if (compress) { |
| 1533 | count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); |
| 1534 | } else { |
| 1535 | inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); |
| 1536 | } |
| 1537 | |
| 1538 | if (alloc != NULL) { |
| 1539 | if (alloc->maybe_set_complete(&_gvn)) { |
| 1540 | // "You break it, you buy it." |
| 1541 | InitializeNode* init = alloc->initialization(); |
| 1542 | assert(init->is_complete(), "we just did this" ); |
| 1543 | init->set_complete_with_arraycopy(); |
| 1544 | assert(dst->is_CheckCastPP(), "sanity" ); |
| 1545 | assert(dst->in(0)->in(0) == init, "dest pinned" ); |
| 1546 | } |
| 1547 | // Do not let stores that initialize this object be reordered with |
| 1548 | // a subsequent store that would make this object accessible by |
| 1549 | // other threads. |
| 1550 | // Record what AllocateNode this StoreStore protects so that |
| 1551 | // escape analysis can go from the MemBarStoreStoreNode to the |
| 1552 | // AllocateNode and eliminate the MemBarStoreStoreNode if possible |
| 1553 | // based on the escape status of the AllocateNode. |
| 1554 | insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); |
| 1555 | } |
| 1556 | if (compress) { |
| 1557 | set_result(_gvn.transform(count)); |
| 1558 | } |
| 1559 | clear_upper_avx(); |
| 1560 | |
| 1561 | return true; |
| 1562 | } |
| 1563 | |
| 1564 | #ifdef _LP64 |
| 1565 | #define XTOP ,top() /*additional argument*/ |
| 1566 | #else //_LP64 |
| 1567 | #define XTOP /*no additional argument*/ |
| 1568 | #endif //_LP64 |
| 1569 | |
| 1570 | //------------------------inline_string_toBytesU-------------------------- |
| 1571 | // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) |
| 1572 | bool LibraryCallKit::inline_string_toBytesU() { |
| 1573 | if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| 1574 | return false; |
| 1575 | } |
| 1576 | // Get the arguments. |
| 1577 | Node* value = argument(0); |
| 1578 | Node* offset = argument(1); |
| 1579 | Node* length = argument(2); |
| 1580 | |
| 1581 | Node* newcopy = NULL; |
| 1582 | |
| 1583 | // Set the original stack and the reexecute bit for the interpreter to reexecute |
| 1584 | // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. |
| 1585 | { PreserveReexecuteState preexecs(this); |
| 1586 | jvms()->set_should_reexecute(true); |
| 1587 | |
| 1588 | // Check if a null path was taken unconditionally. |
| 1589 | value = null_check(value); |
| 1590 | |
| 1591 | RegionNode* bailout = new RegionNode(1); |
| 1592 | record_for_igvn(bailout); |
| 1593 | |
| 1594 | // Range checks |
| 1595 | generate_negative_guard(offset, bailout); |
| 1596 | generate_negative_guard(length, bailout); |
| 1597 | generate_limit_guard(offset, length, load_array_length(value), bailout); |
| 1598 | // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE |
| 1599 | generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); |
| 1600 | |
| 1601 | if (bailout->req() > 1) { |
| 1602 | PreserveJVMState pjvms(this); |
| 1603 | set_control(_gvn.transform(bailout)); |
| 1604 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 1605 | Deoptimization::Action_maybe_recompile); |
| 1606 | } |
| 1607 | if (stopped()) { |
| 1608 | return true; |
| 1609 | } |
| 1610 | |
| 1611 | Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); |
| 1612 | Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); |
| 1613 | newcopy = new_array(klass_node, size, 0); // no arguments to push |
| 1614 | AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL); |
| 1615 | |
| 1616 | // Calculate starting addresses. |
| 1617 | value = access_resolve(value, ACCESS_READ); |
| 1618 | Node* src_start = array_element_address(value, offset, T_CHAR); |
| 1619 | Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); |
| 1620 | |
| 1621 | // Check if src array address is aligned to HeapWordSize (dst is always aligned) |
| 1622 | const TypeInt* toffset = gvn().type(offset)->is_int(); |
| 1623 | bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); |
| 1624 | |
| 1625 | // Figure out which arraycopy runtime method to call (disjoint, uninitialized). |
| 1626 | const char* copyfunc_name = "arraycopy" ; |
| 1627 | address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); |
| 1628 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 1629 | OptoRuntime::fast_arraycopy_Type(), |
| 1630 | copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, |
| 1631 | src_start, dst_start, ConvI2X(length) XTOP); |
| 1632 | // Do not let reads from the cloned object float above the arraycopy. |
| 1633 | if (alloc != NULL) { |
| 1634 | if (alloc->maybe_set_complete(&_gvn)) { |
| 1635 | // "You break it, you buy it." |
| 1636 | InitializeNode* init = alloc->initialization(); |
| 1637 | assert(init->is_complete(), "we just did this" ); |
| 1638 | init->set_complete_with_arraycopy(); |
| 1639 | assert(newcopy->is_CheckCastPP(), "sanity" ); |
| 1640 | assert(newcopy->in(0)->in(0) == init, "dest pinned" ); |
| 1641 | } |
| 1642 | // Do not let stores that initialize this object be reordered with |
| 1643 | // a subsequent store that would make this object accessible by |
| 1644 | // other threads. |
| 1645 | // Record what AllocateNode this StoreStore protects so that |
| 1646 | // escape analysis can go from the MemBarStoreStoreNode to the |
| 1647 | // AllocateNode and eliminate the MemBarStoreStoreNode if possible |
| 1648 | // based on the escape status of the AllocateNode. |
| 1649 | insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); |
| 1650 | } else { |
| 1651 | insert_mem_bar(Op_MemBarCPUOrder); |
| 1652 | } |
| 1653 | } // original reexecute is set back here |
| 1654 | |
| 1655 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 1656 | if (!stopped()) { |
| 1657 | set_result(newcopy); |
| 1658 | } |
| 1659 | clear_upper_avx(); |
| 1660 | |
| 1661 | return true; |
| 1662 | } |
| 1663 | |
| 1664 | //------------------------inline_string_getCharsU-------------------------- |
| 1665 | // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) |
| 1666 | bool LibraryCallKit::inline_string_getCharsU() { |
| 1667 | if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| 1668 | return false; |
| 1669 | } |
| 1670 | |
| 1671 | // Get the arguments. |
| 1672 | Node* src = argument(0); |
| 1673 | Node* src_begin = argument(1); |
| 1674 | Node* src_end = argument(2); // exclusive offset (i < src_end) |
| 1675 | Node* dst = argument(3); |
| 1676 | Node* dst_begin = argument(4); |
| 1677 | |
| 1678 | // Check for allocation before we add nodes that would confuse |
| 1679 | // tightly_coupled_allocation() |
| 1680 | AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); |
| 1681 | |
| 1682 | // Check if a null path was taken unconditionally. |
| 1683 | src = null_check(src); |
| 1684 | dst = null_check(dst); |
| 1685 | if (stopped()) { |
| 1686 | return true; |
| 1687 | } |
| 1688 | |
| 1689 | // Get length and convert char[] offset to byte[] offset |
| 1690 | Node* length = _gvn.transform(new SubINode(src_end, src_begin)); |
| 1691 | src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); |
| 1692 | |
| 1693 | // Range checks |
| 1694 | generate_string_range_check(src, src_begin, length, true); |
| 1695 | generate_string_range_check(dst, dst_begin, length, false); |
| 1696 | if (stopped()) { |
| 1697 | return true; |
| 1698 | } |
| 1699 | |
| 1700 | if (!stopped()) { |
| 1701 | src = access_resolve(src, ACCESS_READ); |
| 1702 | dst = access_resolve(dst, ACCESS_WRITE); |
| 1703 | |
| 1704 | // Calculate starting addresses. |
| 1705 | Node* src_start = array_element_address(src, src_begin, T_BYTE); |
| 1706 | Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); |
| 1707 | |
| 1708 | // Check if array addresses are aligned to HeapWordSize |
| 1709 | const TypeInt* tsrc = gvn().type(src_begin)->is_int(); |
| 1710 | const TypeInt* tdst = gvn().type(dst_begin)->is_int(); |
| 1711 | bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && |
| 1712 | tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); |
| 1713 | |
| 1714 | // Figure out which arraycopy runtime method to call (disjoint, uninitialized). |
| 1715 | const char* copyfunc_name = "arraycopy" ; |
| 1716 | address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); |
| 1717 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 1718 | OptoRuntime::fast_arraycopy_Type(), |
| 1719 | copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, |
| 1720 | src_start, dst_start, ConvI2X(length) XTOP); |
| 1721 | // Do not let reads from the cloned object float above the arraycopy. |
| 1722 | if (alloc != NULL) { |
| 1723 | if (alloc->maybe_set_complete(&_gvn)) { |
| 1724 | // "You break it, you buy it." |
| 1725 | InitializeNode* init = alloc->initialization(); |
| 1726 | assert(init->is_complete(), "we just did this" ); |
| 1727 | init->set_complete_with_arraycopy(); |
| 1728 | assert(dst->is_CheckCastPP(), "sanity" ); |
| 1729 | assert(dst->in(0)->in(0) == init, "dest pinned" ); |
| 1730 | } |
| 1731 | // Do not let stores that initialize this object be reordered with |
| 1732 | // a subsequent store that would make this object accessible by |
| 1733 | // other threads. |
| 1734 | // Record what AllocateNode this StoreStore protects so that |
| 1735 | // escape analysis can go from the MemBarStoreStoreNode to the |
| 1736 | // AllocateNode and eliminate the MemBarStoreStoreNode if possible |
| 1737 | // based on the escape status of the AllocateNode. |
| 1738 | insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); |
| 1739 | } else { |
| 1740 | insert_mem_bar(Op_MemBarCPUOrder); |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 1745 | return true; |
| 1746 | } |
| 1747 | |
| 1748 | //----------------------inline_string_char_access---------------------------- |
| 1749 | // Store/Load char to/from byte[] array. |
| 1750 | // static void StringUTF16.putChar(byte[] val, int index, int c) |
| 1751 | // static char StringUTF16.getChar(byte[] val, int index) |
| 1752 | bool LibraryCallKit::inline_string_char_access(bool is_store) { |
| 1753 | Node* value = argument(0); |
| 1754 | Node* index = argument(1); |
| 1755 | Node* ch = is_store ? argument(2) : NULL; |
| 1756 | |
| 1757 | // This intrinsic accesses byte[] array as char[] array. Computing the offsets |
| 1758 | // correctly requires matched array shapes. |
| 1759 | assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), |
| 1760 | "sanity: byte[] and char[] bases agree" ); |
| 1761 | assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, |
| 1762 | "sanity: byte[] and char[] scales agree" ); |
| 1763 | |
| 1764 | // Bail when getChar over constants is requested: constant folding would |
| 1765 | // reject folding mismatched char access over byte[]. A normal inlining for getChar |
| 1766 | // Java method would constant fold nicely instead. |
| 1767 | if (!is_store && value->is_Con() && index->is_Con()) { |
| 1768 | return false; |
| 1769 | } |
| 1770 | |
| 1771 | value = must_be_not_null(value, true); |
| 1772 | value = access_resolve(value, is_store ? ACCESS_WRITE : ACCESS_READ); |
| 1773 | |
| 1774 | Node* adr = array_element_address(value, index, T_CHAR); |
| 1775 | if (adr->is_top()) { |
| 1776 | return false; |
| 1777 | } |
| 1778 | if (is_store) { |
| 1779 | access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); |
| 1780 | } else { |
| 1781 | ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); |
| 1782 | set_result(ch); |
| 1783 | } |
| 1784 | return true; |
| 1785 | } |
| 1786 | |
| 1787 | //--------------------------round_double_node-------------------------------- |
| 1788 | // Round a double node if necessary. |
| 1789 | Node* LibraryCallKit::round_double_node(Node* n) { |
| 1790 | if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1) |
| 1791 | n = _gvn.transform(new RoundDoubleNode(0, n)); |
| 1792 | return n; |
| 1793 | } |
| 1794 | |
| 1795 | //------------------------------inline_math----------------------------------- |
| 1796 | // public static double Math.abs(double) |
| 1797 | // public static double Math.sqrt(double) |
| 1798 | // public static double Math.log(double) |
| 1799 | // public static double Math.log10(double) |
| 1800 | bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { |
| 1801 | Node* arg = round_double_node(argument(0)); |
| 1802 | Node* n = NULL; |
| 1803 | switch (id) { |
| 1804 | case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; |
| 1805 | case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break; |
| 1806 | default: fatal_unexpected_iid(id); break; |
| 1807 | } |
| 1808 | set_result(_gvn.transform(n)); |
| 1809 | return true; |
| 1810 | } |
| 1811 | |
| 1812 | //------------------------------inline_math----------------------------------- |
| 1813 | // public static float Math.abs(float) |
| 1814 | // public static int Math.abs(int) |
| 1815 | // public static long Math.abs(long) |
| 1816 | bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { |
| 1817 | Node* arg = argument(0); |
| 1818 | Node* n = NULL; |
| 1819 | switch (id) { |
| 1820 | case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; |
| 1821 | case vmIntrinsics::_iabs: n = new AbsINode( arg); break; |
| 1822 | case vmIntrinsics::_labs: n = new AbsLNode( arg); break; |
| 1823 | default: fatal_unexpected_iid(id); break; |
| 1824 | } |
| 1825 | set_result(_gvn.transform(n)); |
| 1826 | return true; |
| 1827 | } |
| 1828 | |
| 1829 | //------------------------------runtime_math----------------------------- |
| 1830 | bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { |
| 1831 | assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), |
| 1832 | "must be (DD)D or (D)D type" ); |
| 1833 | |
| 1834 | // Inputs |
| 1835 | Node* a = round_double_node(argument(0)); |
| 1836 | Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; |
| 1837 | |
| 1838 | const TypePtr* no_memory_effects = NULL; |
| 1839 | Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, |
| 1840 | no_memory_effects, |
| 1841 | a, top(), b, b ? top() : NULL); |
| 1842 | Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); |
| 1843 | #ifdef ASSERT |
| 1844 | Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); |
| 1845 | assert(value_top == top(), "second value must be top" ); |
| 1846 | #endif |
| 1847 | |
| 1848 | set_result(value); |
| 1849 | return true; |
| 1850 | } |
| 1851 | |
| 1852 | //------------------------------inline_math_native----------------------------- |
| 1853 | bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { |
| 1854 | #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) |
| 1855 | switch (id) { |
| 1856 | // These intrinsics are not properly supported on all hardware |
| 1857 | case vmIntrinsics::_dsin: |
| 1858 | return StubRoutines::dsin() != NULL ? |
| 1859 | runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin" ) : |
| 1860 | runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN" ); |
| 1861 | case vmIntrinsics::_dcos: |
| 1862 | return StubRoutines::dcos() != NULL ? |
| 1863 | runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos" ) : |
| 1864 | runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS" ); |
| 1865 | case vmIntrinsics::_dtan: |
| 1866 | return StubRoutines::dtan() != NULL ? |
| 1867 | runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan" ) : |
| 1868 | runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN" ); |
| 1869 | case vmIntrinsics::_dlog: |
| 1870 | return StubRoutines::dlog() != NULL ? |
| 1871 | runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog" ) : |
| 1872 | runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG" ); |
| 1873 | case vmIntrinsics::_dlog10: |
| 1874 | return StubRoutines::dlog10() != NULL ? |
| 1875 | runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10" ) : |
| 1876 | runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10" ); |
| 1877 | |
| 1878 | // These intrinsics are supported on all hardware |
| 1879 | case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; |
| 1880 | case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; |
| 1881 | case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; |
| 1882 | case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; |
| 1883 | case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; |
| 1884 | |
| 1885 | case vmIntrinsics::_dexp: |
| 1886 | return StubRoutines::dexp() != NULL ? |
| 1887 | runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp" ) : |
| 1888 | runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP" ); |
| 1889 | case vmIntrinsics::_dpow: { |
| 1890 | Node* exp = round_double_node(argument(2)); |
| 1891 | const TypeD* d = _gvn.type(exp)->isa_double_constant(); |
| 1892 | if (d != NULL && d->getd() == 2.0) { |
| 1893 | // Special case: pow(x, 2.0) => x * x |
| 1894 | Node* base = round_double_node(argument(0)); |
| 1895 | set_result(_gvn.transform(new MulDNode(base, base))); |
| 1896 | return true; |
| 1897 | } |
| 1898 | return StubRoutines::dpow() != NULL ? |
| 1899 | runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow" ) : |
| 1900 | runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW" ); |
| 1901 | } |
| 1902 | #undef FN_PTR |
| 1903 | |
| 1904 | // These intrinsics are not yet correctly implemented |
| 1905 | case vmIntrinsics::_datan2: |
| 1906 | return false; |
| 1907 | |
| 1908 | default: |
| 1909 | fatal_unexpected_iid(id); |
| 1910 | return false; |
| 1911 | } |
| 1912 | } |
| 1913 | |
| 1914 | static bool is_simple_name(Node* n) { |
| 1915 | return (n->req() == 1 // constant |
| 1916 | || (n->is_Type() && n->as_Type()->type()->singleton()) |
| 1917 | || n->is_Proj() // parameter or return value |
| 1918 | || n->is_Phi() // local of some sort |
| 1919 | ); |
| 1920 | } |
| 1921 | |
| 1922 | //----------------------------inline_notify-----------------------------------* |
| 1923 | bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { |
| 1924 | const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); |
| 1925 | address func; |
| 1926 | if (id == vmIntrinsics::_notify) { |
| 1927 | func = OptoRuntime::monitor_notify_Java(); |
| 1928 | } else { |
| 1929 | func = OptoRuntime::monitor_notifyAll_Java(); |
| 1930 | } |
| 1931 | Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); |
| 1932 | make_slow_call_ex(call, env()->Throwable_klass(), false); |
| 1933 | return true; |
| 1934 | } |
| 1935 | |
| 1936 | |
| 1937 | //----------------------------inline_min_max----------------------------------- |
| 1938 | bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { |
| 1939 | set_result(generate_min_max(id, argument(0), argument(1))); |
| 1940 | return true; |
| 1941 | } |
| 1942 | |
| 1943 | void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { |
| 1944 | Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); |
| 1945 | IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); |
| 1946 | Node* fast_path = _gvn.transform( new IfFalseNode(check)); |
| 1947 | Node* slow_path = _gvn.transform( new IfTrueNode(check) ); |
| 1948 | |
| 1949 | { |
| 1950 | PreserveJVMState pjvms(this); |
| 1951 | PreserveReexecuteState preexecs(this); |
| 1952 | jvms()->set_should_reexecute(true); |
| 1953 | |
| 1954 | set_control(slow_path); |
| 1955 | set_i_o(i_o()); |
| 1956 | |
| 1957 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 1958 | Deoptimization::Action_none); |
| 1959 | } |
| 1960 | |
| 1961 | set_control(fast_path); |
| 1962 | set_result(math); |
| 1963 | } |
| 1964 | |
| 1965 | template <typename OverflowOp> |
| 1966 | bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { |
| 1967 | typedef typename OverflowOp::MathOp MathOp; |
| 1968 | |
| 1969 | MathOp* mathOp = new MathOp(arg1, arg2); |
| 1970 | Node* operation = _gvn.transform( mathOp ); |
| 1971 | Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); |
| 1972 | inline_math_mathExact(operation, ofcheck); |
| 1973 | return true; |
| 1974 | } |
| 1975 | |
| 1976 | bool LibraryCallKit::inline_math_addExactI(bool is_increment) { |
| 1977 | return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); |
| 1978 | } |
| 1979 | |
| 1980 | bool LibraryCallKit::inline_math_addExactL(bool is_increment) { |
| 1981 | return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); |
| 1982 | } |
| 1983 | |
| 1984 | bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { |
| 1985 | return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); |
| 1986 | } |
| 1987 | |
| 1988 | bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { |
| 1989 | return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); |
| 1990 | } |
| 1991 | |
| 1992 | bool LibraryCallKit::inline_math_negateExactI() { |
| 1993 | return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); |
| 1994 | } |
| 1995 | |
| 1996 | bool LibraryCallKit::inline_math_negateExactL() { |
| 1997 | return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); |
| 1998 | } |
| 1999 | |
| 2000 | bool LibraryCallKit::inline_math_multiplyExactI() { |
| 2001 | return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); |
| 2002 | } |
| 2003 | |
| 2004 | bool LibraryCallKit::inline_math_multiplyExactL() { |
| 2005 | return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); |
| 2006 | } |
| 2007 | |
| 2008 | bool LibraryCallKit::inline_math_multiplyHigh() { |
| 2009 | set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); |
| 2010 | return true; |
| 2011 | } |
| 2012 | |
| 2013 | Node* |
| 2014 | LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { |
| 2015 | // These are the candidate return value: |
| 2016 | Node* xvalue = x0; |
| 2017 | Node* yvalue = y0; |
| 2018 | |
| 2019 | if (xvalue == yvalue) { |
| 2020 | return xvalue; |
| 2021 | } |
| 2022 | |
| 2023 | bool want_max = (id == vmIntrinsics::_max); |
| 2024 | |
| 2025 | const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); |
| 2026 | const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); |
| 2027 | if (txvalue == NULL || tyvalue == NULL) return top(); |
| 2028 | // This is not really necessary, but it is consistent with a |
| 2029 | // hypothetical MaxINode::Value method: |
| 2030 | int widen = MAX2(txvalue->_widen, tyvalue->_widen); |
| 2031 | |
| 2032 | // %%% This folding logic should (ideally) be in a different place. |
| 2033 | // Some should be inside IfNode, and there to be a more reliable |
| 2034 | // transformation of ?: style patterns into cmoves. We also want |
| 2035 | // more powerful optimizations around cmove and min/max. |
| 2036 | |
| 2037 | // Try to find a dominating comparison of these guys. |
| 2038 | // It can simplify the index computation for Arrays.copyOf |
| 2039 | // and similar uses of System.arraycopy. |
| 2040 | // First, compute the normalized version of CmpI(x, y). |
| 2041 | int cmp_op = Op_CmpI; |
| 2042 | Node* xkey = xvalue; |
| 2043 | Node* ykey = yvalue; |
| 2044 | Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); |
| 2045 | if (ideal_cmpxy->is_Cmp()) { |
| 2046 | // E.g., if we have CmpI(length - offset, count), |
| 2047 | // it might idealize to CmpI(length, count + offset) |
| 2048 | cmp_op = ideal_cmpxy->Opcode(); |
| 2049 | xkey = ideal_cmpxy->in(1); |
| 2050 | ykey = ideal_cmpxy->in(2); |
| 2051 | } |
| 2052 | |
| 2053 | // Start by locating any relevant comparisons. |
| 2054 | Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; |
| 2055 | Node* cmpxy = NULL; |
| 2056 | Node* cmpyx = NULL; |
| 2057 | for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { |
| 2058 | Node* cmp = start_from->fast_out(k); |
| 2059 | if (cmp->outcnt() > 0 && // must have prior uses |
| 2060 | cmp->in(0) == NULL && // must be context-independent |
| 2061 | cmp->Opcode() == cmp_op) { // right kind of compare |
| 2062 | if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; |
| 2063 | if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | const int NCMPS = 2; |
| 2068 | Node* cmps[NCMPS] = { cmpxy, cmpyx }; |
| 2069 | int cmpn; |
| 2070 | for (cmpn = 0; cmpn < NCMPS; cmpn++) { |
| 2071 | if (cmps[cmpn] != NULL) break; // find a result |
| 2072 | } |
| 2073 | if (cmpn < NCMPS) { |
| 2074 | // Look for a dominating test that tells us the min and max. |
| 2075 | int depth = 0; // Limit search depth for speed |
| 2076 | Node* dom = control(); |
| 2077 | for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { |
| 2078 | if (++depth >= 100) break; |
| 2079 | Node* ifproj = dom; |
| 2080 | if (!ifproj->is_Proj()) continue; |
| 2081 | Node* iff = ifproj->in(0); |
| 2082 | if (!iff->is_If()) continue; |
| 2083 | Node* bol = iff->in(1); |
| 2084 | if (!bol->is_Bool()) continue; |
| 2085 | Node* cmp = bol->in(1); |
| 2086 | if (cmp == NULL) continue; |
| 2087 | for (cmpn = 0; cmpn < NCMPS; cmpn++) |
| 2088 | if (cmps[cmpn] == cmp) break; |
| 2089 | if (cmpn == NCMPS) continue; |
| 2090 | BoolTest::mask btest = bol->as_Bool()->_test._test; |
| 2091 | if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); |
| 2092 | if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); |
| 2093 | // At this point, we know that 'x btest y' is true. |
| 2094 | switch (btest) { |
| 2095 | case BoolTest::eq: |
| 2096 | // They are proven equal, so we can collapse the min/max. |
| 2097 | // Either value is the answer. Choose the simpler. |
| 2098 | if (is_simple_name(yvalue) && !is_simple_name(xvalue)) |
| 2099 | return yvalue; |
| 2100 | return xvalue; |
| 2101 | case BoolTest::lt: // x < y |
| 2102 | case BoolTest::le: // x <= y |
| 2103 | return (want_max ? yvalue : xvalue); |
| 2104 | case BoolTest::gt: // x > y |
| 2105 | case BoolTest::ge: // x >= y |
| 2106 | return (want_max ? xvalue : yvalue); |
| 2107 | default: |
| 2108 | break; |
| 2109 | } |
| 2110 | } |
| 2111 | } |
| 2112 | |
| 2113 | // We failed to find a dominating test. |
| 2114 | // Let's pick a test that might GVN with prior tests. |
| 2115 | Node* best_bol = NULL; |
| 2116 | BoolTest::mask best_btest = BoolTest::illegal; |
| 2117 | for (cmpn = 0; cmpn < NCMPS; cmpn++) { |
| 2118 | Node* cmp = cmps[cmpn]; |
| 2119 | if (cmp == NULL) continue; |
| 2120 | for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { |
| 2121 | Node* bol = cmp->fast_out(j); |
| 2122 | if (!bol->is_Bool()) continue; |
| 2123 | BoolTest::mask btest = bol->as_Bool()->_test._test; |
| 2124 | if (btest == BoolTest::eq || btest == BoolTest::ne) continue; |
| 2125 | if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); |
| 2126 | if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { |
| 2127 | best_bol = bol->as_Bool(); |
| 2128 | best_btest = btest; |
| 2129 | } |
| 2130 | } |
| 2131 | } |
| 2132 | |
| 2133 | Node* answer_if_true = NULL; |
| 2134 | Node* answer_if_false = NULL; |
| 2135 | switch (best_btest) { |
| 2136 | default: |
| 2137 | if (cmpxy == NULL) |
| 2138 | cmpxy = ideal_cmpxy; |
| 2139 | best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); |
| 2140 | // and fall through: |
| 2141 | case BoolTest::lt: // x < y |
| 2142 | case BoolTest::le: // x <= y |
| 2143 | answer_if_true = (want_max ? yvalue : xvalue); |
| 2144 | answer_if_false = (want_max ? xvalue : yvalue); |
| 2145 | break; |
| 2146 | case BoolTest::gt: // x > y |
| 2147 | case BoolTest::ge: // x >= y |
| 2148 | answer_if_true = (want_max ? xvalue : yvalue); |
| 2149 | answer_if_false = (want_max ? yvalue : xvalue); |
| 2150 | break; |
| 2151 | } |
| 2152 | |
| 2153 | jint hi, lo; |
| 2154 | if (want_max) { |
| 2155 | // We can sharpen the minimum. |
| 2156 | hi = MAX2(txvalue->_hi, tyvalue->_hi); |
| 2157 | lo = MAX2(txvalue->_lo, tyvalue->_lo); |
| 2158 | } else { |
| 2159 | // We can sharpen the maximum. |
| 2160 | hi = MIN2(txvalue->_hi, tyvalue->_hi); |
| 2161 | lo = MIN2(txvalue->_lo, tyvalue->_lo); |
| 2162 | } |
| 2163 | |
| 2164 | // Use a flow-free graph structure, to avoid creating excess control edges |
| 2165 | // which could hinder other optimizations. |
| 2166 | // Since Math.min/max is often used with arraycopy, we want |
| 2167 | // tightly_coupled_allocation to be able to see beyond min/max expressions. |
| 2168 | Node* cmov = CMoveNode::make(NULL, best_bol, |
| 2169 | answer_if_false, answer_if_true, |
| 2170 | TypeInt::make(lo, hi, widen)); |
| 2171 | |
| 2172 | return _gvn.transform(cmov); |
| 2173 | |
| 2174 | /* |
| 2175 | // This is not as desirable as it may seem, since Min and Max |
| 2176 | // nodes do not have a full set of optimizations. |
| 2177 | // And they would interfere, anyway, with 'if' optimizations |
| 2178 | // and with CMoveI canonical forms. |
| 2179 | switch (id) { |
| 2180 | case vmIntrinsics::_min: |
| 2181 | result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; |
| 2182 | case vmIntrinsics::_max: |
| 2183 | result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; |
| 2184 | default: |
| 2185 | ShouldNotReachHere(); |
| 2186 | } |
| 2187 | */ |
| 2188 | } |
| 2189 | |
| 2190 | inline int |
| 2191 | LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { |
| 2192 | const TypePtr* base_type = TypePtr::NULL_PTR; |
| 2193 | if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); |
| 2194 | if (base_type == NULL) { |
| 2195 | // Unknown type. |
| 2196 | return Type::AnyPtr; |
| 2197 | } else if (base_type == TypePtr::NULL_PTR) { |
| 2198 | // Since this is a NULL+long form, we have to switch to a rawptr. |
| 2199 | base = _gvn.transform(new CastX2PNode(offset)); |
