| 1 | /* |
| 2 | * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | */ |
| 23 | |
| 24 | #include "precompiled.hpp" |
| 25 | #include "compiler/compileLog.hpp" |
| 26 | #include "libadt/vectset.hpp" |
| 27 | #include "memory/allocation.inline.hpp" |
| 28 | #include "memory/resourceArea.hpp" |
| 29 | #include "opto/addnode.hpp" |
| 30 | #include "opto/callnode.hpp" |
| 31 | #include "opto/castnode.hpp" |
| 32 | #include "opto/convertnode.hpp" |
| 33 | #include "opto/divnode.hpp" |
| 34 | #include "opto/matcher.hpp" |
| 35 | #include "opto/memnode.hpp" |
| 36 | #include "opto/mulnode.hpp" |
| 37 | #include "opto/opcodes.hpp" |
| 38 | #include "opto/opaquenode.hpp" |
| 39 | #include "opto/superword.hpp" |
| 40 | #include "opto/vectornode.hpp" |
| 41 | #include "opto/movenode.hpp" |
| 42 | |
| 43 | // |
| 44 | // S U P E R W O R D T R A N S F O R M |
| 45 | //============================================================================= |
| 46 | |
| 47 | //------------------------------SuperWord--------------------------- |
| 48 | SuperWord::SuperWord(PhaseIdealLoop* phase) : |
| 49 | _phase(phase), |
| 50 | _arena(phase->C->comp_arena()), |
| 51 | _igvn(phase->_igvn), |
| 52 | _packset(arena(), 8, 0, NULL), // packs for the current block |
| 53 | _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb |
| 54 | _block(arena(), 8, 0, NULL), // nodes in current block |
| 55 | _post_block(arena(), 8, 0, NULL), // nodes common to current block which are marked as post loop vectorizable |
| 56 | _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside |
| 57 | _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads |
| 58 | _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails |
| 59 | _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node |
| 60 | _clone_map(phase->C->clone_map()), // map of nodes created in cloning |
| 61 | _cmovev_kit(_arena, this), // map to facilitate CMoveV creation |
| 62 | _align_to_ref(NULL), // memory reference to align vectors to |
| 63 | _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs |
| 64 | _dg(_arena), // dependence graph |
| 65 | _visited(arena()), // visited node set |
| 66 | _post_visited(arena()), // post visited node set |
| 67 | _n_idx_list(arena(), 8), // scratch list of (node,index) pairs |
| 68 | _nlist(arena(), 8, 0, NULL), // scratch list of nodes |
| 69 | _stk(arena(), 8, 0, NULL), // scratch stack of nodes |
| 70 | _lpt(NULL), // loop tree node |
| 71 | _lp(NULL), // LoopNode |
| 72 | _bb(NULL), // basic block |
| 73 | _iv(NULL), // induction var |
| 74 | _race_possible(false), // cases where SDMU is true |
| 75 | _early_return(true), // analysis evaluations routine |
| 76 | _do_vector_loop(phase->C->do_vector_loop()), // whether to do vectorization/simd style |
| 77 | _do_reserve_copy(DoReserveCopyInSuperWord), |
| 78 | _num_work_vecs(0), // amount of vector work we have |
| 79 | _num_reductions(0), // amount of reduction work we have |
| 80 | _ii_first(-1), // first loop generation index - only if do_vector_loop() |
| 81 | _ii_last(-1), // last loop generation index - only if do_vector_loop() |
| 82 | _ii_order(arena(), 8, 0, 0) |
| 83 | { |
| 84 | #ifndef PRODUCT |
| 85 | _vector_loop_debug = 0; |
| 86 | if (_phase->C->method() != NULL) { |
| 87 | _vector_loop_debug = phase->C->directive()->VectorizeDebugOption; |
| 88 | } |
| 89 | |
| 90 | #endif |
| 91 | } |
| 92 | |
| 93 | //------------------------------transform_loop--------------------------- |
| 94 | void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) { |
| 95 | assert(UseSuperWord, "should be" ); |
| 96 | // Do vectors exist on this architecture? |
| 97 | if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return; |
| 98 | |
| 99 | assert(lpt->_head->is_CountedLoop(), "must be" ); |
| 100 | CountedLoopNode *cl = lpt->_head->as_CountedLoop(); |
| 101 | |
| 102 | if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop |
| 103 | |
| 104 | bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()); |
| 105 | if (post_loop_allowed) { |
| 106 | if (cl->is_reduction_loop()) return; // no predication mapping |
| 107 | Node *limit = cl->limit(); |
| 108 | if (limit->is_Con()) return; // non constant limits only |
| 109 | // Now check the limit for expressions we do not handle |
| 110 | if (limit->is_Add()) { |
| 111 | Node *in2 = limit->in(2); |
| 112 | if (in2->is_Con()) { |
| 113 | int val = in2->get_int(); |
| 114 | // should not try to program these cases |
| 115 | if (val < 0) return; |
| 116 | } |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | // skip any loop that has not been assigned max unroll by analysis |
| 121 | if (do_optimization) { |
| 122 | if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return; |
| 123 | } |
| 124 | |
| 125 | // Check for no control flow in body (other than exit) |
| 126 | Node *cl_exit = cl->loopexit(); |
| 127 | if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) { |
| 128 | #ifndef PRODUCT |
| 129 | if (TraceSuperWord) { |
| 130 | tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head" ); |
| 131 | tty->print("cl_exit %d" , cl_exit->_idx); cl_exit->dump(); |
| 132 | tty->print("cl_exit->in(0) %d" , cl_exit->in(0)->_idx); cl_exit->in(0)->dump(); |
| 133 | tty->print("lpt->_head %d" , lpt->_head->_idx); lpt->_head->dump(); |
| 134 | lpt->dump_head(); |
| 135 | } |
| 136 | #endif |
| 137 | return; |
| 138 | } |
| 139 | |
| 140 | // Make sure the are no extra control users of the loop backedge |
| 141 | if (cl->back_control()->outcnt() != 1) { |
| 142 | return; |
| 143 | } |
| 144 | |
| 145 | // Skip any loops already optimized by slp |
| 146 | if (cl->is_vectorized_loop()) return; |
| 147 | |
| 148 | if (cl->is_unroll_only()) return; |
| 149 | |
| 150 | if (cl->is_main_loop()) { |
| 151 | // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit)))) |
| 152 | CountedLoopEndNode* pre_end = get_pre_loop_end(cl); |
| 153 | if (pre_end == NULL) return; |
| 154 | Node *pre_opaq1 = pre_end->limit(); |
| 155 | if (pre_opaq1->Opcode() != Op_Opaque1) return; |
| 156 | } |
| 157 | |
| 158 | init(); // initialize data structures |
| 159 | |
| 160 | set_lpt(lpt); |
| 161 | set_lp(cl); |
| 162 | |
| 163 | // For now, define one block which is the entire loop body |
| 164 | set_bb(cl); |
| 165 | |
| 166 | if (do_optimization) { |
| 167 | assert(_packset.length() == 0, "packset must be empty" ); |
| 168 | SLP_extract(); |
| 169 | if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) { |
| 170 | if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) { |
| 171 | IdealLoopTree *lpt_next = lpt->_next; |
| 172 | CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop(); |
| 173 | _phase->has_range_checks(lpt_next); |
| 174 | if (cl_next->is_post_loop() && !cl_next->range_checks_present()) { |
| 175 | if (!cl_next->is_vectorized_loop()) { |
| 176 | int slp_max_unroll_factor = cl->slp_max_unroll(); |
| 177 | cl_next->set_slp_max_unroll(slp_max_unroll_factor); |
| 178 | } |
| 179 | } |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | //------------------------------early unrolling analysis------------------------------ |
| 186 | void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) { |
| 187 | bool is_slp = true; |
| 188 | ResourceMark rm; |
| 189 | size_t ignored_size = lpt()->_body.size(); |
| 190 | int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size); |
| 191 | Node_Stack nstack((int)ignored_size); |
| 192 | CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); |
| 193 | Node *cl_exit = cl->loopexit_or_null(); |
| 194 | int rpo_idx = _post_block.length(); |
| 195 | |
| 196 | assert(rpo_idx == 0, "post loop block is empty" ); |
| 197 | |
| 198 | // First clear the entries |
| 199 | for (uint i = 0; i < lpt()->_body.size(); i++) { |
| 200 | ignored_loop_nodes[i] = -1; |
| 201 | } |
| 202 | |
| 203 | int max_vector = Matcher::max_vector_size(T_BYTE); |
| 204 | bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()); |
| 205 | |
| 206 | // Process the loop, some/all of the stack entries will not be in order, ergo |
| 207 | // need to preprocess the ignored initial state before we process the loop |
| 208 | for (uint i = 0; i < lpt()->_body.size(); i++) { |
| 209 | Node* n = lpt()->_body.at(i); |
| 210 | if (n == cl->incr() || |
| 211 | n->is_reduction() || |
| 212 | n->is_AddP() || |
| 213 | n->is_Cmp() || |
| 214 | n->is_IfTrue() || |
| 215 | n->is_CountedLoop() || |
| 216 | (n == cl_exit)) { |
| 217 | ignored_loop_nodes[i] = n->_idx; |
| 218 | continue; |
| 219 | } |
| 220 | |
| 221 | if (n->is_If()) { |
| 222 | IfNode *iff = n->as_If(); |
| 223 | if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) { |
| 224 | if (lpt()->is_loop_exit(iff)) { |
| 225 | ignored_loop_nodes[i] = n->_idx; |
| 226 | continue; |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) { |
| 232 | Node* n_tail = n->in(LoopNode::LoopBackControl); |
| 233 | if (n_tail != n->in(LoopNode::EntryControl)) { |
| 234 | if (!n_tail->is_Mem()) { |
| 235 | is_slp = false; |
| 236 | break; |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | // This must happen after check of phi/if |
| 242 | if (n->is_Phi() || n->is_If()) { |
| 243 | ignored_loop_nodes[i] = n->_idx; |
| 244 | continue; |
| 245 | } |
| 246 | |
| 247 | if (n->is_LoadStore() || n->is_MergeMem() || |
| 248 | (n->is_Proj() && !n->as_Proj()->is_CFG())) { |
| 249 | is_slp = false; |
| 250 | break; |
| 251 | } |
| 252 | |
| 253 | // Ignore nodes with non-primitive type. |
| 254 | BasicType bt; |
| 255 | if (n->is_Mem()) { |
| 256 | bt = n->as_Mem()->memory_type(); |
| 257 | } else { |
| 258 | bt = n->bottom_type()->basic_type(); |
| 259 | } |
| 260 | if (is_java_primitive(bt) == false) { |
| 261 | ignored_loop_nodes[i] = n->_idx; |
| 262 | continue; |
| 263 | } |
| 264 | |
| 265 | if (n->is_Mem()) { |
| 266 | MemNode* current = n->as_Mem(); |
| 267 | Node* adr = n->in(MemNode::Address); |
| 268 | Node* n_ctrl = _phase->get_ctrl(adr); |
| 269 | |
| 270 | // save a queue of post process nodes |
| 271 | if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) { |
| 272 | // Process the memory expression |
| 273 | int stack_idx = 0; |
| 274 | bool have_side_effects = true; |
| 275 | if (adr->is_AddP() == false) { |
| 276 | nstack.push(adr, stack_idx++); |
| 277 | } else { |
| 278 | // Mark the components of the memory operation in nstack |
| 279 | SWPointer p1(current, this, &nstack, true); |
| 280 | have_side_effects = p1.node_stack()->is_nonempty(); |
| 281 | } |
| 282 | |
| 283 | // Process the pointer stack |
| 284 | while (have_side_effects) { |
| 285 | Node* pointer_node = nstack.node(); |
| 286 | for (uint j = 0; j < lpt()->_body.size(); j++) { |
| 287 | Node* cur_node = lpt()->_body.at(j); |
| 288 | if (cur_node == pointer_node) { |
| 289 | ignored_loop_nodes[j] = cur_node->_idx; |
| 290 | break; |
| 291 | } |
| 292 | } |
| 293 | nstack.pop(); |
| 294 | have_side_effects = nstack.is_nonempty(); |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | if (is_slp) { |
| 301 | // Now we try to find the maximum supported consistent vector which the machine |
| 302 | // description can use |
| 303 | bool small_basic_type = false; |
| 304 | bool flag_small_bt = false; |
| 305 | for (uint i = 0; i < lpt()->_body.size(); i++) { |
| 306 | if (ignored_loop_nodes[i] != -1) continue; |
| 307 | |
| 308 | BasicType bt; |
| 309 | Node* n = lpt()->_body.at(i); |
| 310 | if (n->is_Mem()) { |
| 311 | bt = n->as_Mem()->memory_type(); |
| 312 | } else { |
| 313 | bt = n->bottom_type()->basic_type(); |
| 314 | } |
| 315 | |
| 316 | if (post_loop_allowed) { |
| 317 | if (!small_basic_type) { |
| 318 | switch (bt) { |
| 319 | case T_CHAR: |
| 320 | case T_BYTE: |
| 321 | case T_SHORT: |
| 322 | small_basic_type = true; |
| 323 | break; |
| 324 | |
| 325 | case T_LONG: |
| 326 | // TODO: Remove when support completed for mask context with LONG. |
| 327 | // Support needs to be augmented for logical qword operations, currently we map to dword |
| 328 | // buckets for vectors on logicals as these were legacy. |
| 329 | small_basic_type = true; |
| 330 | break; |
| 331 | |
| 332 | default: |
| 333 | break; |
| 334 | } |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | if (is_java_primitive(bt) == false) continue; |
| 339 | |
| 340 | int cur_max_vector = Matcher::max_vector_size(bt); |
| 341 | |
| 342 | // If a max vector exists which is not larger than _local_loop_unroll_factor |
| 343 | // stop looking, we already have the max vector to map to. |
| 344 | if (cur_max_vector < local_loop_unroll_factor) { |
| 345 | is_slp = false; |
| 346 | if (TraceSuperWordLoopUnrollAnalysis) { |
| 347 | tty->print_cr("slp analysis fails: unroll limit greater than max vector\n" ); |
| 348 | } |
| 349 | break; |
| 350 | } |
| 351 | |
| 352 | // Map the maximal common vector |
| 353 | if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) { |
| 354 | if (cur_max_vector < max_vector && !flag_small_bt) { |
| 355 | max_vector = cur_max_vector; |
| 356 | } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) { |
| 357 | // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types. |
| 358 | // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively. |
| 359 | // We check for possibility of narrowing by looking through chain operations using subword types. |
| 360 | if (is_subword_type(bt)) { |
| 361 | uint start, end; |
| 362 | VectorNode::vector_operands(n, &start, &end); |
| 363 | |
| 364 | for (uint j = start; j < end; j++) { |
| 365 | Node* in = n->in(j); |
| 366 | // Don't propagate through a memory |
| 367 | if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) { |
| 368 | bool same_type = true; |
| 369 | for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) { |
| 370 | Node *use = in->fast_out(k); |
| 371 | if (!in_bb(use) && use->bottom_type()->basic_type() != bt) { |
| 372 | same_type = false; |
| 373 | break; |
| 374 | } |
| 375 | } |
| 376 | if (same_type) { |
| 377 | max_vector = cur_max_vector; |
| 378 | flag_small_bt = true; |
| 379 | cl->mark_subword_loop(); |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | } |
| 384 | } |
| 385 | // We only process post loops on predicated targets where we want to |
| 386 | // mask map the loop to a single iteration |
| 387 | if (post_loop_allowed) { |
| 388 | _post_block.at_put_grow(rpo_idx++, n); |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | if (is_slp) { |
| 393 | local_loop_unroll_factor = max_vector; |
| 394 | cl->mark_passed_slp(); |
| 395 | } |
| 396 | cl->mark_was_slp(); |
| 397 | if (cl->is_main_loop()) { |
| 398 | cl->set_slp_max_unroll(local_loop_unroll_factor); |
| 399 | } else if (post_loop_allowed) { |
| 400 | if (!small_basic_type) { |
| 401 | // avoid replication context for small basic types in programmable masked loops |
| 402 | cl->set_slp_max_unroll(local_loop_unroll_factor); |
| 403 | } |
| 404 | } |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | //------------------------------SLP_extract--------------------------- |
| 409 | // Extract the superword level parallelism |
| 410 | // |
| 411 | // 1) A reverse post-order of nodes in the block is constructed. By scanning |
| 412 | // this list from first to last, all definitions are visited before their uses. |
| 413 | // |
| 414 | // 2) A point-to-point dependence graph is constructed between memory references. |
| 415 | // This simplies the upcoming "independence" checker. |
| 416 | // |
| 417 | // 3) The maximum depth in the node graph from the beginning of the block |
| 418 | // to each node is computed. This is used to prune the graph search |
| 419 | // in the independence checker. |
| 420 | // |
| 421 | // 4) For integer types, the necessary bit width is propagated backwards |
| 422 | // from stores to allow packed operations on byte, char, and short |
| 423 | // integers. This reverses the promotion to type "int" that javac |
| 424 | // did for operations like: char c1,c2,c3; c1 = c2 + c3. |
| 425 | // |
| 426 | // 5) One of the memory references is picked to be an aligned vector reference. |
| 427 | // The pre-loop trip count is adjusted to align this reference in the |
| 428 | // unrolled body. |
| 429 | // |
| 430 | // 6) The initial set of pack pairs is seeded with memory references. |
| 431 | // |
| 432 | // 7) The set of pack pairs is extended by following use->def and def->use links. |
| 433 | // |
| 434 | // 8) The pairs are combined into vector sized packs. |
| 435 | // |
| 436 | // 9) Reorder the memory slices to co-locate members of the memory packs. |
| 437 | // |
| 438 | // 10) Generate ideal vector nodes for the final set of packs and where necessary, |
| 439 | // inserting scalar promotion, vector creation from multiple scalars, and |
| 440 | // extraction of scalar values from vectors. |
| 441 | // |
| 442 | void SuperWord::() { |
| 443 | |
| 444 | #ifndef PRODUCT |
| 445 | if (_do_vector_loop && TraceSuperWord) { |
| 446 | tty->print("SuperWord::SLP_extract\n" ); |
| 447 | tty->print("input loop\n" ); |
| 448 | _lpt->dump_head(); |
| 449 | _lpt->dump(); |
| 450 | for (uint i = 0; i < _lpt->_body.size(); i++) { |
| 451 | _lpt->_body.at(i)->dump(); |
| 452 | } |
| 453 | } |
| 454 | #endif |
| 455 | // Ready the block |
| 456 | if (!construct_bb()) { |
| 457 | return; // Exit if no interesting nodes or complex graph. |
| 458 | } |
| 459 | |
| 460 | // build _dg, _disjoint_ptrs |
| 461 | dependence_graph(); |
| 462 | |
| 463 | // compute function depth(Node*) |
| 464 | compute_max_depth(); |
| 465 | |
| 466 | CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); |
| 467 | bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()); |
| 468 | if (cl->is_main_loop()) { |
| 469 | if (_do_vector_loop) { |
| 470 | if (mark_generations() != -1) { |
| 471 | hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly |
| 472 | |
| 473 | if (!construct_bb()) { |
| 474 | return; // Exit if no interesting nodes or complex graph. |
| 475 | } |
| 476 | dependence_graph(); |
| 477 | compute_max_depth(); |
| 478 | } |
| 479 | |
| 480 | #ifndef PRODUCT |
| 481 | if (TraceSuperWord) { |
| 482 | tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph" ); |
| 483 | _lpt->dump_head(); |
| 484 | for (int j = 0; j < _block.length(); j++) { |
| 485 | Node* n = _block.at(j); |
| 486 | int d = depth(n); |
| 487 | for (int i = 0; i < d; i++) tty->print("%s" , " " ); |
| 488 | tty->print("%d :" , d); |
| 489 | n->dump(); |
| 490 | } |
| 491 | } |
| 492 | #endif |
| 493 | } |
| 494 | |
| 495 | compute_vector_element_type(); |
| 496 | |
| 497 | // Attempt vectorization |
| 498 | |
| 499 | find_adjacent_refs(); |
| 500 | |
| 501 | extend_packlist(); |
| 502 | |
| 503 | if (_do_vector_loop) { |
| 504 | if (_packset.length() == 0) { |
| 505 | if (TraceSuperWord) { |
| 506 | tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway" ); |
| 507 | } |
| 508 | pack_parallel(); |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | combine_packs(); |
| 513 | |
| 514 | construct_my_pack_map(); |
| 515 | if (UseVectorCmov) { |
| 516 | merge_packs_to_cmovd(); |
| 517 | } |
| 518 | |
| 519 | filter_packs(); |
| 520 | |
| 521 | schedule(); |
| 522 | } else if (post_loop_allowed) { |
| 523 | int saved_mapped_unroll_factor = cl->slp_max_unroll(); |
| 524 | if (saved_mapped_unroll_factor) { |
| 525 | int vector_mapped_unroll_factor = saved_mapped_unroll_factor; |
| 526 | |
| 527 | // now reset the slp_unroll_factor so that we can check the analysis mapped |
| 528 | // what the vector loop was mapped to |
| 529 | cl->set_slp_max_unroll(0); |
| 530 | |
| 531 | // do the analysis on the post loop |
| 532 | unrolling_analysis(vector_mapped_unroll_factor); |
| 533 | |
| 534 | // if our analyzed loop is a canonical fit, start processing it |
| 535 | if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) { |
| 536 | // now add the vector nodes to packsets |
| 537 | for (int i = 0; i < _post_block.length(); i++) { |
| 538 | Node* n = _post_block.at(i); |
| 539 | Node_List* singleton = new Node_List(); |
| 540 | singleton->push(n); |
| 541 | _packset.append(singleton); |
| 542 | set_my_pack(n, singleton); |
| 543 | } |
| 544 | |
| 545 | // map base types for vector usage |
| 546 | compute_vector_element_type(); |
| 547 | } else { |
| 548 | return; |
| 549 | } |
| 550 | } else { |
| 551 | // for some reason we could not map the slp analysis state of the vectorized loop |
| 552 | return; |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | output(); |
| 557 | } |
| 558 | |
| 559 | //------------------------------find_adjacent_refs--------------------------- |
| 560 | // Find the adjacent memory references and create pack pairs for them. |
| 561 | // This is the initial set of packs that will then be extended by |
| 562 | // following use->def and def->use links. The align positions are |
| 563 | // assigned relative to the reference "align_to_ref" |
| 564 | void SuperWord::find_adjacent_refs() { |
| 565 | // Get list of memory operations |
| 566 | Node_List memops; |
| 567 | for (int i = 0; i < _block.length(); i++) { |
| 568 | Node* n = _block.at(i); |
| 569 | if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) && |
| 570 | is_java_primitive(n->as_Mem()->memory_type())) { |
| 571 | int align = memory_alignment(n->as_Mem(), 0); |
| 572 | if (align != bottom_align) { |
| 573 | memops.push(n); |
| 574 | } |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | Node_List align_to_refs; |
| 579 | int best_iv_adjustment = 0; |
| 580 | MemNode* best_align_to_mem_ref = NULL; |
| 581 | |
| 582 | while (memops.size() != 0) { |
| 583 | // Find a memory reference to align to. |
| 584 | MemNode* mem_ref = find_align_to_ref(memops); |
| 585 | if (mem_ref == NULL) break; |
| 586 | align_to_refs.push(mem_ref); |
| 587 | int iv_adjustment = get_iv_adjustment(mem_ref); |
| 588 | |
| 589 | if (best_align_to_mem_ref == NULL) { |
| 590 | // Set memory reference which is the best from all memory operations |
| 591 | // to be used for alignment. The pre-loop trip count is modified to align |
| 592 | // this reference to a vector-aligned address. |
| 593 | best_align_to_mem_ref = mem_ref; |
| 594 | best_iv_adjustment = iv_adjustment; |
| 595 | NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);) |
| 596 | } |
| 597 | |
| 598 | SWPointer align_to_ref_p(mem_ref, this, NULL, false); |
| 599 | // Set alignment relative to "align_to_ref" for all related memory operations. |
| 600 | for (int i = memops.size() - 1; i >= 0; i--) { |
| 601 | MemNode* s = memops.at(i)->as_Mem(); |
| 602 | if (isomorphic(s, mem_ref) && |
| 603 | (!_do_vector_loop || same_origin_idx(s, mem_ref))) { |
| 604 | SWPointer p2(s, this, NULL, false); |
| 605 | if (p2.comparable(align_to_ref_p)) { |
| 606 | int align = memory_alignment(s, iv_adjustment); |
| 607 | set_alignment(s, align); |
| 608 | } |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | // Create initial pack pairs of memory operations for which |
| 613 | // alignment is set and vectors will be aligned. |
| 614 | bool create_pack = true; |
| 615 | if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) { |
| 616 | if (!Matcher::misaligned_vectors_ok() || AlignVector) { |
| 617 | int vw = vector_width(mem_ref); |
| 618 | int vw_best = vector_width(best_align_to_mem_ref); |
| 619 | if (vw > vw_best) { |
| 620 | // Do not vectorize a memory access with more elements per vector |
| 621 | // if unaligned memory access is not allowed because number of |
| 622 | // iterations in pre-loop will be not enough to align it. |
| 623 | create_pack = false; |
| 624 | } else { |
| 625 | SWPointer p2(best_align_to_mem_ref, this, NULL, false); |
| 626 | if (align_to_ref_p.invar() != p2.invar()) { |
| 627 | // Do not vectorize memory accesses with different invariants |
| 628 | // if unaligned memory accesses are not allowed. |
| 629 | create_pack = false; |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | } else { |
| 634 | if (same_velt_type(mem_ref, best_align_to_mem_ref)) { |
| 635 | // Can't allow vectorization of unaligned memory accesses with the |
| 636 | // same type since it could be overlapped accesses to the same array. |
| 637 | create_pack = false; |
| 638 | } else { |
| 639 | // Allow independent (different type) unaligned memory operations |
| 640 | // if HW supports them. |
| 641 | if (!Matcher::misaligned_vectors_ok() || AlignVector) { |
| 642 | create_pack = false; |
| 643 | } else { |
| 644 | // Check if packs of the same memory type but |
| 645 | // with a different alignment were created before. |
| 646 | for (uint i = 0; i < align_to_refs.size(); i++) { |
| 647 | MemNode* mr = align_to_refs.at(i)->as_Mem(); |
| 648 | if (mr == mem_ref) { |
| 649 | // Skip when we are looking at same memory operation. |
| 650 | continue; |
| 651 | } |
| 652 | if (same_velt_type(mr, mem_ref) && |
| 653 | memory_alignment(mr, iv_adjustment) != 0) |
| 654 | create_pack = false; |
| 655 | } |
| 656 | } |
| 657 | } |
| 658 | } |
| 659 | if (create_pack) { |
| 660 | for (uint i = 0; i < memops.size(); i++) { |
| 661 | Node* s1 = memops.at(i); |
| 662 | int align = alignment(s1); |
| 663 | if (align == top_align) continue; |
| 664 | for (uint j = 0; j < memops.size(); j++) { |
| 665 | Node* s2 = memops.at(j); |
| 666 | if (alignment(s2) == top_align) continue; |
| 667 | if (s1 != s2 && are_adjacent_refs(s1, s2)) { |
| 668 | if (stmts_can_pack(s1, s2, align)) { |
| 669 | Node_List* pair = new Node_List(); |
| 670 | pair->push(s1); |
| 671 | pair->push(s2); |
| 672 | if (!_do_vector_loop || same_origin_idx(s1, s2)) { |
| 673 | _packset.append(pair); |
| 674 | } |
| 675 | } |
| 676 | } |
| 677 | } |
| 678 | } |
| 679 | } else { // Don't create unaligned pack |
| 680 | // First, remove remaining memory ops of the same type from the list. |
| 681 | for (int i = memops.size() - 1; i >= 0; i--) { |
| 682 | MemNode* s = memops.at(i)->as_Mem(); |
| 683 | if (same_velt_type(s, mem_ref)) { |
| 684 | memops.remove(i); |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | // Second, remove already constructed packs of the same type. |
| 689 | for (int i = _packset.length() - 1; i >= 0; i--) { |
| 690 | Node_List* p = _packset.at(i); |
| 691 | MemNode* s = p->at(0)->as_Mem(); |
| 692 | if (same_velt_type(s, mem_ref)) { |
| 693 | remove_pack_at(i); |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | // If needed find the best memory reference for loop alignment again. |
| 698 | if (same_velt_type(mem_ref, best_align_to_mem_ref)) { |
| 699 | // Put memory ops from remaining packs back on memops list for |
| 700 | // the best alignment search. |
| 701 | uint orig_msize = memops.size(); |
| 702 | for (int i = 0; i < _packset.length(); i++) { |
| 703 | Node_List* p = _packset.at(i); |
| 704 | MemNode* s = p->at(0)->as_Mem(); |
| 705 | assert(!same_velt_type(s, mem_ref), "sanity" ); |
| 706 | memops.push(s); |
| 707 | } |
| 708 | best_align_to_mem_ref = find_align_to_ref(memops); |
| 709 | if (best_align_to_mem_ref == NULL) { |
| 710 | if (TraceSuperWord) { |
| 711 | tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL" ); |
| 712 | } |
| 713 | break; |
| 714 | } |
| 715 | best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref); |
| 716 | NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);) |
| 717 | // Restore list. |
| 718 | while (memops.size() > orig_msize) |
| 719 | (void)memops.pop(); |
| 720 | } |
| 721 | } // unaligned memory accesses |
| 722 | |
| 723 | // Remove used mem nodes. |
| 724 | for (int i = memops.size() - 1; i >= 0; i--) { |
| 725 | MemNode* m = memops.at(i)->as_Mem(); |
| 726 | if (alignment(m) != top_align) { |
| 727 | memops.remove(i); |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | } // while (memops.size() != 0 |
| 732 | set_align_to_ref(best_align_to_mem_ref); |
| 733 | |
| 734 | if (TraceSuperWord) { |
| 735 | tty->print_cr("\nAfter find_adjacent_refs" ); |
| 736 | print_packset(); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | #ifndef PRODUCT |
| 741 | void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) { |
| 742 | if (is_trace_adjacent()) { |
| 743 | tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d" , |
| 744 | best_align_to_mem_ref->_idx, best_iv_adjustment); |
| 745 | best_align_to_mem_ref->dump(); |
| 746 | } |
| 747 | } |
| 748 | #endif |
| 749 | |
| 750 | //------------------------------find_align_to_ref--------------------------- |
| 751 | // Find a memory reference to align the loop induction variable to. |
| 752 | // Looks first at stores then at loads, looking for a memory reference |
| 753 | // with the largest number of references similar to it. |
| 754 | MemNode* SuperWord::find_align_to_ref(Node_List &memops) { |
| 755 | GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0); |
| 756 | |
| 757 | // Count number of comparable memory ops |
| 758 | for (uint i = 0; i < memops.size(); i++) { |
| 759 | MemNode* s1 = memops.at(i)->as_Mem(); |
| 760 | SWPointer p1(s1, this, NULL, false); |
| 761 | // Discard if pre loop can't align this reference |
| 762 | if (!ref_is_alignable(p1)) { |
| 763 | *cmp_ct.adr_at(i) = 0; |
| 764 | continue; |
| 765 | } |
| 766 | for (uint j = i+1; j < memops.size(); j++) { |
| 767 | MemNode* s2 = memops.at(j)->as_Mem(); |
| 768 | if (isomorphic(s1, s2)) { |
| 769 | SWPointer p2(s2, this, NULL, false); |
| 770 | if (p1.comparable(p2)) { |
| 771 | (*cmp_ct.adr_at(i))++; |
| 772 | (*cmp_ct.adr_at(j))++; |
| 773 | } |
| 774 | } |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | // Find Store (or Load) with the greatest number of "comparable" references, |
| 779 | // biggest vector size, smallest data size and smallest iv offset. |
| 780 | int max_ct = 0; |
| 781 | int max_vw = 0; |
| 782 | int max_idx = -1; |
| 783 | int min_size = max_jint; |
| 784 | int min_iv_offset = max_jint; |
| 785 | for (uint j = 0; j < memops.size(); j++) { |
| 786 | MemNode* s = memops.at(j)->as_Mem(); |
| 787 | if (s->is_Store()) { |
| 788 | int vw = vector_width_in_bytes(s); |
| 789 | assert(vw > 1, "sanity" ); |
| 790 | SWPointer p(s, this, NULL, false); |
| 791 | if ( cmp_ct.at(j) > max_ct || |
| 792 | (cmp_ct.at(j) == max_ct && |
| 793 | ( vw > max_vw || |
| 794 | (vw == max_vw && |
| 795 | ( data_size(s) < min_size || |
| 796 | (data_size(s) == min_size && |
| 797 | p.offset_in_bytes() < min_iv_offset)))))) { |
| 798 | max_ct = cmp_ct.at(j); |
| 799 | max_vw = vw; |
| 800 | max_idx = j; |
| 801 | min_size = data_size(s); |
| 802 | min_iv_offset = p.offset_in_bytes(); |
| 803 | } |
| 804 | } |
| 805 | } |
| 806 | // If no stores, look at loads |
| 807 | if (max_ct == 0) { |
| 808 | for (uint j = 0; j < memops.size(); j++) { |
| 809 | MemNode* s = memops.at(j)->as_Mem(); |
| 810 | if (s->is_Load()) { |
| 811 | int vw = vector_width_in_bytes(s); |
| 812 | assert(vw > 1, "sanity" ); |
| 813 | SWPointer p(s, this, NULL, false); |
| 814 | if ( cmp_ct.at(j) > max_ct || |
| 815 | (cmp_ct.at(j) == max_ct && |
| 816 | ( vw > max_vw || |
| 817 | (vw == max_vw && |
| 818 | ( data_size(s) < min_size || |
| 819 | (data_size(s) == min_size && |
| 820 | p.offset_in_bytes() < min_iv_offset)))))) { |
| 821 | max_ct = cmp_ct.at(j); |
| 822 | max_vw = vw; |
| 823 | max_idx = j; |
| 824 | min_size = data_size(s); |
| 825 | min_iv_offset = p.offset_in_bytes(); |
| 826 | } |
| 827 | } |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | #ifdef ASSERT |
| 832 | if (TraceSuperWord && Verbose) { |
| 833 | tty->print_cr("\nVector memops after find_align_to_ref" ); |
| 834 | for (uint i = 0; i < memops.size(); i++) { |
| 835 | MemNode* s = memops.at(i)->as_Mem(); |
| 836 | s->dump(); |
| 837 | } |
| 838 | } |
| 839 | #endif |
| 840 | |
| 841 | if (max_ct > 0) { |
| 842 | #ifdef ASSERT |
| 843 | if (TraceSuperWord) { |
| 844 | tty->print("\nVector align to node: " ); |
| 845 | memops.at(max_idx)->as_Mem()->dump(); |
| 846 | } |
| 847 | #endif |
| 848 | return memops.at(max_idx)->as_Mem(); |
| 849 | } |
| 850 | return NULL; |
| 851 | } |
| 852 | |
| 853 | //------------------span_works_for_memory_size----------------------------- |
| 854 | static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) { |
| 855 | bool span_matches_memory = false; |
| 856 | if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT)) |
| 857 | && ABS(span) == type2aelembytes(T_INT)) { |
| 858 | // There is a mismatch on span size compared to memory. |
| 859 | for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) { |
| 860 | Node* use = mem->fast_out(j); |
| 861 | if (!VectorNode::is_type_transition_to_int(use)) { |
| 862 | return false; |
| 863 | } |
| 864 | } |
| 865 | // If all uses transition to integer, it means that we can successfully align even on mismatch. |
| 866 | return true; |
| 867 | } |
| 868 | else { |
| 869 | span_matches_memory = ABS(span) == mem_size; |
| 870 | } |
| 871 | return span_matches_memory && (ABS(offset) % mem_size) == 0; |
| 872 | } |
| 873 | |
| 874 | //------------------------------ref_is_alignable--------------------------- |
| 875 | // Can the preloop align the reference to position zero in the vector? |
| 876 | bool SuperWord::ref_is_alignable(SWPointer& p) { |
| 877 | if (!p.has_iv()) { |
| 878 | return true; // no induction variable |
| 879 | } |
| 880 | CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop()); |
| 881 | assert(pre_end != NULL, "we must have a correct pre-loop" ); |
| 882 | assert(pre_end->stride_is_con(), "pre loop stride is constant" ); |
| 883 | int preloop_stride = pre_end->stride_con(); |
| 884 | |
| 885 | int span = preloop_stride * p.scale_in_bytes(); |
| 886 | int mem_size = p.memory_size(); |
| 887 | int offset = p.offset_in_bytes(); |
| 888 | // Stride one accesses are alignable if offset is aligned to memory operation size. |
| 889 | // Offset can be unaligned when UseUnalignedAccesses is used. |
| 890 | if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) { |
| 891 | return true; |
| 892 | } |
| 893 | // If the initial offset from start of the object is computable, |
| 894 | // check if the pre-loop can align the final offset accordingly. |
| 895 | // |
| 896 | // In other words: Can we find an i such that the offset |
| 897 | // after i pre-loop iterations is aligned to vw? |
| 898 | // (init_offset + pre_loop) % vw == 0 (1) |
| 899 | // where |
| 900 | // pre_loop = i * span |
| 901 | // is the number of bytes added to the offset by i pre-loop iterations. |
| 902 | // |
| 903 | // For this to hold we need pre_loop to increase init_offset by |
| 904 | // pre_loop = vw - (init_offset % vw) |
| 905 | // |
| 906 | // This is only possible if pre_loop is divisible by span because each |
| 907 | // pre-loop iteration increases the initial offset by 'span' bytes: |
| 908 | // (vw - (init_offset % vw)) % span == 0 |
| 909 | // |
| 910 | int vw = vector_width_in_bytes(p.mem()); |
| 911 | assert(vw > 1, "sanity" ); |
| 912 | Node* init_nd = pre_end->init_trip(); |
| 913 | if (init_nd->is_Con() && p.invar() == NULL) { |
| 914 | int init = init_nd->bottom_type()->is_int()->get_con(); |
| 915 | int init_offset = init * p.scale_in_bytes() + offset; |
| 916 | if (init_offset < 0) { // negative offset from object start? |
| 917 | return false; // may happen in dead loop |
| 918 | } |
| 919 | if (vw % span == 0) { |
| 920 | // If vm is a multiple of span, we use formula (1). |
| 921 | if (span > 0) { |
| 922 | return (vw - (init_offset % vw)) % span == 0; |
| 923 | } else { |
| 924 | assert(span < 0, "nonzero stride * scale" ); |
| 925 | return (init_offset % vw) % -span == 0; |
| 926 | } |
| 927 | } else if (span % vw == 0) { |
| 928 | // If span is a multiple of vw, we can simplify formula (1) to: |
| 929 | // (init_offset + i * span) % vw == 0 |
| 930 | // => |
| 931 | // (init_offset % vw) + ((i * span) % vw) == 0 |
| 932 | // => |
| 933 | // init_offset % vw == 0 |
| 934 | // |
| 935 | // Because we add a multiple of vw to the initial offset, the final |
| 936 | // offset is a multiple of vw if and only if init_offset is a multiple. |
| 937 | // |
| 938 | return (init_offset % vw) == 0; |
| 939 | } |
| 940 | } |
| 941 | return false; |
| 942 | } |
| 943 | //---------------------------get_vw_bytes_special------------------------ |
| 944 | int SuperWord::get_vw_bytes_special(MemNode* s) { |
| 945 | // Get the vector width in bytes. |
| 946 | int vw = vector_width_in_bytes(s); |
| 947 | |
| 948 | // Check for special case where there is an MulAddS2I usage where short vectors are going to need combined. |
| 949 | BasicType btype = velt_basic_type(s); |
| 950 | if (type2aelembytes(btype) == 2) { |
| 951 | bool should_combine_adjacent = true; |
| 952 | for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { |
| 953 | Node* user = s->fast_out(i); |
| 954 | if (!VectorNode::is_muladds2i(user)) { |
| 955 | should_combine_adjacent = false; |
| 956 | } |
| 957 | } |
| 958 | if (should_combine_adjacent) { |
| 959 | vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2); |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | return vw; |
| 964 | } |
| 965 | |
| 966 | //---------------------------get_iv_adjustment--------------------------- |
| 967 | // Calculate loop's iv adjustment for this memory ops. |
| 968 | int SuperWord::get_iv_adjustment(MemNode* mem_ref) { |
| 969 | SWPointer align_to_ref_p(mem_ref, this, NULL, false); |
| 970 | int offset = align_to_ref_p.offset_in_bytes(); |
| 971 | int scale = align_to_ref_p.scale_in_bytes(); |
| 972 | int elt_size = align_to_ref_p.memory_size(); |
| 973 | int vw = get_vw_bytes_special(mem_ref); |
| 974 | assert(vw > 1, "sanity" ); |
| 975 | int iv_adjustment; |
| 976 | if (scale != 0) { |
| 977 | int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1; |
| 978 | // At least one iteration is executed in pre-loop by default. As result |
| 979 | // several iterations are needed to align memory operations in main-loop even |
| 980 | // if offset is 0. |
| 981 | int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw)); |
| 982 | assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0), |
| 983 | "(%d) should be divisible by (%d)" , iv_adjustment_in_bytes, elt_size); |
| 984 | iv_adjustment = iv_adjustment_in_bytes/elt_size; |
| 985 | } else { |
| 986 | // This memory op is not dependent on iv (scale == 0) |
| 987 | iv_adjustment = 0; |
| 988 | } |
| 989 | |
| 990 | #ifndef PRODUCT |
| 991 | if (TraceSuperWord) { |
| 992 | tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: " , |
| 993 | mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw); |
| 994 | mem_ref->dump(); |
| 995 | } |
| 996 | #endif |
| 997 | return iv_adjustment; |
| 998 | } |
| 999 | |
| 1000 | //---------------------------dependence_graph--------------------------- |
| 1001 | // Construct dependency graph. |
| 1002 | // Add dependence edges to load/store nodes for memory dependence |
| 1003 | // A.out()->DependNode.in(1) and DependNode.out()->B.prec(x) |
| 1004 | void SuperWord::dependence_graph() { |
| 1005 | CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); |
| 1006 | // First, assign a dependence node to each memory node |
| 1007 | for (int i = 0; i < _block.length(); i++ ) { |
| 1008 | Node *n = _block.at(i); |
| 1009 | if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) { |
| 1010 | _dg.make_node(n); |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | // For each memory slice, create the dependences |
| 1015 | for (int i = 0; i < _mem_slice_head.length(); i++) { |
| 1016 | Node* n = _mem_slice_head.at(i); |
| 1017 | Node* n_tail = _mem_slice_tail.at(i); |
| 1018 | |
| 1019 | // Get slice in predecessor order (last is first) |
| 1020 | if (cl->is_main_loop()) { |
| 1021 | mem_slice_preds(n_tail, n, _nlist); |
| 1022 | } |
| 1023 | |
| 1024 | #ifndef PRODUCT |
| 1025 | if(TraceSuperWord && Verbose) { |
| 1026 | tty->print_cr("SuperWord::dependence_graph: built a new mem slice" ); |
| 1027 | for (int j = _nlist.length() - 1; j >= 0 ; j--) { |
| 1028 | _nlist.at(j)->dump(); |
| 1029 | } |
| 1030 | } |
| 1031 | #endif |
| 1032 | // Make the slice dependent on the root |
| 1033 | DepMem* slice = _dg.dep(n); |
| 1034 | _dg.make_edge(_dg.root(), slice); |
| 1035 | |
| 1036 | // Create a sink for the slice |
| 1037 | DepMem* slice_sink = _dg.make_node(NULL); |
| 1038 | _dg.make_edge(slice_sink, _dg.tail()); |
| 1039 | |
| 1040 | // Now visit each pair of memory ops, creating the edges |
| 1041 | for (int j = _nlist.length() - 1; j >= 0 ; j--) { |
| 1042 | Node* s1 = _nlist.at(j); |
| 1043 | |
| 1044 | // If no dependency yet, use slice |
| 1045 | if (_dg.dep(s1)->in_cnt() == 0) { |
| 1046 | _dg.make_edge(slice, s1); |
| 1047 | } |
| 1048 | SWPointer p1(s1->as_Mem(), this, NULL, false); |
| 1049 | bool sink_dependent = true; |
| 1050 | for (int k = j - 1; k >= 0; k--) { |
| 1051 | Node* s2 = _nlist.at(k); |
| 1052 | if (s1->is_Load() && s2->is_Load()) |
| 1053 | continue; |
| 1054 | SWPointer p2(s2->as_Mem(), this, NULL, false); |
| 1055 | |
| 1056 | int cmp = p1.cmp(p2); |
| 1057 | if (SuperWordRTDepCheck && |
| 1058 | p1.base() != p2.base() && p1.valid() && p2.valid()) { |
| 1059 | // Create a runtime check to disambiguate |
| 1060 | OrderedPair pp(p1.base(), p2.base()); |
| 1061 | _disjoint_ptrs.append_if_missing(pp); |
| 1062 | } else if (!SWPointer::not_equal(cmp)) { |
| 1063 | // Possibly same address |
| 1064 | _dg.make_edge(s1, s2); |
| 1065 | sink_dependent = false; |
| 1066 | } |
| 1067 | } |
| 1068 | if (sink_dependent) { |