| 2200 | offset = MakeConX(0); |
| 2201 | return Type::RawPtr; |
| 2202 | } else if (base_type->base() == Type::RawPtr) { |
| 2203 | return Type::RawPtr; |
| 2204 | } else if (base_type->isa_oopptr()) { |
| 2205 | // Base is never null => always a heap address. |
| 2206 | if (!TypePtr::NULL_PTR->higher_equal(base_type)) { |
| 2207 | return Type::OopPtr; |
| 2208 | } |
| 2209 | // Offset is small => always a heap address. |
| 2210 | const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); |
| 2211 | if (offset_type != NULL && |
| 2212 | base_type->offset() == 0 && // (should always be?) |
| 2213 | offset_type->_lo >= 0 && |
| 2214 | !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { |
| 2215 | return Type::OopPtr; |
| 2216 | } else if (type == T_OBJECT) { |
| 2217 | // off heap access to an oop doesn't make any sense. Has to be on |
| 2218 | // heap. |
| 2219 | return Type::OopPtr; |
| 2220 | } |
| 2221 | // Otherwise, it might either be oop+off or NULL+addr. |
| 2222 | return Type::AnyPtr; |
| 2223 | } else { |
| 2224 | // No information: |
| 2225 | return Type::AnyPtr; |
| 2226 | } |
| 2227 | } |
| 2228 | |
| 2229 | inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) { |
| 2230 | Node* uncasted_base = base; |
| 2231 | int kind = classify_unsafe_addr(uncasted_base, offset, type); |
| 2232 | if (kind == Type::RawPtr) { |
| 2233 | return basic_plus_adr(top(), uncasted_base, offset); |
| 2234 | } else if (kind == Type::AnyPtr) { |
| 2235 | assert(base == uncasted_base, "unexpected base change" ); |
| 2236 | if (can_cast) { |
| 2237 | if (!_gvn.type(base)->speculative_maybe_null() && |
| 2238 | !too_many_traps(Deoptimization::Reason_speculate_null_check)) { |
| 2239 | // According to profiling, this access is always on |
| 2240 | // heap. Casting the base to not null and thus avoiding membars |
| 2241 | // around the access should allow better optimizations |
| 2242 | Node* null_ctl = top(); |
| 2243 | base = null_check_oop(base, &null_ctl, true, true, true); |
| 2244 | assert(null_ctl->is_top(), "no null control here" ); |
| 2245 | return basic_plus_adr(base, offset); |
| 2246 | } else if (_gvn.type(base)->speculative_always_null() && |
| 2247 | !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { |
| 2248 | // According to profiling, this access is always off |
| 2249 | // heap. |
| 2250 | base = null_assert(base); |
| 2251 | Node* raw_base = _gvn.transform(new CastX2PNode(offset)); |
| 2252 | offset = MakeConX(0); |
| 2253 | return basic_plus_adr(top(), raw_base, offset); |
| 2254 | } |
| 2255 | } |
| 2256 | // We don't know if it's an on heap or off heap access. Fall back |
| 2257 | // to raw memory access. |
| 2258 | base = access_resolve(base, decorators); |
| 2259 | Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); |
| 2260 | return basic_plus_adr(top(), raw, offset); |
| 2261 | } else { |
| 2262 | assert(base == uncasted_base, "unexpected base change" ); |
| 2263 | // We know it's an on heap access so base can't be null |
| 2264 | if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { |
| 2265 | base = must_be_not_null(base, true); |
| 2266 | } |
| 2267 | return basic_plus_adr(base, offset); |
| 2268 | } |
| 2269 | } |
| 2270 | |
| 2271 | //--------------------------inline_number_methods----------------------------- |
| 2272 | // inline int Integer.numberOfLeadingZeros(int) |
| 2273 | // inline int Long.numberOfLeadingZeros(long) |
| 2274 | // |
| 2275 | // inline int Integer.numberOfTrailingZeros(int) |
| 2276 | // inline int Long.numberOfTrailingZeros(long) |
| 2277 | // |
| 2278 | // inline int Integer.bitCount(int) |
| 2279 | // inline int Long.bitCount(long) |
| 2280 | // |
| 2281 | // inline char Character.reverseBytes(char) |
| 2282 | // inline short Short.reverseBytes(short) |
| 2283 | // inline int Integer.reverseBytes(int) |
| 2284 | // inline long Long.reverseBytes(long) |
| 2285 | bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { |
| 2286 | Node* arg = argument(0); |
| 2287 | Node* n = NULL; |
| 2288 | switch (id) { |
| 2289 | case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; |
| 2290 | case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; |
| 2291 | case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; |
| 2292 | case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; |
| 2293 | case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; |
| 2294 | case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; |
| 2295 | case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; |
| 2296 | case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; |
| 2297 | case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; |
| 2298 | case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; |
| 2299 | default: fatal_unexpected_iid(id); break; |
| 2300 | } |
| 2301 | set_result(_gvn.transform(n)); |
| 2302 | return true; |
| 2303 | } |
| 2304 | |
| 2305 | //----------------------------inline_unsafe_access---------------------------- |
| 2306 | |
| 2307 | const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { |
| 2308 | // Attempt to infer a sharper value type from the offset and base type. |
| 2309 | ciKlass* sharpened_klass = NULL; |
| 2310 | |
| 2311 | // See if it is an instance field, with an object type. |
| 2312 | if (alias_type->field() != NULL) { |
| 2313 | if (alias_type->field()->type()->is_klass()) { |
| 2314 | sharpened_klass = alias_type->field()->type()->as_klass(); |
| 2315 | } |
| 2316 | } |
| 2317 | |
| 2318 | // See if it is a narrow oop array. |
| 2319 | if (adr_type->isa_aryptr()) { |
| 2320 | if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { |
| 2321 | const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); |
| 2322 | if (elem_type != NULL) { |
| 2323 | sharpened_klass = elem_type->klass(); |
| 2324 | } |
| 2325 | } |
| 2326 | } |
| 2327 | |
| 2328 | // The sharpened class might be unloaded if there is no class loader |
| 2329 | // contraint in place. |
| 2330 | if (sharpened_klass != NULL && sharpened_klass->is_loaded()) { |
| 2331 | const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); |
| 2332 | |
| 2333 | #ifndef PRODUCT |
| 2334 | if (C->print_intrinsics() || C->print_inlining()) { |
| 2335 | tty->print(" from base type: " ); adr_type->dump(); tty->cr(); |
| 2336 | tty->print(" sharpened value: " ); tjp->dump(); tty->cr(); |
| 2337 | } |
| 2338 | #endif |
| 2339 | // Sharpen the value type. |
| 2340 | return tjp; |
| 2341 | } |
| 2342 | return NULL; |
| 2343 | } |
| 2344 | |
| 2345 | DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { |
| 2346 | switch (kind) { |
| 2347 | case Relaxed: |
| 2348 | return MO_UNORDERED; |
| 2349 | case Opaque: |
| 2350 | return MO_RELAXED; |
| 2351 | case Acquire: |
| 2352 | return MO_ACQUIRE; |
| 2353 | case Release: |
| 2354 | return MO_RELEASE; |
| 2355 | case Volatile: |
| 2356 | return MO_SEQ_CST; |
| 2357 | default: |
| 2358 | ShouldNotReachHere(); |
| 2359 | return 0; |
| 2360 | } |
| 2361 | } |
| 2362 | |
| 2363 | bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { |
| 2364 | if (callee()->is_static()) return false; // caller must have the capability! |
| 2365 | DecoratorSet decorators = C2_UNSAFE_ACCESS; |
| 2366 | guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads" ); |
| 2367 | guarantee( is_store || kind != Release, "Release accesses can be produced only for stores" ); |
| 2368 | assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type" ); |
| 2369 | |
| 2370 | if (type == T_OBJECT || type == T_ARRAY) { |
| 2371 | decorators |= ON_UNKNOWN_OOP_REF; |
| 2372 | } |
| 2373 | |
| 2374 | if (unaligned) { |
| 2375 | decorators |= C2_UNALIGNED; |
| 2376 | } |
| 2377 | |
| 2378 | #ifndef PRODUCT |
| 2379 | { |
| 2380 | ResourceMark rm; |
| 2381 | // Check the signatures. |
| 2382 | ciSignature* sig = callee()->signature(); |
| 2383 | #ifdef ASSERT |
| 2384 | if (!is_store) { |
| 2385 | // Object getReference(Object base, int/long offset), etc. |
| 2386 | BasicType rtype = sig->return_type()->basic_type(); |
| 2387 | assert(rtype == type, "getter must return the expected value" ); |
| 2388 | assert(sig->count() == 2, "oop getter has 2 arguments" ); |
| 2389 | assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object" ); |
| 2390 | assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct" ); |
| 2391 | } else { |
| 2392 | // void putReference(Object base, int/long offset, Object x), etc. |
| 2393 | assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value" ); |
| 2394 | assert(sig->count() == 3, "oop putter has 3 arguments" ); |
| 2395 | assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object" ); |
| 2396 | assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct" ); |
| 2397 | BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); |
| 2398 | assert(vtype == type, "putter must accept the expected value" ); |
| 2399 | } |
| 2400 | #endif // ASSERT |
| 2401 | } |
| 2402 | #endif //PRODUCT |
| 2403 | |
| 2404 | C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". |
| 2405 | |
| 2406 | Node* receiver = argument(0); // type: oop |
| 2407 | |
| 2408 | // Build address expression. |
| 2409 | Node* adr; |
| 2410 | Node* heap_base_oop = top(); |
| 2411 | Node* offset = top(); |
| 2412 | Node* val; |
| 2413 | |
| 2414 | // The base is either a Java object or a value produced by Unsafe.staticFieldBase |
| 2415 | Node* base = argument(1); // type: oop |
| 2416 | // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset |
| 2417 | offset = argument(2); // type: long |
| 2418 | // We currently rely on the cookies produced by Unsafe.xxxFieldOffset |
| 2419 | // to be plain byte offsets, which are also the same as those accepted |
| 2420 | // by oopDesc::field_addr. |
| 2421 | assert(Unsafe_field_offset_to_byte_offset(11) == 11, |
| 2422 | "fieldOffset must be byte-scaled" ); |
| 2423 | // 32-bit machines ignore the high half! |
| 2424 | offset = ConvL2X(offset); |
| 2425 | adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed); |
| 2426 | |
| 2427 | if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) { |
| 2428 | heap_base_oop = base; |
| 2429 | } else if (type == T_OBJECT) { |
| 2430 | return false; // off-heap oop accesses are not supported |
| 2431 | } |
| 2432 | |
| 2433 | // Can base be NULL? Otherwise, always on-heap access. |
| 2434 | bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); |
| 2435 | |
| 2436 | if (!can_access_non_heap) { |
| 2437 | decorators |= IN_HEAP; |
| 2438 | } |
| 2439 | |
| 2440 | val = is_store ? argument(4) : NULL; |
| 2441 | |
| 2442 | const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); |
| 2443 | if (adr_type == TypePtr::NULL_PTR) { |
| 2444 | return false; // off-heap access with zero address |
| 2445 | } |
| 2446 | |
| 2447 | // Try to categorize the address. |
| 2448 | Compile::AliasType* alias_type = C->alias_type(adr_type); |
| 2449 | assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here" ); |
| 2450 | |
| 2451 | if (alias_type->adr_type() == TypeInstPtr::KLASS || |
| 2452 | alias_type->adr_type() == TypeAryPtr::RANGE) { |
| 2453 | return false; // not supported |
| 2454 | } |
| 2455 | |
| 2456 | bool mismatched = false; |
| 2457 | BasicType bt = alias_type->basic_type(); |
| 2458 | if (bt != T_ILLEGAL) { |
| 2459 | assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access" ); |
| 2460 | if (bt == T_BYTE && adr_type->isa_aryptr()) { |
| 2461 | // Alias type doesn't differentiate between byte[] and boolean[]). |
| 2462 | // Use address type to get the element type. |
| 2463 | bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); |
| 2464 | } |
| 2465 | if (bt == T_ARRAY || bt == T_NARROWOOP) { |
| 2466 | // accessing an array field with getReference is not a mismatch |
| 2467 | bt = T_OBJECT; |
| 2468 | } |
| 2469 | if ((bt == T_OBJECT) != (type == T_OBJECT)) { |
| 2470 | // Don't intrinsify mismatched object accesses |
| 2471 | return false; |
| 2472 | } |
| 2473 | mismatched = (bt != type); |
| 2474 | } else if (alias_type->adr_type()->isa_oopptr()) { |
| 2475 | mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched |
| 2476 | } |
| 2477 | |
| 2478 | assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched" ); |
| 2479 | |
| 2480 | if (mismatched) { |
| 2481 | decorators |= C2_MISMATCHED; |
| 2482 | } |
| 2483 | |
| 2484 | // First guess at the value type. |
| 2485 | const Type *value_type = Type::get_const_basic_type(type); |
| 2486 | |
| 2487 | // Figure out the memory ordering. |
| 2488 | decorators |= mo_decorator_for_access_kind(kind); |
| 2489 | |
| 2490 | if (!is_store && type == T_OBJECT) { |
| 2491 | const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); |
| 2492 | if (tjp != NULL) { |
| 2493 | value_type = tjp; |
| 2494 | } |
| 2495 | } |
| 2496 | |
| 2497 | receiver = null_check(receiver); |
| 2498 | if (stopped()) { |
| 2499 | return true; |
| 2500 | } |
| 2501 | // Heap pointers get a null-check from the interpreter, |
| 2502 | // as a courtesy. However, this is not guaranteed by Unsafe, |
| 2503 | // and it is not possible to fully distinguish unintended nulls |
| 2504 | // from intended ones in this API. |
| 2505 | |
| 2506 | if (!is_store) { |
| 2507 | Node* p = NULL; |
| 2508 | // Try to constant fold a load from a constant field |
| 2509 | ciField* field = alias_type->field(); |
| 2510 | if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) { |
| 2511 | // final or stable field |
| 2512 | p = make_constant_from_field(field, heap_base_oop); |
| 2513 | } |
| 2514 | |
| 2515 | if (p == NULL) { // Could not constant fold the load |
| 2516 | p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); |
| 2517 | // Normalize the value returned by getBoolean in the following cases |
| 2518 | if (type == T_BOOLEAN && |
| 2519 | (mismatched || |
| 2520 | heap_base_oop == top() || // - heap_base_oop is NULL or |
| 2521 | (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL |
| 2522 | // and the unsafe access is made to large offset |
| 2523 | // (i.e., larger than the maximum offset necessary for any |
| 2524 | // field access) |
| 2525 | ) { |
| 2526 | IdealKit ideal = IdealKit(this); |
| 2527 | #define __ ideal. |
| 2528 | IdealVariable normalized_result(ideal); |
| 2529 | __ declarations_done(); |
| 2530 | __ set(normalized_result, p); |
| 2531 | __ if_then(p, BoolTest::ne, ideal.ConI(0)); |
| 2532 | __ set(normalized_result, ideal.ConI(1)); |
| 2533 | ideal.end_if(); |
| 2534 | final_sync(ideal); |
| 2535 | p = __ value(normalized_result); |
| 2536 | #undef __ |
| 2537 | } |
| 2538 | } |
| 2539 | if (type == T_ADDRESS) { |
| 2540 | p = gvn().transform(new CastP2XNode(NULL, p)); |
| 2541 | p = ConvX2UL(p); |
| 2542 | } |
| 2543 | // The load node has the control of the preceding MemBarCPUOrder. All |
| 2544 | // following nodes will have the control of the MemBarCPUOrder inserted at |
| 2545 | // the end of this method. So, pushing the load onto the stack at a later |
| 2546 | // point is fine. |
| 2547 | set_result(p); |
| 2548 | } else { |
| 2549 | if (bt == T_ADDRESS) { |
| 2550 | // Repackage the long as a pointer. |
| 2551 | val = ConvL2X(val); |
| 2552 | val = gvn().transform(new CastX2PNode(val)); |
| 2553 | } |
| 2554 | access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); |
| 2555 | } |
| 2556 | |
| 2557 | return true; |
| 2558 | } |
| 2559 | |
| 2560 | //----------------------------inline_unsafe_load_store---------------------------- |
| 2561 | // This method serves a couple of different customers (depending on LoadStoreKind): |
| 2562 | // |
| 2563 | // LS_cmp_swap: |
| 2564 | // |
| 2565 | // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); |
| 2566 | // boolean compareAndSetInt( Object o, long offset, int expected, int x); |
| 2567 | // boolean compareAndSetLong( Object o, long offset, long expected, long x); |
| 2568 | // |
| 2569 | // LS_cmp_swap_weak: |
| 2570 | // |
| 2571 | // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); |
| 2572 | // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); |
| 2573 | // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); |
| 2574 | // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); |
| 2575 | // |
| 2576 | // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); |
| 2577 | // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); |
| 2578 | // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); |
| 2579 | // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); |
| 2580 | // |
| 2581 | // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); |
| 2582 | // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); |
| 2583 | // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); |
| 2584 | // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); |
| 2585 | // |
| 2586 | // LS_cmp_exchange: |
| 2587 | // |
| 2588 | // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); |
| 2589 | // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); |
| 2590 | // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); |
| 2591 | // |
| 2592 | // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); |
| 2593 | // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); |
| 2594 | // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); |
| 2595 | // |
| 2596 | // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); |
| 2597 | // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); |
| 2598 | // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); |
| 2599 | // |
| 2600 | // LS_get_add: |
| 2601 | // |
| 2602 | // int getAndAddInt( Object o, long offset, int delta) |
| 2603 | // long getAndAddLong(Object o, long offset, long delta) |
| 2604 | // |
| 2605 | // LS_get_set: |
| 2606 | // |
| 2607 | // int getAndSet(Object o, long offset, int newValue) |
| 2608 | // long getAndSet(Object o, long offset, long newValue) |
| 2609 | // Object getAndSet(Object o, long offset, Object newValue) |
| 2610 | // |
| 2611 | bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { |
| 2612 | // This basic scheme here is the same as inline_unsafe_access, but |
| 2613 | // differs in enough details that combining them would make the code |
| 2614 | // overly confusing. (This is a true fact! I originally combined |
| 2615 | // them, but even I was confused by it!) As much code/comments as |
| 2616 | // possible are retained from inline_unsafe_access though to make |
| 2617 | // the correspondences clearer. - dl |
| 2618 | |
| 2619 | if (callee()->is_static()) return false; // caller must have the capability! |
| 2620 | |
| 2621 | DecoratorSet decorators = C2_UNSAFE_ACCESS; |
| 2622 | decorators |= mo_decorator_for_access_kind(access_kind); |
| 2623 | |
| 2624 | #ifndef PRODUCT |
| 2625 | BasicType rtype; |
| 2626 | { |
| 2627 | ResourceMark rm; |
| 2628 | // Check the signatures. |
| 2629 | ciSignature* sig = callee()->signature(); |
| 2630 | rtype = sig->return_type()->basic_type(); |
| 2631 | switch(kind) { |
| 2632 | case LS_get_add: |
| 2633 | case LS_get_set: { |
| 2634 | // Check the signatures. |
| 2635 | #ifdef ASSERT |
| 2636 | assert(rtype == type, "get and set must return the expected type" ); |
| 2637 | assert(sig->count() == 3, "get and set has 3 arguments" ); |
| 2638 | assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object" ); |
| 2639 | assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long" ); |
| 2640 | assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta" ); |
| 2641 | assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation" ); |
| 2642 | #endif // ASSERT |
| 2643 | break; |
| 2644 | } |
| 2645 | case LS_cmp_swap: |
| 2646 | case LS_cmp_swap_weak: { |
| 2647 | // Check the signatures. |
| 2648 | #ifdef ASSERT |
| 2649 | assert(rtype == T_BOOLEAN, "CAS must return boolean" ); |
| 2650 | assert(sig->count() == 4, "CAS has 4 arguments" ); |
| 2651 | assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object" ); |
| 2652 | assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long" ); |
| 2653 | #endif // ASSERT |
| 2654 | break; |
| 2655 | } |
| 2656 | case LS_cmp_exchange: { |
| 2657 | // Check the signatures. |
| 2658 | #ifdef ASSERT |
| 2659 | assert(rtype == type, "CAS must return the expected type" ); |
| 2660 | assert(sig->count() == 4, "CAS has 4 arguments" ); |
| 2661 | assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object" ); |
| 2662 | assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long" ); |
| 2663 | #endif // ASSERT |
| 2664 | break; |
| 2665 | } |
| 2666 | default: |
| 2667 | ShouldNotReachHere(); |
| 2668 | } |
| 2669 | } |
| 2670 | #endif //PRODUCT |
| 2671 | |
| 2672 | C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". |
| 2673 | |
| 2674 | // Get arguments: |
| 2675 | Node* receiver = NULL; |
| 2676 | Node* base = NULL; |
| 2677 | Node* offset = NULL; |
| 2678 | Node* oldval = NULL; |
| 2679 | Node* newval = NULL; |
| 2680 | switch(kind) { |
| 2681 | case LS_cmp_swap: |
| 2682 | case LS_cmp_swap_weak: |
| 2683 | case LS_cmp_exchange: { |
| 2684 | const bool two_slot_type = type2size[type] == 2; |
| 2685 | receiver = argument(0); // type: oop |
| 2686 | base = argument(1); // type: oop |
| 2687 | offset = argument(2); // type: long |
| 2688 | oldval = argument(4); // type: oop, int, or long |
| 2689 | newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long |
| 2690 | break; |
| 2691 | } |
| 2692 | case LS_get_add: |
| 2693 | case LS_get_set: { |
| 2694 | receiver = argument(0); // type: oop |
| 2695 | base = argument(1); // type: oop |
| 2696 | offset = argument(2); // type: long |
| 2697 | oldval = NULL; |
| 2698 | newval = argument(4); // type: oop, int, or long |
| 2699 | break; |
| 2700 | } |
| 2701 | default: |
| 2702 | ShouldNotReachHere(); |
| 2703 | } |
| 2704 | |
| 2705 | // Build field offset expression. |
| 2706 | // We currently rely on the cookies produced by Unsafe.xxxFieldOffset |
| 2707 | // to be plain byte offsets, which are also the same as those accepted |
| 2708 | // by oopDesc::field_addr. |
| 2709 | assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled" ); |
| 2710 | // 32-bit machines ignore the high half of long offsets |
| 2711 | offset = ConvL2X(offset); |
| 2712 | Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false); |
| 2713 | const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); |
| 2714 | |
| 2715 | Compile::AliasType* alias_type = C->alias_type(adr_type); |
| 2716 | BasicType bt = alias_type->basic_type(); |
| 2717 | if (bt != T_ILLEGAL && |
| 2718 | ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) { |
| 2719 | // Don't intrinsify mismatched object accesses. |
| 2720 | return false; |
| 2721 | } |
| 2722 | |
| 2723 | // For CAS, unlike inline_unsafe_access, there seems no point in |
| 2724 | // trying to refine types. Just use the coarse types here. |
| 2725 | assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here" ); |
| 2726 | const Type *value_type = Type::get_const_basic_type(type); |
| 2727 | |
| 2728 | switch (kind) { |
| 2729 | case LS_get_set: |
| 2730 | case LS_cmp_exchange: { |
| 2731 | if (type == T_OBJECT) { |
| 2732 | const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); |
| 2733 | if (tjp != NULL) { |
| 2734 | value_type = tjp; |
| 2735 | } |
| 2736 | } |
| 2737 | break; |
| 2738 | } |
| 2739 | case LS_cmp_swap: |
| 2740 | case LS_cmp_swap_weak: |
| 2741 | case LS_get_add: |
| 2742 | break; |
| 2743 | default: |
| 2744 | ShouldNotReachHere(); |
| 2745 | } |
| 2746 | |
| 2747 | // Null check receiver. |
| 2748 | receiver = null_check(receiver); |
| 2749 | if (stopped()) { |
| 2750 | return true; |
| 2751 | } |
| 2752 | |
| 2753 | int alias_idx = C->get_alias_index(adr_type); |
| 2754 | |
| 2755 | if (type == T_OBJECT || type == T_ARRAY) { |
| 2756 | decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; |
| 2757 | |
| 2758 | // Transformation of a value which could be NULL pointer (CastPP #NULL) |
| 2759 | // could be delayed during Parse (for example, in adjust_map_after_if()). |
| 2760 | // Execute transformation here to avoid barrier generation in such case. |
| 2761 | if (_gvn.type(newval) == TypePtr::NULL_PTR) |
| 2762 | newval = _gvn.makecon(TypePtr::NULL_PTR); |
| 2763 | |
| 2764 | if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) { |
| 2765 | // Refine the value to a null constant, when it is known to be null |
| 2766 | oldval = _gvn.makecon(TypePtr::NULL_PTR); |
| 2767 | } |
| 2768 | } |
| 2769 | |
| 2770 | Node* result = NULL; |
| 2771 | switch (kind) { |
| 2772 | case LS_cmp_exchange: { |
| 2773 | result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, |
| 2774 | oldval, newval, value_type, type, decorators); |
| 2775 | break; |
| 2776 | } |
| 2777 | case LS_cmp_swap_weak: |
| 2778 | decorators |= C2_WEAK_CMPXCHG; |
| 2779 | case LS_cmp_swap: { |
| 2780 | result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, |
| 2781 | oldval, newval, value_type, type, decorators); |
| 2782 | break; |
| 2783 | } |
| 2784 | case LS_get_set: { |
| 2785 | result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, |
| 2786 | newval, value_type, type, decorators); |
| 2787 | break; |
| 2788 | } |
| 2789 | case LS_get_add: { |
| 2790 | result = access_atomic_add_at(base, adr, adr_type, alias_idx, |
| 2791 | newval, value_type, type, decorators); |
| 2792 | break; |
| 2793 | } |
| 2794 | default: |
| 2795 | ShouldNotReachHere(); |
| 2796 | } |
| 2797 | |
| 2798 | assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match" ); |
| 2799 | set_result(result); |
| 2800 | return true; |
| 2801 | } |
| 2802 | |
| 2803 | bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { |
| 2804 | // Regardless of form, don't allow previous ld/st to move down, |
| 2805 | // then issue acquire, release, or volatile mem_bar. |
| 2806 | insert_mem_bar(Op_MemBarCPUOrder); |
| 2807 | switch(id) { |
| 2808 | case vmIntrinsics::_loadFence: |
| 2809 | insert_mem_bar(Op_LoadFence); |
| 2810 | return true; |
| 2811 | case vmIntrinsics::_storeFence: |
| 2812 | insert_mem_bar(Op_StoreFence); |
| 2813 | return true; |
| 2814 | case vmIntrinsics::_fullFence: |
| 2815 | insert_mem_bar(Op_MemBarVolatile); |
| 2816 | return true; |
| 2817 | default: |
| 2818 | fatal_unexpected_iid(id); |
| 2819 | return false; |
| 2820 | } |
| 2821 | } |
| 2822 | |
| 2823 | bool LibraryCallKit::inline_onspinwait() { |
| 2824 | insert_mem_bar(Op_OnSpinWait); |
| 2825 | return true; |
| 2826 | } |
| 2827 | |
| 2828 | bool LibraryCallKit::klass_needs_init_guard(Node* kls) { |
| 2829 | if (!kls->is_Con()) { |
| 2830 | return true; |
| 2831 | } |
| 2832 | const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr(); |
| 2833 | if (klsptr == NULL) { |
| 2834 | return true; |
| 2835 | } |
| 2836 | ciInstanceKlass* ik = klsptr->klass()->as_instance_klass(); |
| 2837 | // don't need a guard for a klass that is already initialized |
| 2838 | return !ik->is_initialized(); |
| 2839 | } |
| 2840 | |
| 2841 | //----------------------------inline_unsafe_allocate--------------------------- |
| 2842 | // public native Object Unsafe.allocateInstance(Class<?> cls); |
| 2843 | bool LibraryCallKit::inline_unsafe_allocate() { |
| 2844 | if (callee()->is_static()) return false; // caller must have the capability! |
| 2845 | |
| 2846 | null_check_receiver(); // null-check, then ignore |
| 2847 | Node* cls = null_check(argument(1)); |
| 2848 | if (stopped()) return true; |
| 2849 | |
| 2850 | Node* kls = load_klass_from_mirror(cls, false, NULL, 0); |
| 2851 | kls = null_check(kls); |
| 2852 | if (stopped()) return true; // argument was like int.class |
| 2853 | |
| 2854 | Node* test = NULL; |
| 2855 | if (LibraryCallKit::klass_needs_init_guard(kls)) { |
| 2856 | // Note: The argument might still be an illegal value like |
| 2857 | // Serializable.class or Object[].class. The runtime will handle it. |
| 2858 | // But we must make an explicit check for initialization. |
| 2859 | Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); |
| 2860 | // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler |
| 2861 | // can generate code to load it as unsigned byte. |
| 2862 | Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); |
| 2863 | Node* bits = intcon(InstanceKlass::fully_initialized); |
| 2864 | test = _gvn.transform(new SubINode(inst, bits)); |
| 2865 | // The 'test' is non-zero if we need to take a slow path. |
| 2866 | } |
| 2867 | |
| 2868 | Node* obj = new_instance(kls, test); |
| 2869 | set_result(obj); |
| 2870 | return true; |
| 2871 | } |
| 2872 | |
| 2873 | //------------------------inline_native_time_funcs-------------- |
| 2874 | // inline code for System.currentTimeMillis() and System.nanoTime() |
| 2875 | // these have the same type and signature |
| 2876 | bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { |
| 2877 | const TypeFunc* tf = OptoRuntime::void_long_Type(); |
| 2878 | const TypePtr* no_memory_effects = NULL; |
| 2879 | Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); |
| 2880 | Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); |
| 2881 | #ifdef ASSERT |
| 2882 | Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); |
| 2883 | assert(value_top == top(), "second value must be top" ); |
| 2884 | #endif |
| 2885 | set_result(value); |
| 2886 | return true; |
| 2887 | } |
| 2888 | |
| 2889 | #ifdef JFR_HAVE_INTRINSICS |
| 2890 | |
| 2891 | /* |
| 2892 | * oop -> myklass |
| 2893 | * myklass->trace_id |= USED |
| 2894 | * return myklass->trace_id & ~0x3 |
| 2895 | */ |
| 2896 | bool LibraryCallKit::inline_native_classID() { |
| 2897 | Node* cls = null_check(argument(0), T_OBJECT); |
| 2898 | Node* kls = load_klass_from_mirror(cls, false, NULL, 0); |
| 2899 | kls = null_check(kls, T_OBJECT); |
| 2900 | |
| 2901 | ByteSize offset = KLASS_TRACE_ID_OFFSET; |
| 2902 | Node* insp = basic_plus_adr(kls, in_bytes(offset)); |
| 2903 | Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered); |
| 2904 | |
| 2905 | Node* clsused = longcon(0x01l); // set the class bit |
| 2906 | Node* orl = _gvn.transform(new OrLNode(tvalue, clsused)); |
| 2907 | const TypePtr *adr_type = _gvn.type(insp)->isa_ptr(); |
| 2908 | store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered); |
| 2909 | |
| 2910 | #ifdef TRACE_ID_META_BITS |
| 2911 | Node* mbits = longcon(~TRACE_ID_META_BITS); |
| 2912 | tvalue = _gvn.transform(new AndLNode(tvalue, mbits)); |
| 2913 | #endif |
| 2914 | #ifdef TRACE_ID_SHIFT |
| 2915 | Node* cbits = intcon(TRACE_ID_SHIFT); |
| 2916 | tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits)); |
| 2917 | #endif |
| 2918 | |
| 2919 | set_result(tvalue); |
| 2920 | return true; |
| 2921 | |
| 2922 | } |
| 2923 | |
| 2924 | bool LibraryCallKit::inline_native_getEventWriter() { |
| 2925 | Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); |
| 2926 | |
| 2927 | Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, |
| 2928 | in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); |
| 2929 | |
| 2930 | Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); |
| 2931 | |
| 2932 | Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) ); |
| 2933 | Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) ); |
| 2934 | |
| 2935 | IfNode* iff_jobj_null = |
| 2936 | create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN); |
| 2937 | |
| 2938 | enum { _normal_path = 1, |
| 2939 | _null_path = 2, |
| 2940 | PATH_LIMIT }; |
| 2941 | |
| 2942 | RegionNode* result_rgn = new RegionNode(PATH_LIMIT); |
| 2943 | PhiNode* result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); |
| 2944 | |
| 2945 | Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null)); |
| 2946 | result_rgn->init_req(_null_path, jobj_is_null); |
| 2947 | result_val->init_req(_null_path, null()); |
| 2948 | |
| 2949 | Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null)); |
| 2950 | set_control(jobj_is_not_null); |
| 2951 | Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT, |
| 2952 | IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); |
| 2953 | result_rgn->init_req(_normal_path, control()); |
| 2954 | result_val->init_req(_normal_path, res); |
| 2955 | |
| 2956 | set_result(result_rgn, result_val); |
| 2957 | |
| 2958 | return true; |
| 2959 | } |
| 2960 | |
| 2961 | #endif // JFR_HAVE_INTRINSICS |
| 2962 | |
| 2963 | //------------------------inline_native_currentThread------------------ |
| 2964 | bool LibraryCallKit::inline_native_currentThread() { |
| 2965 | Node* junk = NULL; |
| 2966 | set_result(generate_current_thread(junk)); |
| 2967 | return true; |
| 2968 | } |
| 2969 | |
| 2970 | //------------------------inline_native_isInterrupted------------------ |
| 2971 | // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted); |
| 2972 | bool LibraryCallKit::inline_native_isInterrupted() { |
| 2973 | // Add a fast path to t.isInterrupted(clear_int): |
| 2974 | // (t == Thread.current() && |
| 2975 | // (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int))) |
| 2976 | // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int) |
| 2977 | // So, in the common case that the interrupt bit is false, |
| 2978 | // we avoid making a call into the VM. Even if the interrupt bit |
| 2979 | // is true, if the clear_int argument is false, we avoid the VM call. |
| 2980 | // However, if the receiver is not currentThread, we must call the VM, |
| 2981 | // because there must be some locking done around the operation. |
| 2982 | |
| 2983 | // We only go to the fast case code if we pass two guards. |
| 2984 | // Paths which do not pass are accumulated in the slow_region. |
| 2985 | |
| 2986 | enum { |
| 2987 | no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted |
| 2988 | no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int |
| 2989 | slow_result_path = 3, // slow path: t.isInterrupted(clear_int) |
| 2990 | PATH_LIMIT |
| 2991 | }; |
| 2992 | |
| 2993 | // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag |
| 2994 | // out of the function. |
| 2995 | insert_mem_bar(Op_MemBarCPUOrder); |
| 2996 | |
| 2997 | RegionNode* result_rgn = new RegionNode(PATH_LIMIT); |
| 2998 | PhiNode* result_val = new PhiNode(result_rgn, TypeInt::BOOL); |
| 2999 | |
| 3000 | RegionNode* slow_region = new RegionNode(1); |
| 3001 | record_for_igvn(slow_region); |
| 3002 | |
| 3003 | // (a) Receiving thread must be the current thread. |
| 3004 | Node* rec_thr = argument(0); |
| 3005 | Node* tls_ptr = NULL; |
| 3006 | Node* cur_thr = generate_current_thread(tls_ptr); |
| 3007 | |
| 3008 | // Resolve oops to stable for CmpP below. |
| 3009 | cur_thr = access_resolve(cur_thr, 0); |
| 3010 | rec_thr = access_resolve(rec_thr, 0); |
| 3011 | |
| 3012 | Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr)); |
| 3013 | Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne)); |
| 3014 | |
| 3015 | generate_slow_guard(bol_thr, slow_region); |
| 3016 | |
| 3017 | // (b) Interrupt bit on TLS must be false. |
| 3018 | Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset())); |
| 3019 | Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); |
| 3020 | p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset())); |
| 3021 | |
| 3022 | // Set the control input on the field _interrupted read to prevent it floating up. |
| 3023 | Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered); |
| 3024 | Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0))); |
| 3025 | Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne)); |
| 3026 | |
| 3027 | IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); |
| 3028 | |
| 3029 | // First fast path: if (!TLS._interrupted) return false; |
| 3030 | Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit)); |
| 3031 | result_rgn->init_req(no_int_result_path, false_bit); |
| 3032 | result_val->init_req(no_int_result_path, intcon(0)); |
| 3033 | |
| 3034 | // drop through to next case |
| 3035 | set_control( _gvn.transform(new IfTrueNode(iff_bit))); |
| 3036 | |
| 3037 | #ifndef _WINDOWS |
| 3038 | // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path. |
| 3039 | Node* clr_arg = argument(1); |
| 3040 | Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0))); |
| 3041 | Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne)); |
| 3042 | IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN); |
| 3043 | |
| 3044 | // Second fast path: ... else if (!clear_int) return true; |
| 3045 | Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg)); |
| 3046 | result_rgn->init_req(no_clear_result_path, false_arg); |
| 3047 | result_val->init_req(no_clear_result_path, intcon(1)); |
| 3048 | |
| 3049 | // drop through to next case |
| 3050 | set_control( _gvn.transform(new IfTrueNode(iff_arg))); |
| 3051 | #else |
| 3052 | // To return true on Windows you must read the _interrupted field |
| 3053 | // and check the event state i.e. take the slow path. |
| 3054 | #endif // _WINDOWS |
| 3055 | |
| 3056 | // (d) Otherwise, go to the slow path. |
| 3057 | slow_region->add_req(control()); |
| 3058 | set_control( _gvn.transform(slow_region)); |
| 3059 | |
| 3060 | if (stopped()) { |
| 3061 | // There is no slow path. |
| 3062 | result_rgn->init_req(slow_result_path, top()); |
| 3063 | result_val->init_req(slow_result_path, top()); |
| 3064 | } else { |
| 3065 | // non-virtual because it is a private non-static |
| 3066 | CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted); |
| 3067 | |
| 3068 | Node* slow_val = set_results_for_java_call(slow_call); |
| 3069 | // this->control() comes from set_results_for_java_call |
| 3070 | |
| 3071 | Node* fast_io = slow_call->in(TypeFunc::I_O); |
| 3072 | Node* fast_mem = slow_call->in(TypeFunc::Memory); |
| 3073 | |
| 3074 | // These two phis are pre-filled with copies of of the fast IO and Memory |
| 3075 | PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); |
| 3076 | PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO); |
| 3077 | |
| 3078 | result_rgn->init_req(slow_result_path, control()); |
| 3079 | result_io ->init_req(slow_result_path, i_o()); |
| 3080 | result_mem->init_req(slow_result_path, reset_memory()); |
| 3081 | result_val->init_req(slow_result_path, slow_val); |
| 3082 | |
| 3083 | set_all_memory(_gvn.transform(result_mem)); |
| 3084 | set_i_o( _gvn.transform(result_io)); |
| 3085 | } |
| 3086 | |
| 3087 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 3088 | set_result(result_rgn, result_val); |
| 3089 | return true; |
| 3090 | } |
| 3091 | |
| 3092 | //---------------------------load_mirror_from_klass---------------------------- |
| 3093 | // Given a klass oop, load its java mirror (a java.lang.Class oop). |
| 3094 | Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { |
| 3095 | Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); |
| 3096 | Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); |
| 3097 | // mirror = ((OopHandle)mirror)->resolve(); |
| 3098 | return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); |
| 3099 | } |
| 3100 | |
| 3101 | //-----------------------load_klass_from_mirror_common------------------------- |
| 3102 | // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. |
| 3103 | // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), |
| 3104 | // and branch to the given path on the region. |
| 3105 | // If never_see_null, take an uncommon trap on null, so we can optimistically |
| 3106 | // compile for the non-null case. |
| 3107 | // If the region is NULL, force never_see_null = true. |
| 3108 | Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, |
| 3109 | bool never_see_null, |
| 3110 | RegionNode* region, |
| 3111 | int null_path, |
| 3112 | int offset) { |
| 3113 | if (region == NULL) never_see_null = true; |
| 3114 | Node* p = basic_plus_adr(mirror, offset); |
| 3115 | const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; |
| 3116 | Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); |
| 3117 | Node* null_ctl = top(); |
| 3118 | kls = null_check_oop(kls, &null_ctl, never_see_null); |
| 3119 | if (region != NULL) { |
| 3120 | // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). |
| 3121 | region->init_req(null_path, null_ctl); |
| 3122 | } else { |
| 3123 | assert(null_ctl == top(), "no loose ends" ); |
| 3124 | } |
| 3125 | return kls; |
| 3126 | } |
| 3127 | |
| 3128 | //--------------------(inline_native_Class_query helpers)--------------------- |
| 3129 | // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. |
| 3130 | // Fall through if (mods & mask) == bits, take the guard otherwise. |
| 3131 | Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { |
| 3132 | // Branch around if the given klass has the given modifier bit set. |
| 3133 | // Like generate_guard, adds a new path onto the region. |
| 3134 | Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); |
| 3135 | Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); |
| 3136 | Node* mask = intcon(modifier_mask); |
| 3137 | Node* bits = intcon(modifier_bits); |
| 3138 | Node* mbit = _gvn.transform(new AndINode(mods, mask)); |
| 3139 | Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); |
| 3140 | Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); |
| 3141 | return generate_fair_guard(bol, region); |
| 3142 | } |
| 3143 | Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { |
| 3144 | return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); |
| 3145 | } |
| 3146 | |
| 3147 | //-------------------------inline_native_Class_query------------------- |
| 3148 | bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { |
| 3149 | const Type* return_type = TypeInt::BOOL; |
| 3150 | Node* prim_return_value = top(); // what happens if it's a primitive class? |
| 3151 | bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); |
| 3152 | bool expect_prim = false; // most of these guys expect to work on refs |
| 3153 | |
| 3154 | enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; |
| 3155 | |
| 3156 | Node* mirror = argument(0); |
| 3157 | Node* obj = top(); |
| 3158 | |
| 3159 | switch (id) { |
| 3160 | case vmIntrinsics::_isInstance: |
| 3161 | // nothing is an instance of a primitive type |
| 3162 | prim_return_value = intcon(0); |
| 3163 | obj = argument(1); |
| 3164 | break; |
| 3165 | case vmIntrinsics::_getModifiers: |
| 3166 | prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); |
| 3167 | assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line" ); |
| 3168 | return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); |
| 3169 | break; |
| 3170 | case vmIntrinsics::_isInterface: |
| 3171 | prim_return_value = intcon(0); |
| 3172 | break; |
| 3173 | case vmIntrinsics::_isArray: |
| 3174 | prim_return_value = intcon(0); |
| 3175 | expect_prim = true; // cf. ObjectStreamClass.getClassSignature |
| 3176 | break; |
| 3177 | case vmIntrinsics::_isPrimitive: |
| 3178 | prim_return_value = intcon(1); |
| 3179 | expect_prim = true; // obviously |
| 3180 | break; |
| 3181 | case vmIntrinsics::_getSuperclass: |
| 3182 | prim_return_value = null(); |
| 3183 | return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); |
| 3184 | break; |
| 3185 | case vmIntrinsics::_getClassAccessFlags: |
| 3186 | prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); |
| 3187 | return_type = TypeInt::INT; // not bool! 6297094 |
| 3188 | break; |
| 3189 | default: |
| 3190 | fatal_unexpected_iid(id); |
| 3191 | break; |
| 3192 | } |
| 3193 | |
| 3194 | const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); |
| 3195 | if (mirror_con == NULL) return false; // cannot happen? |
| 3196 | |
| 3197 | #ifndef PRODUCT |
| 3198 | if (C->print_intrinsics() || C->print_inlining()) { |
| 3199 | ciType* k = mirror_con->java_mirror_type(); |
| 3200 | if (k) { |
| 3201 | tty->print("Inlining %s on constant Class " , vmIntrinsics::name_at(intrinsic_id())); |
| 3202 | k->print_name(); |
| 3203 | tty->cr(); |
| 3204 | } |
| 3205 | } |
| 3206 | #endif |
| 3207 | |
| 3208 | // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). |
| 3209 | RegionNode* region = new RegionNode(PATH_LIMIT); |
| 3210 | record_for_igvn(region); |
| 3211 | PhiNode* phi = new PhiNode(region, return_type); |
| 3212 | |
| 3213 | // The mirror will never be null of Reflection.getClassAccessFlags, however |
| 3214 | // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE |
| 3215 | // if it is. See bug 4774291. |
| 3216 | |
| 3217 | // For Reflection.getClassAccessFlags(), the null check occurs in |
| 3218 | // the wrong place; see inline_unsafe_access(), above, for a similar |
| 3219 | // situation. |
| 3220 | mirror = null_check(mirror); |
| 3221 | // If mirror or obj is dead, only null-path is taken. |
| 3222 | if (stopped()) return true; |
| 3223 | |
| 3224 | if (expect_prim) never_see_null = false; // expect nulls (meaning prims) |
| 3225 | |
| 3226 | // Now load the mirror's klass metaobject, and null-check it. |
| 3227 | // Side-effects region with the control path if the klass is null. |
| 3228 | Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); |
| 3229 | // If kls is null, we have a primitive mirror. |
| 3230 | phi->init_req(_prim_path, prim_return_value); |
| 3231 | if (stopped()) { set_result(region, phi); return true; } |
| 3232 | bool safe_for_replace = (region->in(_prim_path) == top()); |
| 3233 | |
| 3234 | Node* p; // handy temp |
| 3235 | Node* null_ctl; |
| 3236 | |
| 3237 | // Now that we have the non-null klass, we can perform the real query. |
| 3238 | // For constant classes, the query will constant-fold in LoadNode::Value. |
| 3239 | Node* query_value = top(); |
| 3240 | switch (id) { |
| 3241 | case vmIntrinsics::_isInstance: |
| 3242 | // nothing is an instance of a primitive type |
| 3243 | query_value = gen_instanceof(obj, kls, safe_for_replace); |
| 3244 | break; |
| 3245 | |
| 3246 | case vmIntrinsics::_getModifiers: |
| 3247 | p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); |
| 3248 | query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); |
| 3249 | break; |
| 3250 | |
| 3251 | case vmIntrinsics::_isInterface: |
| 3252 | // (To verify this code sequence, check the asserts in JVM_IsInterface.) |
| 3253 | if (generate_interface_guard(kls, region) != NULL) |
| 3254 | // A guard was added. If the guard is taken, it was an interface. |
| 3255 | phi->add_req(intcon(1)); |
| 3256 | // If we fall through, it's a plain class. |
| 3257 | query_value = intcon(0); |
| 3258 | break; |
| 3259 | |
| 3260 | case vmIntrinsics::_isArray: |
| 3261 | // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) |
| 3262 | if (generate_array_guard(kls, region) != NULL) |
| 3263 | // A guard was added. If the guard is taken, it was an array. |
| 3264 | phi->add_req(intcon(1)); |
| 3265 | // If we fall through, it's a plain class. |
| 3266 | query_value = intcon(0); |
| 3267 | break; |
| 3268 | |
| 3269 | case vmIntrinsics::_isPrimitive: |
| 3270 | query_value = intcon(0); // "normal" path produces false |
| 3271 | break; |
| 3272 | |
| 3273 | case vmIntrinsics::_getSuperclass: |
| 3274 | // The rules here are somewhat unfortunate, but we can still do better |
| 3275 | // with random logic than with a JNI call. |
| 3276 | // Interfaces store null or Object as _super, but must report null. |
| 3277 | // Arrays store an intermediate super as _super, but must report Object. |
| 3278 | // Other types can report the actual _super. |
| 3279 | // (To verify this code sequence, check the asserts in JVM_IsInterface.) |
| 3280 | if (generate_interface_guard(kls, region) != NULL) |
| 3281 | // A guard was added. If the guard is taken, it was an interface. |
| 3282 | phi->add_req(null()); |
| 3283 | if (generate_array_guard(kls, region) != NULL) |
| 3284 | // A guard was added. If the guard is taken, it was an array. |
| 3285 | phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); |
| 3286 | // If we fall through, it's a plain class. Get its _super. |
| 3287 | p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); |
| 3288 | kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); |
| 3289 | null_ctl = top(); |
| 3290 | kls = null_check_oop(kls, &null_ctl); |
| 3291 | if (null_ctl != top()) { |
| 3292 | // If the guard is taken, Object.superClass is null (both klass and mirror). |
| 3293 | region->add_req(null_ctl); |
| 3294 | phi ->add_req(null()); |
| 3295 | } |
| 3296 | if (!stopped()) { |
| 3297 | query_value = load_mirror_from_klass(kls); |
| 3298 | } |
| 3299 | break; |
| 3300 | |
| 3301 | case vmIntrinsics::_getClassAccessFlags: |
| 3302 | p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); |
| 3303 | query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); |
| 3304 | break; |
| 3305 | |
| 3306 | default: |
| 3307 | fatal_unexpected_iid(id); |
| 3308 | break; |
| 3309 | } |
| 3310 | |
| 3311 | // Fall-through is the normal case of a query to a real class. |
| 3312 | phi->init_req(1, query_value); |
| 3313 | region->init_req(1, control()); |
| 3314 | |
| 3315 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 3316 | set_result(region, phi); |
| 3317 | return true; |
| 3318 | } |
| 3319 | |
| 3320 | //-------------------------inline_Class_cast------------------- |
| 3321 | bool LibraryCallKit::inline_Class_cast() { |
| 3322 | Node* mirror = argument(0); // Class |
| 3323 | Node* obj = argument(1); |
| 3324 | const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); |
| 3325 | if (mirror_con == NULL) { |
| 3326 | return false; // dead path (mirror->is_top()). |
| 3327 | } |
| 3328 | if (obj == NULL || obj->is_top()) { |
| 3329 | return false; // dead path |
| 3330 | } |
| 3331 | const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); |
| 3332 | |
| 3333 | // First, see if Class.cast() can be folded statically. |
| 3334 | // java_mirror_type() returns non-null for compile-time Class constants. |
| 3335 | ciType* tm = mirror_con->java_mirror_type(); |
| 3336 | if (tm != NULL && tm->is_klass() && |
| 3337 | tp != NULL && tp->klass() != NULL) { |
| 3338 | if (!tp->klass()->is_loaded()) { |
| 3339 | // Don't use intrinsic when class is not loaded. |
| 3340 | return false; |
| 3341 | } else { |
| 3342 | int static_res = C->static_subtype_check(tm->as_klass(), tp->klass()); |
| 3343 | if (static_res == Compile::SSC_always_true) { |
| 3344 | // isInstance() is true - fold the code. |
| 3345 | set_result(obj); |
| 3346 | return true; |
| 3347 | } else if (static_res == Compile::SSC_always_false) { |
| 3348 | // Don't use intrinsic, have to throw ClassCastException. |
| 3349 | // If the reference is null, the non-intrinsic bytecode will |
| 3350 | // be optimized appropriately. |
| 3351 | return false; |
| 3352 | } |
| 3353 | } |
| 3354 | } |
| 3355 | |
| 3356 | // Bailout intrinsic and do normal inlining if exception path is frequent. |
| 3357 | if (too_many_traps(Deoptimization::Reason_intrinsic)) { |
| 3358 | return false; |
| 3359 | } |
| 3360 | |
| 3361 | // Generate dynamic checks. |
| 3362 | // Class.cast() is java implementation of _checkcast bytecode. |
| 3363 | // Do checkcast (Parse::do_checkcast()) optimizations here. |
| 3364 | |
| 3365 | mirror = null_check(mirror); |
| 3366 | // If mirror is dead, only null-path is taken. |
| 3367 | if (stopped()) { |
| 3368 | return true; |
| 3369 | } |
| 3370 | |
| 3371 | // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). |
| 3372 | enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; |
| 3373 | RegionNode* region = new RegionNode(PATH_LIMIT); |
| 3374 | record_for_igvn(region); |
| 3375 | |
| 3376 | // Now load the mirror's klass metaobject, and null-check it. |
| 3377 | // If kls is null, we have a primitive mirror and |
| 3378 | // nothing is an instance of a primitive type. |
| 3379 | Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); |
| 3380 | |
| 3381 | Node* res = top(); |
| 3382 | if (!stopped()) { |
| 3383 | Node* bad_type_ctrl = top(); |
| 3384 | // Do checkcast optimizations. |
| 3385 | res = gen_checkcast(obj, kls, &bad_type_ctrl); |
| 3386 | region->init_req(_bad_type_path, bad_type_ctrl); |
| 3387 | } |
| 3388 | if (region->in(_prim_path) != top() || |
| 3389 | region->in(_bad_type_path) != top()) { |
| 3390 | // Let Interpreter throw ClassCastException. |
| 3391 | PreserveJVMState pjvms(this); |
| 3392 | set_control(_gvn.transform(region)); |
| 3393 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 3394 | Deoptimization::Action_maybe_recompile); |
| 3395 | } |
| 3396 | if (!stopped()) { |
| 3397 | set_result(res); |
| 3398 | } |
| 3399 | return true; |
| 3400 | } |
| 3401 | |
| 3402 | |
| 3403 | //--------------------------inline_native_subtype_check------------------------ |
| 3404 | // This intrinsic takes the JNI calls out of the heart of |
| 3405 | // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. |
| 3406 | bool LibraryCallKit::inline_native_subtype_check() { |
| 3407 | // Pull both arguments off the stack. |
| 3408 | Node* args[2]; // two java.lang.Class mirrors: superc, subc |
| 3409 | args[0] = argument(0); |
| 3410 | args[1] = argument(1); |
| 3411 | Node* klasses[2]; // corresponding Klasses: superk, subk |
| 3412 | klasses[0] = klasses[1] = top(); |
| 3413 | |
| 3414 | enum { |
| 3415 | // A full decision tree on {superc is prim, subc is prim}: |
| 3416 | _prim_0_path = 1, // {P,N} => false |
| 3417 | // {P,P} & superc!=subc => false |
| 3418 | _prim_same_path, // {P,P} & superc==subc => true |
| 3419 | _prim_1_path, // {N,P} => false |
| 3420 | _ref_subtype_path, // {N,N} & subtype check wins => true |
| 3421 | _both_ref_path, // {N,N} & subtype check loses => false |
| 3422 | PATH_LIMIT |
| 3423 | }; |
| 3424 | |
| 3425 | RegionNode* region = new RegionNode(PATH_LIMIT); |
| 3426 | Node* phi = new PhiNode(region, TypeInt::BOOL); |
| 3427 | record_for_igvn(region); |
| 3428 | |
| 3429 | const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads |
| 3430 | const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; |
| 3431 | int class_klass_offset = java_lang_Class::klass_offset_in_bytes(); |
| 3432 | |
| 3433 | // First null-check both mirrors and load each mirror's klass metaobject. |
| 3434 | int which_arg; |
| 3435 | for (which_arg = 0; which_arg <= 1; which_arg++) { |
| 3436 | Node* arg = args[which_arg]; |
| 3437 | arg = null_check(arg); |
| 3438 | if (stopped()) break; |
| 3439 | args[which_arg] = arg; |
| 3440 | |
| 3441 | Node* p = basic_plus_adr(arg, class_klass_offset); |
| 3442 | Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); |
| 3443 | klasses[which_arg] = _gvn.transform(kls); |
| 3444 | } |
| 3445 | |
| 3446 | // Resolve oops to stable for CmpP below. |
| 3447 | args[0] = access_resolve(args[0], 0); |
| 3448 | args[1] = access_resolve(args[1], 0); |
| 3449 | |
| 3450 | // Having loaded both klasses, test each for null. |
| 3451 | bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); |
| 3452 | for (which_arg = 0; which_arg <= 1; which_arg++) { |
| 3453 | Node* kls = klasses[which_arg]; |
| 3454 | Node* null_ctl = top(); |
| 3455 | kls = null_check_oop(kls, &null_ctl, never_see_null); |
| 3456 | int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); |
| 3457 | region->init_req(prim_path, null_ctl); |
| 3458 | if (stopped()) break; |
| 3459 | klasses[which_arg] = kls; |
| 3460 | } |
| 3461 | |
| 3462 | if (!stopped()) { |
| 3463 | // now we have two reference types, in klasses[0..1] |
| 3464 | Node* subk = klasses[1]; // the argument to isAssignableFrom |
| 3465 | Node* superk = klasses[0]; // the receiver |
| 3466 | region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); |
| 3467 | // now we have a successful reference subtype check |
| 3468 | region->set_req(_ref_subtype_path, control()); |
| 3469 | } |
| 3470 | |
| 3471 | // If both operands are primitive (both klasses null), then |
| 3472 | // we must return true when they are identical primitives. |
| 3473 | // It is convenient to test this after the first null klass check. |
| 3474 | set_control(region->in(_prim_0_path)); // go back to first null check |
| 3475 | if (!stopped()) { |
| 3476 | // Since superc is primitive, make a guard for the superc==subc case. |
| 3477 | Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); |
| 3478 | Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); |
| 3479 | generate_guard(bol_eq, region, PROB_FAIR); |
| 3480 | if (region->req() == PATH_LIMIT+1) { |
| 3481 | // A guard was added. If the added guard is taken, superc==subc. |
| 3482 | region->swap_edges(PATH_LIMIT, _prim_same_path); |
| 3483 | region->del_req(PATH_LIMIT); |
| 3484 | } |
| 3485 | region->set_req(_prim_0_path, control()); // Not equal after all. |
| 3486 | } |
| 3487 | |
| 3488 | // these are the only paths that produce 'true': |
| 3489 | phi->set_req(_prim_same_path, intcon(1)); |
| 3490 | phi->set_req(_ref_subtype_path, intcon(1)); |
| 3491 | |
| 3492 | // pull together the cases: |
| 3493 | assert(region->req() == PATH_LIMIT, "sane region" ); |
| 3494 | for (uint i = 1; i < region->req(); i++) { |
| 3495 | Node* ctl = region->in(i); |
| 3496 | if (ctl == NULL || ctl == top()) { |
| 3497 | region->set_req(i, top()); |
| 3498 | phi ->set_req(i, top()); |
| 3499 | } else if (phi->in(i) == NULL) { |
| 3500 | phi->set_req(i, intcon(0)); // all other paths produce 'false' |
| 3501 | } |
| 3502 | } |
| 3503 | |
| 3504 | set_control(_gvn.transform(region)); |
| 3505 | set_result(_gvn.transform(phi)); |
| 3506 | return true; |
| 3507 | } |
| 3508 | |
| 3509 | //---------------------generate_array_guard_common------------------------ |
| 3510 | Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, |
| 3511 | bool obj_array, bool not_array) { |
| 3512 | |
| 3513 | if (stopped()) { |
| 3514 | return NULL; |
| 3515 | } |
| 3516 | |
| 3517 | // If obj_array/non_array==false/false: |
| 3518 | // Branch around if the given klass is in fact an array (either obj or prim). |
| 3519 | // If obj_array/non_array==false/true: |
| 3520 | // Branch around if the given klass is not an array klass of any kind. |
| 3521 | // If obj_array/non_array==true/true: |
| 3522 | // Branch around if the kls is not an oop array (kls is int[], String, etc.) |
| 3523 | // If obj_array/non_array==true/false: |
| 3524 | // Branch around if the kls is an oop array (Object[] or subtype) |
| 3525 | // |
| 3526 | // Like generate_guard, adds a new path onto the region. |
| 3527 | jint layout_con = 0; |
| 3528 | Node* layout_val = get_layout_helper(kls, layout_con); |
| 3529 | if (layout_val == NULL) { |
| 3530 | bool query = (obj_array |
| 3531 | ? Klass::layout_helper_is_objArray(layout_con) |
| 3532 | : Klass::layout_helper_is_array(layout_con)); |
| 3533 | if (query == not_array) { |
| 3534 | return NULL; // never a branch |
| 3535 | } else { // always a branch |