| 1069 | _dg.make_edge(s1, slice_sink); |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | if (TraceSuperWord) { |
| 1074 | tty->print_cr("\nDependence graph for slice: %d" , n->_idx); |
| 1075 | for (int q = 0; q < _nlist.length(); q++) { |
| 1076 | _dg.print(_nlist.at(q)); |
| 1077 | } |
| 1078 | tty->cr(); |
| 1079 | } |
| 1080 | |
| 1081 | _nlist.clear(); |
| 1082 | } |
| 1083 | |
| 1084 | if (TraceSuperWord) { |
| 1085 | tty->print_cr("\ndisjoint_ptrs: %s" , _disjoint_ptrs.length() > 0 ? "" : "NONE" ); |
| 1086 | for (int r = 0; r < _disjoint_ptrs.length(); r++) { |
| 1087 | _disjoint_ptrs.at(r).print(); |
| 1088 | tty->cr(); |
| 1089 | } |
| 1090 | tty->cr(); |
| 1091 | } |
| 1092 | |
| 1093 | } |
| 1094 | |
| 1095 | //---------------------------mem_slice_preds--------------------------- |
| 1096 | // Return a memory slice (node list) in predecessor order starting at "start" |
| 1097 | void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) { |
| 1098 | assert(preds.length() == 0, "start empty" ); |
| 1099 | Node* n = start; |
| 1100 | Node* prev = NULL; |
| 1101 | while (true) { |
| 1102 | NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d" , n->_idx);) |
| 1103 | assert(in_bb(n), "must be in block" ); |
| 1104 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 1105 | Node* out = n->fast_out(i); |
| 1106 | if (out->is_Load()) { |
| 1107 | if (in_bb(out)) { |
| 1108 | preds.push(out); |
| 1109 | if (TraceSuperWord && Verbose) { |
| 1110 | tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)" , out->_idx); |
| 1111 | } |
| 1112 | } |
| 1113 | } else { |
| 1114 | // FIXME |
| 1115 | if (out->is_MergeMem() && !in_bb(out)) { |
| 1116 | // Either unrolling is causing a memory edge not to disappear, |
| 1117 | // or need to run igvn.optimize() again before SLP |
| 1118 | } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) { |
| 1119 | // Ditto. Not sure what else to check further. |
| 1120 | } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) { |
| 1121 | // StoreCM has an input edge used as a precedence edge. |
| 1122 | // Maybe an issue when oop stores are vectorized. |
| 1123 | } else { |
| 1124 | assert(out == prev || prev == NULL, "no branches off of store slice" ); |
| 1125 | } |
| 1126 | }//else |
| 1127 | }//for |
| 1128 | if (n == stop) break; |
| 1129 | preds.push(n); |
| 1130 | if (TraceSuperWord && Verbose) { |
| 1131 | tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)" , n->_idx); |
| 1132 | } |
| 1133 | prev = n; |
| 1134 | assert(n->is_Mem(), "unexpected node %s" , n->Name()); |
| 1135 | n = n->in(MemNode::Memory); |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | //------------------------------stmts_can_pack--------------------------- |
| 1140 | // Can s1 and s2 be in a pack with s1 immediately preceding s2 and |
| 1141 | // s1 aligned at "align" |
| 1142 | bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) { |
| 1143 | |
| 1144 | // Do not use superword for non-primitives |
| 1145 | BasicType bt1 = velt_basic_type(s1); |
| 1146 | BasicType bt2 = velt_basic_type(s2); |
| 1147 | if(!is_java_primitive(bt1) || !is_java_primitive(bt2)) |
| 1148 | return false; |
| 1149 | if (Matcher::max_vector_size(bt1) < 2) { |
| 1150 | return false; // No vectors for this type |
| 1151 | } |
| 1152 | |
| 1153 | if (isomorphic(s1, s2)) { |
| 1154 | if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) { |
| 1155 | if (!exists_at(s1, 0) && !exists_at(s2, 1)) { |
| 1156 | if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) { |
| 1157 | int s1_align = alignment(s1); |
| 1158 | int s2_align = alignment(s2); |
| 1159 | if (s1_align == top_align || s1_align == align) { |
| 1160 | if (s2_align == top_align || s2_align == align + data_size(s1)) { |
| 1161 | return true; |
| 1162 | } |
| 1163 | } |
| 1164 | } |
| 1165 | } |
| 1166 | } |
| 1167 | } |
| 1168 | return false; |
| 1169 | } |
| 1170 | |
| 1171 | //------------------------------exists_at--------------------------- |
| 1172 | // Does s exist in a pack at position pos? |
| 1173 | bool SuperWord::exists_at(Node* s, uint pos) { |
| 1174 | for (int i = 0; i < _packset.length(); i++) { |
| 1175 | Node_List* p = _packset.at(i); |
| 1176 | if (p->at(pos) == s) { |
| 1177 | return true; |
| 1178 | } |
| 1179 | } |
| 1180 | return false; |
| 1181 | } |
| 1182 | |
| 1183 | //------------------------------are_adjacent_refs--------------------------- |
| 1184 | // Is s1 immediately before s2 in memory? |
| 1185 | bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) { |
| 1186 | if (!s1->is_Mem() || !s2->is_Mem()) return false; |
| 1187 | if (!in_bb(s1) || !in_bb(s2)) return false; |
| 1188 | |
| 1189 | // Do not use superword for non-primitives |
| 1190 | if (!is_java_primitive(s1->as_Mem()->memory_type()) || |
| 1191 | !is_java_primitive(s2->as_Mem()->memory_type())) { |
| 1192 | return false; |
| 1193 | } |
| 1194 | |
| 1195 | // FIXME - co_locate_pack fails on Stores in different mem-slices, so |
| 1196 | // only pack memops that are in the same alias set until that's fixed. |
| 1197 | if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) != |
| 1198 | _phase->C->get_alias_index(s2->as_Mem()->adr_type())) |
| 1199 | return false; |
| 1200 | SWPointer p1(s1->as_Mem(), this, NULL, false); |
| 1201 | SWPointer p2(s2->as_Mem(), this, NULL, false); |
| 1202 | if (p1.base() != p2.base() || !p1.comparable(p2)) return false; |
| 1203 | int diff = p2.offset_in_bytes() - p1.offset_in_bytes(); |
| 1204 | return diff == data_size(s1); |
| 1205 | } |
| 1206 | |
| 1207 | //------------------------------isomorphic--------------------------- |
| 1208 | // Are s1 and s2 similar? |
| 1209 | bool SuperWord::isomorphic(Node* s1, Node* s2) { |
| 1210 | if (s1->Opcode() != s2->Opcode()) return false; |
| 1211 | if (s1->req() != s2->req()) return false; |
| 1212 | if (!same_velt_type(s1, s2)) return false; |
| 1213 | Node* s1_ctrl = s1->in(0); |
| 1214 | Node* s2_ctrl = s2->in(0); |
| 1215 | // If the control nodes are equivalent, no further checks are required to test for isomorphism. |
| 1216 | if (s1_ctrl == s2_ctrl) { |
| 1217 | return true; |
| 1218 | } else { |
| 1219 | bool s1_ctrl_inv = ((s1_ctrl == NULL) ? true : lpt()->is_invariant(s1_ctrl)); |
| 1220 | bool s2_ctrl_inv = ((s2_ctrl == NULL) ? true : lpt()->is_invariant(s2_ctrl)); |
| 1221 | // If the control nodes are not invariant for the loop, fail isomorphism test. |
| 1222 | if (!s1_ctrl_inv || !s2_ctrl_inv) { |
| 1223 | return false; |
| 1224 | } |
| 1225 | if(s1_ctrl != NULL && s2_ctrl != NULL) { |
| 1226 | if (s1_ctrl->is_Proj()) { |
| 1227 | s1_ctrl = s1_ctrl->in(0); |
| 1228 | assert(lpt()->is_invariant(s1_ctrl), "must be invariant" ); |
| 1229 | } |
| 1230 | if (s2_ctrl->is_Proj()) { |
| 1231 | s2_ctrl = s2_ctrl->in(0); |
| 1232 | assert(lpt()->is_invariant(s2_ctrl), "must be invariant" ); |
| 1233 | } |
| 1234 | if (!s1_ctrl->is_RangeCheck() || !s2_ctrl->is_RangeCheck()) { |
| 1235 | return false; |
| 1236 | } |
| 1237 | } |
| 1238 | // Control nodes are invariant. However, we have no way of checking whether they resolve |
| 1239 | // in an equivalent manner. But, we know that invariant range checks are guaranteed to |
| 1240 | // throw before the loop (if they would have thrown). Thus, the loop would not have been reached. |
| 1241 | // Therefore, if the control nodes for both are range checks, we accept them to be isomorphic. |
| 1242 | for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { |
| 1243 | Node* t1 = s1->fast_out(i); |
| 1244 | for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) { |
| 1245 | Node* t2 = s2->fast_out(j); |
| 1246 | if (VectorNode::is_muladds2i(t1) && VectorNode::is_muladds2i(t2)) { |
| 1247 | return true; |
| 1248 | } |
| 1249 | } |
| 1250 | } |
| 1251 | } |
| 1252 | return false; |
| 1253 | } |
| 1254 | |
| 1255 | //------------------------------independent--------------------------- |
| 1256 | // Is there no data path from s1 to s2 or s2 to s1? |
| 1257 | bool SuperWord::independent(Node* s1, Node* s2) { |
| 1258 | // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first"); |
| 1259 | int d1 = depth(s1); |
| 1260 | int d2 = depth(s2); |
| 1261 | if (d1 == d2) return s1 != s2; |
| 1262 | Node* deep = d1 > d2 ? s1 : s2; |
| 1263 | Node* shallow = d1 > d2 ? s2 : s1; |
| 1264 | |
| 1265 | visited_clear(); |
| 1266 | |
| 1267 | return independent_path(shallow, deep); |
| 1268 | } |
| 1269 | |
| 1270 | //--------------------------have_similar_inputs----------------------- |
| 1271 | // For a node pair (s1, s2) which is isomorphic and independent, |
| 1272 | // do s1 and s2 have similar input edges? |
| 1273 | bool SuperWord::have_similar_inputs(Node* s1, Node* s2) { |
| 1274 | // assert(isomorphic(s1, s2) == true, "check isomorphic"); |
| 1275 | // assert(independent(s1, s2) == true, "check independent"); |
| 1276 | if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) { |
| 1277 | for (uint i = 1; i < s1->req(); i++) { |
| 1278 | if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false; |
| 1279 | } |
| 1280 | } |
| 1281 | return true; |
| 1282 | } |
| 1283 | |
| 1284 | //------------------------------reduction--------------------------- |
| 1285 | // Is there a data path between s1 and s2 and the nodes reductions? |
| 1286 | bool SuperWord::reduction(Node* s1, Node* s2) { |
| 1287 | bool retValue = false; |
| 1288 | int d1 = depth(s1); |
| 1289 | int d2 = depth(s2); |
| 1290 | if (d1 + 1 == d2) { |
| 1291 | if (s1->is_reduction() && s2->is_reduction()) { |
| 1292 | // This is an ordered set, so s1 should define s2 |
| 1293 | for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { |
| 1294 | Node* t1 = s1->fast_out(i); |
| 1295 | if (t1 == s2) { |
| 1296 | // both nodes are reductions and connected |
| 1297 | retValue = true; |
| 1298 | } |
| 1299 | } |
| 1300 | } |
| 1301 | } |
| 1302 | |
| 1303 | return retValue; |
| 1304 | } |
| 1305 | |
| 1306 | //------------------------------independent_path------------------------------ |
| 1307 | // Helper for independent |
| 1308 | bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) { |
| 1309 | if (dp >= 1000) return false; // stop deep recursion |
| 1310 | visited_set(deep); |
| 1311 | int shal_depth = depth(shallow); |
| 1312 | assert(shal_depth <= depth(deep), "must be" ); |
| 1313 | for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) { |
| 1314 | Node* pred = preds.current(); |
| 1315 | if (in_bb(pred) && !visited_test(pred)) { |
| 1316 | if (shallow == pred) { |
| 1317 | return false; |
| 1318 | } |
| 1319 | if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) { |
| 1320 | return false; |
| 1321 | } |
| 1322 | } |
| 1323 | } |
| 1324 | return true; |
| 1325 | } |
| 1326 | |
| 1327 | //------------------------------set_alignment--------------------------- |
| 1328 | void SuperWord::set_alignment(Node* s1, Node* s2, int align) { |
| 1329 | set_alignment(s1, align); |
| 1330 | if (align == top_align || align == bottom_align) { |
| 1331 | set_alignment(s2, align); |
| 1332 | } else { |
| 1333 | set_alignment(s2, align + data_size(s1)); |
| 1334 | } |
| 1335 | } |
| 1336 | |
| 1337 | //------------------------------data_size--------------------------- |
| 1338 | int SuperWord::data_size(Node* s) { |
| 1339 | Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov |
| 1340 | if (UseVectorCmov) { |
| 1341 | use = _cmovev_kit.is_Bool_candidate(s); |
| 1342 | if (use != NULL) { |
| 1343 | return data_size(use); |
| 1344 | } |
| 1345 | use = _cmovev_kit.is_CmpD_candidate(s); |
| 1346 | if (use != NULL) { |
| 1347 | return data_size(use); |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | int bsize = type2aelembytes(velt_basic_type(s)); |
| 1352 | assert(bsize != 0, "valid size" ); |
| 1353 | return bsize; |
| 1354 | } |
| 1355 | |
| 1356 | //------------------------------extend_packlist--------------------------- |
| 1357 | // Extend packset by following use->def and def->use links from pack members. |
| 1358 | void SuperWord::extend_packlist() { |
| 1359 | bool changed; |
| 1360 | do { |
| 1361 | packset_sort(_packset.length()); |
| 1362 | changed = false; |
| 1363 | for (int i = 0; i < _packset.length(); i++) { |
| 1364 | Node_List* p = _packset.at(i); |
| 1365 | changed |= follow_use_defs(p); |
| 1366 | changed |= follow_def_uses(p); |
| 1367 | } |
| 1368 | } while (changed); |
| 1369 | |
| 1370 | if (_race_possible) { |
| 1371 | for (int i = 0; i < _packset.length(); i++) { |
| 1372 | Node_List* p = _packset.at(i); |
| 1373 | order_def_uses(p); |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | if (TraceSuperWord) { |
| 1378 | tty->print_cr("\nAfter extend_packlist" ); |
| 1379 | print_packset(); |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | //------------------------------follow_use_defs--------------------------- |
| 1384 | // Extend the packset by visiting operand definitions of nodes in pack p |
| 1385 | bool SuperWord::follow_use_defs(Node_List* p) { |
| 1386 | assert(p->size() == 2, "just checking" ); |
| 1387 | Node* s1 = p->at(0); |
| 1388 | Node* s2 = p->at(1); |
| 1389 | assert(s1->req() == s2->req(), "just checking" ); |
| 1390 | assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking" ); |
| 1391 | |
| 1392 | if (s1->is_Load()) return false; |
| 1393 | |
| 1394 | int align = alignment(s1); |
| 1395 | NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d" , s1->_idx, align);) |
| 1396 | bool changed = false; |
| 1397 | int start = s1->is_Store() ? MemNode::ValueIn : 1; |
| 1398 | int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req(); |
| 1399 | for (int j = start; j < end; j++) { |
| 1400 | Node* t1 = s1->in(j); |
| 1401 | Node* t2 = s2->in(j); |
| 1402 | if (!in_bb(t1) || !in_bb(t2)) |
| 1403 | continue; |
| 1404 | if (stmts_can_pack(t1, t2, align)) { |
| 1405 | if (est_savings(t1, t2) >= 0) { |
| 1406 | Node_List* pair = new Node_List(); |
| 1407 | pair->push(t1); |
| 1408 | pair->push(t2); |
| 1409 | _packset.append(pair); |
| 1410 | NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)" , t1->_idx, t2->_idx, align);) |
| 1411 | set_alignment(t1, t2, align); |
| 1412 | changed = true; |
| 1413 | } |
| 1414 | } |
| 1415 | } |
| 1416 | return changed; |
| 1417 | } |
| 1418 | |
| 1419 | //------------------------------follow_def_uses--------------------------- |
| 1420 | // Extend the packset by visiting uses of nodes in pack p |
| 1421 | bool SuperWord::follow_def_uses(Node_List* p) { |
| 1422 | bool changed = false; |
| 1423 | Node* s1 = p->at(0); |
| 1424 | Node* s2 = p->at(1); |
| 1425 | assert(p->size() == 2, "just checking" ); |
| 1426 | assert(s1->req() == s2->req(), "just checking" ); |
| 1427 | assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking" ); |
| 1428 | |
| 1429 | if (s1->is_Store()) return false; |
| 1430 | |
| 1431 | int align = alignment(s1); |
| 1432 | NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d" , s1->_idx, align);) |
| 1433 | int savings = -1; |
| 1434 | int num_s1_uses = 0; |
| 1435 | Node* u1 = NULL; |
| 1436 | Node* u2 = NULL; |
| 1437 | for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { |
| 1438 | Node* t1 = s1->fast_out(i); |
| 1439 | num_s1_uses++; |
| 1440 | if (!in_bb(t1)) continue; |
| 1441 | for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) { |
| 1442 | Node* t2 = s2->fast_out(j); |
| 1443 | if (!in_bb(t2)) continue; |
| 1444 | if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv |
| 1445 | if (!opnd_positions_match(s1, t1, s2, t2)) |
| 1446 | continue; |
| 1447 | if (stmts_can_pack(t1, t2, align)) { |
| 1448 | int my_savings = est_savings(t1, t2); |
| 1449 | if (my_savings > savings) { |
| 1450 | savings = my_savings; |
| 1451 | u1 = t1; |
| 1452 | u2 = t2; |
| 1453 | } |
| 1454 | } |
| 1455 | } |
| 1456 | } |
| 1457 | if (num_s1_uses > 1) { |
| 1458 | _race_possible = true; |
| 1459 | } |
| 1460 | if (savings >= 0) { |
| 1461 | Node_List* pair = new Node_List(); |
| 1462 | pair->push(u1); |
| 1463 | pair->push(u2); |
| 1464 | _packset.append(pair); |
| 1465 | NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)" , u1->_idx, u2->_idx, align);) |
| 1466 | set_alignment(u1, u2, align); |
| 1467 | changed = true; |
| 1468 | } |
| 1469 | return changed; |
| 1470 | } |
| 1471 | |
| 1472 | //------------------------------order_def_uses--------------------------- |
| 1473 | // For extended packsets, ordinally arrange uses packset by major component |
| 1474 | void SuperWord::order_def_uses(Node_List* p) { |
| 1475 | Node* s1 = p->at(0); |
| 1476 | |
| 1477 | if (s1->is_Store()) return; |
| 1478 | |
| 1479 | // reductions are always managed beforehand |
| 1480 | if (s1->is_reduction()) return; |
| 1481 | |
| 1482 | for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { |
| 1483 | Node* t1 = s1->fast_out(i); |
| 1484 | |
| 1485 | // Only allow operand swap on commuting operations |
| 1486 | if (!t1->is_Add() && !t1->is_Mul() && !VectorNode::is_muladds2i(t1)) { |
| 1487 | break; |
| 1488 | } |
| 1489 | |
| 1490 | // Now find t1's packset |
| 1491 | Node_List* p2 = NULL; |
| 1492 | for (int j = 0; j < _packset.length(); j++) { |
| 1493 | p2 = _packset.at(j); |
| 1494 | Node* first = p2->at(0); |
| 1495 | if (t1 == first) { |
| 1496 | break; |
| 1497 | } |
| 1498 | p2 = NULL; |
| 1499 | } |
| 1500 | // Arrange all sub components by the major component |
| 1501 | if (p2 != NULL) { |
| 1502 | for (uint j = 1; j < p->size(); j++) { |
| 1503 | Node* d1 = p->at(j); |
| 1504 | Node* u1 = p2->at(j); |
| 1505 | opnd_positions_match(s1, t1, d1, u1); |
| 1506 | } |
| 1507 | } |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | //---------------------------opnd_positions_match------------------------- |
| 1512 | // Is the use of d1 in u1 at the same operand position as d2 in u2? |
| 1513 | bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) { |
| 1514 | // check reductions to see if they are marshalled to represent the reduction |
| 1515 | // operator in a specified opnd |
| 1516 | if (u1->is_reduction() && u2->is_reduction()) { |
| 1517 | // ensure reductions have phis and reduction definitions feeding the 1st operand |
| 1518 | Node* first = u1->in(2); |
| 1519 | if (first->is_Phi() || first->is_reduction()) { |
| 1520 | u1->swap_edges(1, 2); |
| 1521 | } |
| 1522 | // ensure reductions have phis and reduction definitions feeding the 1st operand |
| 1523 | first = u2->in(2); |
| 1524 | if (first->is_Phi() || first->is_reduction()) { |
| 1525 | u2->swap_edges(1, 2); |
| 1526 | } |
| 1527 | return true; |
| 1528 | } |
| 1529 | |
| 1530 | uint ct = u1->req(); |
| 1531 | if (ct != u2->req()) return false; |
| 1532 | uint i1 = 0; |
| 1533 | uint i2 = 0; |
| 1534 | do { |
| 1535 | for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break; |
| 1536 | for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break; |
| 1537 | if (i1 != i2) { |
| 1538 | if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) { |
| 1539 | // Further analysis relies on operands position matching. |
| 1540 | u2->swap_edges(i1, i2); |
| 1541 | } else if (VectorNode::is_muladds2i(u2) && u1 != u2) { |
| 1542 | if (i1 == 5 - i2) { // ((i1 == 3 && i2 == 2) || (i1 == 2 && i2 == 3) || (i1 == 1 && i2 == 4) || (i1 == 4 && i2 == 1)) |
| 1543 | u2->swap_edges(1, 2); |
| 1544 | u2->swap_edges(3, 4); |
| 1545 | } |
| 1546 | if (i1 == 3 - i2 || i1 == 7 - i2) { // ((i1 == 1 && i2 == 2) || (i1 == 2 && i2 == 1) || (i1 == 3 && i2 == 4) || (i1 == 4 && i2 == 3)) |
| 1547 | u2->swap_edges(2, 3); |
| 1548 | u2->swap_edges(1, 4); |
| 1549 | } |
| 1550 | return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs |
| 1551 | } else { |
| 1552 | return false; |
| 1553 | } |
| 1554 | } else if (i1 == i2 && VectorNode::is_muladds2i(u2) && u1 != u2) { |
| 1555 | u2->swap_edges(1, 3); |
| 1556 | u2->swap_edges(2, 4); |
| 1557 | return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs |
| 1558 | } |
| 1559 | } while (i1 < ct); |
| 1560 | return true; |
| 1561 | } |
| 1562 | |
| 1563 | //------------------------------est_savings--------------------------- |
| 1564 | // Estimate the savings from executing s1 and s2 as a pack |
| 1565 | int SuperWord::est_savings(Node* s1, Node* s2) { |
| 1566 | int save_in = 2 - 1; // 2 operations per instruction in packed form |
| 1567 | |
| 1568 | // inputs |
| 1569 | for (uint i = 1; i < s1->req(); i++) { |
| 1570 | Node* x1 = s1->in(i); |
| 1571 | Node* x2 = s2->in(i); |
| 1572 | if (x1 != x2) { |
| 1573 | if (are_adjacent_refs(x1, x2)) { |
| 1574 | save_in += adjacent_profit(x1, x2); |
| 1575 | } else if (!in_packset(x1, x2)) { |
| 1576 | save_in -= pack_cost(2); |
| 1577 | } else { |
| 1578 | save_in += unpack_cost(2); |
| 1579 | } |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | // uses of result |