| 3536 | Node* always_branch = control(); |
| 3537 | if (region != NULL) |
| 3538 | region->add_req(always_branch); |
| 3539 | set_control(top()); |
| 3540 | return always_branch; |
| 3541 | } |
| 3542 | } |
| 3543 | // Now test the correct condition. |
| 3544 | jint nval = (obj_array |
| 3545 | ? (jint)(Klass::_lh_array_tag_type_value |
| 3546 | << Klass::_lh_array_tag_shift) |
| 3547 | : Klass::_lh_neutral_value); |
| 3548 | Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); |
| 3549 | BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array |
| 3550 | // invert the test if we are looking for a non-array |
| 3551 | if (not_array) btest = BoolTest(btest).negate(); |
| 3552 | Node* bol = _gvn.transform(new BoolNode(cmp, btest)); |
| 3553 | return generate_fair_guard(bol, region); |
| 3554 | } |
| 3555 | |
| 3556 | |
| 3557 | //-----------------------inline_native_newArray-------------------------- |
| 3558 | // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); |
| 3559 | // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); |
| 3560 | bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { |
| 3561 | Node* mirror; |
| 3562 | Node* count_val; |
| 3563 | if (uninitialized) { |
| 3564 | mirror = argument(1); |
| 3565 | count_val = argument(2); |
| 3566 | } else { |
| 3567 | mirror = argument(0); |
| 3568 | count_val = argument(1); |
| 3569 | } |
| 3570 | |
| 3571 | mirror = null_check(mirror); |
| 3572 | // If mirror or obj is dead, only null-path is taken. |
| 3573 | if (stopped()) return true; |
| 3574 | |
| 3575 | enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; |
| 3576 | RegionNode* result_reg = new RegionNode(PATH_LIMIT); |
| 3577 | PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); |
| 3578 | PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); |
| 3579 | PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); |
| 3580 | |
| 3581 | bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); |
| 3582 | Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, |
| 3583 | result_reg, _slow_path); |
| 3584 | Node* normal_ctl = control(); |
| 3585 | Node* no_array_ctl = result_reg->in(_slow_path); |
| 3586 | |
| 3587 | // Generate code for the slow case. We make a call to newArray(). |
| 3588 | set_control(no_array_ctl); |
| 3589 | if (!stopped()) { |
| 3590 | // Either the input type is void.class, or else the |
| 3591 | // array klass has not yet been cached. Either the |
| 3592 | // ensuing call will throw an exception, or else it |
| 3593 | // will cache the array klass for next time. |
| 3594 | PreserveJVMState pjvms(this); |
| 3595 | CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray); |
| 3596 | Node* slow_result = set_results_for_java_call(slow_call); |
| 3597 | // this->control() comes from set_results_for_java_call |
| 3598 | result_reg->set_req(_slow_path, control()); |
| 3599 | result_val->set_req(_slow_path, slow_result); |
| 3600 | result_io ->set_req(_slow_path, i_o()); |
| 3601 | result_mem->set_req(_slow_path, reset_memory()); |
| 3602 | } |
| 3603 | |
| 3604 | set_control(normal_ctl); |
| 3605 | if (!stopped()) { |
| 3606 | // Normal case: The array type has been cached in the java.lang.Class. |
| 3607 | // The following call works fine even if the array type is polymorphic. |
| 3608 | // It could be a dynamic mix of int[], boolean[], Object[], etc. |
| 3609 | Node* obj = new_array(klass_node, count_val, 0); // no arguments to push |
| 3610 | result_reg->init_req(_normal_path, control()); |
| 3611 | result_val->init_req(_normal_path, obj); |
| 3612 | result_io ->init_req(_normal_path, i_o()); |
| 3613 | result_mem->init_req(_normal_path, reset_memory()); |
| 3614 | |
| 3615 | if (uninitialized) { |
| 3616 | // Mark the allocation so that zeroing is skipped |
| 3617 | AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); |
| 3618 | alloc->maybe_set_complete(&_gvn); |
| 3619 | } |
| 3620 | } |
| 3621 | |
| 3622 | // Return the combined state. |
| 3623 | set_i_o( _gvn.transform(result_io) ); |
| 3624 | set_all_memory( _gvn.transform(result_mem)); |
| 3625 | |
| 3626 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 3627 | set_result(result_reg, result_val); |
| 3628 | return true; |
| 3629 | } |
| 3630 | |
| 3631 | //----------------------inline_native_getLength-------------------------- |
| 3632 | // public static native int java.lang.reflect.Array.getLength(Object array); |
| 3633 | bool LibraryCallKit::inline_native_getLength() { |
| 3634 | if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; |
| 3635 | |
| 3636 | Node* array = null_check(argument(0)); |
| 3637 | // If array is dead, only null-path is taken. |
| 3638 | if (stopped()) return true; |
| 3639 | |
| 3640 | // Deoptimize if it is a non-array. |
| 3641 | Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); |
| 3642 | |
| 3643 | if (non_array != NULL) { |
| 3644 | PreserveJVMState pjvms(this); |
| 3645 | set_control(non_array); |
| 3646 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 3647 | Deoptimization::Action_maybe_recompile); |
| 3648 | } |
| 3649 | |
| 3650 | // If control is dead, only non-array-path is taken. |
| 3651 | if (stopped()) return true; |
| 3652 | |
| 3653 | // The works fine even if the array type is polymorphic. |
| 3654 | // It could be a dynamic mix of int[], boolean[], Object[], etc. |
| 3655 | Node* result = load_array_length(array); |
| 3656 | |
| 3657 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 3658 | set_result(result); |
| 3659 | return true; |
| 3660 | } |
| 3661 | |
| 3662 | //------------------------inline_array_copyOf---------------------------- |
| 3663 | // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); |
| 3664 | // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); |
| 3665 | bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { |
| 3666 | if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; |
| 3667 | |
| 3668 | // Get the arguments. |
| 3669 | Node* original = argument(0); |
| 3670 | Node* start = is_copyOfRange? argument(1): intcon(0); |
| 3671 | Node* end = is_copyOfRange? argument(2): argument(1); |
| 3672 | Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); |
| 3673 | |
| 3674 | Node* newcopy = NULL; |
| 3675 | |
| 3676 | // Set the original stack and the reexecute bit for the interpreter to reexecute |
| 3677 | // the bytecode that invokes Arrays.copyOf if deoptimization happens. |
| 3678 | { PreserveReexecuteState preexecs(this); |
| 3679 | jvms()->set_should_reexecute(true); |
| 3680 | |
| 3681 | array_type_mirror = null_check(array_type_mirror); |
| 3682 | original = null_check(original); |
| 3683 | |
| 3684 | // Check if a null path was taken unconditionally. |
| 3685 | if (stopped()) return true; |
| 3686 | |
| 3687 | Node* orig_length = load_array_length(original); |
| 3688 | |
| 3689 | Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); |
| 3690 | klass_node = null_check(klass_node); |
| 3691 | |
| 3692 | RegionNode* bailout = new RegionNode(1); |
| 3693 | record_for_igvn(bailout); |
| 3694 | |
| 3695 | // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. |
| 3696 | // Bail out if that is so. |
| 3697 | Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); |
| 3698 | if (not_objArray != NULL) { |
| 3699 | // Improve the klass node's type from the new optimistic assumption: |
| 3700 | ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); |
| 3701 | const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); |
| 3702 | Node* cast = new CastPPNode(klass_node, akls); |
| 3703 | cast->init_req(0, control()); |
| 3704 | klass_node = _gvn.transform(cast); |
| 3705 | } |
| 3706 | |
| 3707 | // Bail out if either start or end is negative. |
| 3708 | generate_negative_guard(start, bailout, &start); |
| 3709 | generate_negative_guard(end, bailout, &end); |
| 3710 | |
| 3711 | Node* length = end; |
| 3712 | if (_gvn.type(start) != TypeInt::ZERO) { |
| 3713 | length = _gvn.transform(new SubINode(end, start)); |
| 3714 | } |
| 3715 | |
| 3716 | // Bail out if length is negative. |
| 3717 | // Without this the new_array would throw |
| 3718 | // NegativeArraySizeException but IllegalArgumentException is what |
| 3719 | // should be thrown |
| 3720 | generate_negative_guard(length, bailout, &length); |
| 3721 | |
| 3722 | if (bailout->req() > 1) { |
| 3723 | PreserveJVMState pjvms(this); |
| 3724 | set_control(_gvn.transform(bailout)); |
| 3725 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 3726 | Deoptimization::Action_maybe_recompile); |
| 3727 | } |
| 3728 | |
| 3729 | if (!stopped()) { |
| 3730 | // How many elements will we copy from the original? |
| 3731 | // The answer is MinI(orig_length - start, length). |
| 3732 | Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); |
| 3733 | Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); |
| 3734 | |
| 3735 | original = access_resolve(original, ACCESS_READ); |
| 3736 | |
| 3737 | // Generate a direct call to the right arraycopy function(s). |
| 3738 | // We know the copy is disjoint but we might not know if the |
| 3739 | // oop stores need checking. |
| 3740 | // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). |
| 3741 | // This will fail a store-check if x contains any non-nulls. |
| 3742 | |
| 3743 | // ArrayCopyNode:Ideal may transform the ArrayCopyNode to |
| 3744 | // loads/stores but it is legal only if we're sure the |
| 3745 | // Arrays.copyOf would succeed. So we need all input arguments |
| 3746 | // to the copyOf to be validated, including that the copy to the |
| 3747 | // new array won't trigger an ArrayStoreException. That subtype |
| 3748 | // check can be optimized if we know something on the type of |
| 3749 | // the input array from type speculation. |
| 3750 | if (_gvn.type(klass_node)->singleton()) { |
| 3751 | ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass(); |
| 3752 | ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass(); |
| 3753 | |
| 3754 | int test = C->static_subtype_check(superk, subk); |
| 3755 | if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { |
| 3756 | const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); |
| 3757 | if (t_original->speculative_type() != NULL) { |
| 3758 | original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); |
| 3759 | } |
| 3760 | } |
| 3761 | } |
| 3762 | |
| 3763 | bool validated = false; |
| 3764 | // Reason_class_check rather than Reason_intrinsic because we |
| 3765 | // want to intrinsify even if this traps. |
| 3766 | if (!too_many_traps(Deoptimization::Reason_class_check)) { |
| 3767 | Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original), |
| 3768 | klass_node); |
| 3769 | |
| 3770 | if (not_subtype_ctrl != top()) { |
| 3771 | PreserveJVMState pjvms(this); |
| 3772 | set_control(not_subtype_ctrl); |
| 3773 | uncommon_trap(Deoptimization::Reason_class_check, |
| 3774 | Deoptimization::Action_make_not_entrant); |
| 3775 | assert(stopped(), "Should be stopped" ); |
| 3776 | } |
| 3777 | validated = true; |
| 3778 | } |
| 3779 | |
| 3780 | if (!stopped()) { |
| 3781 | newcopy = new_array(klass_node, length, 0); // no arguments to push |
| 3782 | |
| 3783 | ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, |
| 3784 | load_object_klass(original), klass_node); |
| 3785 | if (!is_copyOfRange) { |
| 3786 | ac->set_copyof(validated); |
| 3787 | } else { |
| 3788 | ac->set_copyofrange(validated); |
| 3789 | } |
| 3790 | Node* n = _gvn.transform(ac); |
| 3791 | if (n == ac) { |
| 3792 | ac->connect_outputs(this); |
| 3793 | } else { |
| 3794 | assert(validated, "shouldn't transform if all arguments not validated" ); |
| 3795 | set_all_memory(n); |
| 3796 | } |
| 3797 | } |
| 3798 | } |
| 3799 | } // original reexecute is set back here |
| 3800 | |
| 3801 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 3802 | if (!stopped()) { |
| 3803 | set_result(newcopy); |
| 3804 | } |
| 3805 | return true; |
| 3806 | } |
| 3807 | |
| 3808 | |
| 3809 | //----------------------generate_virtual_guard--------------------------- |
| 3810 | // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. |
| 3811 | Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, |
| 3812 | RegionNode* slow_region) { |
| 3813 | ciMethod* method = callee(); |
| 3814 | int vtable_index = method->vtable_index(); |
| 3815 | assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, |
| 3816 | "bad index %d" , vtable_index); |
| 3817 | // Get the Method* out of the appropriate vtable entry. |
| 3818 | int entry_offset = in_bytes(Klass::vtable_start_offset()) + |
| 3819 | vtable_index*vtableEntry::size_in_bytes() + |
| 3820 | vtableEntry::method_offset_in_bytes(); |
| 3821 | Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); |
| 3822 | Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); |
| 3823 | |
| 3824 | // Compare the target method with the expected method (e.g., Object.hashCode). |
| 3825 | const TypePtr* native_call_addr = TypeMetadataPtr::make(method); |
| 3826 | |
| 3827 | Node* native_call = makecon(native_call_addr); |
| 3828 | Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); |
| 3829 | Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); |
| 3830 | |
| 3831 | return generate_slow_guard(test_native, slow_region); |
| 3832 | } |
| 3833 | |
| 3834 | //-----------------------generate_method_call---------------------------- |
| 3835 | // Use generate_method_call to make a slow-call to the real |
| 3836 | // method if the fast path fails. An alternative would be to |
| 3837 | // use a stub like OptoRuntime::slow_arraycopy_Java. |
| 3838 | // This only works for expanding the current library call, |
| 3839 | // not another intrinsic. (E.g., don't use this for making an |
| 3840 | // arraycopy call inside of the copyOf intrinsic.) |
| 3841 | CallJavaNode* |
| 3842 | LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { |
| 3843 | // When compiling the intrinsic method itself, do not use this technique. |
| 3844 | guarantee(callee() != C->method(), "cannot make slow-call to self" ); |
| 3845 | |
| 3846 | ciMethod* method = callee(); |
| 3847 | // ensure the JVMS we have will be correct for this call |
| 3848 | guarantee(method_id == method->intrinsic_id(), "must match" ); |
| 3849 | |
| 3850 | const TypeFunc* tf = TypeFunc::make(method); |
| 3851 | CallJavaNode* slow_call; |
| 3852 | if (is_static) { |
| 3853 | assert(!is_virtual, "" ); |
| 3854 | slow_call = new CallStaticJavaNode(C, tf, |
| 3855 | SharedRuntime::get_resolve_static_call_stub(), |
| 3856 | method, bci()); |
| 3857 | } else if (is_virtual) { |
| 3858 | null_check_receiver(); |
| 3859 | int vtable_index = Method::invalid_vtable_index; |
| 3860 | if (UseInlineCaches) { |
| 3861 | // Suppress the vtable call |
| 3862 | } else { |
| 3863 | // hashCode and clone are not a miranda methods, |
| 3864 | // so the vtable index is fixed. |
| 3865 | // No need to use the linkResolver to get it. |
| 3866 | vtable_index = method->vtable_index(); |
| 3867 | assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, |
| 3868 | "bad index %d" , vtable_index); |
| 3869 | } |
| 3870 | slow_call = new CallDynamicJavaNode(tf, |
| 3871 | SharedRuntime::get_resolve_virtual_call_stub(), |
| 3872 | method, vtable_index, bci()); |
| 3873 | } else { // neither virtual nor static: opt_virtual |
| 3874 | null_check_receiver(); |
| 3875 | slow_call = new CallStaticJavaNode(C, tf, |
| 3876 | SharedRuntime::get_resolve_opt_virtual_call_stub(), |
| 3877 | method, bci()); |
| 3878 | slow_call->set_optimized_virtual(true); |
| 3879 | } |
| 3880 | if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { |
| 3881 | // To be able to issue a direct call (optimized virtual or virtual) |
| 3882 | // and skip a call to MH.linkTo*/invokeBasic adapter, additional information |
| 3883 | // about the method being invoked should be attached to the call site to |
| 3884 | // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). |
| 3885 | slow_call->set_override_symbolic_info(true); |
| 3886 | } |
| 3887 | set_arguments_for_java_call(slow_call); |
| 3888 | set_edges_for_java_call(slow_call); |
| 3889 | return slow_call; |
| 3890 | } |
| 3891 | |
| 3892 | |
| 3893 | /** |
| 3894 | * Build special case code for calls to hashCode on an object. This call may |
| 3895 | * be virtual (invokevirtual) or bound (invokespecial). For each case we generate |
| 3896 | * slightly different code. |
| 3897 | */ |
| 3898 | bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { |
| 3899 | assert(is_static == callee()->is_static(), "correct intrinsic selection" ); |
| 3900 | assert(!(is_virtual && is_static), "either virtual, special, or static" ); |
| 3901 | |
| 3902 | enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; |
| 3903 | |
| 3904 | RegionNode* result_reg = new RegionNode(PATH_LIMIT); |
| 3905 | PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); |
| 3906 | PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); |
| 3907 | PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); |
| 3908 | Node* obj = NULL; |
| 3909 | if (!is_static) { |
| 3910 | // Check for hashing null object |
| 3911 | obj = null_check_receiver(); |
| 3912 | if (stopped()) return true; // unconditionally null |
| 3913 | result_reg->init_req(_null_path, top()); |
| 3914 | result_val->init_req(_null_path, top()); |
| 3915 | } else { |
| 3916 | // Do a null check, and return zero if null. |
| 3917 | // System.identityHashCode(null) == 0 |
| 3918 | obj = argument(0); |
| 3919 | Node* null_ctl = top(); |
| 3920 | obj = null_check_oop(obj, &null_ctl); |
| 3921 | result_reg->init_req(_null_path, null_ctl); |
| 3922 | result_val->init_req(_null_path, _gvn.intcon(0)); |
| 3923 | } |
| 3924 | |
| 3925 | // Unconditionally null? Then return right away. |
| 3926 | if (stopped()) { |
| 3927 | set_control( result_reg->in(_null_path)); |
| 3928 | if (!stopped()) |
| 3929 | set_result(result_val->in(_null_path)); |
| 3930 | return true; |
| 3931 | } |
| 3932 | |
| 3933 | // We only go to the fast case code if we pass a number of guards. The |
| 3934 | // paths which do not pass are accumulated in the slow_region. |
| 3935 | RegionNode* slow_region = new RegionNode(1); |
| 3936 | record_for_igvn(slow_region); |
| 3937 | |
| 3938 | // If this is a virtual call, we generate a funny guard. We pull out |
| 3939 | // the vtable entry corresponding to hashCode() from the target object. |
| 3940 | // If the target method which we are calling happens to be the native |
| 3941 | // Object hashCode() method, we pass the guard. We do not need this |
| 3942 | // guard for non-virtual calls -- the caller is known to be the native |
| 3943 | // Object hashCode(). |
| 3944 | if (is_virtual) { |
| 3945 | // After null check, get the object's klass. |
| 3946 | Node* obj_klass = load_object_klass(obj); |
| 3947 | generate_virtual_guard(obj_klass, slow_region); |
| 3948 | } |
| 3949 | |
| 3950 | // Get the header out of the object, use LoadMarkNode when available |
| 3951 | Node* = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); |
| 3952 | // The control of the load must be NULL. Otherwise, the load can move before |
| 3953 | // the null check after castPP removal. |
| 3954 | Node* no_ctrl = NULL; |
| 3955 | Node* = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); |
| 3956 | |
| 3957 | // Test the header to see if it is unlocked. |
| 3958 | Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place); |
| 3959 | Node * = _gvn.transform(new AndXNode(header, lock_mask)); |
| 3960 | Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value); |
| 3961 | Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); |
| 3962 | Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); |
| 3963 | |
| 3964 | generate_slow_guard(test_unlocked, slow_region); |
| 3965 | |
| 3966 | // Get the hash value and check to see that it has been properly assigned. |
| 3967 | // We depend on hash_mask being at most 32 bits and avoid the use of |
| 3968 | // hash_mask_in_place because it could be larger than 32 bits in a 64-bit |
| 3969 | // vm: see markOop.hpp. |
| 3970 | Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask); |
| 3971 | Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift); |
| 3972 | Node *= _gvn.transform(new URShiftXNode(header, hash_shift)); |
| 3973 | // This hack lets the hash bits live anywhere in the mark object now, as long |
| 3974 | // as the shift drops the relevant bits into the low 32 bits. Note that |
| 3975 | // Java spec says that HashCode is an int so there's no point in capturing |
| 3976 | // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). |
| 3977 | hshifted_header = ConvX2I(hshifted_header); |
| 3978 | Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); |
| 3979 | |
| 3980 | Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash); |
| 3981 | Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); |
| 3982 | Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); |
| 3983 | |
| 3984 | generate_slow_guard(test_assigned, slow_region); |
| 3985 | |
| 3986 | Node* init_mem = reset_memory(); |
| 3987 | // fill in the rest of the null path: |
| 3988 | result_io ->init_req(_null_path, i_o()); |
| 3989 | result_mem->init_req(_null_path, init_mem); |
| 3990 | |
| 3991 | result_val->init_req(_fast_path, hash_val); |
| 3992 | result_reg->init_req(_fast_path, control()); |
| 3993 | result_io ->init_req(_fast_path, i_o()); |
| 3994 | result_mem->init_req(_fast_path, init_mem); |
| 3995 | |
| 3996 | // Generate code for the slow case. We make a call to hashCode(). |
| 3997 | set_control(_gvn.transform(slow_region)); |
| 3998 | if (!stopped()) { |
| 3999 | // No need for PreserveJVMState, because we're using up the present state. |
| 4000 | set_all_memory(init_mem); |
| 4001 | vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; |
| 4002 | CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); |
| 4003 | Node* slow_result = set_results_for_java_call(slow_call); |
| 4004 | // this->control() comes from set_results_for_java_call |
| 4005 | result_reg->init_req(_slow_path, control()); |
| 4006 | result_val->init_req(_slow_path, slow_result); |
| 4007 | result_io ->set_req(_slow_path, i_o()); |
| 4008 | result_mem ->set_req(_slow_path, reset_memory()); |
| 4009 | } |
| 4010 | |
| 4011 | // Return the combined state. |
| 4012 | set_i_o( _gvn.transform(result_io) ); |
| 4013 | set_all_memory( _gvn.transform(result_mem)); |
| 4014 | |
| 4015 | set_result(result_reg, result_val); |
| 4016 | return true; |
| 4017 | } |
| 4018 | |
| 4019 | //---------------------------inline_native_getClass---------------------------- |
| 4020 | // public final native Class<?> java.lang.Object.getClass(); |
| 4021 | // |
| 4022 | // Build special case code for calls to getClass on an object. |
| 4023 | bool LibraryCallKit::inline_native_getClass() { |
| 4024 | Node* obj = null_check_receiver(); |
| 4025 | if (stopped()) return true; |
| 4026 | set_result(load_mirror_from_klass(load_object_klass(obj))); |
| 4027 | return true; |
| 4028 | } |
| 4029 | |
| 4030 | //-----------------inline_native_Reflection_getCallerClass--------------------- |
| 4031 | // public static native Class<?> sun.reflect.Reflection.getCallerClass(); |
| 4032 | // |
| 4033 | // In the presence of deep enough inlining, getCallerClass() becomes a no-op. |
| 4034 | // |
| 4035 | // NOTE: This code must perform the same logic as JVM_GetCallerClass |
| 4036 | // in that it must skip particular security frames and checks for |
| 4037 | // caller sensitive methods. |
| 4038 | bool LibraryCallKit::inline_native_Reflection_getCallerClass() { |
| 4039 | #ifndef PRODUCT |
| 4040 | if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| 4041 | tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass" ); |
| 4042 | } |
| 4043 | #endif |
| 4044 | |
| 4045 | if (!jvms()->has_method()) { |
| 4046 | #ifndef PRODUCT |
| 4047 | if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| 4048 | tty->print_cr(" Bailing out because intrinsic was inlined at top level" ); |
| 4049 | } |
| 4050 | #endif |
| 4051 | return false; |
| 4052 | } |
| 4053 | |
| 4054 | // Walk back up the JVM state to find the caller at the required |
| 4055 | // depth. |
| 4056 | JVMState* caller_jvms = jvms(); |
| 4057 | |
| 4058 | // Cf. JVM_GetCallerClass |
| 4059 | // NOTE: Start the loop at depth 1 because the current JVM state does |
| 4060 | // not include the Reflection.getCallerClass() frame. |
| 4061 | for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { |
| 4062 | ciMethod* m = caller_jvms->method(); |
| 4063 | switch (n) { |
| 4064 | case 0: |
| 4065 | fatal("current JVM state does not include the Reflection.getCallerClass frame" ); |
| 4066 | break; |
| 4067 | case 1: |
| 4068 | // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). |
| 4069 | if (!m->caller_sensitive()) { |
| 4070 | #ifndef PRODUCT |
| 4071 | if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| 4072 | tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d" , n); |
| 4073 | } |
| 4074 | #endif |
| 4075 | return false; // bail-out; let JVM_GetCallerClass do the work |
| 4076 | } |
| 4077 | break; |
| 4078 | default: |
| 4079 | if (!m->is_ignored_by_security_stack_walk()) { |
| 4080 | // We have reached the desired frame; return the holder class. |
| 4081 | // Acquire method holder as java.lang.Class and push as constant. |
| 4082 | ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); |
| 4083 | ciInstance* caller_mirror = caller_klass->java_mirror(); |
| 4084 | set_result(makecon(TypeInstPtr::make(caller_mirror))); |
| 4085 | |
| 4086 | #ifndef PRODUCT |
| 4087 | if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| 4088 | tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d" , n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); |
| 4089 | tty->print_cr(" JVM state at this point:" ); |
| 4090 | for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { |
| 4091 | ciMethod* m = jvms()->of_depth(i)->method(); |
| 4092 | tty->print_cr(" %d) %s.%s" , n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); |
| 4093 | } |
| 4094 | } |
| 4095 | #endif |
| 4096 | return true; |
| 4097 | } |
| 4098 | break; |
| 4099 | } |
| 4100 | } |
| 4101 | |
| 4102 | #ifndef PRODUCT |
| 4103 | if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { |
| 4104 | tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d" , jvms()->depth()); |
| 4105 | tty->print_cr(" JVM state at this point:" ); |
| 4106 | for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { |
| 4107 | ciMethod* m = jvms()->of_depth(i)->method(); |
| 4108 | tty->print_cr(" %d) %s.%s" , n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); |
| 4109 | } |
| 4110 | } |
| 4111 | #endif |
| 4112 | |
| 4113 | return false; // bail-out; let JVM_GetCallerClass do the work |
| 4114 | } |
| 4115 | |
| 4116 | bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { |
| 4117 | Node* arg = argument(0); |
| 4118 | Node* result = NULL; |
| 4119 | |
| 4120 | switch (id) { |
| 4121 | case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; |
| 4122 | case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; |
| 4123 | case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; |
| 4124 | case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; |
| 4125 | |
| 4126 | case vmIntrinsics::_doubleToLongBits: { |
| 4127 | // two paths (plus control) merge in a wood |
| 4128 | RegionNode *r = new RegionNode(3); |
| 4129 | Node *phi = new PhiNode(r, TypeLong::LONG); |
| 4130 | |
| 4131 | Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); |
| 4132 | // Build the boolean node |
| 4133 | Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); |
| 4134 | |
| 4135 | // Branch either way. |
| 4136 | // NaN case is less traveled, which makes all the difference. |
| 4137 | IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); |
| 4138 | Node *opt_isnan = _gvn.transform(ifisnan); |
| 4139 | assert( opt_isnan->is_If(), "Expect an IfNode" ); |
| 4140 | IfNode *opt_ifisnan = (IfNode*)opt_isnan; |
| 4141 | Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); |
| 4142 | |
| 4143 | set_control(iftrue); |
| 4144 | |
| 4145 | static const jlong nan_bits = CONST64(0x7ff8000000000000); |
| 4146 | Node *slow_result = longcon(nan_bits); // return NaN |
| 4147 | phi->init_req(1, _gvn.transform( slow_result )); |
| 4148 | r->init_req(1, iftrue); |
| 4149 | |
| 4150 | // Else fall through |
| 4151 | Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); |
| 4152 | set_control(iffalse); |
| 4153 | |
| 4154 | phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); |
| 4155 | r->init_req(2, iffalse); |
| 4156 | |
| 4157 | // Post merge |
| 4158 | set_control(_gvn.transform(r)); |
| 4159 | record_for_igvn(r); |
| 4160 | |
| 4161 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 4162 | result = phi; |
| 4163 | assert(result->bottom_type()->isa_long(), "must be" ); |
| 4164 | break; |
| 4165 | } |
| 4166 | |
| 4167 | case vmIntrinsics::_floatToIntBits: { |
| 4168 | // two paths (plus control) merge in a wood |
| 4169 | RegionNode *r = new RegionNode(3); |
| 4170 | Node *phi = new PhiNode(r, TypeInt::INT); |
| 4171 | |
| 4172 | Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); |
| 4173 | // Build the boolean node |
| 4174 | Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); |