| 1584 | uint ct = 0; |
| 1585 | int save_use = 0; |
| 1586 | for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) { |
| 1587 | Node* s1_use = s1->fast_out(i); |
| 1588 | for (int j = 0; j < _packset.length(); j++) { |
| 1589 | Node_List* p = _packset.at(j); |
| 1590 | if (p->at(0) == s1_use) { |
| 1591 | for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) { |
| 1592 | Node* s2_use = s2->fast_out(k); |
| 1593 | if (p->at(p->size()-1) == s2_use) { |
| 1594 | ct++; |
| 1595 | if (are_adjacent_refs(s1_use, s2_use)) { |
| 1596 | save_use += adjacent_profit(s1_use, s2_use); |
| 1597 | } |
| 1598 | } |
| 1599 | } |
| 1600 | } |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | if (ct < s1->outcnt()) save_use += unpack_cost(1); |
| 1605 | if (ct < s2->outcnt()) save_use += unpack_cost(1); |
| 1606 | |
| 1607 | return MAX2(save_in, save_use); |
| 1608 | } |
| 1609 | |
| 1610 | //------------------------------costs--------------------------- |
| 1611 | int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; } |
| 1612 | int SuperWord::pack_cost(int ct) { return ct; } |
| 1613 | int SuperWord::unpack_cost(int ct) { return ct; } |
| 1614 | |
| 1615 | //------------------------------combine_packs--------------------------- |
| 1616 | // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last |
| 1617 | void SuperWord::combine_packs() { |
| 1618 | bool changed = true; |
| 1619 | // Combine packs regardless max vector size. |
| 1620 | while (changed) { |
| 1621 | changed = false; |
| 1622 | for (int i = 0; i < _packset.length(); i++) { |
| 1623 | Node_List* p1 = _packset.at(i); |
| 1624 | if (p1 == NULL) continue; |
| 1625 | // Because of sorting we can start at i + 1 |
| 1626 | for (int j = i + 1; j < _packset.length(); j++) { |
| 1627 | Node_List* p2 = _packset.at(j); |
| 1628 | if (p2 == NULL) continue; |
| 1629 | if (i == j) continue; |
| 1630 | if (p1->at(p1->size()-1) == p2->at(0)) { |
| 1631 | for (uint k = 1; k < p2->size(); k++) { |
| 1632 | p1->push(p2->at(k)); |
| 1633 | } |
| 1634 | _packset.at_put(j, NULL); |
| 1635 | changed = true; |
| 1636 | } |
| 1637 | } |
| 1638 | } |
| 1639 | } |
| 1640 | |
| 1641 | // Split packs which have size greater then max vector size. |
| 1642 | for (int i = 0; i < _packset.length(); i++) { |
| 1643 | Node_List* p1 = _packset.at(i); |
| 1644 | if (p1 != NULL) { |
| 1645 | BasicType bt = velt_basic_type(p1->at(0)); |
| 1646 | uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector |
| 1647 | assert(is_power_of_2(max_vlen), "sanity" ); |
| 1648 | uint psize = p1->size(); |
| 1649 | if (!is_power_of_2(psize)) { |
| 1650 | // Skip pack which can't be vector. |
| 1651 | // case1: for(...) { a[i] = i; } elements values are different (i+x) |
| 1652 | // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store |
| 1653 | _packset.at_put(i, NULL); |
| 1654 | continue; |
| 1655 | } |
| 1656 | if (psize > max_vlen) { |
| 1657 | Node_List* pack = new Node_List(); |
| 1658 | for (uint j = 0; j < psize; j++) { |
| 1659 | pack->push(p1->at(j)); |
| 1660 | if (pack->size() >= max_vlen) { |
| 1661 | assert(is_power_of_2(pack->size()), "sanity" ); |
| 1662 | _packset.append(pack); |
| 1663 | pack = new Node_List(); |
| 1664 | } |
| 1665 | } |
| 1666 | _packset.at_put(i, NULL); |
| 1667 | } |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | // Compress list. |
| 1672 | for (int i = _packset.length() - 1; i >= 0; i--) { |
| 1673 | Node_List* p1 = _packset.at(i); |
| 1674 | if (p1 == NULL) { |
| 1675 | _packset.remove_at(i); |
| 1676 | } |
| 1677 | } |
| 1678 | |
| 1679 | if (TraceSuperWord) { |
| 1680 | tty->print_cr("\nAfter combine_packs" ); |
| 1681 | print_packset(); |
| 1682 | } |
| 1683 | } |
| 1684 | |
| 1685 | //-----------------------------construct_my_pack_map-------------------------- |
| 1686 | // Construct the map from nodes to packs. Only valid after the |
| 1687 | // point where a node is only in one pack (after combine_packs). |
| 1688 | void SuperWord::construct_my_pack_map() { |
| 1689 | Node_List* rslt = NULL; |
| 1690 | for (int i = 0; i < _packset.length(); i++) { |
| 1691 | Node_List* p = _packset.at(i); |
| 1692 | for (uint j = 0; j < p->size(); j++) { |
| 1693 | Node* s = p->at(j); |
| 1694 | assert(my_pack(s) == NULL, "only in one pack" ); |
| 1695 | set_my_pack(s, p); |
| 1696 | } |
| 1697 | } |
| 1698 | } |
| 1699 | |
| 1700 | //------------------------------filter_packs--------------------------- |
| 1701 | // Remove packs that are not implemented or not profitable. |
| 1702 | void SuperWord::filter_packs() { |
| 1703 | // Remove packs that are not implemented |
| 1704 | for (int i = _packset.length() - 1; i >= 0; i--) { |
| 1705 | Node_List* pk = _packset.at(i); |
| 1706 | bool impl = implemented(pk); |
| 1707 | if (!impl) { |
| 1708 | #ifndef PRODUCT |
| 1709 | if (TraceSuperWord && Verbose) { |
| 1710 | tty->print_cr("Unimplemented" ); |
| 1711 | pk->at(0)->dump(); |
| 1712 | } |
| 1713 | #endif |
| 1714 | remove_pack_at(i); |
| 1715 | } |
| 1716 | Node *n = pk->at(0); |
| 1717 | if (n->is_reduction()) { |
| 1718 | _num_reductions++; |
| 1719 | } else { |
| 1720 | _num_work_vecs++; |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | // Remove packs that are not profitable |
| 1725 | bool changed; |
| 1726 | do { |
| 1727 | changed = false; |
| 1728 | for (int i = _packset.length() - 1; i >= 0; i--) { |
| 1729 | Node_List* pk = _packset.at(i); |
| 1730 | bool prof = profitable(pk); |
| 1731 | if (!prof) { |
| 1732 | #ifndef PRODUCT |
| 1733 | if (TraceSuperWord && Verbose) { |
| 1734 | tty->print_cr("Unprofitable" ); |
| 1735 | pk->at(0)->dump(); |
| 1736 | } |
| 1737 | #endif |
| 1738 | remove_pack_at(i); |
| 1739 | changed = true; |
| 1740 | } |
| 1741 | } |
| 1742 | } while (changed); |
| 1743 | |
| 1744 | #ifndef PRODUCT |
| 1745 | if (TraceSuperWord) { |
| 1746 | tty->print_cr("\nAfter filter_packs" ); |
| 1747 | print_packset(); |
| 1748 | tty->cr(); |
| 1749 | } |
| 1750 | #endif |
| 1751 | } |
| 1752 | |
| 1753 | //------------------------------merge_packs_to_cmovd--------------------------- |
| 1754 | // Merge CMoveD into new vector-nodes |
| 1755 | // We want to catch this pattern and subsume CmpD and Bool into CMoveD |
| 1756 | // |
| 1757 | // SubD ConD |
| 1758 | // / | / |
| 1759 | // / | / / |
| 1760 | // / | / / |
| 1761 | // / | / / |
| 1762 | // / / / |
| 1763 | // / / | / |
| 1764 | // v / | / |
| 1765 | // CmpD | / |
| 1766 | // | | / |
| 1767 | // v | / |
| 1768 | // Bool | / |
| 1769 | // \ | / |
| 1770 | // \ | / |
| 1771 | // \ | / |
| 1772 | // \ | / |
| 1773 | // \ v / |
| 1774 | // CMoveD |
| 1775 | // |
| 1776 | |
| 1777 | void SuperWord::merge_packs_to_cmovd() { |
| 1778 | for (int i = _packset.length() - 1; i >= 0; i--) { |
| 1779 | _cmovev_kit.make_cmovevd_pack(_packset.at(i)); |
| 1780 | } |
| 1781 | #ifndef PRODUCT |
| 1782 | if (TraceSuperWord) { |
| 1783 | tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge" ); |
| 1784 | print_packset(); |
| 1785 | tty->cr(); |
| 1786 | } |
| 1787 | #endif |
| 1788 | } |
| 1789 | |
| 1790 | Node* CMoveKit::is_Bool_candidate(Node* def) const { |
| 1791 | Node* use = NULL; |
| 1792 | if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) { |
| 1793 | return NULL; |
| 1794 | } |
| 1795 | for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { |
| 1796 | use = def->fast_out(j); |
| 1797 | if (!_sw->same_generation(def, use) || !use->is_CMove()) { |
| 1798 | return NULL; |
| 1799 | } |
| 1800 | } |
| 1801 | return use; |
| 1802 | } |
| 1803 | |
| 1804 | Node* CMoveKit::is_CmpD_candidate(Node* def) const { |
| 1805 | Node* use = NULL; |
| 1806 | if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) { |
| 1807 | return NULL; |
| 1808 | } |
| 1809 | for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { |
| 1810 | use = def->fast_out(j); |
| 1811 | if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) { |
| 1812 | return NULL; |
| 1813 | } |
| 1814 | } |
| 1815 | return use; |
| 1816 | } |
| 1817 | |
| 1818 | Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) { |
| 1819 | Node *cmovd = cmovd_pk->at(0); |
| 1820 | if (!cmovd->is_CMove()) { |
| 1821 | return NULL; |
| 1822 | } |
| 1823 | if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) { |
| 1824 | return NULL; |
| 1825 | } |
| 1826 | if (pack(cmovd) != NULL) { // already in the cmov pack |
| 1827 | return NULL; |
| 1828 | } |
| 1829 | if (cmovd->in(0) != NULL) { |
| 1830 | NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping..." , cmovd->_idx); cmovd->dump();}) |
| 1831 | return NULL; |
| 1832 | } |
| 1833 | |
| 1834 | Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition); |
| 1835 | if (!bol->is_Bool() |
| 1836 | || bol->outcnt() != 1 |
| 1837 | || !_sw->same_generation(bol, cmovd) |
| 1838 | || bol->in(0) != NULL // BoolNode has control flow!! |
| 1839 | || _sw->my_pack(bol) == NULL) { |
| 1840 | NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping..." , bol->_idx, cmovd->_idx); bol->dump();}) |
| 1841 | return NULL; |
| 1842 | } |
| 1843 | Node_List* bool_pk = _sw->my_pack(bol); |
| 1844 | if (bool_pk->size() != cmovd_pk->size() ) { |
| 1845 | return NULL; |
| 1846 | } |
| 1847 | |
| 1848 | Node* cmpd = bol->in(1); |
| 1849 | if (!cmpd->is_Cmp() |
| 1850 | || cmpd->outcnt() != 1 |
| 1851 | || !_sw->same_generation(cmpd, cmovd) |
| 1852 | || cmpd->in(0) != NULL // CmpDNode has control flow!! |
| 1853 | || _sw->my_pack(cmpd) == NULL) { |
| 1854 | NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping..." , cmpd->_idx, cmovd->_idx); cmpd->dump();}) |
| 1855 | return NULL; |
| 1856 | } |
| 1857 | Node_List* cmpd_pk = _sw->my_pack(cmpd); |
| 1858 | if (cmpd_pk->size() != cmovd_pk->size() ) { |
| 1859 | return NULL; |
| 1860 | } |
| 1861 | |
| 1862 | if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) { |
| 1863 | NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test" , cmpd->_idx); cmpd->dump();}) |
| 1864 | return NULL; |
| 1865 | } |
| 1866 | |
| 1867 | Node_List* new_cmpd_pk = new Node_List(); |
| 1868 | uint sz = cmovd_pk->size() - 1; |
| 1869 | for (uint i = 0; i <= sz; ++i) { |
| 1870 | Node* cmov = cmovd_pk->at(i); |
| 1871 | Node* bol = bool_pk->at(i); |
| 1872 | Node* cmp = cmpd_pk->at(i); |
| 1873 | |
| 1874 | new_cmpd_pk->insert(i, cmov); |
| 1875 | |
| 1876 | map(cmov, new_cmpd_pk); |
| 1877 | map(bol, new_cmpd_pk); |
| 1878 | map(cmp, new_cmpd_pk); |
| 1879 | |
| 1880 | _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool |
| 1881 | } |
| 1882 | _sw->_packset.remove(cmovd_pk); |
| 1883 | _sw->_packset.remove(bool_pk); |
| 1884 | _sw->_packset.remove(cmpd_pk); |
| 1885 | _sw->_packset.append(new_cmpd_pk); |
| 1886 | NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack" ); _sw->print_pack(new_cmpd_pk);}) |
| 1887 | return new_cmpd_pk; |
| 1888 | } |
| 1889 | |
| 1890 | bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) { |
| 1891 | Node* cmpd0 = cmpd_pk->at(0); |
| 1892 | assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode" ); |
| 1893 | assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD" ); |
| 1894 | assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size" ); |
| 1895 | Node* in1 = cmpd0->in(1); |
| 1896 | Node* in2 = cmpd0->in(2); |
| 1897 | Node_List* in1_pk = _sw->my_pack(in1); |
| 1898 | Node_List* in2_pk = _sw->my_pack(in2); |
| 1899 | |
| 1900 | if ( (in1_pk != NULL && in1_pk->size() != cmpd_pk->size()) |
| 1901 | || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) { |
| 1902 | return false; |
| 1903 | } |
| 1904 | |
| 1905 | // test if "all" in1 are in the same pack or the same node |
| 1906 | if (in1_pk == NULL) { |
| 1907 | for (uint j = 1; j < cmpd_pk->size(); j++) { |
| 1908 | if (cmpd_pk->at(j)->in(1) != in1) { |
| 1909 | return false; |
| 1910 | } |
| 1911 | }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1) |
| 1912 | } |
| 1913 | // test if "all" in2 are in the same pack or the same node |
| 1914 | if (in2_pk == NULL) { |
| 1915 | for (uint j = 1; j < cmpd_pk->size(); j++) { |
| 1916 | if (cmpd_pk->at(j)->in(2) != in2) { |
| 1917 | return false; |
| 1918 | } |
| 1919 | }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2) |
| 1920 | } |
| 1921 | //now check if cmpd_pk may be subsumed in vector built for cmovd_pk |
| 1922 | int cmovd_ind1, cmovd_ind2; |
| 1923 | if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse) |
| 1924 | && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) { |
| 1925 | cmovd_ind1 = CMoveNode::IfFalse; |
| 1926 | cmovd_ind2 = CMoveNode::IfTrue; |
| 1927 | } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse) |
| 1928 | && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) { |
| 1929 | cmovd_ind2 = CMoveNode::IfFalse; |
| 1930 | cmovd_ind1 = CMoveNode::IfTrue; |
| 1931 | } |
| 1932 | else { |
| 1933 | return false; |
| 1934 | } |
| 1935 | |
| 1936 | for (uint j = 1; j < cmpd_pk->size(); j++) { |
| 1937 | if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1) |
| 1938 | || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) { |
| 1939 | return false; |
| 1940 | }//if |
| 1941 | } |
| 1942 | NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: " , cmpd0->_idx); cmpd0->dump(); }) |
| 1943 | return true; |
| 1944 | } |
| 1945 | |
| 1946 | //------------------------------implemented--------------------------- |
| 1947 | // Can code be generated for pack p? |
| 1948 | bool SuperWord::implemented(Node_List* p) { |
| 1949 | bool retValue = false; |
| 1950 | Node* p0 = p->at(0); |
| 1951 | if (p0 != NULL) { |
| 1952 | int opc = p0->Opcode(); |
| 1953 | uint size = p->size(); |
| 1954 | if (p0->is_reduction()) { |
| 1955 | const Type *arith_type = p0->bottom_type(); |
| 1956 | // Length 2 reductions of INT/LONG do not offer performance benefits |
| 1957 | if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) { |
| 1958 | retValue = false; |
| 1959 | } else { |
| 1960 | retValue = ReductionNode::implemented(opc, size, arith_type->basic_type()); |
| 1961 | } |
| 1962 | } else { |
| 1963 | retValue = VectorNode::implemented(opc, size, velt_basic_type(p0)); |
| 1964 | } |
| 1965 | if (!retValue) { |
| 1966 | if (is_cmov_pack(p)) { |
| 1967 | NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack" ); print_pack(p);}) |
| 1968 | return true; |
| 1969 | } |
| 1970 | } |
| 1971 | } |
| 1972 | return retValue; |
| 1973 | } |
| 1974 | |
| 1975 | bool SuperWord::is_cmov_pack(Node_List* p) { |
| 1976 | return _cmovev_kit.pack(p->at(0)) != NULL; |
| 1977 | } |
| 1978 | //------------------------------same_inputs-------------------------- |
| 1979 | // For pack p, are all idx operands the same? |
| 1980 | bool SuperWord::same_inputs(Node_List* p, int idx) { |
| 1981 | Node* p0 = p->at(0); |
| 1982 | uint vlen = p->size(); |
| 1983 | Node* p0_def = p0->in(idx); |
| 1984 | for (uint i = 1; i < vlen; i++) { |
| 1985 | Node* pi = p->at(i); |
| 1986 | Node* pi_def = pi->in(idx); |
| 1987 | if (p0_def != pi_def) { |
| 1988 | return false; |
| 1989 | } |
| 1990 | } |
| 1991 | return true; |
| 1992 | } |
| 1993 | |
| 1994 | //------------------------------profitable--------------------------- |
| 1995 | // For pack p, are all operands and all uses (with in the block) vector? |
| 1996 | bool SuperWord::profitable(Node_List* p) { |
| 1997 | Node* p0 = p->at(0); |
| 1998 | uint start, end; |
| 1999 | VectorNode::vector_operands(p0, &start, &end); |
| 2000 | |
| 2001 | // Return false if some inputs are not vectors or vectors with different |
| 2002 | // size or alignment. |
| 2003 | // Also, for now, return false if not scalar promotion case when inputs are |
| 2004 | // the same. Later, implement PackNode and allow differing, non-vector inputs |
| 2005 | // (maybe just the ones from outside the block.) |
| 2006 | for (uint i = start; i < end; i++) { |
| 2007 | if (!is_vector_use(p0, i)) { |
| 2008 | return false; |
| 2009 | } |
| 2010 | } |
| 2011 | // Check if reductions are connected |
| 2012 | if (p0->is_reduction()) { |
| 2013 | Node* second_in = p0->in(2); |
| 2014 | Node_List* second_pk = my_pack(second_in); |
| 2015 | if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) { |
| 2016 | // Remove reduction flag if no parent pack or if not enough work |
| 2017 | // to cover reduction expansion overhead |
| 2018 | p0->remove_flag(Node::Flag_is_reduction); |
| 2019 | return false; |
| 2020 | } else if (second_pk->size() != p->size()) { |
| 2021 | return false; |
| 2022 | } |
| 2023 | } |
| 2024 | if (VectorNode::is_shift(p0)) { |
| 2025 | // For now, return false if shift count is vector or not scalar promotion |
| 2026 | // case (different shift counts) because it is not supported yet. |
| 2027 | Node* cnt = p0->in(2); |
| 2028 | Node_List* cnt_pk = my_pack(cnt); |
| 2029 | if (cnt_pk != NULL) |
| 2030 | return false; |
| 2031 | if (!same_inputs(p, 2)) |
| 2032 | return false; |
| 2033 | } |
| 2034 | if (!p0->is_Store()) { |
| 2035 | // For now, return false if not all uses are vector. |
| 2036 | // Later, implement ExtractNode and allow non-vector uses (maybe |
| 2037 | // just the ones outside the block.) |
| 2038 | for (uint i = 0; i < p->size(); i++) { |
| 2039 | Node* def = p->at(i); |
| 2040 | if (is_cmov_pack_internal_node(p, def)) { |
| 2041 | continue; |
| 2042 | } |
| 2043 | for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { |
| 2044 | Node* use = def->fast_out(j); |
| 2045 | for (uint k = 0; k < use->req(); k++) { |
| 2046 | Node* n = use->in(k); |
| 2047 | if (def == n) { |
| 2048 | // reductions should only have a Phi use at the the loop |
| 2049 | // head and out of loop uses |
| 2050 | if (def->is_reduction() && |
| 2051 | ((use->is_Phi() && use->in(0) == _lpt->_head) || |
| 2052 | !_lpt->is_member(_phase->get_loop(_phase->ctrl_or_self(use))))) { |
| 2053 | assert(i == p->size()-1, "must be last element of the pack" ); |
| 2054 | continue; |
| 2055 | } |
| 2056 | if (!is_vector_use(use, k)) { |
| 2057 | return false; |
| 2058 | } |
| 2059 | } |
| 2060 | } |
| 2061 | } |
| 2062 | } |
| 2063 | } |
| 2064 | return true; |
| 2065 | } |
| 2066 | |
| 2067 | //------------------------------schedule--------------------------- |
| 2068 | // Adjust the memory graph for the packed operations |
| 2069 | void SuperWord::schedule() { |
| 2070 | |
| 2071 | // Co-locate in the memory graph the members of each memory pack |
| 2072 | for (int i = 0; i < _packset.length(); i++) { |
| 2073 | co_locate_pack(_packset.at(i)); |
| 2074 | } |
| 2075 | } |
| 2076 | |
| 2077 | //-------------------------------remove_and_insert------------------- |
| 2078 | // Remove "current" from its current position in the memory graph and insert |
| 2079 | // it after the appropriate insertion point (lip or uip). |
| 2080 | void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, |
| 2081 | Node *uip, Unique_Node_List &sched_before) { |
| 2082 | Node* my_mem = current->in(MemNode::Memory); |
| 2083 | bool sched_up = sched_before.member(current); |
| 2084 | |
| 2085 | // remove current_store from its current position in the memmory graph |
| 2086 | for (DUIterator i = current->outs(); current->has_out(i); i++) { |
| 2087 | Node* use = current->out(i); |
| 2088 | if (use->is_Mem()) { |
| 2089 | assert(use->in(MemNode::Memory) == current, "must be" ); |
| 2090 | if (use == prev) { // connect prev to my_mem |
| 2091 | _igvn.replace_input_of(use, MemNode::Memory, my_mem); |
| 2092 | --i; //deleted this edge; rescan position |
| 2093 | } else if (sched_before.member(use)) { |
| 2094 | if (!sched_up) { // Will be moved together with current |
| 2095 | _igvn.replace_input_of(use, MemNode::Memory, uip); |
| 2096 | --i; //deleted this edge; rescan position |
| 2097 | } |
| 2098 | } else { |
| 2099 | if (sched_up) { // Will be moved together with current |
| 2100 | _igvn.replace_input_of(use, MemNode::Memory, lip); |
| 2101 | --i; //deleted this edge; rescan position |
| 2102 | } |
| 2103 | } |
| 2104 | } |
| 2105 | } |
| 2106 | |
| 2107 | Node *insert_pt = sched_up ? uip : lip; |
| 2108 | |
| 2109 | // all uses of insert_pt's memory state should use current's instead |
| 2110 | for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) { |
| 2111 | Node* use = insert_pt->out(i); |
| 2112 | if (use->is_Mem()) { |
| 2113 | assert(use->in(MemNode::Memory) == insert_pt, "must be" ); |
| 2114 | _igvn.replace_input_of(use, MemNode::Memory, current); |
| 2115 | --i; //deleted this edge; rescan position |
| 2116 | } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) { |
| 2117 | uint pos; //lip (lower insert point) must be the last one in the memory slice |
| 2118 | for (pos=1; pos < use->req(); pos++) { |
| 2119 | if (use->in(pos) == insert_pt) break; |
| 2120 | } |