| 4175 | |
| 4176 | // Branch either way. |
| 4177 | // NaN case is less traveled, which makes all the difference. |
| 4178 | IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); |
| 4179 | Node *opt_isnan = _gvn.transform(ifisnan); |
| 4180 | assert( opt_isnan->is_If(), "Expect an IfNode" ); |
| 4181 | IfNode *opt_ifisnan = (IfNode*)opt_isnan; |
| 4182 | Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); |
| 4183 | |
| 4184 | set_control(iftrue); |
| 4185 | |
| 4186 | static const jint nan_bits = 0x7fc00000; |
| 4187 | Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN |
| 4188 | phi->init_req(1, _gvn.transform( slow_result )); |
| 4189 | r->init_req(1, iftrue); |
| 4190 | |
| 4191 | // Else fall through |
| 4192 | Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); |
| 4193 | set_control(iffalse); |
| 4194 | |
| 4195 | phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); |
| 4196 | r->init_req(2, iffalse); |
| 4197 | |
| 4198 | // Post merge |
| 4199 | set_control(_gvn.transform(r)); |
| 4200 | record_for_igvn(r); |
| 4201 | |
| 4202 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 4203 | result = phi; |
| 4204 | assert(result->bottom_type()->isa_int(), "must be" ); |
| 4205 | break; |
| 4206 | } |
| 4207 | |
| 4208 | default: |
| 4209 | fatal_unexpected_iid(id); |
| 4210 | break; |
| 4211 | } |
| 4212 | set_result(_gvn.transform(result)); |
| 4213 | return true; |
| 4214 | } |
| 4215 | |
| 4216 | //----------------------inline_unsafe_copyMemory------------------------- |
| 4217 | // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); |
| 4218 | bool LibraryCallKit::inline_unsafe_copyMemory() { |
| 4219 | if (callee()->is_static()) return false; // caller must have the capability! |
| 4220 | null_check_receiver(); // null-check receiver |
| 4221 | if (stopped()) return true; |
| 4222 | |
| 4223 | C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". |
| 4224 | |
| 4225 | Node* src_ptr = argument(1); // type: oop |
| 4226 | Node* src_off = ConvL2X(argument(2)); // type: long |
| 4227 | Node* dst_ptr = argument(4); // type: oop |
| 4228 | Node* dst_off = ConvL2X(argument(5)); // type: long |
| 4229 | Node* size = ConvL2X(argument(7)); // type: long |
| 4230 | |
| 4231 | assert(Unsafe_field_offset_to_byte_offset(11) == 11, |
| 4232 | "fieldOffset must be byte-scaled" ); |
| 4233 | |
| 4234 | src_ptr = access_resolve(src_ptr, ACCESS_READ); |
| 4235 | dst_ptr = access_resolve(dst_ptr, ACCESS_WRITE); |
| 4236 | Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ); |
| 4237 | Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE); |
| 4238 | |
| 4239 | // Conservatively insert a memory barrier on all memory slices. |
| 4240 | // Do not let writes of the copy source or destination float below the copy. |
| 4241 | insert_mem_bar(Op_MemBarCPUOrder); |
| 4242 | |
| 4243 | // Call it. Note that the length argument is not scaled. |
| 4244 | make_runtime_call(RC_LEAF|RC_NO_FP, |
| 4245 | OptoRuntime::fast_arraycopy_Type(), |
| 4246 | StubRoutines::unsafe_arraycopy(), |
| 4247 | "unsafe_arraycopy" , |
| 4248 | TypeRawPtr::BOTTOM, |
| 4249 | src, dst, size XTOP); |
| 4250 | |
| 4251 | // Do not let reads of the copy destination float above the copy. |
| 4252 | insert_mem_bar(Op_MemBarCPUOrder); |
| 4253 | |
| 4254 | return true; |
| 4255 | } |
| 4256 | |
| 4257 | //------------------------clone_coping----------------------------------- |
| 4258 | // Helper function for inline_native_clone. |
| 4259 | void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { |
| 4260 | assert(obj_size != NULL, "" ); |
| 4261 | Node* raw_obj = alloc_obj->in(1); |
| 4262 | assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "" ); |
| 4263 | |
| 4264 | AllocateNode* alloc = NULL; |
| 4265 | if (ReduceBulkZeroing) { |
| 4266 | // We will be completely responsible for initializing this object - |
| 4267 | // mark Initialize node as complete. |
| 4268 | alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); |
| 4269 | // The object was just allocated - there should be no any stores! |
| 4270 | guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "" ); |
| 4271 | // Mark as complete_with_arraycopy so that on AllocateNode |
| 4272 | // expansion, we know this AllocateNode is initialized by an array |
| 4273 | // copy and a StoreStore barrier exists after the array copy. |
| 4274 | alloc->initialization()->set_complete_with_arraycopy(); |
| 4275 | } |
| 4276 | |
| 4277 | // Copy the fastest available way. |
| 4278 | // TODO: generate fields copies for small objects instead. |
| 4279 | Node* size = _gvn.transform(obj_size); |
| 4280 | |
| 4281 | access_clone(obj, alloc_obj, size, is_array); |
| 4282 | |
| 4283 | // Do not let reads from the cloned object float above the arraycopy. |
| 4284 | if (alloc != NULL) { |
| 4285 | // Do not let stores that initialize this object be reordered with |
| 4286 | // a subsequent store that would make this object accessible by |
| 4287 | // other threads. |
| 4288 | // Record what AllocateNode this StoreStore protects so that |
| 4289 | // escape analysis can go from the MemBarStoreStoreNode to the |
| 4290 | // AllocateNode and eliminate the MemBarStoreStoreNode if possible |
| 4291 | // based on the escape status of the AllocateNode. |
| 4292 | insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); |
| 4293 | } else { |
| 4294 | insert_mem_bar(Op_MemBarCPUOrder); |
| 4295 | } |
| 4296 | } |
| 4297 | |
| 4298 | //------------------------inline_native_clone---------------------------- |
| 4299 | // protected native Object java.lang.Object.clone(); |
| 4300 | // |
| 4301 | // Here are the simple edge cases: |
| 4302 | // null receiver => normal trap |
| 4303 | // virtual and clone was overridden => slow path to out-of-line clone |
| 4304 | // not cloneable or finalizer => slow path to out-of-line Object.clone |
| 4305 | // |
| 4306 | // The general case has two steps, allocation and copying. |
| 4307 | // Allocation has two cases, and uses GraphKit::new_instance or new_array. |
| 4308 | // |
| 4309 | // Copying also has two cases, oop arrays and everything else. |
| 4310 | // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). |
| 4311 | // Everything else uses the tight inline loop supplied by CopyArrayNode. |
| 4312 | // |
| 4313 | // These steps fold up nicely if and when the cloned object's klass |
| 4314 | // can be sharply typed as an object array, a type array, or an instance. |
| 4315 | // |
| 4316 | bool LibraryCallKit::inline_native_clone(bool is_virtual) { |
| 4317 | PhiNode* result_val; |
| 4318 | |
| 4319 | // Set the reexecute bit for the interpreter to reexecute |
| 4320 | // the bytecode that invokes Object.clone if deoptimization happens. |
| 4321 | { PreserveReexecuteState preexecs(this); |
| 4322 | jvms()->set_should_reexecute(true); |
| 4323 | |
| 4324 | Node* obj = null_check_receiver(); |
| 4325 | if (stopped()) return true; |
| 4326 | |
| 4327 | const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); |
| 4328 | |
| 4329 | // If we are going to clone an instance, we need its exact type to |
| 4330 | // know the number and types of fields to convert the clone to |
| 4331 | // loads/stores. Maybe a speculative type can help us. |
| 4332 | if (!obj_type->klass_is_exact() && |
| 4333 | obj_type->speculative_type() != NULL && |
| 4334 | obj_type->speculative_type()->is_instance_klass()) { |
| 4335 | ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); |
| 4336 | if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && |
| 4337 | !spec_ik->has_injected_fields()) { |
| 4338 | ciKlass* k = obj_type->klass(); |
| 4339 | if (!k->is_instance_klass() || |
| 4340 | k->as_instance_klass()->is_interface() || |
| 4341 | k->as_instance_klass()->has_subklass()) { |
| 4342 | obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); |
| 4343 | } |
| 4344 | } |
| 4345 | } |
| 4346 | |
| 4347 | Node* obj_klass = load_object_klass(obj); |
| 4348 | const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr(); |
| 4349 | const TypeOopPtr* toop = ((tklass != NULL) |
| 4350 | ? tklass->as_instance_type() |
| 4351 | : TypeInstPtr::NOTNULL); |
| 4352 | |
| 4353 | // Conservatively insert a memory barrier on all memory slices. |
| 4354 | // Do not let writes into the original float below the clone. |
| 4355 | insert_mem_bar(Op_MemBarCPUOrder); |
| 4356 | |
| 4357 | // paths into result_reg: |
| 4358 | enum { |
| 4359 | _slow_path = 1, // out-of-line call to clone method (virtual or not) |
| 4360 | _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy |
| 4361 | _array_path, // plain array allocation, plus arrayof_long_arraycopy |
| 4362 | _instance_path, // plain instance allocation, plus arrayof_long_arraycopy |
| 4363 | PATH_LIMIT |
| 4364 | }; |
| 4365 | RegionNode* result_reg = new RegionNode(PATH_LIMIT); |
| 4366 | result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); |
| 4367 | PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); |
| 4368 | PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); |
| 4369 | record_for_igvn(result_reg); |
| 4370 | |
| 4371 | Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); |
| 4372 | if (array_ctl != NULL) { |
| 4373 | // It's an array. |
| 4374 | PreserveJVMState pjvms(this); |
| 4375 | set_control(array_ctl); |
| 4376 | Node* obj_length = load_array_length(obj); |
| 4377 | Node* obj_size = NULL; |
| 4378 | Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push |
| 4379 | |
| 4380 | BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); |
| 4381 | if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) { |
| 4382 | // If it is an oop array, it requires very special treatment, |
| 4383 | // because gc barriers are required when accessing the array. |
| 4384 | Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); |
| 4385 | if (is_obja != NULL) { |
| 4386 | PreserveJVMState pjvms2(this); |
| 4387 | set_control(is_obja); |
| 4388 | obj = access_resolve(obj, ACCESS_READ); |
| 4389 | // Generate a direct call to the right arraycopy function(s). |
| 4390 | Node* alloc = tightly_coupled_allocation(alloc_obj, NULL); |
| 4391 | ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false); |
| 4392 | ac->set_cloneoop(); |
| 4393 | Node* n = _gvn.transform(ac); |
| 4394 | assert(n == ac, "cannot disappear" ); |
| 4395 | ac->connect_outputs(this); |
| 4396 | |
| 4397 | result_reg->init_req(_objArray_path, control()); |
| 4398 | result_val->init_req(_objArray_path, alloc_obj); |
| 4399 | result_i_o ->set_req(_objArray_path, i_o()); |
| 4400 | result_mem ->set_req(_objArray_path, reset_memory()); |
| 4401 | } |
| 4402 | } |
| 4403 | // Otherwise, there are no barriers to worry about. |
| 4404 | // (We can dispense with card marks if we know the allocation |
| 4405 | // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks |
| 4406 | // causes the non-eden paths to take compensating steps to |
| 4407 | // simulate a fresh allocation, so that no further |
| 4408 | // card marks are required in compiled code to initialize |
| 4409 | // the object.) |
| 4410 | |
| 4411 | if (!stopped()) { |
| 4412 | copy_to_clone(obj, alloc_obj, obj_size, true); |
| 4413 | |
| 4414 | // Present the results of the copy. |
| 4415 | result_reg->init_req(_array_path, control()); |
| 4416 | result_val->init_req(_array_path, alloc_obj); |
| 4417 | result_i_o ->set_req(_array_path, i_o()); |
| 4418 | result_mem ->set_req(_array_path, reset_memory()); |
| 4419 | } |
| 4420 | } |
| 4421 | |
| 4422 | // We only go to the instance fast case code if we pass a number of guards. |
| 4423 | // The paths which do not pass are accumulated in the slow_region. |
| 4424 | RegionNode* slow_region = new RegionNode(1); |
| 4425 | record_for_igvn(slow_region); |
| 4426 | if (!stopped()) { |
| 4427 | // It's an instance (we did array above). Make the slow-path tests. |
| 4428 | // If this is a virtual call, we generate a funny guard. We grab |
| 4429 | // the vtable entry corresponding to clone() from the target object. |
| 4430 | // If the target method which we are calling happens to be the |
| 4431 | // Object clone() method, we pass the guard. We do not need this |
| 4432 | // guard for non-virtual calls; the caller is known to be the native |
| 4433 | // Object clone(). |
| 4434 | if (is_virtual) { |
| 4435 | generate_virtual_guard(obj_klass, slow_region); |
| 4436 | } |
| 4437 | |
| 4438 | // The object must be easily cloneable and must not have a finalizer. |
| 4439 | // Both of these conditions may be checked in a single test. |
| 4440 | // We could optimize the test further, but we don't care. |
| 4441 | generate_access_flags_guard(obj_klass, |
| 4442 | // Test both conditions: |
| 4443 | JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, |
| 4444 | // Must be cloneable but not finalizer: |
| 4445 | JVM_ACC_IS_CLONEABLE_FAST, |
| 4446 | slow_region); |
| 4447 | } |
| 4448 | |
| 4449 | if (!stopped()) { |
| 4450 | // It's an instance, and it passed the slow-path tests. |
| 4451 | PreserveJVMState pjvms(this); |
| 4452 | Node* obj_size = NULL; |
| 4453 | // Need to deoptimize on exception from allocation since Object.clone intrinsic |
| 4454 | // is reexecuted if deoptimization occurs and there could be problems when merging |
| 4455 | // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). |
| 4456 | Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); |
| 4457 | |
| 4458 | copy_to_clone(obj, alloc_obj, obj_size, false); |
| 4459 | |
| 4460 | // Present the results of the slow call. |
| 4461 | result_reg->init_req(_instance_path, control()); |
| 4462 | result_val->init_req(_instance_path, alloc_obj); |
| 4463 | result_i_o ->set_req(_instance_path, i_o()); |
| 4464 | result_mem ->set_req(_instance_path, reset_memory()); |
| 4465 | } |
| 4466 | |
| 4467 | // Generate code for the slow case. We make a call to clone(). |
| 4468 | set_control(_gvn.transform(slow_region)); |
| 4469 | if (!stopped()) { |
| 4470 | PreserveJVMState pjvms(this); |
| 4471 | CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); |
| 4472 | // We need to deoptimize on exception (see comment above) |
| 4473 | Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); |
| 4474 | // this->control() comes from set_results_for_java_call |
| 4475 | result_reg->init_req(_slow_path, control()); |
| 4476 | result_val->init_req(_slow_path, slow_result); |
| 4477 | result_i_o ->set_req(_slow_path, i_o()); |
| 4478 | result_mem ->set_req(_slow_path, reset_memory()); |
| 4479 | } |
| 4480 | |
| 4481 | // Return the combined state. |
| 4482 | set_control( _gvn.transform(result_reg)); |
| 4483 | set_i_o( _gvn.transform(result_i_o)); |
| 4484 | set_all_memory( _gvn.transform(result_mem)); |
| 4485 | } // original reexecute is set back here |
| 4486 | |
| 4487 | set_result(_gvn.transform(result_val)); |
| 4488 | return true; |
| 4489 | } |
| 4490 | |
| 4491 | // If we have a tightly coupled allocation, the arraycopy may take care |
| 4492 | // of the array initialization. If one of the guards we insert between |
| 4493 | // the allocation and the arraycopy causes a deoptimization, an |
| 4494 | // unitialized array will escape the compiled method. To prevent that |
| 4495 | // we set the JVM state for uncommon traps between the allocation and |
| 4496 | // the arraycopy to the state before the allocation so, in case of |
| 4497 | // deoptimization, we'll reexecute the allocation and the |
| 4498 | // initialization. |
| 4499 | JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { |
| 4500 | if (alloc != NULL) { |
| 4501 | ciMethod* trap_method = alloc->jvms()->method(); |
| 4502 | int trap_bci = alloc->jvms()->bci(); |
| 4503 | |
| 4504 | if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && |
| 4505 | !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { |
| 4506 | // Make sure there's no store between the allocation and the |
| 4507 | // arraycopy otherwise visible side effects could be rexecuted |
| 4508 | // in case of deoptimization and cause incorrect execution. |
| 4509 | bool no_interfering_store = true; |
| 4510 | Node* mem = alloc->in(TypeFunc::Memory); |
| 4511 | if (mem->is_MergeMem()) { |
| 4512 | for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { |
| 4513 | Node* n = mms.memory(); |
| 4514 | if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { |
| 4515 | assert(n->is_Store(), "what else?" ); |
| 4516 | no_interfering_store = false; |
| 4517 | break; |
| 4518 | } |
| 4519 | } |
| 4520 | } else { |
| 4521 | for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { |
| 4522 | Node* n = mms.memory(); |
| 4523 | if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { |
| 4524 | assert(n->is_Store(), "what else?" ); |
| 4525 | no_interfering_store = false; |
| 4526 | break; |
| 4527 | } |
| 4528 | } |
| 4529 | } |
| 4530 | |
| 4531 | if (no_interfering_store) { |
| 4532 | JVMState* old_jvms = alloc->jvms()->clone_shallow(C); |
| 4533 | uint size = alloc->req(); |
| 4534 | SafePointNode* sfpt = new SafePointNode(size, old_jvms); |
| 4535 | old_jvms->set_map(sfpt); |
| 4536 | for (uint i = 0; i < size; i++) { |
| 4537 | sfpt->init_req(i, alloc->in(i)); |
| 4538 | } |
| 4539 | // re-push array length for deoptimization |
| 4540 | sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); |
| 4541 | old_jvms->set_sp(old_jvms->sp()+1); |
| 4542 | old_jvms->set_monoff(old_jvms->monoff()+1); |
| 4543 | old_jvms->set_scloff(old_jvms->scloff()+1); |
| 4544 | old_jvms->set_endoff(old_jvms->endoff()+1); |
| 4545 | old_jvms->set_should_reexecute(true); |
| 4546 | |
| 4547 | sfpt->set_i_o(map()->i_o()); |
| 4548 | sfpt->set_memory(map()->memory()); |
| 4549 | sfpt->set_control(map()->control()); |
| 4550 | |
| 4551 | JVMState* saved_jvms = jvms(); |
| 4552 | saved_reexecute_sp = _reexecute_sp; |
| 4553 | |
| 4554 | set_jvms(sfpt->jvms()); |
| 4555 | _reexecute_sp = jvms()->sp(); |
| 4556 | |
| 4557 | return saved_jvms; |
| 4558 | } |
| 4559 | } |
| 4560 | } |
| 4561 | return NULL; |
| 4562 | } |
| 4563 | |
| 4564 | // In case of a deoptimization, we restart execution at the |
| 4565 | // allocation, allocating a new array. We would leave an uninitialized |
| 4566 | // array in the heap that GCs wouldn't expect. Move the allocation |
| 4567 | // after the traps so we don't allocate the array if we |
| 4568 | // deoptimize. This is possible because tightly_coupled_allocation() |
| 4569 | // guarantees there's no observer of the allocated array at this point |
| 4570 | // and the control flow is simple enough. |
| 4571 | void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, |
| 4572 | int saved_reexecute_sp, uint new_idx) { |
| 4573 | if (saved_jvms != NULL && !stopped()) { |
| 4574 | assert(alloc != NULL, "only with a tightly coupled allocation" ); |
| 4575 | // restore JVM state to the state at the arraycopy |
| 4576 | saved_jvms->map()->set_control(map()->control()); |
| 4577 | assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?" ); |
| 4578 | assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?" ); |
| 4579 | // If we've improved the types of some nodes (null check) while |
| 4580 | // emitting the guards, propagate them to the current state |
| 4581 | map()->replaced_nodes().apply(saved_jvms->map(), new_idx); |
| 4582 | set_jvms(saved_jvms); |
| 4583 | _reexecute_sp = saved_reexecute_sp; |
| 4584 | |
| 4585 | // Remove the allocation from above the guards |
| 4586 | CallProjections callprojs; |
| 4587 | alloc->extract_projections(&callprojs, true); |
| 4588 | InitializeNode* init = alloc->initialization(); |
| 4589 | Node* alloc_mem = alloc->in(TypeFunc::Memory); |
| 4590 | C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); |
| 4591 | C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); |
| 4592 | C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); |
| 4593 | |
| 4594 | // move the allocation here (after the guards) |
| 4595 | _gvn.hash_delete(alloc); |
| 4596 | alloc->set_req(TypeFunc::Control, control()); |
| 4597 | alloc->set_req(TypeFunc::I_O, i_o()); |
| 4598 | Node *mem = reset_memory(); |
| 4599 | set_all_memory(mem); |
| 4600 | alloc->set_req(TypeFunc::Memory, mem); |
| 4601 | set_control(init->proj_out_or_null(TypeFunc::Control)); |
| 4602 | set_i_o(callprojs.fallthrough_ioproj); |
| 4603 | |
| 4604 | // Update memory as done in GraphKit::set_output_for_allocation() |
| 4605 | const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); |
| 4606 | const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); |
| 4607 | if (ary_type->isa_aryptr() && length_type != NULL) { |
| 4608 | ary_type = ary_type->is_aryptr()->cast_to_size(length_type); |
| 4609 | } |
| 4610 | const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); |
| 4611 | int elemidx = C->get_alias_index(telemref); |
| 4612 | set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); |
| 4613 | set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); |
| 4614 | |
| 4615 | Node* allocx = _gvn.transform(alloc); |
| 4616 | assert(allocx == alloc, "where has the allocation gone?" ); |
| 4617 | assert(dest->is_CheckCastPP(), "not an allocation result?" ); |
| 4618 | |
| 4619 | _gvn.hash_delete(dest); |
| 4620 | dest->set_req(0, control()); |
| 4621 | Node* destx = _gvn.transform(dest); |
| 4622 | assert(destx == dest, "where has the allocation result gone?" ); |
| 4623 | } |
| 4624 | } |
| 4625 | |
| 4626 | |
| 4627 | //------------------------------inline_arraycopy----------------------- |
| 4628 | // public static native void java.lang.System.arraycopy(Object src, int srcPos, |
| 4629 | // Object dest, int destPos, |
| 4630 | // int length); |
| 4631 | bool LibraryCallKit::inline_arraycopy() { |
| 4632 | // Get the arguments. |
| 4633 | Node* src = argument(0); // type: oop |
| 4634 | Node* src_offset = argument(1); // type: int |
| 4635 | Node* dest = argument(2); // type: oop |
| 4636 | Node* dest_offset = argument(3); // type: int |
| 4637 | Node* length = argument(4); // type: int |
| 4638 | |
| 4639 | uint new_idx = C->unique(); |
| 4640 | |
| 4641 | // Check for allocation before we add nodes that would confuse |
| 4642 | // tightly_coupled_allocation() |
| 4643 | AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL); |
| 4644 | |
| 4645 | int saved_reexecute_sp = -1; |
| 4646 | JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); |
| 4647 | // See arraycopy_restore_alloc_state() comment |
| 4648 | // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards |
| 4649 | // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation |
| 4650 | // if saved_jvms == NULL and alloc != NULL, we can't emit any guards |
| 4651 | bool can_emit_guards = (alloc == NULL || saved_jvms != NULL); |
| 4652 | |
| 4653 | // The following tests must be performed |
| 4654 | // (1) src and dest are arrays. |
| 4655 | // (2) src and dest arrays must have elements of the same BasicType |
| 4656 | // (3) src and dest must not be null. |
| 4657 | // (4) src_offset must not be negative. |
| 4658 | // (5) dest_offset must not be negative. |
| 4659 | // (6) length must not be negative. |
| 4660 | // (7) src_offset + length must not exceed length of src. |
| 4661 | // (8) dest_offset + length must not exceed length of dest. |
| 4662 | // (9) each element of an oop array must be assignable |
| 4663 | |
| 4664 | // (3) src and dest must not be null. |
| 4665 | // always do this here because we need the JVM state for uncommon traps |
| 4666 | Node* null_ctl = top(); |
| 4667 | src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); |
| 4668 | assert(null_ctl->is_top(), "no null control here" ); |
| 4669 | dest = null_check(dest, T_ARRAY); |
| 4670 | |
| 4671 | if (!can_emit_guards) { |
| 4672 | // if saved_jvms == NULL and alloc != NULL, we don't emit any |
| 4673 | // guards but the arraycopy node could still take advantage of a |
| 4674 | // tightly allocated allocation. tightly_coupled_allocation() is |
| 4675 | // called again to make sure it takes the null check above into |
| 4676 | // account: the null check is mandatory and if it caused an |
| 4677 | // uncommon trap to be emitted then the allocation can't be |
| 4678 | // considered tightly coupled in this context. |
| 4679 | alloc = tightly_coupled_allocation(dest, NULL); |
| 4680 | } |
| 4681 | |
| 4682 | bool validated = false; |
| 4683 | |
| 4684 | const Type* src_type = _gvn.type(src); |
| 4685 | const Type* dest_type = _gvn.type(dest); |
| 4686 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 4687 | const TypeAryPtr* top_dest = dest_type->isa_aryptr(); |
| 4688 | |
| 4689 | // Do we have the type of src? |
| 4690 | bool has_src = (top_src != NULL && top_src->klass() != NULL); |
| 4691 | // Do we have the type of dest? |
| 4692 | bool has_dest = (top_dest != NULL && top_dest->klass() != NULL); |
| 4693 | // Is the type for src from speculation? |
| 4694 | bool src_spec = false; |
| 4695 | // Is the type for dest from speculation? |
| 4696 | bool dest_spec = false; |
| 4697 | |
| 4698 | if ((!has_src || !has_dest) && can_emit_guards) { |
| 4699 | // We don't have sufficient type information, let's see if |
| 4700 | // speculative types can help. We need to have types for both src |
| 4701 | // and dest so that it pays off. |
| 4702 | |
| 4703 | // Do we already have or could we have type information for src |
| 4704 | bool could_have_src = has_src; |
| 4705 | // Do we already have or could we have type information for dest |
| 4706 | bool could_have_dest = has_dest; |
| 4707 | |
| 4708 | ciKlass* src_k = NULL; |
| 4709 | if (!has_src) { |
| 4710 | src_k = src_type->speculative_type_not_null(); |
| 4711 | if (src_k != NULL && src_k->is_array_klass()) { |
| 4712 | could_have_src = true; |
| 4713 | } |
| 4714 | } |
| 4715 | |
| 4716 | ciKlass* dest_k = NULL; |
| 4717 | if (!has_dest) { |
| 4718 | dest_k = dest_type->speculative_type_not_null(); |
| 4719 | if (dest_k != NULL && dest_k->is_array_klass()) { |
| 4720 | could_have_dest = true; |
| 4721 | } |
| 4722 | } |
| 4723 | |
| 4724 | if (could_have_src && could_have_dest) { |
| 4725 | // This is going to pay off so emit the required guards |
| 4726 | if (!has_src) { |
| 4727 | src = maybe_cast_profiled_obj(src, src_k, true); |
| 4728 | src_type = _gvn.type(src); |
| 4729 | top_src = src_type->isa_aryptr(); |
| 4730 | has_src = (top_src != NULL && top_src->klass() != NULL); |
| 4731 | src_spec = true; |
| 4732 | } |
| 4733 | if (!has_dest) { |
| 4734 | dest = maybe_cast_profiled_obj(dest, dest_k, true); |
| 4735 | dest_type = _gvn.type(dest); |
| 4736 | top_dest = dest_type->isa_aryptr(); |
| 4737 | has_dest = (top_dest != NULL && top_dest->klass() != NULL); |
| 4738 | dest_spec = true; |
| 4739 | } |
| 4740 | } |
| 4741 | } |
| 4742 | |
| 4743 | if (has_src && has_dest && can_emit_guards) { |
| 4744 | BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); |
| 4745 | BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); |
| 4746 | if (src_elem == T_ARRAY) src_elem = T_OBJECT; |
| 4747 | if (dest_elem == T_ARRAY) dest_elem = T_OBJECT; |
| 4748 | |
| 4749 | if (src_elem == dest_elem && src_elem == T_OBJECT) { |
| 4750 | // If both arrays are object arrays then having the exact types |
| 4751 | // for both will remove the need for a subtype check at runtime |
| 4752 | // before the call and may make it possible to pick a faster copy |
| 4753 | // routine (without a subtype check on every element) |
| 4754 | // Do we have the exact type of src? |
| 4755 | bool could_have_src = src_spec; |
| 4756 | // Do we have the exact type of dest? |
| 4757 | bool could_have_dest = dest_spec; |
| 4758 | ciKlass* src_k = top_src->klass(); |
| 4759 | ciKlass* dest_k = top_dest->klass(); |
| 4760 | if (!src_spec) { |
| 4761 | src_k = src_type->speculative_type_not_null(); |
| 4762 | if (src_k != NULL && src_k->is_array_klass()) { |
| 4763 | could_have_src = true; |
| 4764 | } |
| 4765 | } |
| 4766 | if (!dest_spec) { |
| 4767 | dest_k = dest_type->speculative_type_not_null(); |
| 4768 | if (dest_k != NULL && dest_k->is_array_klass()) { |
| 4769 | could_have_dest = true; |
| 4770 | } |
| 4771 | } |
| 4772 | if (could_have_src && could_have_dest) { |
| 4773 | // If we can have both exact types, emit the missing guards |
| 4774 | if (could_have_src && !src_spec) { |
| 4775 | src = maybe_cast_profiled_obj(src, src_k, true); |
| 4776 | } |
| 4777 | if (could_have_dest && !dest_spec) { |
| 4778 | dest = maybe_cast_profiled_obj(dest, dest_k, true); |
| 4779 | } |
| 4780 | } |
| 4781 | } |
| 4782 | } |
| 4783 | |
| 4784 | ciMethod* trap_method = method(); |
| 4785 | int trap_bci = bci(); |
| 4786 | if (saved_jvms != NULL) { |
| 4787 | trap_method = alloc->jvms()->method(); |
| 4788 | trap_bci = alloc->jvms()->bci(); |
| 4789 | } |
| 4790 | |
| 4791 | bool negative_length_guard_generated = false; |
| 4792 | |
| 4793 | if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && |
| 4794 | can_emit_guards && |
| 4795 | !src->is_top() && !dest->is_top()) { |
| 4796 | // validate arguments: enables transformation the ArrayCopyNode |
| 4797 | validated = true; |
| 4798 | |
| 4799 | RegionNode* slow_region = new RegionNode(1); |
| 4800 | record_for_igvn(slow_region); |
| 4801 | |
| 4802 | // (1) src and dest are arrays. |
| 4803 | generate_non_array_guard(load_object_klass(src), slow_region); |