| 2121 | _igvn.replace_input_of(use, pos, current); |
| 2122 | --i; |
| 2123 | } |
| 2124 | } |
| 2125 | |
| 2126 | //connect current to insert_pt |
| 2127 | _igvn.replace_input_of(current, MemNode::Memory, insert_pt); |
| 2128 | } |
| 2129 | |
| 2130 | //------------------------------co_locate_pack---------------------------------- |
| 2131 | // To schedule a store pack, we need to move any sandwiched memory ops either before |
| 2132 | // or after the pack, based upon dependence information: |
| 2133 | // (1) If any store in the pack depends on the sandwiched memory op, the |
| 2134 | // sandwiched memory op must be scheduled BEFORE the pack; |
| 2135 | // (2) If a sandwiched memory op depends on any store in the pack, the |
| 2136 | // sandwiched memory op must be scheduled AFTER the pack; |
| 2137 | // (3) If a sandwiched memory op (say, memA) depends on another sandwiched |
| 2138 | // memory op (say memB), memB must be scheduled before memA. So, if memA is |
| 2139 | // scheduled before the pack, memB must also be scheduled before the pack; |
| 2140 | // (4) If there is no dependence restriction for a sandwiched memory op, we simply |
| 2141 | // schedule this store AFTER the pack |
| 2142 | // (5) We know there is no dependence cycle, so there in no other case; |
| 2143 | // (6) Finally, all memory ops in another single pack should be moved in the same direction. |
| 2144 | // |
| 2145 | // To schedule a load pack, we use the memory state of either the first or the last load in |
| 2146 | // the pack, based on the dependence constraint. |
| 2147 | void SuperWord::co_locate_pack(Node_List* pk) { |
| 2148 | if (pk->at(0)->is_Store()) { |
| 2149 | MemNode* first = executed_first(pk)->as_Mem(); |
| 2150 | MemNode* last = executed_last(pk)->as_Mem(); |
| 2151 | Unique_Node_List schedule_before_pack; |
| 2152 | Unique_Node_List memops; |
| 2153 | |
| 2154 | MemNode* current = last->in(MemNode::Memory)->as_Mem(); |
| 2155 | MemNode* previous = last; |
| 2156 | while (true) { |
| 2157 | assert(in_bb(current), "stay in block" ); |
| 2158 | memops.push(previous); |
| 2159 | for (DUIterator i = current->outs(); current->has_out(i); i++) { |
| 2160 | Node* use = current->out(i); |
| 2161 | if (use->is_Mem() && use != previous) |
| 2162 | memops.push(use); |
| 2163 | } |
| 2164 | if (current == first) break; |
| 2165 | previous = current; |
| 2166 | current = current->in(MemNode::Memory)->as_Mem(); |
| 2167 | } |
| 2168 | |
| 2169 | // determine which memory operations should be scheduled before the pack |
| 2170 | for (uint i = 1; i < memops.size(); i++) { |
| 2171 | Node *s1 = memops.at(i); |
| 2172 | if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) { |
| 2173 | for (uint j = 0; j< i; j++) { |
| 2174 | Node *s2 = memops.at(j); |
| 2175 | if (!independent(s1, s2)) { |
| 2176 | if (in_pack(s2, pk) || schedule_before_pack.member(s2)) { |
| 2177 | schedule_before_pack.push(s1); // s1 must be scheduled before |
| 2178 | Node_List* mem_pk = my_pack(s1); |
| 2179 | if (mem_pk != NULL) { |
| 2180 | for (uint ii = 0; ii < mem_pk->size(); ii++) { |
| 2181 | Node* s = mem_pk->at(ii); // follow partner |
| 2182 | if (memops.member(s) && !schedule_before_pack.member(s)) |
| 2183 | schedule_before_pack.push(s); |
| 2184 | } |
| 2185 | } |
| 2186 | break; |
| 2187 | } |
| 2188 | } |
| 2189 | } |
| 2190 | } |
| 2191 | } |
| 2192 | |
| 2193 | Node* upper_insert_pt = first->in(MemNode::Memory); |
| 2194 | // Following code moves loads connected to upper_insert_pt below aliased stores. |
| 2195 | // Collect such loads here and reconnect them back to upper_insert_pt later. |
| 2196 | memops.clear(); |
| 2197 | for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) { |
| 2198 | Node* use = upper_insert_pt->out(i); |
| 2199 | if (use->is_Mem() && !use->is_Store()) { |
| 2200 | memops.push(use); |
| 2201 | } |
| 2202 | } |
| 2203 | |
| 2204 | MemNode* lower_insert_pt = last; |
| 2205 | previous = last; //previous store in pk |
| 2206 | current = last->in(MemNode::Memory)->as_Mem(); |
| 2207 | |
| 2208 | // start scheduling from "last" to "first" |
| 2209 | while (true) { |
| 2210 | assert(in_bb(current), "stay in block" ); |
| 2211 | assert(in_pack(previous, pk), "previous stays in pack" ); |
| 2212 | Node* my_mem = current->in(MemNode::Memory); |
| 2213 | |
| 2214 | if (in_pack(current, pk)) { |
| 2215 | // Forward users of my memory state (except "previous) to my input memory state |
| 2216 | for (DUIterator i = current->outs(); current->has_out(i); i++) { |
| 2217 | Node* use = current->out(i); |
| 2218 | if (use->is_Mem() && use != previous) { |
| 2219 | assert(use->in(MemNode::Memory) == current, "must be" ); |
| 2220 | if (schedule_before_pack.member(use)) { |
| 2221 | _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt); |
| 2222 | } else { |
| 2223 | _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt); |
| 2224 | } |
| 2225 | --i; // deleted this edge; rescan position |
| 2226 | } |
| 2227 | } |
| 2228 | previous = current; |
| 2229 | } else { // !in_pack(current, pk) ==> a sandwiched store |
| 2230 | remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack); |
| 2231 | } |
| 2232 | |
| 2233 | if (current == first) break; |
| 2234 | current = my_mem->as_Mem(); |
| 2235 | } // end while |
| 2236 | |
| 2237 | // Reconnect loads back to upper_insert_pt. |
| 2238 | for (uint i = 0; i < memops.size(); i++) { |
| 2239 | Node *ld = memops.at(i); |
| 2240 | if (ld->in(MemNode::Memory) != upper_insert_pt) { |
| 2241 | _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt); |
| 2242 | } |
| 2243 | } |
| 2244 | } else if (pk->at(0)->is_Load()) { //load |
| 2245 | // all loads in the pack should have the same memory state. By default, |
| 2246 | // we use the memory state of the last load. However, if any load could |
| 2247 | // not be moved down due to the dependence constraint, we use the memory |
| 2248 | // state of the first load. |
| 2249 | Node* first_mem = pk->at(0)->in(MemNode::Memory); |
| 2250 | Node* last_mem = first_mem; |
| 2251 | for (uint i = 1; i < pk->size(); i++) { |
| 2252 | Node* ld = pk->at(i); |
| 2253 | Node* mem = ld->in(MemNode::Memory); |
| 2254 | assert(in_bb(first_mem) || in_bb(mem) || mem == first_mem, "2 different memory state from outside the loop?" ); |
| 2255 | if (in_bb(mem)) { |
| 2256 | if (in_bb(first_mem) && bb_idx(mem) < bb_idx(first_mem)) { |
| 2257 | first_mem = mem; |
| 2258 | } |
| 2259 | if (!in_bb(last_mem) || bb_idx(mem) > bb_idx(last_mem)) { |
| 2260 | last_mem = mem; |
| 2261 | } |
| 2262 | } |
| 2263 | } |
| 2264 | bool schedule_last = true; |
| 2265 | for (uint i = 0; i < pk->size(); i++) { |
| 2266 | Node* ld = pk->at(i); |
| 2267 | for (Node* current = last_mem; current != ld->in(MemNode::Memory); |
| 2268 | current=current->in(MemNode::Memory)) { |
| 2269 | assert(current != first_mem, "corrupted memory graph" ); |
| 2270 | if(current->is_Mem() && !independent(current, ld)){ |
| 2271 | schedule_last = false; // a later store depends on this load |
| 2272 | break; |
| 2273 | } |
| 2274 | } |
| 2275 | } |
| 2276 | |
| 2277 | Node* mem_input = schedule_last ? last_mem : first_mem; |
| 2278 | _igvn.hash_delete(mem_input); |
| 2279 | // Give each load the same memory state |
| 2280 | for (uint i = 0; i < pk->size(); i++) { |
| 2281 | LoadNode* ld = pk->at(i)->as_Load(); |
| 2282 | _igvn.replace_input_of(ld, MemNode::Memory, mem_input); |
| 2283 | } |
| 2284 | } |
| 2285 | } |
| 2286 | |
| 2287 | #ifndef PRODUCT |
| 2288 | void SuperWord::print_loop(bool whole) { |
| 2289 | Node_Stack stack(_arena, _phase->C->unique() >> 2); |
| 2290 | Node_List rpo_list; |
| 2291 | VectorSet visited(_arena); |
| 2292 | visited.set(lpt()->_head->_idx); |
| 2293 | _phase->rpo(lpt()->_head, stack, visited, rpo_list); |
| 2294 | _phase->dump(lpt(), rpo_list.size(), rpo_list ); |
| 2295 | if(whole) { |
| 2296 | tty->print_cr("\n Whole loop tree" ); |
| 2297 | _phase->dump(); |
| 2298 | tty->print_cr(" End of whole loop tree\n" ); |
| 2299 | } |
| 2300 | } |
| 2301 | #endif |
| 2302 | |
| 2303 | //------------------------------output--------------------------- |
| 2304 | // Convert packs into vector node operations |
| 2305 | void SuperWord::output() { |
| 2306 | CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); |
| 2307 | Compile* C = _phase->C; |
| 2308 | if (_packset.length() == 0) { |
| 2309 | if (cl->is_main_loop()) { |
| 2310 | // Instigate more unrolling for optimization when vectorization fails. |
| 2311 | C->set_major_progress(); |
| 2312 | cl->set_notpassed_slp(); |
| 2313 | cl->mark_do_unroll_only(); |
| 2314 | } |
| 2315 | return; |
| 2316 | } |
| 2317 | |
| 2318 | #ifndef PRODUCT |
| 2319 | if (TraceLoopOpts) { |
| 2320 | tty->print("SuperWord::output " ); |
| 2321 | lpt()->dump_head(); |
| 2322 | } |
| 2323 | #endif |
| 2324 | |
| 2325 | if (cl->is_main_loop()) { |
| 2326 | // MUST ENSURE main loop's initial value is properly aligned: |
| 2327 | // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0 |
| 2328 | |
| 2329 | align_initial_loop_index(align_to_ref()); |
| 2330 | |
| 2331 | // Insert extract (unpack) operations for scalar uses |
| 2332 | for (int i = 0; i < _packset.length(); i++) { |
| 2333 | insert_extracts(_packset.at(i)); |
| 2334 | } |
| 2335 | } |
| 2336 | |
| 2337 | uint max_vlen_in_bytes = 0; |
| 2338 | uint max_vlen = 0; |
| 2339 | bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()); |
| 2340 | |
| 2341 | NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop" ); print_loop(true);}) |
| 2342 | |
| 2343 | CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy()); |
| 2344 | |
| 2345 | NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop" ); print_loop(true);}) |
| 2346 | |
| 2347 | if (do_reserve_copy() && !make_reversable.has_reserved()) { |
| 2348 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord" );}) |
| 2349 | return; |
| 2350 | } |
| 2351 | |
| 2352 | for (int i = 0; i < _block.length(); i++) { |
| 2353 | Node* n = _block.at(i); |
| 2354 | Node_List* p = my_pack(n); |
| 2355 | if (p && n == executed_last(p)) { |
| 2356 | uint vlen = p->size(); |
| 2357 | uint vlen_in_bytes = 0; |
| 2358 | Node* vn = NULL; |
| 2359 | Node* low_adr = p->at(0); |
| 2360 | Node* first = executed_first(p); |
| 2361 | if (can_process_post_loop) { |
| 2362 | // override vlen with the main loops vector length |
| 2363 | vlen = cl->slp_max_unroll(); |
| 2364 | } |
| 2365 | NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack" , first->_idx, n->_idx); print_pack(p);}) |
| 2366 | int opc = n->Opcode(); |
| 2367 | if (n->is_Load()) { |
| 2368 | Node* ctl = n->in(MemNode::Control); |
| 2369 | Node* mem = first->in(MemNode::Memory); |
| 2370 | SWPointer p1(n->as_Mem(), this, NULL, false); |
| 2371 | // Identify the memory dependency for the new loadVector node by |
| 2372 | // walking up through memory chain. |
| 2373 | // This is done to give flexibility to the new loadVector node so that |
| 2374 | // it can move above independent storeVector nodes. |
| 2375 | while (mem->is_StoreVector()) { |
| 2376 | SWPointer p2(mem->as_Mem(), this, NULL, false); |
| 2377 | int cmp = p1.cmp(p2); |
| 2378 | if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) { |
| 2379 | mem = mem->in(MemNode::Memory); |
| 2380 | } else { |
| 2381 | break; // dependent memory |
| 2382 | } |
| 2383 | } |
| 2384 | Node* adr = low_adr->in(MemNode::Address); |
| 2385 | const TypePtr* atyp = n->adr_type(); |
| 2386 | vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p)); |
| 2387 | vlen_in_bytes = vn->as_LoadVector()->memory_size(); |
| 2388 | } else if (n->is_Store()) { |
| 2389 | // Promote value to be stored to vector |
| 2390 | Node* val = vector_opd(p, MemNode::ValueIn); |
| 2391 | if (val == NULL) { |
| 2392 | if (do_reserve_copy()) { |
| 2393 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord" );}) |
| 2394 | return; //and reverse to backup IG |
| 2395 | } |
| 2396 | ShouldNotReachHere(); |
| 2397 | } |
| 2398 | |
| 2399 | Node* ctl = n->in(MemNode::Control); |
| 2400 | Node* mem = first->in(MemNode::Memory); |
| 2401 | Node* adr = low_adr->in(MemNode::Address); |
| 2402 | const TypePtr* atyp = n->adr_type(); |
| 2403 | vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen); |
| 2404 | vlen_in_bytes = vn->as_StoreVector()->memory_size(); |
| 2405 | } else if (VectorNode::is_muladds2i(n)) { |
| 2406 | assert(n->req() == 5u, "MulAddS2I should have 4 operands." ); |
| 2407 | Node* in1 = vector_opd(p, 1); |
| 2408 | Node* in2 = vector_opd(p, 2); |
| 2409 | vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n)); |
| 2410 | vlen_in_bytes = vn->as_Vector()->length_in_bytes(); |
| 2411 | } else if (n->req() == 3 && !is_cmov_pack(p)) { |
| 2412 | // Promote operands to vector |
| 2413 | Node* in1 = NULL; |
| 2414 | bool node_isa_reduction = n->is_reduction(); |
| 2415 | if (node_isa_reduction) { |
| 2416 | // the input to the first reduction operation is retained |
| 2417 | in1 = low_adr->in(1); |
| 2418 | } else { |
| 2419 | in1 = vector_opd(p, 1); |
| 2420 | if (in1 == NULL) { |
| 2421 | if (do_reserve_copy()) { |
| 2422 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord" );}) |
| 2423 | return; //and reverse to backup IG |
| 2424 | } |
| 2425 | ShouldNotReachHere(); |
| 2426 | } |
| 2427 | } |
| 2428 | Node* in2 = vector_opd(p, 2); |
| 2429 | if (in2 == NULL) { |
| 2430 | if (do_reserve_copy()) { |
| 2431 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord" );}) |
| 2432 | return; //and reverse to backup IG |
| 2433 | } |
| 2434 | ShouldNotReachHere(); |
| 2435 | } |
| 2436 | if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) { |
| 2437 | // Move invariant vector input into second position to avoid register spilling. |
| 2438 | Node* tmp = in1; |
| 2439 | in1 = in2; |
| 2440 | in2 = tmp; |
| 2441 | } |
| 2442 | if (node_isa_reduction) { |
| 2443 | const Type *arith_type = n->bottom_type(); |
| 2444 | vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type()); |
| 2445 | if (in2->is_Load()) { |
| 2446 | vlen_in_bytes = in2->as_LoadVector()->memory_size(); |
| 2447 | } else { |
| 2448 | vlen_in_bytes = in2->as_Vector()->length_in_bytes(); |
| 2449 | } |
| 2450 | } else { |
| 2451 | vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n)); |
| 2452 | vlen_in_bytes = vn->as_Vector()->length_in_bytes(); |
| 2453 | } |
| 2454 | } else if (opc == Op_SqrtF || opc == Op_SqrtD || |
| 2455 | opc == Op_AbsF || opc == Op_AbsD || |
| 2456 | opc == Op_AbsI || opc == Op_AbsL || |
| 2457 | opc == Op_NegF || opc == Op_NegD || |
| 2458 | opc == Op_PopCountI) { |
| 2459 | assert(n->req() == 2, "only one input expected" ); |
| 2460 | Node* in = vector_opd(p, 1); |
| 2461 | vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n)); |
| 2462 | vlen_in_bytes = vn->as_Vector()->length_in_bytes(); |
| 2463 | } else if (is_cmov_pack(p)) { |
| 2464 | if (can_process_post_loop) { |
| 2465 | // do not refactor of flow in post loop context |
| 2466 | return; |
| 2467 | } |
| 2468 | if (!n->is_CMove()) { |
| 2469 | continue; |
| 2470 | } |
| 2471 | // place here CMoveVDNode |
| 2472 | NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization" ); print_loop(false);}) |
| 2473 | Node* bol = n->in(CMoveNode::Condition); |
| 2474 | if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) { |
| 2475 | NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d" , bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();}) |
| 2476 | bol = bol->in(1); //may be ExtractNode |
| 2477 | } |
| 2478 | |
| 2479 | assert(bol->is_Bool(), "should be BoolNode - too late to bail out!" ); |
| 2480 | if (!bol->is_Bool()) { |
| 2481 | if (do_reserve_copy()) { |
| 2482 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord" , bol->_idx); bol->dump();}) |
| 2483 | return; //and reverse to backup IG |
| 2484 | } |
| 2485 | ShouldNotReachHere(); |
| 2486 | } |
| 2487 | |
| 2488 | int cond = (int)bol->as_Bool()->_test._test; |
| 2489 | Node* in_cc = _igvn.intcon(cond); |
| 2490 | NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d" , in_cc->_idx); in_cc->dump();}) |
| 2491 | Node* cc = bol->clone(); |
| 2492 | cc->set_req(1, in_cc); |
| 2493 | NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d" , cc->_idx); cc->dump();}) |
| 2494 | |
| 2495 | Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse |
| 2496 | if (src1 == NULL) { |
| 2497 | if (do_reserve_copy()) { |
| 2498 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord" );}) |
| 2499 | return; //and reverse to backup IG |
| 2500 | } |
| 2501 | ShouldNotReachHere(); |
| 2502 | } |
| 2503 | Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue |
| 2504 | if (src2 == NULL) { |
| 2505 | if (do_reserve_copy()) { |
| 2506 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord" );}) |
| 2507 | return; //and reverse to backup IG |
| 2508 | } |
| 2509 | ShouldNotReachHere(); |
| 2510 | } |
| 2511 | BasicType bt = velt_basic_type(n); |
| 2512 | const TypeVect* vt = TypeVect::make(bt, vlen); |
| 2513 | assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported" ); |
| 2514 | if (bt == T_FLOAT) { |
| 2515 | vn = new CMoveVFNode(cc, src1, src2, vt); |
| 2516 | } else { |
| 2517 | assert(bt == T_DOUBLE, "Expected double" ); |
| 2518 | vn = new CMoveVDNode(cc, src1, src2, vt); |
| 2519 | } |
| 2520 | NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: " , vn->_idx); vn->dump();}) |
| 2521 | } else if (opc == Op_FmaD || opc == Op_FmaF) { |
| 2522 | // Promote operands to vector |
| 2523 | Node* in1 = vector_opd(p, 1); |
| 2524 | Node* in2 = vector_opd(p, 2); |
| 2525 | Node* in3 = vector_opd(p, 3); |
| 2526 | vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n)); |
| 2527 | vlen_in_bytes = vn->as_Vector()->length_in_bytes(); |
| 2528 | } else { |
| 2529 | if (do_reserve_copy()) { |
| 2530 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord" );}) |
| 2531 | return; //and reverse to backup IG |
| 2532 | } |
| 2533 | ShouldNotReachHere(); |
| 2534 | } |
| 2535 | |
| 2536 | assert(vn != NULL, "sanity" ); |
| 2537 | if (vn == NULL) { |
| 2538 | if (do_reserve_copy()){ |
| 2539 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord" );}) |
| 2540 | return; //and reverse to backup IG |
| 2541 | } |
| 2542 | ShouldNotReachHere(); |
| 2543 | } |
| 2544 | |
| 2545 | _block.at_put(i, vn); |
| 2546 | _igvn.register_new_node_with_optimizer(vn); |
| 2547 | _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0))); |
| 2548 | for (uint j = 0; j < p->size(); j++) { |
| 2549 | Node* pm = p->at(j); |
| 2550 | _igvn.replace_node(pm, vn); |
| 2551 | } |
| 2552 | _igvn._worklist.push(vn); |
| 2553 | |
| 2554 | if (can_process_post_loop) { |
| 2555 | // first check if the vector size if the maximum vector which we can use on the machine, |
| 2556 | // other vector size have reduced values for predicated data mapping. |
| 2557 | if (vlen_in_bytes != (uint)MaxVectorSize) { |
| 2558 | return; |
| 2559 | } |
| 2560 | } |
| 2561 | |
| 2562 | if (vlen_in_bytes >= max_vlen_in_bytes && vlen > max_vlen) { |
| 2563 | max_vlen = vlen; |
| 2564 | max_vlen_in_bytes = vlen_in_bytes; |
| 2565 | } |
| 2566 | #ifdef ASSERT |
| 2567 | if (TraceNewVectors) { |
| 2568 | tty->print("new Vector node: " ); |
| 2569 | vn->dump(); |
| 2570 | } |
| 2571 | #endif |
| 2572 | } |
| 2573 | }//for (int i = 0; i < _block.length(); i++) |
| 2574 | |
| 2575 | if (max_vlen_in_bytes > C->max_vector_size()) { |
| 2576 | C->set_max_vector_size(max_vlen_in_bytes); |
| 2577 | } |
| 2578 | if (max_vlen_in_bytes > 0) { |
| 2579 | cl->mark_loop_vectorized(); |
| 2580 | } |
| 2581 | |
| 2582 | if (SuperWordLoopUnrollAnalysis) { |
| 2583 | if (cl->has_passed_slp()) { |
| 2584 | uint slp_max_unroll_factor = cl->slp_max_unroll(); |
| 2585 | if (slp_max_unroll_factor == max_vlen) { |
| 2586 | if (TraceSuperWordLoopUnrollAnalysis) { |
| 2587 | tty->print_cr("vector loop(unroll=%d, len=%d)\n" , max_vlen, max_vlen_in_bytes*BitsPerByte); |
| 2588 | } |
| 2589 | |
| 2590 | // For atomic unrolled loops which are vector mapped, instigate more unrolling |
| 2591 | cl->set_notpassed_slp(); |
| 2592 | if (cl->is_main_loop()) { |
| 2593 | // if vector resources are limited, do not allow additional unrolling, also |
| 2594 | // do not unroll more on pure vector loops which were not reduced so that we can |
| 2595 | // program the post loop to single iteration execution. |
| 2596 | if (FLOATPRESSURE > 8) { |
| 2597 | C->set_major_progress(); |
| 2598 | cl->mark_do_unroll_only(); |
| 2599 | } |
| 2600 | } |
| 2601 | |
| 2602 | if (do_reserve_copy()) { |
| 2603 | if (can_process_post_loop) { |
| 2604 | // Now create the difference of trip and limit and use it as our mask index. |
| 2605 | // Note: We limited the unroll of the vectorized loop so that |
| 2606 | // only vlen-1 size iterations can remain to be mask programmed. |
| 2607 | Node *incr = cl->incr(); |
| 2608 | SubINode *index = new SubINode(cl->limit(), cl->init_trip()); |
| 2609 | _igvn.register_new_node_with_optimizer(index); |
| 2610 | SetVectMaskINode *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index); |
| 2611 | _igvn.register_new_node_with_optimizer(mask); |
| 2612 | // make this a single iteration loop |
| 2613 | AddINode *new_incr = new AddINode(incr->in(1), mask); |
| 2614 | _igvn.register_new_node_with_optimizer(new_incr); |
| 2615 | _phase->set_ctrl(new_incr, _phase->get_ctrl(incr)); |
| 2616 | _igvn.replace_node(incr, new_incr); |
| 2617 | cl->mark_is_multiversioned(); |
| 2618 | cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set); |
| 2619 | } |
| 2620 | } |
| 2621 | } |
| 2622 | } |
| 2623 | } |
| 2624 | |
| 2625 | if (do_reserve_copy()) { |
| 2626 | make_reversable.use_new(); |
| 2627 | } |
| 2628 | NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord" ); print_loop(true);}) |
| 2629 | return; |
| 2630 | } |
| 2631 | |
| 2632 | //------------------------------vector_opd--------------------------- |
| 2633 | // Create a vector operand for the nodes in pack p for operand: in(opd_idx) |
| 2634 | Node* SuperWord::vector_opd(Node_List* p, int opd_idx) { |
| 2635 | Node* p0 = p->at(0); |
| 2636 | uint vlen = p->size(); |
| 2637 | Node* opd = p0->in(opd_idx); |
| 2638 | CountedLoopNode *cl = lpt()->_head->as_CountedLoop(); |
| 2639 | |
| 2640 | if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) { |
| 2641 | // override vlen with the main loops vector length |
| 2642 | vlen = cl->slp_max_unroll(); |
| 2643 | } |
| 2644 | |
| 2645 | if (same_inputs(p, opd_idx)) { |
| 2646 | if (opd->is_Vector() || opd->is_LoadVector()) { |
| 2647 | assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector" ); |
| 2648 | if (opd_idx == 2 && VectorNode::is_shift(p0)) { |
| 2649 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector" );}) |
| 2650 | return NULL; |
| 2651 | } |
| 2652 | return opd; // input is matching vector |
| 2653 | } |
| 2654 | if ((opd_idx == 2) && VectorNode::is_shift(p0)) { |
| 2655 | Compile* C = _phase->C; |
| 2656 | Node* cnt = opd; |
| 2657 | // Vector instructions do not mask shift count, do it here. |
| 2658 | juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); |
| 2659 | const TypeInt* t = opd->find_int_type(); |
| 2660 | if (t != NULL && t->is_con()) { |
| 2661 | juint shift = t->get_con(); |
| 2662 | if (shift > mask) { // Unsigned cmp |
| 2663 | cnt = ConNode::make(TypeInt::make(shift & mask)); |
| 2664 | } |
| 2665 | } else { |
| 2666 | if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) { |
| 2667 | cnt = ConNode::make(TypeInt::make(mask)); |
| 2668 | _igvn.register_new_node_with_optimizer(cnt); |
| 2669 | cnt = new AndINode(opd, cnt); |
| 2670 | _igvn.register_new_node_with_optimizer(cnt); |
| 2671 | _phase->set_ctrl(cnt, _phase->get_ctrl(opd)); |
| 2672 | } |
| 2673 | assert(opd->bottom_type()->isa_int(), "int type only" ); |
| 2674 | if (!opd->bottom_type()->isa_int()) { |
| 2675 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only" );}) |
| 2676 | return NULL; |
| 2677 | } |
| 2678 | // Move non constant shift count into vector register. |
| 2679 | cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0)); |
| 2680 | } |
| 2681 | if (cnt != opd) { |
| 2682 | _igvn.register_new_node_with_optimizer(cnt); |
| 2683 | _phase->set_ctrl(cnt, _phase->get_ctrl(opd)); |
| 2684 | } |
| 2685 | return cnt; |
| 2686 | } |
| 2687 | assert(!opd->is_StoreVector(), "such vector is not expected here" ); |
| 2688 | if (opd->is_StoreVector()) { |
| 2689 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here" );}) |
| 2690 | return NULL; |
| 2691 | } |
| 2692 | // Convert scalar input to vector with the same number of elements as |
| 2693 | // p0's vector. Use p0's type because size of operand's container in |
| 2694 | // vector should match p0's size regardless operand's size. |
| 2695 | const Type* p0_t = velt_type(p0); |
| 2696 | VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t); |
| 2697 | |
| 2698 | _igvn.register_new_node_with_optimizer(vn); |
| 2699 | _phase->set_ctrl(vn, _phase->get_ctrl(opd)); |
| 2700 | #ifdef ASSERT |
| 2701 | if (TraceNewVectors) { |
| 2702 | tty->print("new Vector node: " ); |
| 2703 | vn->dump(); |
| 2704 | } |
| 2705 | #endif |
| 2706 | return vn; |
| 2707 | } |
| 2708 | |
| 2709 | // Insert pack operation |
| 2710 | BasicType bt = velt_basic_type(p0); |
| 2711 | PackNode* pk = PackNode::make(opd, vlen, bt); |
| 2712 | DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); ) |
| 2713 | |
| 2714 | for (uint i = 1; i < vlen; i++) { |
| 2715 | Node* pi = p->at(i); |
| 2716 | Node* in = pi->in(opd_idx); |
| 2717 | assert(my_pack(in) == NULL, "Should already have been unpacked" ); |
| 2718 | if (my_pack(in) != NULL) { |
| 2719 | NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked" );}) |
| 2720 | return NULL; |
| 2721 | } |
| 2722 | assert(opd_bt == in->bottom_type()->basic_type(), "all same type" ); |
| 2723 | pk->add_opd(in); |
| 2724 | if (VectorNode::is_muladds2i(pi)) { |
| 2725 | Node* in2 = pi->in(opd_idx + 2); |
| 2726 | assert(my_pack(in2) == NULL, "Should already have been unpacked" ); |
| 2727 | if (my_pack(in2) != NULL) { |
| 2728 | NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked" ); }) |
| 2729 | return NULL; |
| 2730 | } |
| 2731 | assert(opd_bt == in2->bottom_type()->basic_type(), "all same type" ); |
| 2732 | pk->add_opd(in2); |
| 2733 | } |
| 2734 | } |
| 2735 | _igvn.register_new_node_with_optimizer(pk); |
| 2736 | _phase->set_ctrl(pk, _phase->get_ctrl(opd)); |
| 2737 | #ifdef ASSERT |
| 2738 | if (TraceNewVectors) { |
| 2739 | tty->print("new Vector node: " ); |
| 2740 | pk->dump(); |
| 2741 | } |
| 2742 | #endif |
| 2743 | return pk; |
| 2744 | } |
| 2745 | |
| 2746 | //------------------------------insert_extracts--------------------------- |
| 2747 | // If a use of pack p is not a vector use, then replace the |
| 2748 | // use with an extract operation. |
| 2749 | void SuperWord::(Node_List* p) { |
| 2750 | if (p->at(0)->is_Store()) return; |
| 2751 | assert(_n_idx_list.is_empty(), "empty (node,index) list" ); |
| 2752 | |
| 2753 | // Inspect each use of each pack member. For each use that is |
| 2754 | // not a vector use, replace the use with an extract operation. |
| 2755 | |
| 2756 | for (uint i = 0; i < p->size(); i++) { |
| 2757 | Node* def = p->at(i); |
| 2758 | for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) { |
| 2759 | Node* use = def->fast_out(j); |
| 2760 | for (uint k = 0; k < use->req(); k++) { |
| 2761 | Node* n = use->in(k); |
| 2762 | if (def == n) { |
| 2763 | Node_List* u_pk = my_pack(use); |
| 2764 | if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) { |
| 2765 | _n_idx_list.push(use, k); |
| 2766 | } |
| 2767 | } |
| 2768 | } |
| 2769 | } |
| 2770 | } |
| 2771 | |
| 2772 | while (_n_idx_list.is_nonempty()) { |
| 2773 | Node* use = _n_idx_list.node(); |
| 2774 | int idx = _n_idx_list.index(); |
| 2775 | _n_idx_list.pop(); |
| 2776 | Node* def = use->in(idx); |
| 2777 | |
| 2778 | if (def->is_reduction()) continue; |
| 2779 | |
| 2780 | // Insert extract operation |
| 2781 | _igvn.hash_delete(def); |
| 2782 | int def_pos = alignment(def) / data_size(def); |
| 2783 | |
| 2784 | Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def)); |
| 2785 | _igvn.register_new_node_with_optimizer(ex); |
| 2786 | _phase->set_ctrl(ex, _phase->get_ctrl(def)); |
| 2787 | _igvn.replace_input_of(use, idx, ex); |
| 2788 | _igvn._worklist.push(def); |
| 2789 | |
| 2790 | bb_insert_after(ex, bb_idx(def)); |
| 2791 | set_velt_type(ex, velt_type(def)); |
| 2792 | } |
| 2793 | } |
| 2794 | |
| 2795 | //------------------------------is_vector_use--------------------------- |
| 2796 | // Is use->in(u_idx) a vector use? |
| 2797 | bool SuperWord::is_vector_use(Node* use, int u_idx) { |
| 2798 | Node_List* u_pk = my_pack(use); |
| 2799 | if (u_pk == NULL) return false; |
| 2800 | if (use->is_reduction()) return true; |
| 2801 | Node* def = use->in(u_idx); |
| 2802 | Node_List* d_pk = my_pack(def); |
| 2803 | if (d_pk == NULL) { |
| 2804 | // check for scalar promotion |
| 2805 | Node* n = u_pk->at(0)->in(u_idx); |
| 2806 | for (uint i = 1; i < u_pk->size(); i++) { |
| 2807 | if (u_pk->at(i)->in(u_idx) != n) return false; |
| 2808 | } |
| 2809 | return true; |
| 2810 | } |
| 2811 | if (VectorNode::is_muladds2i(use)) { |
| 2812 | // MulAddS2I takes shorts and produces ints - hence the special checks |
| 2813 | // on alignment and size. |
| 2814 | if (u_pk->size() * 2 != d_pk->size()) { |
| 2815 | return false; |
| 2816 | } |
| 2817 | for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) { |
| 2818 | Node* ui = u_pk->at(i); |
| 2819 | Node* di = d_pk->at(i); |
| 2820 | if (alignment(ui) != alignment(di) * 2) { |
| 2821 | return false; |
| 2822 | } |
| 2823 | } |
| 2824 | return true; |
| 2825 | } |
| 2826 | if (u_pk->size() != d_pk->size()) |
| 2827 | return false; |
| 2828 | for (uint i = 0; i < u_pk->size(); i++) { |
| 2829 | Node* ui = u_pk->at(i); |
| 2830 | Node* di = d_pk->at(i); |
| 2831 | if (ui->in(u_idx) != di || alignment(ui) != alignment(di)) |
| 2832 | return false; |
| 2833 | } |
| 2834 | return true; |
| 2835 | } |
| 2836 | |
| 2837 | //------------------------------construct_bb--------------------------- |
| 2838 | // Construct reverse postorder list of block members |
| 2839 | bool SuperWord::construct_bb() { |
| 2840 | Node* entry = bb(); |
| 2841 | |
| 2842 | assert(_stk.length() == 0, "stk is empty" ); |
| 2843 | assert(_block.length() == 0, "block is empty" ); |
| 2844 | assert(_data_entry.length() == 0, "data_entry is empty" ); |
| 2845 | assert(_mem_slice_head.length() == 0, "mem_slice_head is empty" ); |
| 2846 | assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty" ); |
| 2847 | |
| 2848 | // Find non-control nodes with no inputs from within block, |
| 2849 | // create a temporary map from node _idx to bb_idx for use |
| 2850 | // by the visited and post_visited sets, |
| 2851 | // and count number of nodes in block. |
| 2852 | int bb_ct = 0; |
| 2853 | for (uint i = 0; i < lpt()->_body.size(); i++) { |
| 2854 | Node *n = lpt()->_body.at(i); |
| 2855 | set_bb_idx(n, i); // Create a temporary map |
| 2856 | if (in_bb(n)) { |
| 2857 | if (n->is_LoadStore() || n->is_MergeMem() || |
| 2858 | (n->is_Proj() && !n->as_Proj()->is_CFG())) { |
| 2859 | // Bailout if the loop has LoadStore, MergeMem or data Proj |
| 2860 | // nodes. Superword optimization does not work with them. |
| 2861 | return false; |
| 2862 | } |
| 2863 | bb_ct++; |
| 2864 | if (!n->is_CFG()) { |
| 2865 | bool found = false; |
| 2866 | for (uint j = 0; j < n->req(); j++) { |
| 2867 | Node* def = n->in(j); |
| 2868 | if (def && in_bb(def)) { |
| 2869 | found = true; |
| 2870 | break; |
| 2871 | } |
| 2872 | } |
| 2873 | if (!found) { |
| 2874 | assert(n != entry, "can't be entry" ); |
| 2875 | _data_entry.push(n); |
| 2876 | } |
| 2877 | } |
| 2878 | } |
| 2879 | } |
| 2880 | |
| 2881 | // Find memory slices (head and tail) |
| 2882 | for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) { |
| 2883 | Node *n = lp()->fast_out(i); |
| 2884 | if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) { |
| 2885 | Node* n_tail = n->in(LoopNode::LoopBackControl); |
| 2886 | if (n_tail != n->in(LoopNode::EntryControl)) { |
| 2887 | if (!n_tail->is_Mem()) { |
| 2888 | assert(n_tail->is_Mem(), "unexpected node for memory slice: %s" , n_tail->Name()); |
| 2889 | return false; // Bailout |
| 2890 | } |
| 2891 | _mem_slice_head.push(n); |
| 2892 | _mem_slice_tail.push(n_tail); |
| 2893 | } |
| 2894 | } |
| 2895 | } |
| 2896 | |
| 2897 | // Create an RPO list of nodes in block |
| 2898 | |
| 2899 | visited_clear(); |
| 2900 | post_visited_clear(); |
| 2901 | |
| 2902 | // Push all non-control nodes with no inputs from within block, then control entry |
| 2903 | for (int j = 0; j < _data_entry.length(); j++) { |
| 2904 | Node* n = _data_entry.at(j); |
| 2905 | visited_set(n); |
| 2906 | _stk.push(n); |
| 2907 | } |
| 2908 | visited_set(entry); |
| 2909 | _stk.push(entry); |
| 2910 | |
| 2911 | // Do a depth first walk over out edges |
| 2912 | int rpo_idx = bb_ct - 1; |
| 2913 | int size; |
| 2914 | int reduction_uses = 0; |
| 2915 | while ((size = _stk.length()) > 0) { |
| 2916 | Node* n = _stk.top(); // Leave node on stack |
| 2917 | if (!visited_test_set(n)) { |
| 2918 | // forward arc in graph |
| 2919 | } else if (!post_visited_test(n)) { |
| 2920 | // cross or back arc |
| 2921 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 2922 | Node *use = n->fast_out(i); |
| 2923 | if (in_bb(use) && !visited_test(use) && |
| 2924 | // Don't go around backedge |
| 2925 | (!use->is_Phi() || n == entry)) { |
| 2926 | if (use->is_reduction()) { |
| 2927 | // First see if we can map the reduction on the given system we are on, then |
| 2928 | // make a data entry operation for each reduction we see. |
| 2929 | BasicType bt = use->bottom_type()->basic_type(); |
| 2930 | if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) { |
| 2931 | reduction_uses++; |
| 2932 | } |
| 2933 | } |
| 2934 | _stk.push(use); |
| 2935 | } |
| 2936 | } |
| 2937 | if (_stk.length() == size) { |
| 2938 | // There were no additional uses, post visit node now |
| 2939 | _stk.pop(); // Remove node from stack |
| 2940 | assert(rpo_idx >= 0, "" ); |
| 2941 | _block.at_put_grow(rpo_idx, n); |
| 2942 | rpo_idx--; |
| 2943 | post_visited_set(n); |
| 2944 | assert(rpo_idx >= 0 || _stk.is_empty(), "" ); |
| 2945 | } |
| 2946 | } else { |
| 2947 | _stk.pop(); // Remove post-visited node from stack |
| 2948 | } |
| 2949 | }//while |
| 2950 | |
| 2951 | int ii_current = -1; |
| 2952 | unsigned int load_idx = (unsigned int)-1; |
| 2953 | _ii_order.clear(); |
| 2954 | // Create real map of block indices for nodes |
| 2955 | for (int j = 0; j < _block.length(); j++) { |
| 2956 | Node* n = _block.at(j); |
| 2957 | set_bb_idx(n, j); |
| 2958 | if (_do_vector_loop && n->is_Load()) { |
| 2959 | if (ii_current == -1) { |
| 2960 | ii_current = _clone_map.gen(n->_idx); |
| 2961 | _ii_order.push(ii_current); |
| 2962 | load_idx = _clone_map.idx(n->_idx); |
| 2963 | } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) { |
| 2964 | ii_current = _clone_map.gen(n->_idx); |
| 2965 | _ii_order.push(ii_current); |
| 2966 | } |
| 2967 | } |
| 2968 | }//for |
| 2969 | |
| 2970 | // Ensure extra info is allocated. |
| 2971 | initialize_bb(); |
| 2972 | |
| 2973 | #ifndef PRODUCT |
| 2974 | if (_vector_loop_debug && _ii_order.length() > 0) { |
| 2975 | tty->print("SuperWord::construct_bb: List of generations: " ); |
| 2976 | for (int jj = 0; jj < _ii_order.length(); ++jj) { |
| 2977 | tty->print(" %d:%d" , jj, _ii_order.at(jj)); |
| 2978 | } |
| 2979 | tty->print_cr(" " ); |
| 2980 | } |
| 2981 | if (TraceSuperWord) { |
| 2982 | print_bb(); |
| 2983 | tty->print_cr("\ndata entry nodes: %s" , _data_entry.length() > 0 ? "" : "NONE" ); |
| 2984 | for (int m = 0; m < _data_entry.length(); m++) { |
| 2985 | tty->print("%3d " , m); |
| 2986 | _data_entry.at(m)->dump(); |
| 2987 | } |
| 2988 | tty->print_cr("\nmemory slices: %s" , _mem_slice_head.length() > 0 ? "" : "NONE" ); |
| 2989 | for (int m = 0; m < _mem_slice_head.length(); m++) { |
| 2990 | tty->print("%3d " , m); _mem_slice_head.at(m)->dump(); |
| 2991 | tty->print(" " ); _mem_slice_tail.at(m)->dump(); |
| 2992 | } |
| 2993 | } |
| 2994 | #endif |
| 2995 | assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found" ); |
| 2996 | return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0); |
| 2997 | } |
| 2998 | |
| 2999 | //------------------------------initialize_bb--------------------------- |
| 3000 | // Initialize per node info |
| 3001 | void SuperWord::initialize_bb() { |
| 3002 | Node* last = _block.at(_block.length() - 1); |
| 3003 | grow_node_info(bb_idx(last)); |
| 3004 | } |
| 3005 | |
| 3006 | //------------------------------bb_insert_after--------------------------- |
| 3007 | // Insert n into block after pos |
| 3008 | void SuperWord::bb_insert_after(Node* n, int pos) { |
| 3009 | int n_pos = pos + 1; |
| 3010 | // Make room |
| 3011 | for (int i = _block.length() - 1; i >= n_pos; i--) { |
| 3012 | _block.at_put_grow(i+1, _block.at(i)); |
| 3013 | } |
| 3014 | for (int j = _node_info.length() - 1; j >= n_pos; j--) { |
| 3015 | _node_info.at_put_grow(j+1, _node_info.at(j)); |
| 3016 | } |
| 3017 | // Set value |
| 3018 | _block.at_put_grow(n_pos, n); |
| 3019 | _node_info.at_put_grow(n_pos, SWNodeInfo::initial); |
| 3020 | // Adjust map from node->_idx to _block index |
| 3021 | for (int i = n_pos; i < _block.length(); i++) { |
| 3022 | set_bb_idx(_block.at(i), i); |
| 3023 | } |
| 3024 | } |
| 3025 | |
| 3026 | //------------------------------compute_max_depth--------------------------- |
| 3027 | // Compute max depth for expressions from beginning of block |
| 3028 | // Use to prune search paths during test for independence. |
| 3029 | void SuperWord::compute_max_depth() { |
| 3030 | int ct = 0; |
| 3031 | bool again; |
| 3032 | do { |
| 3033 | again = false; |
| 3034 | for (int i = 0; i < _block.length(); i++) { |
| 3035 | Node* n = _block.at(i); |
| 3036 | if (!n->is_Phi()) { |
| 3037 | int d_orig = depth(n); |
| 3038 | int d_in = 0; |
| 3039 | for (DepPreds preds(n, _dg); !preds.done(); preds.next()) { |
| 3040 | Node* pred = preds.current(); |
| 3041 | if (in_bb(pred)) { |
| 3042 | d_in = MAX2(d_in, depth(pred)); |
| 3043 | } |
| 3044 | } |
| 3045 | if (d_in + 1 != d_orig) { |
| 3046 | set_depth(n, d_in + 1); |
| 3047 | again = true; |
| 3048 | } |
| 3049 | } |
| 3050 | } |
| 3051 | ct++; |
| 3052 | } while (again); |
| 3053 | |
| 3054 | if (TraceSuperWord && Verbose) { |
| 3055 | tty->print_cr("compute_max_depth iterated: %d times" , ct); |
| 3056 | } |
| 3057 | } |
| 3058 | |
| 3059 | //-------------------------compute_vector_element_type----------------------- |
| 3060 | // Compute necessary vector element type for expressions |
| 3061 | // This propagates backwards a narrower integer type when the |
| 3062 | // upper bits of the value are not needed. |
| 3063 | // Example: char a,b,c; a = b + c; |
| 3064 | // Normally the type of the add is integer, but for packed character |
| 3065 | // operations the type of the add needs to be char. |
| 3066 | void SuperWord::compute_vector_element_type() { |
| 3067 | if (TraceSuperWord && Verbose) { |
| 3068 | tty->print_cr("\ncompute_velt_type:" ); |
| 3069 | } |
| 3070 | |
| 3071 | // Initial type |
| 3072 | for (int i = 0; i < _block.length(); i++) { |
| 3073 | Node* n = _block.at(i); |
| 3074 | set_velt_type(n, container_type(n)); |
| 3075 | } |
| 3076 | |
| 3077 | // Propagate integer narrowed type backwards through operations |
| 3078 | // that don't depend on higher order bits |
| 3079 | for (int i = _block.length() - 1; i >= 0; i--) { |
| 3080 | Node* n = _block.at(i); |
| 3081 | // Only integer types need be examined |
| 3082 | const Type* vtn = velt_type(n); |
| 3083 | if (vtn->basic_type() == T_INT) { |
| 3084 | uint start, end; |
| 3085 | VectorNode::vector_operands(n, &start, &end); |
| 3086 | |
| 3087 | for (uint j = start; j < end; j++) { |
| 3088 | Node* in = n->in(j); |
| 3089 | // Don't propagate through a memory |
| 3090 | if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT && |
| 3091 | data_size(n) < data_size(in)) { |
| 3092 | bool same_type = true; |
| 3093 | for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) { |
| 3094 | Node *use = in->fast_out(k); |
| 3095 | if (!in_bb(use) || !same_velt_type(use, n)) { |
| 3096 | same_type = false; |
| 3097 | break; |
| 3098 | } |
| 3099 | } |
| 3100 | if (same_type) { |
| 3101 | // For right shifts of small integer types (bool, byte, char, short) |
| 3102 | // we need precise information about sign-ness. Only Load nodes have |
| 3103 | // this information because Store nodes are the same for signed and |
| 3104 | // unsigned values. And any arithmetic operation after a load may |
| 3105 | // expand a value to signed Int so such right shifts can't be used |
| 3106 | // because vector elements do not have upper bits of Int. |
| 3107 | const Type* vt = vtn; |
| 3108 | if (VectorNode::is_shift(in)) { |
| 3109 | Node* load = in->in(1); |
| 3110 | if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) { |
| 3111 | vt = velt_type(load); |
| 3112 | } else if (in->Opcode() != Op_LShiftI) { |
| 3113 | // Widen type to Int to avoid creation of right shift vector |