| 4804 | generate_non_array_guard(load_object_klass(dest), slow_region); |
| 4805 | |
| 4806 | // (2) src and dest arrays must have elements of the same BasicType |
| 4807 | // done at macro expansion or at Ideal transformation time |
| 4808 | |
| 4809 | // (4) src_offset must not be negative. |
| 4810 | generate_negative_guard(src_offset, slow_region); |
| 4811 | |
| 4812 | // (5) dest_offset must not be negative. |
| 4813 | generate_negative_guard(dest_offset, slow_region); |
| 4814 | |
| 4815 | // (7) src_offset + length must not exceed length of src. |
| 4816 | generate_limit_guard(src_offset, length, |
| 4817 | load_array_length(src), |
| 4818 | slow_region); |
| 4819 | |
| 4820 | // (8) dest_offset + length must not exceed length of dest. |
| 4821 | generate_limit_guard(dest_offset, length, |
| 4822 | load_array_length(dest), |
| 4823 | slow_region); |
| 4824 | |
| 4825 | // (6) length must not be negative. |
| 4826 | // This is also checked in generate_arraycopy() during macro expansion, but |
| 4827 | // we also have to check it here for the case where the ArrayCopyNode will |
| 4828 | // be eliminated by Escape Analysis. |
| 4829 | if (EliminateAllocations) { |
| 4830 | generate_negative_guard(length, slow_region); |
| 4831 | negative_length_guard_generated = true; |
| 4832 | } |
| 4833 | |
| 4834 | // (9) each element of an oop array must be assignable |
| 4835 | Node* src_klass = load_object_klass(src); |
| 4836 | Node* dest_klass = load_object_klass(dest); |
| 4837 | Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass); |
| 4838 | |
| 4839 | if (not_subtype_ctrl != top()) { |
| 4840 | PreserveJVMState pjvms(this); |
| 4841 | set_control(not_subtype_ctrl); |
| 4842 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 4843 | Deoptimization::Action_make_not_entrant); |
| 4844 | assert(stopped(), "Should be stopped" ); |
| 4845 | } |
| 4846 | { |
| 4847 | PreserveJVMState pjvms(this); |
| 4848 | set_control(_gvn.transform(slow_region)); |
| 4849 | uncommon_trap(Deoptimization::Reason_intrinsic, |
| 4850 | Deoptimization::Action_make_not_entrant); |
| 4851 | assert(stopped(), "Should be stopped" ); |
| 4852 | } |
| 4853 | |
| 4854 | const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); |
| 4855 | const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass()); |
| 4856 | src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); |
| 4857 | } |
| 4858 | |
| 4859 | arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx); |
| 4860 | |
| 4861 | if (stopped()) { |
| 4862 | return true; |
| 4863 | } |
| 4864 | |
| 4865 | Node* new_src = access_resolve(src, ACCESS_READ); |
| 4866 | Node* new_dest = access_resolve(dest, ACCESS_WRITE); |
| 4867 | |
| 4868 | ArrayCopyNode* ac = ArrayCopyNode::make(this, true, new_src, src_offset, new_dest, dest_offset, length, alloc != NULL, negative_length_guard_generated, |
| 4869 | // Create LoadRange and LoadKlass nodes for use during macro expansion here |
| 4870 | // so the compiler has a chance to eliminate them: during macro expansion, |
| 4871 | // we have to set their control (CastPP nodes are eliminated). |
| 4872 | load_object_klass(src), load_object_klass(dest), |
| 4873 | load_array_length(src), load_array_length(dest)); |
| 4874 | |
| 4875 | ac->set_arraycopy(validated); |
| 4876 | |
| 4877 | Node* n = _gvn.transform(ac); |
| 4878 | if (n == ac) { |
| 4879 | ac->connect_outputs(this); |
| 4880 | } else { |
| 4881 | assert(validated, "shouldn't transform if all arguments not validated" ); |
| 4882 | set_all_memory(n); |
| 4883 | } |
| 4884 | clear_upper_avx(); |
| 4885 | |
| 4886 | |
| 4887 | return true; |
| 4888 | } |
| 4889 | |
| 4890 | |
| 4891 | // Helper function which determines if an arraycopy immediately follows |
| 4892 | // an allocation, with no intervening tests or other escapes for the object. |
| 4893 | AllocateArrayNode* |
| 4894 | LibraryCallKit::tightly_coupled_allocation(Node* ptr, |
| 4895 | RegionNode* slow_region) { |
| 4896 | if (stopped()) return NULL; // no fast path |
| 4897 | if (C->AliasLevel() == 0) return NULL; // no MergeMems around |
| 4898 | |
| 4899 | AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); |
| 4900 | if (alloc == NULL) return NULL; |
| 4901 | |
| 4902 | Node* rawmem = memory(Compile::AliasIdxRaw); |
| 4903 | // Is the allocation's memory state untouched? |
| 4904 | if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { |
| 4905 | // Bail out if there have been raw-memory effects since the allocation. |
| 4906 | // (Example: There might have been a call or safepoint.) |
| 4907 | return NULL; |
| 4908 | } |
| 4909 | rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); |
| 4910 | if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { |
| 4911 | return NULL; |
| 4912 | } |
| 4913 | |
| 4914 | // There must be no unexpected observers of this allocation. |
| 4915 | for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { |
| 4916 | Node* obs = ptr->fast_out(i); |
| 4917 | if (obs != this->map()) { |
| 4918 | return NULL; |
| 4919 | } |
| 4920 | } |
| 4921 | |
| 4922 | // This arraycopy must unconditionally follow the allocation of the ptr. |
| 4923 | Node* alloc_ctl = ptr->in(0); |
| 4924 | assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo" ); |
| 4925 | |
| 4926 | Node* ctl = control(); |
| 4927 | while (ctl != alloc_ctl) { |
| 4928 | // There may be guards which feed into the slow_region. |
| 4929 | // Any other control flow means that we might not get a chance |
| 4930 | // to finish initializing the allocated object. |
| 4931 | if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { |
| 4932 | IfNode* iff = ctl->in(0)->as_If(); |
| 4933 | Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con); |
| 4934 | assert(not_ctl != NULL && not_ctl != ctl, "found alternate" ); |
| 4935 | if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) { |
| 4936 | ctl = iff->in(0); // This test feeds the known slow_region. |
| 4937 | continue; |
| 4938 | } |
| 4939 | // One more try: Various low-level checks bottom out in |
| 4940 | // uncommon traps. If the debug-info of the trap omits |
| 4941 | // any reference to the allocation, as we've already |
| 4942 | // observed, then there can be no objection to the trap. |
| 4943 | bool found_trap = false; |
| 4944 | for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { |
| 4945 | Node* obs = not_ctl->fast_out(j); |
| 4946 | if (obs->in(0) == not_ctl && obs->is_Call() && |
| 4947 | (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { |
| 4948 | found_trap = true; break; |
| 4949 | } |
| 4950 | } |
| 4951 | if (found_trap) { |
| 4952 | ctl = iff->in(0); // This test feeds a harmless uncommon trap. |
| 4953 | continue; |
| 4954 | } |
| 4955 | } |
| 4956 | return NULL; |
| 4957 | } |
| 4958 | |
| 4959 | // If we get this far, we have an allocation which immediately |
| 4960 | // precedes the arraycopy, and we can take over zeroing the new object. |
| 4961 | // The arraycopy will finish the initialization, and provide |
| 4962 | // a new control state to which we will anchor the destination pointer. |
| 4963 | |
| 4964 | return alloc; |
| 4965 | } |
| 4966 | |
| 4967 | //-------------inline_encodeISOArray----------------------------------- |
| 4968 | // encode char[] to byte[] in ISO_8859_1 |
| 4969 | bool LibraryCallKit::inline_encodeISOArray() { |
| 4970 | assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters" ); |
| 4971 | // no receiver since it is static method |
| 4972 | Node *src = argument(0); |
| 4973 | Node *src_offset = argument(1); |
| 4974 | Node *dst = argument(2); |
| 4975 | Node *dst_offset = argument(3); |
| 4976 | Node *length = argument(4); |
| 4977 | |
| 4978 | src = must_be_not_null(src, true); |
| 4979 | dst = must_be_not_null(dst, true); |
| 4980 | |
| 4981 | src = access_resolve(src, ACCESS_READ); |
| 4982 | dst = access_resolve(dst, ACCESS_WRITE); |
| 4983 | |
| 4984 | const Type* src_type = src->Value(&_gvn); |
| 4985 | const Type* dst_type = dst->Value(&_gvn); |
| 4986 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 4987 | const TypeAryPtr* top_dest = dst_type->isa_aryptr(); |
| 4988 | if (top_src == NULL || top_src->klass() == NULL || |
| 4989 | top_dest == NULL || top_dest->klass() == NULL) { |
| 4990 | // failed array check |
| 4991 | return false; |
| 4992 | } |
| 4993 | |
| 4994 | // Figure out the size and type of the elements we will be copying. |
| 4995 | BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 4996 | BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 4997 | if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { |
| 4998 | return false; |
| 4999 | } |
| 5000 | |
| 5001 | Node* src_start = array_element_address(src, src_offset, T_CHAR); |
| 5002 | Node* dst_start = array_element_address(dst, dst_offset, dst_elem); |
| 5003 | // 'src_start' points to src array + scaled offset |
| 5004 | // 'dst_start' points to dst array + scaled offset |
| 5005 | |
| 5006 | const TypeAryPtr* mtype = TypeAryPtr::BYTES; |
| 5007 | Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length); |
| 5008 | enc = _gvn.transform(enc); |
| 5009 | Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); |
| 5010 | set_memory(res_mem, mtype); |
| 5011 | set_result(enc); |
| 5012 | clear_upper_avx(); |
| 5013 | |
| 5014 | return true; |
| 5015 | } |
| 5016 | |
| 5017 | //-------------inline_multiplyToLen----------------------------------- |
| 5018 | bool LibraryCallKit::inline_multiplyToLen() { |
| 5019 | assert(UseMultiplyToLenIntrinsic, "not implemented on this platform" ); |
| 5020 | |
| 5021 | address stubAddr = StubRoutines::multiplyToLen(); |
| 5022 | if (stubAddr == NULL) { |
| 5023 | return false; // Intrinsic's stub is not implemented on this platform |
| 5024 | } |
| 5025 | const char* stubName = "multiplyToLen" ; |
| 5026 | |
| 5027 | assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters" ); |
| 5028 | |
| 5029 | // no receiver because it is a static method |
| 5030 | Node* x = argument(0); |
| 5031 | Node* xlen = argument(1); |
| 5032 | Node* y = argument(2); |
| 5033 | Node* ylen = argument(3); |
| 5034 | Node* z = argument(4); |
| 5035 | |
| 5036 | x = must_be_not_null(x, true); |
| 5037 | y = must_be_not_null(y, true); |
| 5038 | |
| 5039 | x = access_resolve(x, ACCESS_READ); |
| 5040 | y = access_resolve(y, ACCESS_READ); |
| 5041 | z = access_resolve(z, ACCESS_WRITE); |
| 5042 | |
| 5043 | const Type* x_type = x->Value(&_gvn); |
| 5044 | const Type* y_type = y->Value(&_gvn); |
| 5045 | const TypeAryPtr* top_x = x_type->isa_aryptr(); |
| 5046 | const TypeAryPtr* top_y = y_type->isa_aryptr(); |
| 5047 | if (top_x == NULL || top_x->klass() == NULL || |
| 5048 | top_y == NULL || top_y->klass() == NULL) { |
| 5049 | // failed array check |
| 5050 | return false; |
| 5051 | } |
| 5052 | |
| 5053 | BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5054 | BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5055 | if (x_elem != T_INT || y_elem != T_INT) { |
| 5056 | return false; |
| 5057 | } |
| 5058 | |
| 5059 | // Set the original stack and the reexecute bit for the interpreter to reexecute |
| 5060 | // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens |
| 5061 | // on the return from z array allocation in runtime. |
| 5062 | { PreserveReexecuteState preexecs(this); |
| 5063 | jvms()->set_should_reexecute(true); |
| 5064 | |
| 5065 | Node* x_start = array_element_address(x, intcon(0), x_elem); |
| 5066 | Node* y_start = array_element_address(y, intcon(0), y_elem); |
| 5067 | // 'x_start' points to x array + scaled xlen |
| 5068 | // 'y_start' points to y array + scaled ylen |
| 5069 | |
| 5070 | // Allocate the result array |
| 5071 | Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); |
| 5072 | ciKlass* klass = ciTypeArrayKlass::make(T_INT); |
| 5073 | Node* klass_node = makecon(TypeKlassPtr::make(klass)); |
| 5074 | |
| 5075 | IdealKit ideal(this); |
| 5076 | |
| 5077 | #define __ ideal. |
| 5078 | Node* one = __ ConI(1); |
| 5079 | Node* zero = __ ConI(0); |
| 5080 | IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); |
| 5081 | __ set(need_alloc, zero); |
| 5082 | __ set(z_alloc, z); |
| 5083 | __ if_then(z, BoolTest::eq, null()); { |
| 5084 | __ increment (need_alloc, one); |
| 5085 | } __ else_(); { |
| 5086 | // Update graphKit memory and control from IdealKit. |
| 5087 | sync_kit(ideal); |
| 5088 | Node *cast = new CastPPNode(z, TypePtr::NOTNULL); |
| 5089 | cast->init_req(0, control()); |
| 5090 | _gvn.set_type(cast, cast->bottom_type()); |
| 5091 | C->record_for_igvn(cast); |
| 5092 | |
| 5093 | Node* zlen_arg = load_array_length(cast); |
| 5094 | // Update IdealKit memory and control from graphKit. |
| 5095 | __ sync_kit(this); |
| 5096 | __ if_then(zlen_arg, BoolTest::lt, zlen); { |
| 5097 | __ increment (need_alloc, one); |
| 5098 | } __ end_if(); |
| 5099 | } __ end_if(); |
| 5100 | |
| 5101 | __ if_then(__ value(need_alloc), BoolTest::ne, zero); { |
| 5102 | // Update graphKit memory and control from IdealKit. |
| 5103 | sync_kit(ideal); |
| 5104 | Node * narr = new_array(klass_node, zlen, 1); |
| 5105 | // Update IdealKit memory and control from graphKit. |
| 5106 | __ sync_kit(this); |
| 5107 | __ set(z_alloc, narr); |
| 5108 | } __ end_if(); |
| 5109 | |
| 5110 | sync_kit(ideal); |
| 5111 | z = __ value(z_alloc); |
| 5112 | // Can't use TypeAryPtr::INTS which uses Bottom offset. |
| 5113 | _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); |
| 5114 | // Final sync IdealKit and GraphKit. |
| 5115 | final_sync(ideal); |
| 5116 | #undef __ |
| 5117 | |
| 5118 | Node* z_start = array_element_address(z, intcon(0), T_INT); |
| 5119 | |
| 5120 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 5121 | OptoRuntime::multiplyToLen_Type(), |
| 5122 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5123 | x_start, xlen, y_start, ylen, z_start, zlen); |
| 5124 | } // original reexecute is set back here |
| 5125 | |
| 5126 | C->set_has_split_ifs(true); // Has chance for split-if optimization |
| 5127 | set_result(z); |
| 5128 | return true; |
| 5129 | } |
| 5130 | |
| 5131 | //-------------inline_squareToLen------------------------------------ |
| 5132 | bool LibraryCallKit::inline_squareToLen() { |
| 5133 | assert(UseSquareToLenIntrinsic, "not implemented on this platform" ); |
| 5134 | |
| 5135 | address stubAddr = StubRoutines::squareToLen(); |
| 5136 | if (stubAddr == NULL) { |
| 5137 | return false; // Intrinsic's stub is not implemented on this platform |
| 5138 | } |
| 5139 | const char* stubName = "squareToLen" ; |
| 5140 | |
| 5141 | assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters" ); |
| 5142 | |
| 5143 | Node* x = argument(0); |
| 5144 | Node* len = argument(1); |
| 5145 | Node* z = argument(2); |
| 5146 | Node* zlen = argument(3); |
| 5147 | |
| 5148 | x = must_be_not_null(x, true); |
| 5149 | z = must_be_not_null(z, true); |
| 5150 | |
| 5151 | x = access_resolve(x, ACCESS_READ); |
| 5152 | z = access_resolve(z, ACCESS_WRITE); |
| 5153 | |
| 5154 | const Type* x_type = x->Value(&_gvn); |
| 5155 | const Type* z_type = z->Value(&_gvn); |
| 5156 | const TypeAryPtr* top_x = x_type->isa_aryptr(); |
| 5157 | const TypeAryPtr* top_z = z_type->isa_aryptr(); |
| 5158 | if (top_x == NULL || top_x->klass() == NULL || |
| 5159 | top_z == NULL || top_z->klass() == NULL) { |
| 5160 | // failed array check |
| 5161 | return false; |
| 5162 | } |
| 5163 | |
| 5164 | BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5165 | BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5166 | if (x_elem != T_INT || z_elem != T_INT) { |
| 5167 | return false; |
| 5168 | } |
| 5169 | |
| 5170 | |
| 5171 | Node* x_start = array_element_address(x, intcon(0), x_elem); |
| 5172 | Node* z_start = array_element_address(z, intcon(0), z_elem); |
| 5173 | |
| 5174 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 5175 | OptoRuntime::squareToLen_Type(), |
| 5176 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5177 | x_start, len, z_start, zlen); |
| 5178 | |
| 5179 | set_result(z); |
| 5180 | return true; |
| 5181 | } |
| 5182 | |
| 5183 | //-------------inline_mulAdd------------------------------------------ |
| 5184 | bool LibraryCallKit::inline_mulAdd() { |
| 5185 | assert(UseMulAddIntrinsic, "not implemented on this platform" ); |
| 5186 | |
| 5187 | address stubAddr = StubRoutines::mulAdd(); |
| 5188 | if (stubAddr == NULL) { |
| 5189 | return false; // Intrinsic's stub is not implemented on this platform |
| 5190 | } |
| 5191 | const char* stubName = "mulAdd" ; |
| 5192 | |
| 5193 | assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters" ); |
| 5194 | |
| 5195 | Node* out = argument(0); |
| 5196 | Node* in = argument(1); |
| 5197 | Node* offset = argument(2); |
| 5198 | Node* len = argument(3); |
| 5199 | Node* k = argument(4); |
| 5200 | |
| 5201 | out = must_be_not_null(out, true); |
| 5202 | |
| 5203 | in = access_resolve(in, ACCESS_READ); |
| 5204 | out = access_resolve(out, ACCESS_WRITE); |
| 5205 | |
| 5206 | const Type* out_type = out->Value(&_gvn); |
| 5207 | const Type* in_type = in->Value(&_gvn); |
| 5208 | const TypeAryPtr* top_out = out_type->isa_aryptr(); |
| 5209 | const TypeAryPtr* top_in = in_type->isa_aryptr(); |
| 5210 | if (top_out == NULL || top_out->klass() == NULL || |
| 5211 | top_in == NULL || top_in->klass() == NULL) { |
| 5212 | // failed array check |
| 5213 | return false; |
| 5214 | } |
| 5215 | |
| 5216 | BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5217 | BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5218 | if (out_elem != T_INT || in_elem != T_INT) { |
| 5219 | return false; |
| 5220 | } |
| 5221 | |
| 5222 | Node* outlen = load_array_length(out); |
| 5223 | Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); |
| 5224 | Node* out_start = array_element_address(out, intcon(0), out_elem); |
| 5225 | Node* in_start = array_element_address(in, intcon(0), in_elem); |
| 5226 | |
| 5227 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 5228 | OptoRuntime::mulAdd_Type(), |
| 5229 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5230 | out_start,in_start, new_offset, len, k); |
| 5231 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 5232 | set_result(result); |
| 5233 | return true; |
| 5234 | } |
| 5235 | |
| 5236 | //-------------inline_montgomeryMultiply----------------------------------- |
| 5237 | bool LibraryCallKit::inline_montgomeryMultiply() { |
| 5238 | address stubAddr = StubRoutines::montgomeryMultiply(); |
| 5239 | if (stubAddr == NULL) { |
| 5240 | return false; // Intrinsic's stub is not implemented on this platform |
| 5241 | } |
| 5242 | |
| 5243 | assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform" ); |
| 5244 | const char* stubName = "montgomery_multiply" ; |
| 5245 | |
| 5246 | assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters" ); |
| 5247 | |
| 5248 | Node* a = argument(0); |
| 5249 | Node* b = argument(1); |
| 5250 | Node* n = argument(2); |
| 5251 | Node* len = argument(3); |
| 5252 | Node* inv = argument(4); |
| 5253 | Node* m = argument(6); |
| 5254 | |
| 5255 | a = access_resolve(a, ACCESS_READ); |
| 5256 | b = access_resolve(b, ACCESS_READ); |
| 5257 | n = access_resolve(n, ACCESS_READ); |
| 5258 | m = access_resolve(m, ACCESS_WRITE); |
| 5259 | |
| 5260 | const Type* a_type = a->Value(&_gvn); |
| 5261 | const TypeAryPtr* top_a = a_type->isa_aryptr(); |
| 5262 | const Type* b_type = b->Value(&_gvn); |
| 5263 | const TypeAryPtr* top_b = b_type->isa_aryptr(); |
| 5264 | const Type* n_type = a->Value(&_gvn); |
| 5265 | const TypeAryPtr* top_n = n_type->isa_aryptr(); |
| 5266 | const Type* m_type = a->Value(&_gvn); |
| 5267 | const TypeAryPtr* top_m = m_type->isa_aryptr(); |
| 5268 | if (top_a == NULL || top_a->klass() == NULL || |
| 5269 | top_b == NULL || top_b->klass() == NULL || |
| 5270 | top_n == NULL || top_n->klass() == NULL || |
| 5271 | top_m == NULL || top_m->klass() == NULL) { |
| 5272 | // failed array check |
| 5273 | return false; |
| 5274 | } |
| 5275 | |
| 5276 | BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5277 | BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5278 | BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5279 | BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5280 | if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { |
| 5281 | return false; |
| 5282 | } |
| 5283 | |
| 5284 | // Make the call |
| 5285 | { |
| 5286 | Node* a_start = array_element_address(a, intcon(0), a_elem); |
| 5287 | Node* b_start = array_element_address(b, intcon(0), b_elem); |
| 5288 | Node* n_start = array_element_address(n, intcon(0), n_elem); |
| 5289 | Node* m_start = array_element_address(m, intcon(0), m_elem); |
| 5290 | |
| 5291 | Node* call = make_runtime_call(RC_LEAF, |
| 5292 | OptoRuntime::montgomeryMultiply_Type(), |
| 5293 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5294 | a_start, b_start, n_start, len, inv, top(), |
| 5295 | m_start); |
| 5296 | set_result(m); |
| 5297 | } |
| 5298 | |
| 5299 | return true; |
| 5300 | } |
| 5301 | |
| 5302 | bool LibraryCallKit::inline_montgomerySquare() { |
| 5303 | address stubAddr = StubRoutines::montgomerySquare(); |
| 5304 | if (stubAddr == NULL) { |
| 5305 | return false; // Intrinsic's stub is not implemented on this platform |
| 5306 | } |
| 5307 | |
| 5308 | assert(UseMontgomerySquareIntrinsic, "not implemented on this platform" ); |
| 5309 | const char* stubName = "montgomery_square" ; |
| 5310 | |
| 5311 | assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters" ); |
| 5312 | |
| 5313 | Node* a = argument(0); |
| 5314 | Node* n = argument(1); |
| 5315 | Node* len = argument(2); |
| 5316 | Node* inv = argument(3); |
| 5317 | Node* m = argument(5); |
| 5318 | |
| 5319 | a = access_resolve(a, ACCESS_READ); |
| 5320 | n = access_resolve(n, ACCESS_READ); |
| 5321 | m = access_resolve(m, ACCESS_WRITE); |
| 5322 | |
| 5323 | const Type* a_type = a->Value(&_gvn); |
| 5324 | const TypeAryPtr* top_a = a_type->isa_aryptr(); |
| 5325 | const Type* n_type = a->Value(&_gvn); |
| 5326 | const TypeAryPtr* top_n = n_type->isa_aryptr(); |
| 5327 | const Type* m_type = a->Value(&_gvn); |
| 5328 | const TypeAryPtr* top_m = m_type->isa_aryptr(); |
| 5329 | if (top_a == NULL || top_a->klass() == NULL || |
| 5330 | top_n == NULL || top_n->klass() == NULL || |
| 5331 | top_m == NULL || top_m->klass() == NULL) { |
| 5332 | // failed array check |
| 5333 | return false; |
| 5334 | } |
| 5335 | |
| 5336 | BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5337 | BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5338 | BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5339 | if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { |
| 5340 | return false; |
| 5341 | } |
| 5342 | |
| 5343 | // Make the call |
| 5344 | { |
| 5345 | Node* a_start = array_element_address(a, intcon(0), a_elem); |
| 5346 | Node* n_start = array_element_address(n, intcon(0), n_elem); |
| 5347 | Node* m_start = array_element_address(m, intcon(0), m_elem); |
| 5348 | |
| 5349 | Node* call = make_runtime_call(RC_LEAF, |
| 5350 | OptoRuntime::montgomerySquare_Type(), |
| 5351 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5352 | a_start, n_start, len, inv, top(), |
| 5353 | m_start); |
| 5354 | set_result(m); |
| 5355 | } |
| 5356 | |
| 5357 | return true; |
| 5358 | } |
| 5359 | |
| 5360 | //-------------inline_vectorizedMismatch------------------------------ |
| 5361 | bool LibraryCallKit::inline_vectorizedMismatch() { |
| 5362 | assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform" ); |
| 5363 | |
| 5364 | address stubAddr = StubRoutines::vectorizedMismatch(); |
| 5365 | if (stubAddr == NULL) { |
| 5366 | return false; // Intrinsic's stub is not implemented on this platform |
| 5367 | } |
| 5368 | const char* stubName = "vectorizedMismatch" ; |
| 5369 | int size_l = callee()->signature()->size(); |
| 5370 | assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters" ); |
| 5371 | |
| 5372 | Node* obja = argument(0); |
| 5373 | Node* aoffset = argument(1); |
| 5374 | Node* objb = argument(3); |
| 5375 | Node* boffset = argument(4); |
| 5376 | Node* length = argument(6); |
| 5377 | Node* scale = argument(7); |
| 5378 | |
| 5379 | const Type* a_type = obja->Value(&_gvn); |
| 5380 | const Type* b_type = objb->Value(&_gvn); |
| 5381 | const TypeAryPtr* top_a = a_type->isa_aryptr(); |
| 5382 | const TypeAryPtr* top_b = b_type->isa_aryptr(); |
| 5383 | if (top_a == NULL || top_a->klass() == NULL || |
| 5384 | top_b == NULL || top_b->klass() == NULL) { |
| 5385 | // failed array check |
| 5386 | return false; |
| 5387 | } |
| 5388 | |
| 5389 | Node* call; |
| 5390 | jvms()->set_should_reexecute(true); |
| 5391 | |
| 5392 | obja = access_resolve(obja, ACCESS_READ); |
| 5393 | objb = access_resolve(objb, ACCESS_READ); |
| 5394 | Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ); |
| 5395 | Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ); |
| 5396 | |
| 5397 | call = make_runtime_call(RC_LEAF, |
| 5398 | OptoRuntime::vectorizedMismatch_Type(), |
| 5399 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5400 | obja_adr, objb_adr, length, scale); |
| 5401 | |
| 5402 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 5403 | set_result(result); |
| 5404 | return true; |
| 5405 | } |
| 5406 | |
| 5407 | /** |
| 5408 | * Calculate CRC32 for byte. |
| 5409 | * int java.util.zip.CRC32.update(int crc, int b) |
| 5410 | */ |
| 5411 | bool LibraryCallKit::inline_updateCRC32() { |
| 5412 | assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support" ); |
| 5413 | assert(callee()->signature()->size() == 2, "update has 2 parameters" ); |
| 5414 | // no receiver since it is static method |
| 5415 | Node* crc = argument(0); // type: int |
| 5416 | Node* b = argument(1); // type: int |
| 5417 | |
| 5418 | /* |
| 5419 | * int c = ~ crc; |
| 5420 | * b = timesXtoThe32[(b ^ c) & 0xFF]; |
| 5421 | * b = b ^ (c >>> 8); |
| 5422 | * crc = ~b; |
| 5423 | */ |
| 5424 | |
| 5425 | Node* M1 = intcon(-1); |
| 5426 | crc = _gvn.transform(new XorINode(crc, M1)); |
| 5427 | Node* result = _gvn.transform(new XorINode(crc, b)); |
| 5428 | result = _gvn.transform(new AndINode(result, intcon(0xFF))); |
| 5429 | |
| 5430 | Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); |
| 5431 | Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); |
| 5432 | Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); |
| 5433 | result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); |
| 5434 | |
| 5435 | crc = _gvn.transform(new URShiftINode(crc, intcon(8))); |
| 5436 | result = _gvn.transform(new XorINode(crc, result)); |
| 5437 | result = _gvn.transform(new XorINode(result, M1)); |
| 5438 | set_result(result); |
| 5439 | return true; |
| 5440 | } |
| 5441 | |
| 5442 | /** |
| 5443 | * Calculate CRC32 for byte[] array. |
| 5444 | * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) |
| 5445 | */ |
| 5446 | bool LibraryCallKit::inline_updateBytesCRC32() { |
| 5447 | assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support" ); |
| 5448 | assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters" ); |
| 5449 | // no receiver since it is static method |
| 5450 | Node* crc = argument(0); // type: int |
| 5451 | Node* src = argument(1); // type: oop |
| 5452 | Node* offset = argument(2); // type: int |
| 5453 | Node* length = argument(3); // type: int |
| 5454 | |
| 5455 | const Type* src_type = src->Value(&_gvn); |
| 5456 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 5457 | if (top_src == NULL || top_src->klass() == NULL) { |
| 5458 | // failed array check |
| 5459 | return false; |
| 5460 | } |
| 5461 | |
| 5462 | // Figure out the size and type of the elements we will be copying. |
| 5463 | BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5464 | if (src_elem != T_BYTE) { |
| 5465 | return false; |
| 5466 | } |
| 5467 | |
| 5468 | // 'src_start' points to src array + scaled offset |
| 5469 | src = must_be_not_null(src, true); |
| 5470 | src = access_resolve(src, ACCESS_READ); |
| 5471 | Node* src_start = array_element_address(src, offset, src_elem); |
| 5472 | |
| 5473 | // We assume that range check is done by caller. |
| 5474 | // TODO: generate range check (offset+length < src.length) in debug VM. |
| 5475 | |
| 5476 | // Call the stub. |
| 5477 | address stubAddr = StubRoutines::updateBytesCRC32(); |
| 5478 | const char *stubName = "updateBytesCRC32" ; |
| 5479 | |
| 5480 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), |
| 5481 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5482 | crc, src_start, length); |
| 5483 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 5484 | set_result(result); |
| 5485 | return true; |
| 5486 | } |
| 5487 | |
| 5488 | /** |
| 5489 | * Calculate CRC32 for ByteBuffer. |
| 5490 | * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) |
| 5491 | */ |
| 5492 | bool LibraryCallKit::inline_updateByteBufferCRC32() { |
| 5493 | assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support" ); |
| 5494 | assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long" ); |
| 5495 | // no receiver since it is static method |
| 5496 | Node* crc = argument(0); // type: int |
| 5497 | Node* src = argument(1); // type: long |
| 5498 | Node* offset = argument(3); // type: int |