| 3114 | // (align + data_size(s1) check in stmts_can_pack() will fail). |
| 3115 | // Note, left shifts work regardless type. |
| 3116 | vt = TypeInt::INT; |
| 3117 | } |
| 3118 | } |
| 3119 | set_velt_type(in, vt); |
| 3120 | } |
| 3121 | } |
| 3122 | } |
| 3123 | } |
| 3124 | } |
| 3125 | #ifndef PRODUCT |
| 3126 | if (TraceSuperWord && Verbose) { |
| 3127 | for (int i = 0; i < _block.length(); i++) { |
| 3128 | Node* n = _block.at(i); |
| 3129 | velt_type(n)->dump(); |
| 3130 | tty->print("\t" ); |
| 3131 | n->dump(); |
| 3132 | } |
| 3133 | } |
| 3134 | #endif |
| 3135 | } |
| 3136 | |
| 3137 | //------------------------------memory_alignment--------------------------- |
| 3138 | // Alignment within a vector memory reference |
| 3139 | int SuperWord::memory_alignment(MemNode* s, int iv_adjust) { |
| 3140 | #ifndef PRODUCT |
| 3141 | if(TraceSuperWord && Verbose) { |
| 3142 | tty->print("SuperWord::memory_alignment within a vector memory reference for %d: " , s->_idx); s->dump(); |
| 3143 | } |
| 3144 | #endif |
| 3145 | NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);) |
| 3146 | SWPointer p(s, this, NULL, false); |
| 3147 | if (!p.valid()) { |
| 3148 | NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align" );) |
| 3149 | return bottom_align; |
| 3150 | } |
| 3151 | int vw = get_vw_bytes_special(s); |
| 3152 | if (vw < 2) { |
| 3153 | NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align" );) |
| 3154 | return bottom_align; // No vectors for this type |
| 3155 | } |
| 3156 | int offset = p.offset_in_bytes(); |
| 3157 | offset += iv_adjust*p.memory_size(); |
| 3158 | int off_rem = offset % vw; |
| 3159 | int off_mod = off_rem >= 0 ? off_rem : off_rem + vw; |
| 3160 | if (TraceSuperWord && Verbose) { |
| 3161 | tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d" , off_rem, off_mod); |
| 3162 | } |
| 3163 | return off_mod; |
| 3164 | } |
| 3165 | |
| 3166 | //---------------------------container_type--------------------------- |
| 3167 | // Smallest type containing range of values |
| 3168 | const Type* SuperWord::container_type(Node* n) { |
| 3169 | if (n->is_Mem()) { |
| 3170 | BasicType bt = n->as_Mem()->memory_type(); |
| 3171 | if (n->is_Store() && (bt == T_CHAR)) { |
| 3172 | // Use T_SHORT type instead of T_CHAR for stored values because any |
| 3173 | // preceding arithmetic operation extends values to signed Int. |
| 3174 | bt = T_SHORT; |
| 3175 | } |
| 3176 | if (n->Opcode() == Op_LoadUB) { |
| 3177 | // Adjust type for unsigned byte loads, it is important for right shifts. |
| 3178 | // T_BOOLEAN is used because there is no basic type representing type |
| 3179 | // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only |
| 3180 | // size (one byte) and sign is important. |
| 3181 | bt = T_BOOLEAN; |
| 3182 | } |
| 3183 | return Type::get_const_basic_type(bt); |
| 3184 | } |
| 3185 | const Type* t = _igvn.type(n); |
| 3186 | if (t->basic_type() == T_INT) { |
| 3187 | // A narrow type of arithmetic operations will be determined by |
| 3188 | // propagating the type of memory operations. |
| 3189 | return TypeInt::INT; |
| 3190 | } |
| 3191 | return t; |
| 3192 | } |
| 3193 | |
| 3194 | bool SuperWord::same_velt_type(Node* n1, Node* n2) { |
| 3195 | const Type* vt1 = velt_type(n1); |
| 3196 | const Type* vt2 = velt_type(n2); |
| 3197 | if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) { |
| 3198 | // Compare vectors element sizes for integer types. |
| 3199 | return data_size(n1) == data_size(n2); |
| 3200 | } |
| 3201 | return vt1 == vt2; |
| 3202 | } |
| 3203 | |
| 3204 | //------------------------------in_packset--------------------------- |
| 3205 | // Are s1 and s2 in a pack pair and ordered as s1,s2? |
| 3206 | bool SuperWord::in_packset(Node* s1, Node* s2) { |
| 3207 | for (int i = 0; i < _packset.length(); i++) { |
| 3208 | Node_List* p = _packset.at(i); |
| 3209 | assert(p->size() == 2, "must be" ); |
| 3210 | if (p->at(0) == s1 && p->at(p->size()-1) == s2) { |
| 3211 | return true; |
| 3212 | } |
| 3213 | } |
| 3214 | return false; |
| 3215 | } |
| 3216 | |
| 3217 | //------------------------------in_pack--------------------------- |
| 3218 | // Is s in pack p? |
| 3219 | Node_List* SuperWord::in_pack(Node* s, Node_List* p) { |
| 3220 | for (uint i = 0; i < p->size(); i++) { |
| 3221 | if (p->at(i) == s) { |
| 3222 | return p; |
| 3223 | } |
| 3224 | } |
| 3225 | return NULL; |
| 3226 | } |
| 3227 | |
| 3228 | //------------------------------remove_pack_at--------------------------- |
| 3229 | // Remove the pack at position pos in the packset |
| 3230 | void SuperWord::remove_pack_at(int pos) { |
| 3231 | Node_List* p = _packset.at(pos); |
| 3232 | for (uint i = 0; i < p->size(); i++) { |
| 3233 | Node* s = p->at(i); |
| 3234 | set_my_pack(s, NULL); |
| 3235 | } |
| 3236 | _packset.remove_at(pos); |
| 3237 | } |
| 3238 | |
| 3239 | void SuperWord::packset_sort(int n) { |
| 3240 | // simple bubble sort so that we capitalize with O(n) when its already sorted |
| 3241 | while (n != 0) { |
| 3242 | bool swapped = false; |
| 3243 | for (int i = 1; i < n; i++) { |
| 3244 | Node_List* q_low = _packset.at(i-1); |
| 3245 | Node_List* q_i = _packset.at(i); |
| 3246 | |
| 3247 | // only swap when we find something to swap |
| 3248 | if (alignment(q_low->at(0)) > alignment(q_i->at(0))) { |
| 3249 | Node_List* t = q_i; |
| 3250 | *(_packset.adr_at(i)) = q_low; |
| 3251 | *(_packset.adr_at(i-1)) = q_i; |
| 3252 | swapped = true; |
| 3253 | } |
| 3254 | } |
| 3255 | if (swapped == false) break; |
| 3256 | n--; |
| 3257 | } |
| 3258 | } |
| 3259 | |
| 3260 | //------------------------------executed_first--------------------------- |
| 3261 | // Return the node executed first in pack p. Uses the RPO block list |
| 3262 | // to determine order. |
| 3263 | Node* SuperWord::executed_first(Node_List* p) { |
| 3264 | Node* n = p->at(0); |
| 3265 | int n_rpo = bb_idx(n); |
| 3266 | for (uint i = 1; i < p->size(); i++) { |
| 3267 | Node* s = p->at(i); |
| 3268 | int s_rpo = bb_idx(s); |
| 3269 | if (s_rpo < n_rpo) { |
| 3270 | n = s; |
| 3271 | n_rpo = s_rpo; |
| 3272 | } |
| 3273 | } |
| 3274 | return n; |
| 3275 | } |
| 3276 | |
| 3277 | //------------------------------executed_last--------------------------- |
| 3278 | // Return the node executed last in pack p. |
| 3279 | Node* SuperWord::executed_last(Node_List* p) { |
| 3280 | Node* n = p->at(0); |
| 3281 | int n_rpo = bb_idx(n); |
| 3282 | for (uint i = 1; i < p->size(); i++) { |
| 3283 | Node* s = p->at(i); |
| 3284 | int s_rpo = bb_idx(s); |
| 3285 | if (s_rpo > n_rpo) { |
| 3286 | n = s; |
| 3287 | n_rpo = s_rpo; |
| 3288 | } |
| 3289 | } |
| 3290 | return n; |
| 3291 | } |
| 3292 | |
| 3293 | LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) { |
| 3294 | LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest; |
| 3295 | for (uint i = 0; i < p->size(); i++) { |
| 3296 | Node* n = p->at(i); |
| 3297 | assert(n->is_Load(), "only meaningful for loads" ); |
| 3298 | if (!n->depends_only_on_test()) { |
| 3299 | dep = LoadNode::Pinned; |
| 3300 | } |
| 3301 | } |
| 3302 | return dep; |
| 3303 | } |
| 3304 | |
| 3305 | |
| 3306 | //----------------------------align_initial_loop_index--------------------------- |
| 3307 | // Adjust pre-loop limit so that in main loop, a load/store reference |
| 3308 | // to align_to_ref will be a position zero in the vector. |
| 3309 | // (iv + k) mod vector_align == 0 |
| 3310 | void SuperWord::align_initial_loop_index(MemNode* align_to_ref) { |
| 3311 | CountedLoopNode *main_head = lp()->as_CountedLoop(); |
| 3312 | assert(main_head->is_main_loop(), "" ); |
| 3313 | CountedLoopEndNode* pre_end = get_pre_loop_end(main_head); |
| 3314 | assert(pre_end != NULL, "we must have a correct pre-loop" ); |
| 3315 | Node *pre_opaq1 = pre_end->limit(); |
| 3316 | assert(pre_opaq1->Opcode() == Op_Opaque1, "" ); |
| 3317 | Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1; |
| 3318 | Node *lim0 = pre_opaq->in(1); |
| 3319 | |
| 3320 | // Where we put new limit calculations |
| 3321 | Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl); |
| 3322 | |
| 3323 | // Ensure the original loop limit is available from the |
| 3324 | // pre-loop Opaque1 node. |
| 3325 | Node *orig_limit = pre_opaq->original_loop_limit(); |
| 3326 | assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "" ); |
| 3327 | |
| 3328 | SWPointer align_to_ref_p(align_to_ref, this, NULL, false); |
| 3329 | assert(align_to_ref_p.valid(), "sanity" ); |
| 3330 | |
| 3331 | // Given: |
| 3332 | // lim0 == original pre loop limit |
| 3333 | // V == v_align (power of 2) |
| 3334 | // invar == extra invariant piece of the address expression |
| 3335 | // e == offset [ +/- invar ] |
| 3336 | // |
| 3337 | // When reassociating expressions involving '%' the basic rules are: |
| 3338 | // (a - b) % k == 0 => a % k == b % k |
| 3339 | // and: |
| 3340 | // (a + b) % k == 0 => a % k == (k - b) % k |
| 3341 | // |
| 3342 | // For stride > 0 && scale > 0, |
| 3343 | // Derive the new pre-loop limit "lim" such that the two constraints: |
| 3344 | // (1) lim = lim0 + N (where N is some positive integer < V) |
| 3345 | // (2) (e + lim) % V == 0 |
| 3346 | // are true. |
| 3347 | // |
| 3348 | // Substituting (1) into (2), |
| 3349 | // (e + lim0 + N) % V == 0 |
| 3350 | // solve for N: |
| 3351 | // N = (V - (e + lim0)) % V |
| 3352 | // substitute back into (1), so that new limit |
| 3353 | // lim = lim0 + (V - (e + lim0)) % V |
| 3354 | // |
| 3355 | // For stride > 0 && scale < 0 |
| 3356 | // Constraints: |
| 3357 | // lim = lim0 + N |
| 3358 | // (e - lim) % V == 0 |
| 3359 | // Solving for lim: |
| 3360 | // (e - lim0 - N) % V == 0 |
| 3361 | // N = (e - lim0) % V |
| 3362 | // lim = lim0 + (e - lim0) % V |
| 3363 | // |
| 3364 | // For stride < 0 && scale > 0 |
| 3365 | // Constraints: |
| 3366 | // lim = lim0 - N |
| 3367 | // (e + lim) % V == 0 |
| 3368 | // Solving for lim: |
| 3369 | // (e + lim0 - N) % V == 0 |
| 3370 | // N = (e + lim0) % V |
| 3371 | // lim = lim0 - (e + lim0) % V |
| 3372 | // |
| 3373 | // For stride < 0 && scale < 0 |
| 3374 | // Constraints: |
| 3375 | // lim = lim0 - N |
| 3376 | // (e - lim) % V == 0 |
| 3377 | // Solving for lim: |
| 3378 | // (e - lim0 + N) % V == 0 |
| 3379 | // N = (V - (e - lim0)) % V |
| 3380 | // lim = lim0 - (V - (e - lim0)) % V |
| 3381 | |
| 3382 | int vw = vector_width_in_bytes(align_to_ref); |
| 3383 | int stride = iv_stride(); |
| 3384 | int scale = align_to_ref_p.scale_in_bytes(); |
| 3385 | int elt_size = align_to_ref_p.memory_size(); |
| 3386 | int v_align = vw / elt_size; |
| 3387 | assert(v_align > 1, "sanity" ); |
| 3388 | int offset = align_to_ref_p.offset_in_bytes() / elt_size; |
| 3389 | Node *offsn = _igvn.intcon(offset); |
| 3390 | |
| 3391 | Node *e = offsn; |
| 3392 | if (align_to_ref_p.invar() != NULL) { |
| 3393 | // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt) |
| 3394 | Node* log2_elt = _igvn.intcon(exact_log2(elt_size)); |
| 3395 | Node* invar = align_to_ref_p.invar(); |
| 3396 | if (_igvn.type(invar)->isa_long()) { |
| 3397 | // Computations are done % (vector width/element size) so it's |
| 3398 | // safe to simply convert invar to an int and loose the upper 32 |
| 3399 | // bit half. |
| 3400 | invar = new ConvL2INode(invar); |
| 3401 | _igvn.register_new_node_with_optimizer(invar); |
| 3402 | } |
| 3403 | Node* aref = new URShiftINode(invar, log2_elt); |
| 3404 | _igvn.register_new_node_with_optimizer(aref); |
| 3405 | _phase->set_ctrl(aref, pre_ctrl); |
| 3406 | if (align_to_ref_p.negate_invar()) { |
| 3407 | e = new SubINode(e, aref); |
| 3408 | } else { |
| 3409 | e = new AddINode(e, aref); |
| 3410 | } |
| 3411 | _igvn.register_new_node_with_optimizer(e); |
| 3412 | _phase->set_ctrl(e, pre_ctrl); |
| 3413 | } |
| 3414 | if (vw > ObjectAlignmentInBytes || align_to_ref_p.base()->is_top()) { |
| 3415 | // incorporate base e +/- base && Mask >>> log2(elt) |
| 3416 | Node* xbase = new CastP2XNode(NULL, align_to_ref_p.adr()); |
| 3417 | _igvn.register_new_node_with_optimizer(xbase); |
| 3418 | #ifdef _LP64 |
| 3419 | xbase = new ConvL2INode(xbase); |
| 3420 | _igvn.register_new_node_with_optimizer(xbase); |
| 3421 | #endif |
| 3422 | Node* mask = _igvn.intcon(vw-1); |
| 3423 | Node* masked_xbase = new AndINode(xbase, mask); |
| 3424 | _igvn.register_new_node_with_optimizer(masked_xbase); |
| 3425 | Node* log2_elt = _igvn.intcon(exact_log2(elt_size)); |
| 3426 | Node* bref = new URShiftINode(masked_xbase, log2_elt); |
| 3427 | _igvn.register_new_node_with_optimizer(bref); |
| 3428 | _phase->set_ctrl(bref, pre_ctrl); |
| 3429 | e = new AddINode(e, bref); |
| 3430 | _igvn.register_new_node_with_optimizer(e); |
| 3431 | _phase->set_ctrl(e, pre_ctrl); |
| 3432 | } |
| 3433 | |
| 3434 | // compute e +/- lim0 |
| 3435 | if (scale < 0) { |
| 3436 | e = new SubINode(e, lim0); |
| 3437 | } else { |
| 3438 | e = new AddINode(e, lim0); |
| 3439 | } |
| 3440 | _igvn.register_new_node_with_optimizer(e); |
| 3441 | _phase->set_ctrl(e, pre_ctrl); |
| 3442 | |
| 3443 | if (stride * scale > 0) { |
| 3444 | // compute V - (e +/- lim0) |
| 3445 | Node* va = _igvn.intcon(v_align); |
| 3446 | e = new SubINode(va, e); |
| 3447 | _igvn.register_new_node_with_optimizer(e); |
| 3448 | _phase->set_ctrl(e, pre_ctrl); |
| 3449 | } |
| 3450 | // compute N = (exp) % V |
| 3451 | Node* va_msk = _igvn.intcon(v_align - 1); |
| 3452 | Node* N = new AndINode(e, va_msk); |
| 3453 | _igvn.register_new_node_with_optimizer(N); |
| 3454 | _phase->set_ctrl(N, pre_ctrl); |
| 3455 | |
| 3456 | // substitute back into (1), so that new limit |
| 3457 | // lim = lim0 + N |
| 3458 | Node* lim; |
| 3459 | if (stride < 0) { |
| 3460 | lim = new SubINode(lim0, N); |
| 3461 | } else { |
| 3462 | lim = new AddINode(lim0, N); |
| 3463 | } |
| 3464 | _igvn.register_new_node_with_optimizer(lim); |
| 3465 | _phase->set_ctrl(lim, pre_ctrl); |
| 3466 | Node* constrained = |
| 3467 | (stride > 0) ? (Node*) new MinINode(lim, orig_limit) |
| 3468 | : (Node*) new MaxINode(lim, orig_limit); |
| 3469 | _igvn.register_new_node_with_optimizer(constrained); |
| 3470 | _phase->set_ctrl(constrained, pre_ctrl); |
| 3471 | _igvn.replace_input_of(pre_opaq, 1, constrained); |
| 3472 | } |
| 3473 | |
| 3474 | //----------------------------get_pre_loop_end--------------------------- |
| 3475 | // Find pre loop end from main loop. Returns null if none. |
| 3476 | CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) { |
| 3477 | // The loop cannot be optimized if the graph shape at |
| 3478 | // the loop entry is inappropriate. |
| 3479 | if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) { |
| 3480 | return NULL; |
| 3481 | } |
| 3482 | |
| 3483 | Node* p_f = cl->skip_predicates()->in(0)->in(0); |
| 3484 | if (!p_f->is_IfFalse()) return NULL; |
| 3485 | if (!p_f->in(0)->is_CountedLoopEnd()) return NULL; |
| 3486 | CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd(); |
| 3487 | CountedLoopNode* loop_node = pre_end->loopnode(); |
| 3488 | if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL; |
| 3489 | return pre_end; |
| 3490 | } |
| 3491 | |
| 3492 | //------------------------------init--------------------------- |
| 3493 | void SuperWord::init() { |
| 3494 | _dg.init(); |
| 3495 | _packset.clear(); |
| 3496 | _disjoint_ptrs.clear(); |
| 3497 | _block.clear(); |
| 3498 | _post_block.clear(); |
| 3499 | _data_entry.clear(); |
| 3500 | _mem_slice_head.clear(); |
| 3501 | _mem_slice_tail.clear(); |
| 3502 | _iteration_first.clear(); |
| 3503 | _iteration_last.clear(); |
| 3504 | _node_info.clear(); |
| 3505 | _align_to_ref = NULL; |
| 3506 | _lpt = NULL; |
| 3507 | _lp = NULL; |
| 3508 | _bb = NULL; |
| 3509 | _iv = NULL; |
| 3510 | _race_possible = 0; |
| 3511 | _early_return = false; |
| 3512 | _num_work_vecs = 0; |
| 3513 | _num_reductions = 0; |
| 3514 | } |
| 3515 | |
| 3516 | //------------------------------restart--------------------------- |
| 3517 | void SuperWord::restart() { |
| 3518 | _dg.init(); |
| 3519 | _packset.clear(); |
| 3520 | _disjoint_ptrs.clear(); |
| 3521 | _block.clear(); |
| 3522 | _post_block.clear(); |
| 3523 | _data_entry.clear(); |
| 3524 | _mem_slice_head.clear(); |
| 3525 | _mem_slice_tail.clear(); |
| 3526 | _node_info.clear(); |
| 3527 | } |
| 3528 | |
| 3529 | //------------------------------print_packset--------------------------- |
| 3530 | void SuperWord::print_packset() { |
| 3531 | #ifndef PRODUCT |
| 3532 | tty->print_cr("packset" ); |
| 3533 | for (int i = 0; i < _packset.length(); i++) { |
| 3534 | tty->print_cr("Pack: %d" , i); |
| 3535 | Node_List* p = _packset.at(i); |
| 3536 | print_pack(p); |
| 3537 | } |
| 3538 | #endif |
| 3539 | } |
| 3540 | |
| 3541 | //------------------------------print_pack--------------------------- |
| 3542 | void SuperWord::print_pack(Node_List* p) { |
| 3543 | for (uint i = 0; i < p->size(); i++) { |
| 3544 | print_stmt(p->at(i)); |
| 3545 | } |
| 3546 | } |
| 3547 | |
| 3548 | //------------------------------print_bb--------------------------- |
| 3549 | void SuperWord::print_bb() { |
| 3550 | #ifndef PRODUCT |
| 3551 | tty->print_cr("\nBlock" ); |
| 3552 | for (int i = 0; i < _block.length(); i++) { |
| 3553 | Node* n = _block.at(i); |
| 3554 | tty->print("%d " , i); |
| 3555 | if (n) { |
| 3556 | n->dump(); |
| 3557 | } |
| 3558 | } |
| 3559 | #endif |
| 3560 | } |
| 3561 | |
| 3562 | //------------------------------print_stmt--------------------------- |
| 3563 | void SuperWord::print_stmt(Node* s) { |
| 3564 | #ifndef PRODUCT |
| 3565 | tty->print(" align: %d \t" , alignment(s)); |
| 3566 | s->dump(); |
| 3567 | #endif |
| 3568 | } |
| 3569 | |
| 3570 | //------------------------------blank--------------------------- |
| 3571 | char* SuperWord::blank(uint depth) { |
| 3572 | static char blanks[101]; |
| 3573 | assert(depth < 101, "too deep" ); |
| 3574 | for (uint i = 0; i < depth; i++) blanks[i] = ' '; |
| 3575 | blanks[depth] = '\0'; |
| 3576 | return blanks; |
| 3577 | } |
| 3578 | |
| 3579 | |
| 3580 | //==============================SWPointer=========================== |
| 3581 | #ifndef PRODUCT |
| 3582 | int SWPointer::Tracer::_depth = 0; |
| 3583 | #endif |
| 3584 | //----------------------------SWPointer------------------------ |
| 3585 | SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) : |
| 3586 | _mem(mem), _slp(slp), _base(NULL), _adr(NULL), |
| 3587 | _scale(0), _offset(0), _invar(NULL), _negate_invar(false), |
| 3588 | _nstack(nstack), _analyze_only(analyze_only), |
| 3589 | _stack_idx(0) |
| 3590 | #ifndef PRODUCT |
| 3591 | , _tracer(slp) |
| 3592 | #endif |
| 3593 | { |
| 3594 | NOT_PRODUCT(_tracer.ctor_1(mem);) |
| 3595 | |
| 3596 | Node* adr = mem->in(MemNode::Address); |
| 3597 | if (!adr->is_AddP()) { |
| 3598 | assert(!valid(), "too complex" ); |
| 3599 | return; |
| 3600 | } |
| 3601 | // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant) |
| 3602 | Node* base = adr->in(AddPNode::Base); |
| 3603 | // The base address should be loop invariant |
| 3604 | if (!invariant(base)) { |
| 3605 | assert(!valid(), "base address is loop variant" ); |
| 3606 | return; |
| 3607 | } |
| 3608 | // unsafe references require misaligned vector access support |
| 3609 | if (base->is_top() && !Matcher::misaligned_vectors_ok()) { |
| 3610 | assert(!valid(), "unsafe access" ); |
| 3611 | return; |
| 3612 | } |
| 3613 | |
| 3614 | NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();) |
| 3615 | NOT_PRODUCT(_tracer.ctor_2(adr);) |
| 3616 | |
| 3617 | int i; |
| 3618 | for (i = 0; i < 3; i++) { |
| 3619 | NOT_PRODUCT(_tracer.ctor_3(adr, i);) |
| 3620 | |
| 3621 | if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) { |
| 3622 | assert(!valid(), "too complex" ); |
| 3623 | return; |
| 3624 | } |
| 3625 | adr = adr->in(AddPNode::Address); |
| 3626 | NOT_PRODUCT(_tracer.ctor_4(adr, i);) |
| 3627 | |
| 3628 | if (base == adr || !adr->is_AddP()) { |
| 3629 | NOT_PRODUCT(_tracer.ctor_5(adr, base, i);) |
| 3630 | break; // stop looking at addp's |
| 3631 | } |
| 3632 | } |
| 3633 | if (!invariant(adr)) { |
| 3634 | assert(!valid(), "adr is loop variant" ); |
| 3635 | return; |
| 3636 | } |
| 3637 | |
| 3638 | if (!base->is_top() && adr != base) { |
| 3639 | assert(!valid(), "adr and base differ" ); |
| 3640 | return; |
| 3641 | } |
| 3642 | |
| 3643 | NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();) |
| 3644 | NOT_PRODUCT(_tracer.ctor_6(mem);) |
| 3645 | |
| 3646 | _base = base; |
| 3647 | _adr = adr; |
| 3648 | assert(valid(), "Usable" ); |
| 3649 | } |
| 3650 | |
| 3651 | // Following is used to create a temporary object during |
| 3652 | // the pattern match of an address expression. |
| 3653 | SWPointer::SWPointer(SWPointer* p) : |