| 5499 | Node* length = argument(4); // type: int |
| 5500 | |
| 5501 | src = ConvL2X(src); // adjust Java long to machine word |
| 5502 | Node* base = _gvn.transform(new CastX2PNode(src)); |
| 5503 | offset = ConvI2X(offset); |
| 5504 | |
| 5505 | // 'src_start' points to src array + scaled offset |
| 5506 | Node* src_start = basic_plus_adr(top(), base, offset); |
| 5507 | |
| 5508 | // Call the stub. |
| 5509 | address stubAddr = StubRoutines::updateBytesCRC32(); |
| 5510 | const char *stubName = "updateBytesCRC32" ; |
| 5511 | |
| 5512 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), |
| 5513 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5514 | crc, src_start, length); |
| 5515 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 5516 | set_result(result); |
| 5517 | return true; |
| 5518 | } |
| 5519 | |
| 5520 | //------------------------------get_table_from_crc32c_class----------------------- |
| 5521 | Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { |
| 5522 | Node* table = load_field_from_object(NULL, "byteTable" , "[I" , /*is_exact*/ false, /*is_static*/ true, crc32c_class); |
| 5523 | assert (table != NULL, "wrong version of java.util.zip.CRC32C" ); |
| 5524 | |
| 5525 | return table; |
| 5526 | } |
| 5527 | |
| 5528 | //------------------------------inline_updateBytesCRC32C----------------------- |
| 5529 | // |
| 5530 | // Calculate CRC32C for byte[] array. |
| 5531 | // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) |
| 5532 | // |
| 5533 | bool LibraryCallKit::inline_updateBytesCRC32C() { |
| 5534 | assert(UseCRC32CIntrinsics, "need CRC32C instruction support" ); |
| 5535 | assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters" ); |
| 5536 | assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded" ); |
| 5537 | // no receiver since it is a static method |
| 5538 | Node* crc = argument(0); // type: int |
| 5539 | Node* src = argument(1); // type: oop |
| 5540 | Node* offset = argument(2); // type: int |
| 5541 | Node* end = argument(3); // type: int |
| 5542 | |
| 5543 | Node* length = _gvn.transform(new SubINode(end, offset)); |
| 5544 | |
| 5545 | const Type* src_type = src->Value(&_gvn); |
| 5546 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 5547 | if (top_src == NULL || top_src->klass() == NULL) { |
| 5548 | // failed array check |
| 5549 | return false; |
| 5550 | } |
| 5551 | |
| 5552 | // Figure out the size and type of the elements we will be copying. |
| 5553 | BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5554 | if (src_elem != T_BYTE) { |
| 5555 | return false; |
| 5556 | } |
| 5557 | |
| 5558 | // 'src_start' points to src array + scaled offset |
| 5559 | src = must_be_not_null(src, true); |
| 5560 | src = access_resolve(src, ACCESS_READ); |
| 5561 | Node* src_start = array_element_address(src, offset, src_elem); |
| 5562 | |
| 5563 | // static final int[] byteTable in class CRC32C |
| 5564 | Node* table = get_table_from_crc32c_class(callee()->holder()); |
| 5565 | table = must_be_not_null(table, true); |
| 5566 | table = access_resolve(table, ACCESS_READ); |
| 5567 | Node* table_start = array_element_address(table, intcon(0), T_INT); |
| 5568 | |
| 5569 | // We assume that range check is done by caller. |
| 5570 | // TODO: generate range check (offset+length < src.length) in debug VM. |
| 5571 | |
| 5572 | // Call the stub. |
| 5573 | address stubAddr = StubRoutines::updateBytesCRC32C(); |
| 5574 | const char *stubName = "updateBytesCRC32C" ; |
| 5575 | |
| 5576 | Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), |
| 5577 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5578 | crc, src_start, length, table_start); |
| 5579 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 5580 | set_result(result); |
| 5581 | return true; |
| 5582 | } |
| 5583 | |
| 5584 | //------------------------------inline_updateDirectByteBufferCRC32C----------------------- |
| 5585 | // |
| 5586 | // Calculate CRC32C for DirectByteBuffer. |
| 5587 | // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) |
| 5588 | // |
| 5589 | bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { |
| 5590 | assert(UseCRC32CIntrinsics, "need CRC32C instruction support" ); |
| 5591 | assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long" ); |
| 5592 | assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded" ); |
| 5593 | // no receiver since it is a static method |
| 5594 | Node* crc = argument(0); // type: int |
| 5595 | Node* src = argument(1); // type: long |
| 5596 | Node* offset = argument(3); // type: int |
| 5597 | Node* end = argument(4); // type: int |
| 5598 | |
| 5599 | Node* length = _gvn.transform(new SubINode(end, offset)); |
| 5600 | |
| 5601 | src = ConvL2X(src); // adjust Java long to machine word |
| 5602 | Node* base = _gvn.transform(new CastX2PNode(src)); |
| 5603 | offset = ConvI2X(offset); |
| 5604 | |
| 5605 | // 'src_start' points to src array + scaled offset |
| 5606 | Node* src_start = basic_plus_adr(top(), base, offset); |
| 5607 | |
| 5608 | // static final int[] byteTable in class CRC32C |
| 5609 | Node* table = get_table_from_crc32c_class(callee()->holder()); |
| 5610 | table = must_be_not_null(table, true); |
| 5611 | table = access_resolve(table, ACCESS_READ); |
| 5612 | Node* table_start = array_element_address(table, intcon(0), T_INT); |
| 5613 | |
| 5614 | // Call the stub. |
| 5615 | address stubAddr = StubRoutines::updateBytesCRC32C(); |
| 5616 | const char *stubName = "updateBytesCRC32C" ; |
| 5617 | |
| 5618 | Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), |
| 5619 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5620 | crc, src_start, length, table_start); |
| 5621 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 5622 | set_result(result); |
| 5623 | return true; |
| 5624 | } |
| 5625 | |
| 5626 | //------------------------------inline_updateBytesAdler32---------------------- |
| 5627 | // |
| 5628 | // Calculate Adler32 checksum for byte[] array. |
| 5629 | // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) |
| 5630 | // |
| 5631 | bool LibraryCallKit::inline_updateBytesAdler32() { |
| 5632 | assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need" ); // check if we actually need to check this flag or check a different one |
| 5633 | assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters" ); |
| 5634 | assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded" ); |
| 5635 | // no receiver since it is static method |
| 5636 | Node* crc = argument(0); // type: int |
| 5637 | Node* src = argument(1); // type: oop |
| 5638 | Node* offset = argument(2); // type: int |
| 5639 | Node* length = argument(3); // type: int |
| 5640 | |
| 5641 | const Type* src_type = src->Value(&_gvn); |
| 5642 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 5643 | if (top_src == NULL || top_src->klass() == NULL) { |
| 5644 | // failed array check |
| 5645 | return false; |
| 5646 | } |
| 5647 | |
| 5648 | // Figure out the size and type of the elements we will be copying. |
| 5649 | BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 5650 | if (src_elem != T_BYTE) { |
| 5651 | return false; |
| 5652 | } |
| 5653 | |
| 5654 | // 'src_start' points to src array + scaled offset |
| 5655 | src = access_resolve(src, ACCESS_READ); |
| 5656 | Node* src_start = array_element_address(src, offset, src_elem); |
| 5657 | |
| 5658 | // We assume that range check is done by caller. |
| 5659 | // TODO: generate range check (offset+length < src.length) in debug VM. |
| 5660 | |
| 5661 | // Call the stub. |
| 5662 | address stubAddr = StubRoutines::updateBytesAdler32(); |
| 5663 | const char *stubName = "updateBytesAdler32" ; |
| 5664 | |
| 5665 | Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), |
| 5666 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5667 | crc, src_start, length); |
| 5668 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 5669 | set_result(result); |
| 5670 | return true; |
| 5671 | } |
| 5672 | |
| 5673 | //------------------------------inline_updateByteBufferAdler32--------------- |
| 5674 | // |
| 5675 | // Calculate Adler32 checksum for DirectByteBuffer. |
| 5676 | // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) |
| 5677 | // |
| 5678 | bool LibraryCallKit::inline_updateByteBufferAdler32() { |
| 5679 | assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need" ); // check if we actually need to check this flag or check a different one |
| 5680 | assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long" ); |
| 5681 | assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded" ); |
| 5682 | // no receiver since it is static method |
| 5683 | Node* crc = argument(0); // type: int |
| 5684 | Node* src = argument(1); // type: long |
| 5685 | Node* offset = argument(3); // type: int |
| 5686 | Node* length = argument(4); // type: int |
| 5687 | |
| 5688 | src = ConvL2X(src); // adjust Java long to machine word |
| 5689 | Node* base = _gvn.transform(new CastX2PNode(src)); |
| 5690 | offset = ConvI2X(offset); |
| 5691 | |
| 5692 | // 'src_start' points to src array + scaled offset |
| 5693 | Node* src_start = basic_plus_adr(top(), base, offset); |
| 5694 | |
| 5695 | // Call the stub. |
| 5696 | address stubAddr = StubRoutines::updateBytesAdler32(); |
| 5697 | const char *stubName = "updateBytesAdler32" ; |
| 5698 | |
| 5699 | Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), |
| 5700 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5701 | crc, src_start, length); |
| 5702 | |
| 5703 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 5704 | set_result(result); |
| 5705 | return true; |
| 5706 | } |
| 5707 | |
| 5708 | //----------------------------inline_reference_get---------------------------- |
| 5709 | // public T java.lang.ref.Reference.get(); |
| 5710 | bool LibraryCallKit::inline_reference_get() { |
| 5711 | const int referent_offset = java_lang_ref_Reference::referent_offset; |
| 5712 | guarantee(referent_offset > 0, "should have already been set" ); |
| 5713 | |
| 5714 | // Get the argument: |
| 5715 | Node* reference_obj = null_check_receiver(); |
| 5716 | if (stopped()) return true; |
| 5717 | |
| 5718 | const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr(); |
| 5719 | assert(tinst != NULL, "obj is null" ); |
| 5720 | assert(tinst->klass()->is_loaded(), "obj is not loaded" ); |
| 5721 | ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass(); |
| 5722 | ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent" ), |
| 5723 | ciSymbol::make("Ljava/lang/Object;" ), |
| 5724 | false); |
| 5725 | assert (field != NULL, "undefined field" ); |
| 5726 | |
| 5727 | Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset); |
| 5728 | const TypePtr* adr_type = C->alias_type(field)->adr_type(); |
| 5729 | |
| 5730 | ciInstanceKlass* klass = env()->Object_klass(); |
| 5731 | const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass); |
| 5732 | |
| 5733 | DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; |
| 5734 | Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators); |
| 5735 | // Add memory barrier to prevent commoning reads from this field |
| 5736 | // across safepoint since GC can change its value. |
| 5737 | insert_mem_bar(Op_MemBarCPUOrder); |
| 5738 | |
| 5739 | set_result(result); |
| 5740 | return true; |
| 5741 | } |
| 5742 | |
| 5743 | |
| 5744 | Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, |
| 5745 | bool is_exact=true, bool is_static=false, |
| 5746 | ciInstanceKlass * fromKls=NULL) { |
| 5747 | if (fromKls == NULL) { |
| 5748 | const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); |
| 5749 | assert(tinst != NULL, "obj is null" ); |
| 5750 | assert(tinst->klass()->is_loaded(), "obj is not loaded" ); |
| 5751 | assert(!is_exact || tinst->klass_is_exact(), "klass not exact" ); |
| 5752 | fromKls = tinst->klass()->as_instance_klass(); |
| 5753 | } else { |
| 5754 | assert(is_static, "only for static field access" ); |
| 5755 | } |
| 5756 | ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), |
| 5757 | ciSymbol::make(fieldTypeString), |
| 5758 | is_static); |
| 5759 | |
| 5760 | assert (field != NULL, "undefined field" ); |
| 5761 | if (field == NULL) return (Node *) NULL; |
| 5762 | |
| 5763 | if (is_static) { |
| 5764 | const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); |
| 5765 | fromObj = makecon(tip); |
| 5766 | } |
| 5767 | |
| 5768 | // Next code copied from Parse::do_get_xxx(): |
| 5769 | |
| 5770 | // Compute address and memory type. |
| 5771 | int offset = field->offset_in_bytes(); |
| 5772 | bool is_vol = field->is_volatile(); |
| 5773 | ciType* field_klass = field->type(); |
| 5774 | assert(field_klass->is_loaded(), "should be loaded" ); |
| 5775 | const TypePtr* adr_type = C->alias_type(field)->adr_type(); |
| 5776 | Node *adr = basic_plus_adr(fromObj, fromObj, offset); |
| 5777 | BasicType bt = field->layout_type(); |
| 5778 | |
| 5779 | // Build the resultant type of the load |
| 5780 | const Type *type; |
| 5781 | if (bt == T_OBJECT) { |
| 5782 | type = TypeOopPtr::make_from_klass(field_klass->as_klass()); |
| 5783 | } else { |
| 5784 | type = Type::get_const_basic_type(bt); |
| 5785 | } |
| 5786 | |
| 5787 | DecoratorSet decorators = IN_HEAP; |
| 5788 | |
| 5789 | if (is_vol) { |
| 5790 | decorators |= MO_SEQ_CST; |
| 5791 | } |
| 5792 | |
| 5793 | return access_load_at(fromObj, adr, adr_type, type, bt, decorators); |
| 5794 | } |
| 5795 | |
| 5796 | Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, |
| 5797 | bool is_exact = true, bool is_static = false, |
| 5798 | ciInstanceKlass * fromKls = NULL) { |
| 5799 | if (fromKls == NULL) { |
| 5800 | const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); |
| 5801 | assert(tinst != NULL, "obj is null" ); |
| 5802 | assert(tinst->klass()->is_loaded(), "obj is not loaded" ); |
| 5803 | assert(!is_exact || tinst->klass_is_exact(), "klass not exact" ); |
| 5804 | fromKls = tinst->klass()->as_instance_klass(); |
| 5805 | } |
| 5806 | else { |
| 5807 | assert(is_static, "only for static field access" ); |
| 5808 | } |
| 5809 | ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), |
| 5810 | ciSymbol::make(fieldTypeString), |
| 5811 | is_static); |
| 5812 | |
| 5813 | assert(field != NULL, "undefined field" ); |
| 5814 | assert(!field->is_volatile(), "not defined for volatile fields" ); |
| 5815 | |
| 5816 | if (is_static) { |
| 5817 | const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); |
| 5818 | fromObj = makecon(tip); |
| 5819 | } |
| 5820 | |
| 5821 | // Next code copied from Parse::do_get_xxx(): |
| 5822 | |
| 5823 | // Compute address and memory type. |
| 5824 | int offset = field->offset_in_bytes(); |
| 5825 | Node *adr = basic_plus_adr(fromObj, fromObj, offset); |
| 5826 | |
| 5827 | return adr; |
| 5828 | } |
| 5829 | |
| 5830 | //------------------------------inline_aescrypt_Block----------------------- |
| 5831 | bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { |
| 5832 | address stubAddr = NULL; |
| 5833 | const char *stubName; |
| 5834 | assert(UseAES, "need AES instruction support" ); |
| 5835 | |
| 5836 | switch(id) { |
| 5837 | case vmIntrinsics::_aescrypt_encryptBlock: |
| 5838 | stubAddr = StubRoutines::aescrypt_encryptBlock(); |
| 5839 | stubName = "aescrypt_encryptBlock" ; |
| 5840 | break; |
| 5841 | case vmIntrinsics::_aescrypt_decryptBlock: |
| 5842 | stubAddr = StubRoutines::aescrypt_decryptBlock(); |
| 5843 | stubName = "aescrypt_decryptBlock" ; |
| 5844 | break; |
| 5845 | default: |
| 5846 | break; |
| 5847 | } |
| 5848 | if (stubAddr == NULL) return false; |
| 5849 | |
| 5850 | Node* aescrypt_object = argument(0); |
| 5851 | Node* src = argument(1); |
| 5852 | Node* src_offset = argument(2); |
| 5853 | Node* dest = argument(3); |
| 5854 | Node* dest_offset = argument(4); |
| 5855 | |
| 5856 | src = must_be_not_null(src, true); |
| 5857 | dest = must_be_not_null(dest, true); |
| 5858 | |
| 5859 | src = access_resolve(src, ACCESS_READ); |
| 5860 | dest = access_resolve(dest, ACCESS_WRITE); |
| 5861 | |
| 5862 | // (1) src and dest are arrays. |
| 5863 | const Type* src_type = src->Value(&_gvn); |
| 5864 | const Type* dest_type = dest->Value(&_gvn); |
| 5865 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 5866 | const TypeAryPtr* top_dest = dest_type->isa_aryptr(); |
| 5867 | assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange" ); |
| 5868 | |
| 5869 | // for the quick and dirty code we will skip all the checks. |
| 5870 | // we are just trying to get the call to be generated. |
| 5871 | Node* src_start = src; |
| 5872 | Node* dest_start = dest; |
| 5873 | if (src_offset != NULL || dest_offset != NULL) { |
| 5874 | assert(src_offset != NULL && dest_offset != NULL, "" ); |
| 5875 | src_start = array_element_address(src, src_offset, T_BYTE); |
| 5876 | dest_start = array_element_address(dest, dest_offset, T_BYTE); |
| 5877 | } |
| 5878 | |
| 5879 | // now need to get the start of its expanded key array |
| 5880 | // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java |
| 5881 | Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); |
| 5882 | if (k_start == NULL) return false; |
| 5883 | |
| 5884 | if (Matcher::pass_original_key_for_aes()) { |
| 5885 | // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to |
| 5886 | // compatibility issues between Java key expansion and SPARC crypto instructions |
| 5887 | Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); |
| 5888 | if (original_k_start == NULL) return false; |
| 5889 | |
| 5890 | // Call the stub. |
| 5891 | make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), |
| 5892 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5893 | src_start, dest_start, k_start, original_k_start); |
| 5894 | } else { |
| 5895 | // Call the stub. |
| 5896 | make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), |
| 5897 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5898 | src_start, dest_start, k_start); |
| 5899 | } |
| 5900 | |
| 5901 | return true; |
| 5902 | } |
| 5903 | |
| 5904 | //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- |
| 5905 | bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { |
| 5906 | address stubAddr = NULL; |
| 5907 | const char *stubName = NULL; |
| 5908 | |
| 5909 | assert(UseAES, "need AES instruction support" ); |
| 5910 | |
| 5911 | switch(id) { |
| 5912 | case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: |
| 5913 | stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); |
| 5914 | stubName = "cipherBlockChaining_encryptAESCrypt" ; |
| 5915 | break; |
| 5916 | case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: |
| 5917 | stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); |
| 5918 | stubName = "cipherBlockChaining_decryptAESCrypt" ; |
| 5919 | break; |
| 5920 | default: |
| 5921 | break; |
| 5922 | } |
| 5923 | if (stubAddr == NULL) return false; |
| 5924 | |
| 5925 | Node* cipherBlockChaining_object = argument(0); |
| 5926 | Node* src = argument(1); |
| 5927 | Node* src_offset = argument(2); |
| 5928 | Node* len = argument(3); |
| 5929 | Node* dest = argument(4); |
| 5930 | Node* dest_offset = argument(5); |
| 5931 | |
| 5932 | src = must_be_not_null(src, false); |
| 5933 | dest = must_be_not_null(dest, false); |
| 5934 | |
| 5935 | src = access_resolve(src, ACCESS_READ); |
| 5936 | dest = access_resolve(dest, ACCESS_WRITE); |
| 5937 | |
| 5938 | // (1) src and dest are arrays. |
| 5939 | const Type* src_type = src->Value(&_gvn); |
| 5940 | const Type* dest_type = dest->Value(&_gvn); |
| 5941 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 5942 | const TypeAryPtr* top_dest = dest_type->isa_aryptr(); |
| 5943 | assert (top_src != NULL && top_src->klass() != NULL |
| 5944 | && top_dest != NULL && top_dest->klass() != NULL, "args are strange" ); |
| 5945 | |
| 5946 | // checks are the responsibility of the caller |
| 5947 | Node* src_start = src; |
| 5948 | Node* dest_start = dest; |
| 5949 | if (src_offset != NULL || dest_offset != NULL) { |
| 5950 | assert(src_offset != NULL && dest_offset != NULL, "" ); |
| 5951 | src_start = array_element_address(src, src_offset, T_BYTE); |
| 5952 | dest_start = array_element_address(dest, dest_offset, T_BYTE); |
| 5953 | } |
| 5954 | |
| 5955 | // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object |
| 5956 | // (because of the predicated logic executed earlier). |
| 5957 | // so we cast it here safely. |
| 5958 | // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java |
| 5959 | |
| 5960 | Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher" , "Lcom/sun/crypto/provider/SymmetricCipher;" , /*is_exact*/ false); |
| 5961 | if (embeddedCipherObj == NULL) return false; |
| 5962 | |
| 5963 | // cast it to what we know it will be at runtime |
| 5964 | const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); |
| 5965 | assert(tinst != NULL, "CBC obj is null" ); |
| 5966 | assert(tinst->klass()->is_loaded(), "CBC obj is not loaded" ); |
| 5967 | ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt" )); |
| 5968 | assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded" ); |
| 5969 | |
| 5970 | ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| 5971 | const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); |
| 5972 | const TypeOopPtr* xtype = aklass->as_instance_type(); |
| 5973 | Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); |
| 5974 | aescrypt_object = _gvn.transform(aescrypt_object); |
| 5975 | |
| 5976 | // we need to get the start of the aescrypt_object's expanded key array |
| 5977 | Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); |
| 5978 | if (k_start == NULL) return false; |
| 5979 | |
| 5980 | // similarly, get the start address of the r vector |
| 5981 | Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r" , "[B" , /*is_exact*/ false); |
| 5982 | if (objRvec == NULL) return false; |
| 5983 | objRvec = access_resolve(objRvec, ACCESS_WRITE); |
| 5984 | Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); |
| 5985 | |
| 5986 | Node* cbcCrypt; |
| 5987 | if (Matcher::pass_original_key_for_aes()) { |
| 5988 | // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to |
| 5989 | // compatibility issues between Java key expansion and SPARC crypto instructions |
| 5990 | Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); |
| 5991 | if (original_k_start == NULL) return false; |
| 5992 | |
| 5993 | // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start |
| 5994 | cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 5995 | OptoRuntime::cipherBlockChaining_aescrypt_Type(), |
| 5996 | stubAddr, stubName, TypePtr::BOTTOM, |
| 5997 | src_start, dest_start, k_start, r_start, len, original_k_start); |
| 5998 | } else { |
| 5999 | // Call the stub, passing src_start, dest_start, k_start, r_start and src_len |
| 6000 | cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 6001 | OptoRuntime::cipherBlockChaining_aescrypt_Type(), |
| 6002 | stubAddr, stubName, TypePtr::BOTTOM, |
| 6003 | src_start, dest_start, k_start, r_start, len); |
| 6004 | } |
| 6005 | |
| 6006 | // return cipher length (int) |
| 6007 | Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); |
| 6008 | set_result(retvalue); |
| 6009 | return true; |
| 6010 | } |
| 6011 | |
| 6012 | //------------------------------inline_counterMode_AESCrypt----------------------- |
| 6013 | bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { |
| 6014 | assert(UseAES, "need AES instruction support" ); |
| 6015 | if (!UseAESCTRIntrinsics) return false; |
| 6016 | |
| 6017 | address stubAddr = NULL; |
| 6018 | const char *stubName = NULL; |
| 6019 | if (id == vmIntrinsics::_counterMode_AESCrypt) { |
| 6020 | stubAddr = StubRoutines::counterMode_AESCrypt(); |
| 6021 | stubName = "counterMode_AESCrypt" ; |
| 6022 | } |
| 6023 | if (stubAddr == NULL) return false; |
| 6024 | |
| 6025 | Node* counterMode_object = argument(0); |
| 6026 | Node* src = argument(1); |
| 6027 | Node* src_offset = argument(2); |
| 6028 | Node* len = argument(3); |
| 6029 | Node* dest = argument(4); |
| 6030 | Node* dest_offset = argument(5); |
| 6031 | |
| 6032 | src = access_resolve(src, ACCESS_READ); |
| 6033 | dest = access_resolve(dest, ACCESS_WRITE); |
| 6034 | counterMode_object = access_resolve(counterMode_object, ACCESS_WRITE); |
| 6035 | |
| 6036 | // (1) src and dest are arrays. |
| 6037 | const Type* src_type = src->Value(&_gvn); |
| 6038 | const Type* dest_type = dest->Value(&_gvn); |
| 6039 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 6040 | const TypeAryPtr* top_dest = dest_type->isa_aryptr(); |
| 6041 | assert(top_src != NULL && top_src->klass() != NULL && |
| 6042 | top_dest != NULL && top_dest->klass() != NULL, "args are strange" ); |
| 6043 | |
| 6044 | // checks are the responsibility of the caller |
| 6045 | Node* src_start = src; |
| 6046 | Node* dest_start = dest; |
| 6047 | if (src_offset != NULL || dest_offset != NULL) { |
| 6048 | assert(src_offset != NULL && dest_offset != NULL, "" ); |
| 6049 | src_start = array_element_address(src, src_offset, T_BYTE); |
| 6050 | dest_start = array_element_address(dest, dest_offset, T_BYTE); |
| 6051 | } |
| 6052 | |
| 6053 | // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object |
| 6054 | // (because of the predicated logic executed earlier). |
| 6055 | // so we cast it here safely. |
| 6056 | // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java |
| 6057 | Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher" , "Lcom/sun/crypto/provider/SymmetricCipher;" , /*is_exact*/ false); |
| 6058 | if (embeddedCipherObj == NULL) return false; |
| 6059 | // cast it to what we know it will be at runtime |
| 6060 | const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); |
| 6061 | assert(tinst != NULL, "CTR obj is null" ); |
| 6062 | assert(tinst->klass()->is_loaded(), "CTR obj is not loaded" ); |
| 6063 | ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt" )); |
| 6064 | assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded" ); |
| 6065 | ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| 6066 | const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); |
| 6067 | const TypeOopPtr* xtype = aklass->as_instance_type(); |
| 6068 | Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); |
| 6069 | aescrypt_object = _gvn.transform(aescrypt_object); |
| 6070 | // we need to get the start of the aescrypt_object's expanded key array |
| 6071 | Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); |
| 6072 | if (k_start == NULL) return false; |
| 6073 | // similarly, get the start address of the r vector |
| 6074 | Node* obj_counter = load_field_from_object(counterMode_object, "counter" , "[B" , /*is_exact*/ false); |
| 6075 | if (obj_counter == NULL) return false; |
| 6076 | obj_counter = access_resolve(obj_counter, ACCESS_WRITE); |
| 6077 | Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); |
| 6078 | |
| 6079 | Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter" , "[B" , /*is_exact*/ false); |
| 6080 | if (saved_encCounter == NULL) return false; |
| 6081 | saved_encCounter = access_resolve(saved_encCounter, ACCESS_WRITE); |
| 6082 | Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); |
| 6083 | Node* used = field_address_from_object(counterMode_object, "used" , "I" , /*is_exact*/ false); |
| 6084 | |
| 6085 | Node* ctrCrypt; |
| 6086 | if (Matcher::pass_original_key_for_aes()) { |
| 6087 | // no SPARC version for AES/CTR intrinsics now. |
| 6088 | return false; |
| 6089 | } |
| 6090 | // Call the stub, passing src_start, dest_start, k_start, r_start and src_len |
| 6091 | ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 6092 | OptoRuntime::counterMode_aescrypt_Type(), |
| 6093 | stubAddr, stubName, TypePtr::BOTTOM, |
| 6094 | src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); |
| 6095 | |
| 6096 | // return cipher length (int) |
| 6097 | Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); |
| 6098 | set_result(retvalue); |
| 6099 | return true; |
| 6100 | } |
| 6101 | |
| 6102 | //------------------------------get_key_start_from_aescrypt_object----------------------- |
| 6103 | Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { |
| 6104 | #if defined(PPC64) || defined(S390) |
| 6105 | // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. |
| 6106 | // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. |
| 6107 | // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. |
| 6108 | // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). |
| 6109 | Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK" , "[[I" , /*is_exact*/ false); |
| 6110 | assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt" ); |
| 6111 | if (objSessionK == NULL) { |
| 6112 | return (Node *) NULL; |
| 6113 | } |
| 6114 | Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS); |
| 6115 | #else |
| 6116 | Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K" , "[I" , /*is_exact*/ false); |
| 6117 | #endif // PPC64 |
| 6118 | assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt" ); |
| 6119 | if (objAESCryptKey == NULL) return (Node *) NULL; |
| 6120 | |
| 6121 | // now have the array, need to get the start address of the K array |
| 6122 | objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ); |
| 6123 | Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); |
| 6124 | return k_start; |
| 6125 | } |
| 6126 | |
| 6127 | //------------------------------get_original_key_start_from_aescrypt_object----------------------- |
| 6128 | Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) { |
| 6129 | Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey" , "[B" , /*is_exact*/ false); |
| 6130 | assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt" ); |
| 6131 | if (objAESCryptKey == NULL) return (Node *) NULL; |
| 6132 | |
| 6133 | // now have the array, need to get the start address of the lastKey array |
| 6134 | objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ); |
| 6135 | Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE); |
| 6136 | return original_k_start; |
| 6137 | } |
| 6138 | |
| 6139 | //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- |
| 6140 | // Return node representing slow path of predicate check. |
| 6141 | // the pseudo code we want to emulate with this predicate is: |
| 6142 | // for encryption: |
| 6143 | // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath |
| 6144 | // for decryption: |
| 6145 | // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath |
| 6146 | // note cipher==plain is more conservative than the original java code but that's OK |
| 6147 | // |
| 6148 | Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { |
| 6149 | // The receiver was checked for NULL already. |
| 6150 | Node* objCBC = argument(0); |
| 6151 | |
| 6152 | Node* src = argument(1); |
| 6153 | Node* dest = argument(4); |
| 6154 | |
| 6155 | // Load embeddedCipher field of CipherBlockChaining object. |
| 6156 | Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher" , "Lcom/sun/crypto/provider/SymmetricCipher;" , /*is_exact*/ false); |
| 6157 | |
| 6158 | // get AESCrypt klass for instanceOf check |
| 6159 | // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point |
| 6160 | // will have same classloader as CipherBlockChaining object |
| 6161 | const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); |
| 6162 | assert(tinst != NULL, "CBCobj is null" ); |
| 6163 | assert(tinst->klass()->is_loaded(), "CBCobj is not loaded" ); |
| 6164 | |
| 6165 | // we want to do an instanceof comparison against the AESCrypt class |
| 6166 | ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt" )); |
| 6167 | if (!klass_AESCrypt->is_loaded()) { |
| 6168 | // if AESCrypt is not even loaded, we never take the intrinsic fast path |
| 6169 | Node* ctrl = control(); |
| 6170 | set_control(top()); // no regular fast path |
| 6171 | return ctrl; |
| 6172 | } |
| 6173 | |
| 6174 | src = must_be_not_null(src, true); |
| 6175 | dest = must_be_not_null(dest, true); |
| 6176 | |
| 6177 | // Resolve oops to stable for CmpP below. |
| 6178 | src = access_resolve(src, 0); |
| 6179 | dest = access_resolve(dest, 0); |
| 6180 | |
| 6181 | ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| 6182 | |
| 6183 | Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); |
| 6184 | Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); |
| 6185 | Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); |
| 6186 | |
| 6187 | Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); |
| 6188 | |
| 6189 | // for encryption, we are done |
| 6190 | if (!decrypting) |
| 6191 | return instof_false; // even if it is NULL |
| 6192 | |
| 6193 | // for decryption, we need to add a further check to avoid |
| 6194 | // taking the intrinsic path when cipher and plain are the same |
| 6195 | // see the original java code for why. |
| 6196 | RegionNode* region = new RegionNode(3); |
| 6197 | region->init_req(1, instof_false); |
| 6198 | |
| 6199 | Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); |
| 6200 | Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); |
| 6201 | Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); |
| 6202 | region->init_req(2, src_dest_conjoint); |
| 6203 | |
| 6204 | record_for_igvn(region); |
| 6205 | return _gvn.transform(region); |
| 6206 | } |
| 6207 | |
| 6208 | //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- |
| 6209 | // Return node representing slow path of predicate check. |
| 6210 | // the pseudo code we want to emulate with this predicate is: |
| 6211 | // for encryption: |
| 6212 | // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath |
| 6213 | // for decryption: |
| 6214 | // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath |
| 6215 | // note cipher==plain is more conservative than the original java code but that's OK |
| 6216 | // |
| 6217 | |
| 6218 | Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { |
| 6219 | // The receiver was checked for NULL already. |
| 6220 | Node* objCTR = argument(0); |
| 6221 | |
| 6222 | // Load embeddedCipher field of CipherBlockChaining object. |
| 6223 | Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher" , "Lcom/sun/crypto/provider/SymmetricCipher;" , /*is_exact*/ false); |
| 6224 | |
| 6225 | // get AESCrypt klass for instanceOf check |
| 6226 | // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point |
| 6227 | // will have same classloader as CipherBlockChaining object |
| 6228 | const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); |
| 6229 | assert(tinst != NULL, "CTRobj is null" ); |
| 6230 | assert(tinst->klass()->is_loaded(), "CTRobj is not loaded" ); |
| 6231 | |
| 6232 | // we want to do an instanceof comparison against the AESCrypt class |
| 6233 | ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt" )); |
| 6234 | if (!klass_AESCrypt->is_loaded()) { |
| 6235 | // if AESCrypt is not even loaded, we never take the intrinsic fast path |
| 6236 | Node* ctrl = control(); |
| 6237 | set_control(top()); // no regular fast path |
| 6238 | return ctrl; |
| 6239 | } |
| 6240 | |
| 6241 | ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); |
| 6242 | Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); |
| 6243 | Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); |
| 6244 | Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); |
| 6245 | Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); |
| 6246 | |
| 6247 | return instof_false; // even if it is NULL |
| 6248 | } |
| 6249 | |
| 6250 | //------------------------------inline_ghash_processBlocks |
| 6251 | bool LibraryCallKit::inline_ghash_processBlocks() { |
| 6252 | address stubAddr; |
| 6253 | const char *stubName; |
| 6254 | assert(UseGHASHIntrinsics, "need GHASH intrinsics support" ); |
| 6255 | |
| 6256 | stubAddr = StubRoutines::ghash_processBlocks(); |
| 6257 | stubName = "ghash_processBlocks" ; |
| 6258 | |
| 6259 | Node* data = argument(0); |
| 6260 | Node* offset = argument(1); |
| 6261 | Node* len = argument(2); |
| 6262 | Node* state = argument(3); |
| 6263 | Node* subkeyH = argument(4); |
| 6264 | |
| 6265 | state = must_be_not_null(state, true); |
| 6266 | subkeyH = must_be_not_null(subkeyH, true); |
| 6267 | data = must_be_not_null(data, true); |
| 6268 | |
| 6269 | state = access_resolve(state, ACCESS_WRITE); |
| 6270 | subkeyH = access_resolve(subkeyH, ACCESS_READ); |
| 6271 | data = access_resolve(data, ACCESS_READ); |
| 6272 | |
| 6273 | Node* state_start = array_element_address(state, intcon(0), T_LONG); |
| 6274 | assert(state_start, "state is NULL" ); |
| 6275 | Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); |
| 6276 | assert(subkeyH_start, "subkeyH is NULL" ); |
| 6277 | Node* data_start = array_element_address(data, offset, T_BYTE); |
| 6278 | assert(data_start, "data is NULL" ); |
| 6279 | |
| 6280 | Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 6281 | OptoRuntime::ghash_processBlocks_Type(), |
| 6282 | stubAddr, stubName, TypePtr::BOTTOM, |
| 6283 | state_start, subkeyH_start, data_start, len); |
| 6284 | return true; |
| 6285 | } |
| 6286 | |
| 6287 | bool LibraryCallKit::inline_base64_encodeBlock() { |
| 6288 | address stubAddr; |
| 6289 | const char *stubName; |
| 6290 | assert(UseBASE64Intrinsics, "need Base64 intrinsics support" ); |
| 6291 | assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters" ); |
| 6292 | stubAddr = StubRoutines::base64_encodeBlock(); |
| 6293 | stubName = "encodeBlock" ; |
| 6294 | |
| 6295 | if (!stubAddr) return false; |
| 6296 | Node* base64obj = argument(0); |
| 6297 | Node* src = argument(1); |
| 6298 | Node* offset = argument(2); |
| 6299 | Node* len = argument(3); |
| 6300 | Node* dest = argument(4); |
| 6301 | Node* dp = argument(5); |
| 6302 | Node* isURL = argument(6); |
| 6303 | |
| 6304 | src = must_be_not_null(src, true); |
| 6305 | src = access_resolve(src, ACCESS_READ); |
| 6306 | dest = must_be_not_null(dest, true); |
| 6307 | dest = access_resolve(dest, ACCESS_WRITE); |
| 6308 | |
| 6309 | Node* src_start = array_element_address(src, intcon(0), T_BYTE); |
| 6310 | assert(src_start, "source array is NULL" ); |
| 6311 | Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); |
| 6312 | assert(dest_start, "destination array is NULL" ); |
| 6313 | |
| 6314 | Node* base64 = make_runtime_call(RC_LEAF, |
| 6315 | OptoRuntime::base64_encodeBlock_Type(), |
| 6316 | stubAddr, stubName, TypePtr::BOTTOM, |
| 6317 | src_start, offset, len, dest_start, dp, isURL); |
| 6318 | return true; |
| 6319 | } |
| 6320 | |
| 6321 | //------------------------------inline_sha_implCompress----------------------- |
| 6322 | // |
| 6323 | // Calculate SHA (i.e., SHA-1) for single-block byte[] array. |
| 6324 | // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) |
| 6325 | // |
| 6326 | // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. |
| 6327 | // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) |
| 6328 | // |
| 6329 | // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. |
| 6330 | // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) |
| 6331 | // |
| 6332 | bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) { |
| 6333 | assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters" ); |
| 6334 | |
| 6335 | Node* sha_obj = argument(0); |
| 6336 | Node* src = argument(1); // type oop |
| 6337 | Node* ofs = argument(2); // type int |
| 6338 | |
| 6339 | const Type* src_type = src->Value(&_gvn); |
| 6340 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 6341 | if (top_src == NULL || top_src->klass() == NULL) { |
| 6342 | // failed array check |
| 6343 | return false; |
| 6344 | } |
| 6345 | // Figure out the size and type of the elements we will be copying. |
| 6346 | BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 6347 | if (src_elem != T_BYTE) { |
| 6348 | return false; |
| 6349 | } |
| 6350 | // 'src_start' points to src array + offset |
| 6351 | src = must_be_not_null(src, true); |
| 6352 | src = access_resolve(src, ACCESS_READ); |
| 6353 | Node* src_start = array_element_address(src, ofs, src_elem); |
| 6354 | Node* state = NULL; |
| 6355 | address stubAddr; |
| 6356 | const char *stubName; |
| 6357 | |
| 6358 | switch(id) { |
| 6359 | case vmIntrinsics::_sha_implCompress: |
| 6360 | assert(UseSHA1Intrinsics, "need SHA1 instruction support" ); |
| 6361 | state = get_state_from_sha_object(sha_obj); |
| 6362 | stubAddr = StubRoutines::sha1_implCompress(); |
| 6363 | stubName = "sha1_implCompress" ; |
| 6364 | break; |
| 6365 | case vmIntrinsics::_sha2_implCompress: |
| 6366 | assert(UseSHA256Intrinsics, "need SHA256 instruction support" ); |
| 6367 | state = get_state_from_sha_object(sha_obj); |
| 6368 | stubAddr = StubRoutines::sha256_implCompress(); |
| 6369 | stubName = "sha256_implCompress" ; |
| 6370 | break; |
| 6371 | case vmIntrinsics::_sha5_implCompress: |
| 6372 | assert(UseSHA512Intrinsics, "need SHA512 instruction support" ); |
| 6373 | state = get_state_from_sha5_object(sha_obj); |
| 6374 | stubAddr = StubRoutines::sha512_implCompress(); |
| 6375 | stubName = "sha512_implCompress" ; |
| 6376 | break; |
| 6377 | default: |
| 6378 | fatal_unexpected_iid(id); |
| 6379 | return false; |
| 6380 | } |
| 6381 | if (state == NULL) return false; |
| 6382 | |
| 6383 | assert(stubAddr != NULL, "Stub is generated" ); |
| 6384 | if (stubAddr == NULL) return false; |
| 6385 | |
| 6386 | // Call the stub. |
| 6387 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(), |
| 6388 | stubAddr, stubName, TypePtr::BOTTOM, |
| 6389 | src_start, state); |
| 6390 | |
| 6391 | return true; |
| 6392 | } |
| 6393 | |
| 6394 | //------------------------------inline_digestBase_implCompressMB----------------------- |
| 6395 | // |
| 6396 | // Calculate SHA/SHA2/SHA5 for multi-block byte[] array. |
| 6397 | // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) |
| 6398 | // |
| 6399 | bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { |
| 6400 | assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, |
| 6401 | "need SHA1/SHA256/SHA512 instruction support" ); |
| 6402 | assert((uint)predicate < 3, "sanity" ); |
| 6403 | assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters" ); |
| 6404 | |
| 6405 | Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. |
| 6406 | Node* src = argument(1); // byte[] array |
| 6407 | Node* ofs = argument(2); // type int |
| 6408 | Node* limit = argument(3); // type int |
| 6409 | |
| 6410 | const Type* src_type = src->Value(&_gvn); |
| 6411 | const TypeAryPtr* top_src = src_type->isa_aryptr(); |
| 6412 | if (top_src == NULL || top_src->klass() == NULL) { |
| 6413 | // failed array check |
| 6414 | return false; |
| 6415 | } |
| 6416 | // Figure out the size and type of the elements we will be copying. |
| 6417 | BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); |
| 6418 | if (src_elem != T_BYTE) { |
| 6419 | return false; |
| 6420 | } |
| 6421 | // 'src_start' points to src array + offset |
| 6422 | src = must_be_not_null(src, false); |
| 6423 | src = access_resolve(src, ACCESS_READ); |
| 6424 | Node* src_start = array_element_address(src, ofs, src_elem); |
| 6425 | |
| 6426 | const char* klass_SHA_name = NULL; |
| 6427 | const char* stub_name = NULL; |
| 6428 | address stub_addr = NULL; |
| 6429 | bool long_state = false; |
| 6430 | |
| 6431 | switch (predicate) { |
| 6432 | case 0: |
| 6433 | if (UseSHA1Intrinsics) { |
| 6434 | klass_SHA_name = "sun/security/provider/SHA" ; |
| 6435 | stub_name = "sha1_implCompressMB" ; |
| 6436 | stub_addr = StubRoutines::sha1_implCompressMB(); |
| 6437 | } |
| 6438 | break; |
| 6439 | case 1: |
| 6440 | if (UseSHA256Intrinsics) { |
| 6441 | klass_SHA_name = "sun/security/provider/SHA2" ; |
| 6442 | stub_name = "sha256_implCompressMB" ; |
| 6443 | stub_addr = StubRoutines::sha256_implCompressMB(); |
| 6444 | } |
| 6445 | break; |
| 6446 | case 2: |
| 6447 | if (UseSHA512Intrinsics) { |
| 6448 | klass_SHA_name = "sun/security/provider/SHA5" ; |
| 6449 | stub_name = "sha512_implCompressMB" ; |
| 6450 | stub_addr = StubRoutines::sha512_implCompressMB(); |
| 6451 | long_state = true; |
| 6452 | } |
| 6453 | break; |
| 6454 | default: |
| 6455 | fatal("unknown SHA intrinsic predicate: %d" , predicate); |
| 6456 | } |
| 6457 | if (klass_SHA_name != NULL) { |
| 6458 | assert(stub_addr != NULL, "Stub is generated" ); |
| 6459 | if (stub_addr == NULL) return false; |
| 6460 | |
| 6461 | // get DigestBase klass to lookup for SHA klass |
| 6462 | const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); |
| 6463 | assert(tinst != NULL, "digestBase_obj is not instance???" ); |
| 6464 | assert(tinst->klass()->is_loaded(), "DigestBase is not loaded" ); |
| 6465 | |
| 6466 | ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name)); |
| 6467 | assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded" ); |
| 6468 | ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass(); |
| 6469 | return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit); |
| 6470 | } |
| 6471 | return false; |
| 6472 | } |
| 6473 | //------------------------------inline_sha_implCompressMB----------------------- |
| 6474 | bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA, |
| 6475 | bool long_state, address stubAddr, const char *stubName, |
| 6476 | Node* src_start, Node* ofs, Node* limit) { |
| 6477 | const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA); |
| 6478 | const TypeOopPtr* xtype = aklass->as_instance_type(); |
| 6479 | Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); |
| 6480 | sha_obj = _gvn.transform(sha_obj); |
| 6481 | |
| 6482 | Node* state; |
| 6483 | if (long_state) { |
| 6484 | state = get_state_from_sha5_object(sha_obj); |
| 6485 | } else { |
| 6486 | state = get_state_from_sha_object(sha_obj); |
| 6487 | } |
| 6488 | if (state == NULL) return false; |
| 6489 | |
| 6490 | // Call the stub. |
| 6491 | Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, |
| 6492 | OptoRuntime::digestBase_implCompressMB_Type(), |
| 6493 | stubAddr, stubName, TypePtr::BOTTOM, |
| 6494 | src_start, state, ofs, limit); |
| 6495 | // return ofs (int) |
| 6496 | Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); |
| 6497 | set_result(result); |
| 6498 | |
| 6499 | return true; |
| 6500 | } |
| 6501 | |
| 6502 | //------------------------------get_state_from_sha_object----------------------- |
| 6503 | Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) { |
| 6504 | Node* sha_state = load_field_from_object(sha_object, "state" , "[I" , /*is_exact*/ false); |
| 6505 | assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2" ); |
| 6506 | if (sha_state == NULL) return (Node *) NULL; |
| 6507 | |
| 6508 | // now have the array, need to get the start address of the state array |
| 6509 | sha_state = access_resolve(sha_state, ACCESS_WRITE); |
| 6510 | Node* state = array_element_address(sha_state, intcon(0), T_INT); |
| 6511 | return state; |
| 6512 | } |
| 6513 | |
| 6514 | //------------------------------get_state_from_sha5_object----------------------- |
| 6515 | Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) { |
| 6516 | Node* sha_state = load_field_from_object(sha_object, "state" , "[J" , /*is_exact*/ false); |
| 6517 | assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5" ); |
| 6518 | if (sha_state == NULL) return (Node *) NULL; |
| 6519 | |
| 6520 | // now have the array, need to get the start address of the state array |
| 6521 | sha_state = access_resolve(sha_state, ACCESS_WRITE); |
| 6522 | Node* state = array_element_address(sha_state, intcon(0), T_LONG); |
| 6523 | return state; |
| 6524 | } |
| 6525 | |
| 6526 | //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- |
| 6527 | // Return node representing slow path of predicate check. |
| 6528 | // the pseudo code we want to emulate with this predicate is: |
| 6529 | // if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath |
| 6530 | // |
| 6531 | Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { |
| 6532 | assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, |
| 6533 | "need SHA1/SHA256/SHA512 instruction support" ); |
| 6534 | assert((uint)predicate < 3, "sanity" ); |
| 6535 | |
| 6536 | // The receiver was checked for NULL already. |
| 6537 | Node* digestBaseObj = argument(0); |
| 6538 | |
| 6539 | // get DigestBase klass for instanceOf check |
| 6540 | const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); |
| 6541 | assert(tinst != NULL, "digestBaseObj is null" ); |
| 6542 | assert(tinst->klass()->is_loaded(), "DigestBase is not loaded" ); |
| 6543 | |
| 6544 | const char* klass_SHA_name = NULL; |
| 6545 | switch (predicate) { |
| 6546 | case 0: |
| 6547 | if (UseSHA1Intrinsics) { |
| 6548 | // we want to do an instanceof comparison against the SHA class |
| 6549 | klass_SHA_name = "sun/security/provider/SHA" ; |
| 6550 | } |
| 6551 | break; |
| 6552 | case 1: |
| 6553 | if (UseSHA256Intrinsics) { |
| 6554 | // we want to do an instanceof comparison against the SHA2 class |
| 6555 | klass_SHA_name = "sun/security/provider/SHA2" ; |
| 6556 | } |
| 6557 | break; |
| 6558 | case 2: |
| 6559 | if (UseSHA512Intrinsics) { |
| 6560 | // we want to do an instanceof comparison against the SHA5 class |
| 6561 | klass_SHA_name = "sun/security/provider/SHA5" ; |
| 6562 | } |
| 6563 | break; |
| 6564 | default: |
| 6565 | fatal("unknown SHA intrinsic predicate: %d" , predicate); |
| 6566 | } |
| 6567 | |
| 6568 | ciKlass* klass_SHA = NULL; |
| 6569 | if (klass_SHA_name != NULL) { |
| 6570 | klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name)); |
| 6571 | } |
| 6572 | if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) { |
| 6573 | // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path |
| 6574 | Node* ctrl = control(); |
| 6575 | set_control(top()); // no intrinsic path |
| 6576 | return ctrl; |
| 6577 | } |
| 6578 | ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass(); |
| 6579 | |
| 6580 | Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA))); |
| 6581 | Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1))); |
| 6582 | Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); |
| 6583 | Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); |
| 6584 | |
| 6585 | return instof_false; // even if it is NULL |
| 6586 | } |
| 6587 | |
| 6588 | //-------------inline_fma----------------------------------- |
| 6589 | bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { |
| 6590 | Node *a = NULL; |
| 6591 | Node *b = NULL; |
| 6592 | Node *c = NULL; |
| 6593 | Node* result = NULL; |
| 6594 | switch (id) { |
| 6595 | case vmIntrinsics::_fmaD: |
| 6596 | assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each." ); |
| 6597 | // no receiver since it is static method |
| 6598 | a = round_double_node(argument(0)); |
| 6599 | b = round_double_node(argument(2)); |
| 6600 | c = round_double_node(argument(4)); |
| 6601 | result = _gvn.transform(new FmaDNode(control(), a, b, c)); |
| 6602 | break; |
| 6603 | case vmIntrinsics::_fmaF: |
| 6604 | assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each." ); |
| 6605 | a = argument(0); |
| 6606 | b = argument(1); |
| 6607 | c = argument(2); |
| 6608 | result = _gvn.transform(new FmaFNode(control(), a, b, c)); |
| 6609 | break; |
| 6610 | default: |
| 6611 | fatal_unexpected_iid(id); break; |
| 6612 | } |
| 6613 | set_result(result); |
| 6614 | return true; |
| 6615 | } |
| 6616 | |
| 6617 | bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { |
| 6618 | // argument(0) is receiver |
| 6619 | Node* codePoint = argument(1); |
| 6620 | Node* n = NULL; |
| 6621 | |
| 6622 | switch (id) { |
| 6623 | case vmIntrinsics::_isDigit : |
| 6624 | n = new DigitNode(control(), codePoint); |
| 6625 | break; |
| 6626 | case vmIntrinsics::_isLowerCase : |
| 6627 | n = new LowerCaseNode(control(), codePoint); |
| 6628 | break; |
| 6629 | case vmIntrinsics::_isUpperCase : |
| 6630 | n = new UpperCaseNode(control(), codePoint); |
| 6631 | break; |
| 6632 | case vmIntrinsics::_isWhitespace : |
| 6633 | n = new WhitespaceNode(control(), codePoint); |
| 6634 | break; |
| 6635 | default: |
| 6636 | fatal_unexpected_iid(id); |
| 6637 | } |
| 6638 | |
| 6639 | set_result(_gvn.transform(n)); |
| 6640 | return true; |
| 6641 | } |
| 6642 | |
| 6643 | //------------------------------inline_fp_min_max------------------------------ |
| 6644 | bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { |
| 6645 | /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. |
| 6646 | |
| 6647 | // The intrinsic should be used only when the API branches aren't predictable, |
| 6648 | // the last one performing the most important comparison. The following heuristic |
| 6649 | // uses the branch statistics to eventually bail out if necessary. |
| 6650 | |
| 6651 | ciMethodData *md = callee()->method_data(); |
| 6652 | |
| 6653 | if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) { |
| 6654 | ciCallProfile cp = caller()->call_profile_at_bci(bci()); |
| 6655 | |
| 6656 | if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { |
| 6657 | // Bail out if the call-site didn't contribute enough to the statistics. |
| 6658 | return false; |
| 6659 | } |
| 6660 | |
| 6661 | uint taken = 0, not_taken = 0; |
| 6662 | |
| 6663 | for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { |
| 6664 | if (p->is_BranchData()) { |
| 6665 | taken = ((ciBranchData*)p)->taken(); |
| 6666 | not_taken = ((ciBranchData*)p)->not_taken(); |
| 6667 | } |
| 6668 | } |
| 6669 | |
| 6670 | double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); |
| 6671 | balance = balance < 0 ? -balance : balance; |
| 6672 | if ( balance > 0.2 ) { |
| 6673 | // Bail out if the most important branch is predictable enough. |
| 6674 | return false; |
| 6675 | } |
| 6676 | } |
| 6677 | */ |
| 6678 | |
| 6679 | Node *a = NULL; |
| 6680 | Node *b = NULL; |
| 6681 | Node *n = NULL; |
| 6682 | switch (id) { |
| 6683 | case vmIntrinsics::_maxF: |
| 6684 | case vmIntrinsics::_minF: |
| 6685 | assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each." ); |
| 6686 | a = argument(0); |
| 6687 | b = argument(1); |
| 6688 | break; |
| 6689 | case vmIntrinsics::_maxD: |
| 6690 | case vmIntrinsics::_minD: |
| 6691 | assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each." ); |
| 6692 | a = round_double_node(argument(0)); |
| 6693 | b = round_double_node(argument(2)); |
| 6694 | break; |
| 6695 | default: |
| 6696 | fatal_unexpected_iid(id); |
| 6697 | break; |
| 6698 | } |
| 6699 | switch (id) { |
| 6700 | case vmIntrinsics::_maxF: n = new MaxFNode(a, b); break; |
| 6701 | case vmIntrinsics::_minF: n = new MinFNode(a, b); break; |
| 6702 | case vmIntrinsics::_maxD: n = new MaxDNode(a, b); break; |
| 6703 | case vmIntrinsics::_minD: n = new MinDNode(a, b); break; |
| 6704 | default: fatal_unexpected_iid(id); break; |
| 6705 | } |
| 6706 | set_result(_gvn.transform(n)); |
| 6707 | return true; |
| 6708 | } |
| 6709 | |
| 6710 | bool LibraryCallKit::inline_profileBoolean() { |
| 6711 | Node* counts = argument(1); |
| 6712 | const TypeAryPtr* ary = NULL; |
| 6713 | ciArray* aobj = NULL; |
| 6714 | if (counts->is_Con() |
| 6715 | && (ary = counts->bottom_type()->isa_aryptr()) != NULL |
| 6716 | && (aobj = ary->const_oop()->as_array()) != NULL |
| 6717 | && (aobj->length() == 2)) { |
| 6718 | // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. |
| 6719 | jint false_cnt = aobj->element_value(0).as_int(); |
| 6720 | jint true_cnt = aobj->element_value(1).as_int(); |
| 6721 | |
| 6722 | if (C->log() != NULL) { |
| 6723 | C->log()->elem("observe source='profileBoolean' false='%d' true='%d'" , |
| 6724 | false_cnt, true_cnt); |
| 6725 | } |
| 6726 | |
| 6727 | if (false_cnt + true_cnt == 0) { |
| 6728 | // According to profile, never executed. |
| 6729 | uncommon_trap_exact(Deoptimization::Reason_intrinsic, |
| 6730 | Deoptimization::Action_reinterpret); |
| 6731 | return true; |
| 6732 | } |
| 6733 | |
| 6734 | // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) |
| 6735 | // is a number of each value occurrences. |
| 6736 | Node* result = argument(0); |
| 6737 | if (false_cnt == 0 || true_cnt == 0) { |
| 6738 | // According to profile, one value has been never seen. |
| 6739 | int expected_val = (false_cnt == 0) ? 1 : 0; |
| 6740 | |
| 6741 | Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); |
| 6742 | Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); |
| 6743 | |
| 6744 | IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); |
| 6745 | Node* fast_path = _gvn.transform(new IfTrueNode(check)); |
| 6746 | Node* slow_path = _gvn.transform(new IfFalseNode(check)); |
| 6747 | |
| 6748 | { // Slow path: uncommon trap for never seen value and then reexecute |
| 6749 | // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows |
| 6750 | // the value has been seen at least once. |
| 6751 | PreserveJVMState pjvms(this); |
| 6752 | PreserveReexecuteState preexecs(this); |
| 6753 | jvms()->set_should_reexecute(true); |
| 6754 | |
| 6755 | set_control(slow_path); |
| 6756 | set_i_o(i_o()); |
| 6757 | |
| 6758 | uncommon_trap_exact(Deoptimization::Reason_intrinsic, |
| 6759 | Deoptimization::Action_reinterpret); |
| 6760 | } |
| 6761 | // The guard for never seen value enables sharpening of the result and |
| 6762 | // returning a constant. It allows to eliminate branches on the same value |
| 6763 | // later on. |
| 6764 | set_control(fast_path); |
| 6765 | result = intcon(expected_val); |
| 6766 | } |
| 6767 | // Stop profiling. |
| 6768 | // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. |
| 6769 | // By replacing method body with profile data (represented as ProfileBooleanNode |
| 6770 | // on IR level) we effectively disable profiling. |
| 6771 | // It enables full speed execution once optimized code is generated. |
| 6772 | Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); |
| 6773 | C->record_for_igvn(profile); |
| 6774 | set_result(profile); |
| 6775 | return true; |
| 6776 | } else { |
| 6777 | // Continue profiling. |
| 6778 | // Profile data isn't available at the moment. So, execute method's bytecode version. |
| 6779 | // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod |
| 6780 | // is compiled and counters aren't available since corresponding MethodHandle |
| 6781 | // isn't a compile-time constant. |
| 6782 | return false; |
| 6783 | } |
| 6784 | } |
| 6785 | |
| 6786 | bool LibraryCallKit::inline_isCompileConstant() { |
| 6787 | Node* n = argument(0); |
| 6788 | set_result(n->is_Con() ? intcon(1) : intcon(0)); |
| 6789 | return true; |
| 6790 | } |
| 6791 | |