| 3654 | _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL), |
| 3655 | _scale(0), _offset(0), _invar(NULL), _negate_invar(false), |
| 3656 | _nstack(p->_nstack), _analyze_only(p->_analyze_only), |
| 3657 | _stack_idx(p->_stack_idx) |
| 3658 | #ifndef PRODUCT |
| 3659 | , _tracer(p->_slp) |
| 3660 | #endif |
| 3661 | {} |
| 3662 | |
| 3663 | |
| 3664 | bool SWPointer::invariant(Node* n) { |
| 3665 | NOT_PRODUCT(Tracer::Depth dd;) |
| 3666 | Node *n_c = phase()->get_ctrl(n); |
| 3667 | NOT_PRODUCT(_tracer.invariant_1(n, n_c);) |
| 3668 | return !lpt()->is_member(phase()->get_loop(n_c)); |
| 3669 | } |
| 3670 | //------------------------scaled_iv_plus_offset-------------------- |
| 3671 | // Match: k*iv + offset |
| 3672 | // where: k is a constant that maybe zero, and |
| 3673 | // offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional |
| 3674 | bool SWPointer::scaled_iv_plus_offset(Node* n) { |
| 3675 | NOT_PRODUCT(Tracer::Depth ddd;) |
| 3676 | NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);) |
| 3677 | |
| 3678 | if (scaled_iv(n)) { |
| 3679 | NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);) |
| 3680 | return true; |
| 3681 | } |
| 3682 | |
| 3683 | if (offset_plus_k(n)) { |
| 3684 | NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);) |
| 3685 | return true; |
| 3686 | } |
| 3687 | |
| 3688 | int opc = n->Opcode(); |
| 3689 | if (opc == Op_AddI) { |
| 3690 | if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) { |
| 3691 | NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);) |
| 3692 | return true; |
| 3693 | } |
| 3694 | if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) { |
| 3695 | NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);) |
| 3696 | return true; |
| 3697 | } |
| 3698 | } else if (opc == Op_SubI) { |
| 3699 | if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) { |
| 3700 | NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);) |
| 3701 | return true; |
| 3702 | } |
| 3703 | if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) { |
| 3704 | _scale *= -1; |
| 3705 | NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);) |
| 3706 | return true; |
| 3707 | } |
| 3708 | } |
| 3709 | |
| 3710 | NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);) |
| 3711 | return false; |
| 3712 | } |
| 3713 | |
| 3714 | //----------------------------scaled_iv------------------------ |
| 3715 | // Match: k*iv where k is a constant that's not zero |
| 3716 | bool SWPointer::scaled_iv(Node* n) { |
| 3717 | NOT_PRODUCT(Tracer::Depth ddd;) |
| 3718 | NOT_PRODUCT(_tracer.scaled_iv_1(n);) |
| 3719 | |
| 3720 | if (_scale != 0) { // already found a scale |
| 3721 | NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);) |
| 3722 | return false; |
| 3723 | } |
| 3724 | |
| 3725 | if (n == iv()) { |
| 3726 | _scale = 1; |
| 3727 | NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);) |
| 3728 | return true; |
| 3729 | } |
| 3730 | if (_analyze_only && (invariant(n) == false)) { |
| 3731 | _nstack->push(n, _stack_idx++); |
| 3732 | } |
| 3733 | |
| 3734 | int opc = n->Opcode(); |
| 3735 | if (opc == Op_MulI) { |
| 3736 | if (n->in(1) == iv() && n->in(2)->is_Con()) { |
| 3737 | _scale = n->in(2)->get_int(); |
| 3738 | NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);) |
| 3739 | return true; |
| 3740 | } else if (n->in(2) == iv() && n->in(1)->is_Con()) { |
| 3741 | _scale = n->in(1)->get_int(); |
| 3742 | NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);) |
| 3743 | return true; |
| 3744 | } |
| 3745 | } else if (opc == Op_LShiftI) { |
| 3746 | if (n->in(1) == iv() && n->in(2)->is_Con()) { |
| 3747 | _scale = 1 << n->in(2)->get_int(); |
| 3748 | NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);) |
| 3749 | return true; |
| 3750 | } |
| 3751 | } else if (opc == Op_ConvI2L) { |
| 3752 | if (n->in(1)->Opcode() == Op_CastII && |
| 3753 | n->in(1)->as_CastII()->has_range_check()) { |
| 3754 | // Skip range check dependent CastII nodes |
| 3755 | n = n->in(1); |
| 3756 | } |
| 3757 | if (scaled_iv_plus_offset(n->in(1))) { |
| 3758 | NOT_PRODUCT(_tracer.scaled_iv_7(n);) |
| 3759 | return true; |
| 3760 | } |
| 3761 | } else if (opc == Op_LShiftL) { |
| 3762 | if (!has_iv() && _invar == NULL) { |
| 3763 | // Need to preserve the current _offset value, so |
| 3764 | // create a temporary object for this expression subtree. |
| 3765 | // Hacky, so should re-engineer the address pattern match. |
| 3766 | NOT_PRODUCT(Tracer::Depth dddd;) |
| 3767 | SWPointer tmp(this); |
| 3768 | NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);) |
| 3769 | |
| 3770 | if (tmp.scaled_iv_plus_offset(n->in(1))) { |
| 3771 | if (tmp._invar == NULL || _slp->do_vector_loop()) { |
| 3772 | int mult = 1 << n->in(2)->get_int(); |
| 3773 | _scale = tmp._scale * mult; |
| 3774 | _offset += tmp._offset * mult; |
| 3775 | NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);) |
| 3776 | return true; |
| 3777 | } |
| 3778 | } |
| 3779 | } |
| 3780 | } |
| 3781 | NOT_PRODUCT(_tracer.scaled_iv_10(n);) |
| 3782 | return false; |
| 3783 | } |
| 3784 | |
| 3785 | //----------------------------offset_plus_k------------------------ |
| 3786 | // Match: offset is (k [+/- invariant]) |
| 3787 | // where k maybe zero and invariant is optional, but not both. |
| 3788 | bool SWPointer::offset_plus_k(Node* n, bool negate) { |
| 3789 | NOT_PRODUCT(Tracer::Depth ddd;) |
| 3790 | NOT_PRODUCT(_tracer.offset_plus_k_1(n);) |
| 3791 | |
| 3792 | int opc = n->Opcode(); |
| 3793 | if (opc == Op_ConI) { |
| 3794 | _offset += negate ? -(n->get_int()) : n->get_int(); |
| 3795 | NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);) |
| 3796 | return true; |
| 3797 | } else if (opc == Op_ConL) { |
| 3798 | // Okay if value fits into an int |
| 3799 | const TypeLong* t = n->find_long_type(); |
| 3800 | if (t->higher_equal(TypeLong::INT)) { |
| 3801 | jlong loff = n->get_long(); |
| 3802 | jint off = (jint)loff; |
| 3803 | _offset += negate ? -off : loff; |
| 3804 | NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);) |
| 3805 | return true; |
| 3806 | } |
| 3807 | NOT_PRODUCT(_tracer.offset_plus_k_4(n);) |
| 3808 | return false; |
| 3809 | } |
| 3810 | if (_invar != NULL) { // already has an invariant |
| 3811 | NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);) |
| 3812 | return false; |
| 3813 | } |
| 3814 | |
| 3815 | if (_analyze_only && (invariant(n) == false)) { |
| 3816 | _nstack->push(n, _stack_idx++); |
| 3817 | } |
| 3818 | if (opc == Op_AddI) { |
| 3819 | if (n->in(2)->is_Con() && invariant(n->in(1))) { |
| 3820 | _negate_invar = negate; |
| 3821 | _invar = n->in(1); |
| 3822 | _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int(); |
| 3823 | NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);) |
| 3824 | return true; |
| 3825 | } else if (n->in(1)->is_Con() && invariant(n->in(2))) { |
| 3826 | _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int(); |
| 3827 | _negate_invar = negate; |
| 3828 | _invar = n->in(2); |
| 3829 | NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);) |
| 3830 | return true; |
| 3831 | } |
| 3832 | } |
| 3833 | if (opc == Op_SubI) { |
| 3834 | if (n->in(2)->is_Con() && invariant(n->in(1))) { |
| 3835 | _negate_invar = negate; |
| 3836 | _invar = n->in(1); |
| 3837 | _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int(); |
| 3838 | NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);) |
| 3839 | return true; |
| 3840 | } else if (n->in(1)->is_Con() && invariant(n->in(2))) { |
| 3841 | _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int(); |
| 3842 | _negate_invar = !negate; |
| 3843 | _invar = n->in(2); |
| 3844 | NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);) |
| 3845 | return true; |
| 3846 | } |
| 3847 | } |
| 3848 | if (invariant(n)) { |
| 3849 | if (opc == Op_ConvI2L) { |
| 3850 | n = n->in(1); |
| 3851 | if (n->Opcode() == Op_CastII && |
| 3852 | n->as_CastII()->has_range_check()) { |
| 3853 | // Skip range check dependent CastII nodes |
| 3854 | assert(invariant(n), "sanity" ); |
| 3855 | n = n->in(1); |
| 3856 | } |
| 3857 | } |
| 3858 | _negate_invar = negate; |
| 3859 | _invar = n; |
| 3860 | NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);) |
| 3861 | return true; |
| 3862 | } |
| 3863 | |
| 3864 | NOT_PRODUCT(_tracer.offset_plus_k_11(n);) |
| 3865 | return false; |
| 3866 | } |
| 3867 | |
| 3868 | //----------------------------print------------------------ |
| 3869 | void SWPointer::print() { |
| 3870 | #ifndef PRODUCT |
| 3871 | tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n" , |
| 3872 | _base != NULL ? _base->_idx : 0, |
| 3873 | _adr != NULL ? _adr->_idx : 0, |
| 3874 | _scale, _offset, |
| 3875 | _negate_invar?'-':'+', |
| 3876 | _invar != NULL ? _invar->_idx : 0); |
| 3877 | #endif |
| 3878 | } |
| 3879 | |
| 3880 | //----------------------------tracing------------------------ |
| 3881 | #ifndef PRODUCT |
| 3882 | void SWPointer::Tracer::print_depth() { |
| 3883 | for (int ii = 0; ii<_depth; ++ii) tty->print(" " ); |
| 3884 | } |
| 3885 | |
| 3886 | void SWPointer::Tracer::ctor_1 (Node* mem) { |
| 3887 | if(_slp->is_trace_alignment()) { |
| 3888 | print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis" , mem->_idx); mem->dump(); |
| 3889 | } |
| 3890 | } |
| 3891 | |
| 3892 | void SWPointer::Tracer::ctor_2(Node* adr) { |
| 3893 | if(_slp->is_trace_alignment()) { |
| 3894 | //store_depth(); |
| 3895 | inc_depth(); |
| 3896 | print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: " , adr->_idx); adr->dump(); |
| 3897 | inc_depth(); |
| 3898 | print_depth(); tty->print(" %d (base) SWPointer::SWPointer: " , adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump(); |
| 3899 | } |
| 3900 | } |
| 3901 | |
| 3902 | void SWPointer::Tracer::ctor_3(Node* adr, int i) { |
| 3903 | if(_slp->is_trace_alignment()) { |
| 3904 | inc_depth(); |
| 3905 | Node* offset = adr->in(AddPNode::Offset); |
| 3906 | print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: " , offset->_idx, i); offset->dump(); |
| 3907 | } |
| 3908 | } |
| 3909 | |
| 3910 | void SWPointer::Tracer::ctor_4(Node* adr, int i) { |
| 3911 | if(_slp->is_trace_alignment()) { |
| 3912 | inc_depth(); |
| 3913 | print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: " , adr->_idx, i); adr->dump(); |
| 3914 | } |
| 3915 | } |
| 3916 | |
| 3917 | void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) { |
| 3918 | if(_slp->is_trace_alignment()) { |
| 3919 | inc_depth(); |
| 3920 | if (base == adr) { |
| 3921 | print_depth(); tty->print_cr(" \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d" , adr->_idx, base->_idx, i); |
| 3922 | } else if (!adr->is_AddP()) { |
| 3923 | print_depth(); tty->print_cr(" \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d" , adr->_idx, i); |
| 3924 | } |
| 3925 | } |
| 3926 | } |
| 3927 | |
| 3928 | void SWPointer::Tracer::ctor_6(Node* mem) { |
| 3929 | if(_slp->is_trace_alignment()) { |
| 3930 | //restore_depth(); |
| 3931 | print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis" , mem->_idx); |
| 3932 | } |
| 3933 | } |
| 3934 | |
| 3935 | void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) { |
| 3936 | if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) { |
| 3937 | int is_member = _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)); |
| 3938 | int in_bb = _slp->in_bb(n); |
| 3939 | print_depth(); tty->print(" \\ " ); tty->print_cr(" %d SWPointer::invariant conditions differ: n_c %d" , n->_idx, n_c->_idx); |
| 3940 | print_depth(); tty->print(" \\ " ); tty->print_cr("is_member %d, in_bb %d" , is_member, in_bb); |
| 3941 | print_depth(); tty->print(" \\ " ); n->dump(); |
| 3942 | print_depth(); tty->print(" \\ " ); n_c->dump(); |
| 3943 | } |
| 3944 | } |
| 3945 | |
| 3946 | void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) { |
| 3947 | if(_slp->is_trace_alignment()) { |
| 3948 | print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: " , n->_idx); |
| 3949 | n->dump(); |
| 3950 | } |
| 3951 | } |
| 3952 | |
| 3953 | void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) { |
| 3954 | if(_slp->is_trace_alignment()) { |
| 3955 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED" , n->_idx); |
| 3956 | } |
| 3957 | } |
| 3958 | |
| 3959 | void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) { |
| 3960 | if(_slp->is_trace_alignment()) { |
| 3961 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED" , n->_idx); |
| 3962 | } |
| 3963 | } |
| 3964 | |
| 3965 | void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) { |
| 3966 | if(_slp->is_trace_alignment()) { |
| 3967 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED" , n->_idx); |
| 3968 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: " , n->in(1)->_idx); n->in(1)->dump(); |
| 3969 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: " , n->in(2)->_idx); n->in(2)->dump(); |
| 3970 | } |
| 3971 | } |
| 3972 | |
| 3973 | void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) { |
| 3974 | if(_slp->is_trace_alignment()) { |
| 3975 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED" , n->_idx); |
| 3976 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: " , n->in(2)->_idx); n->in(2)->dump(); |
| 3977 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: " , n->in(1)->_idx); n->in(1)->dump(); |
| 3978 | } |
| 3979 | } |
| 3980 | |
| 3981 | void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) { |
| 3982 | if(_slp->is_trace_alignment()) { |
| 3983 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED" , n->_idx); |
| 3984 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: " , n->in(1)->_idx); n->in(1)->dump(); |
| 3985 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: " , n->in(2)->_idx); n->in(2)->dump(); |
| 3986 | } |
| 3987 | } |
| 3988 | |
| 3989 | void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) { |
| 3990 | if(_slp->is_trace_alignment()) { |
| 3991 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED" , n->_idx); |
| 3992 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: " , n->in(2)->_idx); n->in(2)->dump(); |
| 3993 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: " , n->in(1)->_idx); n->in(1)->dump(); |
| 3994 | } |
| 3995 | } |
| 3996 | |
| 3997 | void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) { |
| 3998 | if(_slp->is_trace_alignment()) { |
| 3999 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED" , n->_idx); |
| 4000 | } |
| 4001 | } |
| 4002 | |
| 4003 | void SWPointer::Tracer::scaled_iv_1(Node* n) { |
| 4004 | if(_slp->is_trace_alignment()) { |
| 4005 | print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: " , n->_idx); n->dump(); |
| 4006 | } |
| 4007 | } |
| 4008 | |
| 4009 | void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) { |
| 4010 | if(_slp->is_trace_alignment()) { |
| 4011 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before" , n->_idx); |
| 4012 | print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: _scale (%d) != 0" , scale); |
| 4013 | } |
| 4014 | } |
| 4015 | |
| 4016 | void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) { |
| 4017 | if(_slp->is_trace_alignment()) { |
| 4018 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d" , n->_idx, scale); |
| 4019 | } |
| 4020 | } |
| 4021 | |
| 4022 | void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) { |
| 4023 | if(_slp->is_trace_alignment()) { |
| 4024 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d" , n->_idx, scale); |
| 4025 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: " , n->in(1)->_idx); n->in(1)->dump(); |
| 4026 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: " , n->in(2)->_idx); n->in(2)->dump(); |
| 4027 | } |
| 4028 | } |
| 4029 | |
| 4030 | void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) { |
| 4031 | if(_slp->is_trace_alignment()) { |
| 4032 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d" , n->_idx, scale); |
| 4033 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is iv: " , n->in(2)->_idx); n->in(2)->dump(); |
| 4034 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is Con: " , n->in(1)->_idx); n->in(1)->dump(); |
| 4035 | } |
| 4036 | } |
| 4037 | |
| 4038 | void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) { |
| 4039 | if(_slp->is_trace_alignment()) { |
| 4040 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d" , n->_idx, scale); |
| 4041 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: " , n->in(1)->_idx); n->in(1)->dump(); |
| 4042 | print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: " , n->in(2)->_idx); n->in(2)->dump(); |
| 4043 | } |
| 4044 | } |
| 4045 | |
| 4046 | void SWPointer::Tracer::scaled_iv_7(Node* n) { |
| 4047 | if(_slp->is_trace_alignment()) { |
| 4048 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED" , n->_idx); |
| 4049 | print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: " , n->in(1)->_idx); |
| 4050 | inc_depth(); inc_depth(); |
| 4051 | print_depth(); n->in(1)->dump(); |
| 4052 | dec_depth(); dec_depth(); |
| 4053 | } |
| 4054 | } |
| 4055 | |
| 4056 | void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) { |
| 4057 | if(_slp->is_trace_alignment()) { |
| 4058 | print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: " , n->_idx); tmp->print(); |
| 4059 | } |
| 4060 | } |
| 4061 | |
| 4062 | void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) { |
| 4063 | if(_slp->is_trace_alignment()) { |
| 4064 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d" , n->_idx, scale, _offset); |
| 4065 | print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d" , |
| 4066 | n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset); |
| 4067 | inc_depth(); inc_depth(); |
| 4068 | print_depth(); n->in(1)->dump(); |
| 4069 | print_depth(); n->in(2)->dump(); |
| 4070 | dec_depth(); dec_depth(); |
| 4071 | } |
| 4072 | } |
| 4073 | |
| 4074 | void SWPointer::Tracer::scaled_iv_10(Node* n) { |
| 4075 | if(_slp->is_trace_alignment()) { |
| 4076 | print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED" , n->_idx); |
| 4077 | } |
| 4078 | } |
| 4079 | |
| 4080 | void SWPointer::Tracer::offset_plus_k_1(Node* n) { |
| 4081 | if(_slp->is_trace_alignment()) { |
| 4082 | print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: " , n->_idx); n->dump(); |
| 4083 | } |
| 4084 | } |
| 4085 | |
| 4086 | void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) { |
| 4087 | if(_slp->is_trace_alignment()) { |
| 4088 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d" , n->_idx, _offset); |
| 4089 | } |
| 4090 | } |
| 4091 | |
| 4092 | void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) { |
| 4093 | if(_slp->is_trace_alignment()) { |
| 4094 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d" , n->_idx, _offset); |
| 4095 | } |
| 4096 | } |
| 4097 | |
| 4098 | void SWPointer::Tracer::offset_plus_k_4(Node* n) { |
| 4099 | if(_slp->is_trace_alignment()) { |
| 4100 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED" , n->_idx); |
| 4101 | print_depth(); tty->print_cr(" \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big" , n->get_long()); |
| 4102 | } |
| 4103 | } |
| 4104 | |
| 4105 | void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) { |
| 4106 | if(_slp->is_trace_alignment()) { |
| 4107 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before" , n->_idx); |
| 4108 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: _invar != NULL: " , _invar->_idx); _invar->dump(); |
| 4109 | } |
| 4110 | } |
| 4111 | |
| 4112 | void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) { |
| 4113 | if(_slp->is_trace_alignment()) { |
| 4114 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d" , |
| 4115 | n->_idx, _negate_invar, _invar->_idx, _offset); |
| 4116 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: " , n->in(2)->_idx); n->in(2)->dump(); |
| 4117 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: " , _invar->_idx); _invar->dump(); |
| 4118 | } |
| 4119 | } |
| 4120 | |
| 4121 | void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) { |
| 4122 | if(_slp->is_trace_alignment()) { |
| 4123 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d" , |
| 4124 | n->_idx, _negate_invar, _invar->_idx, _offset); |
| 4125 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: " , n->in(1)->_idx); n->in(1)->dump(); |
| 4126 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: " , _invar->_idx); _invar->dump(); |
| 4127 | } |
| 4128 | } |
| 4129 | |
| 4130 | void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) { |
| 4131 | if(_slp->is_trace_alignment()) { |
| 4132 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d" , |
| 4133 | n->_idx, _negate_invar, _invar->_idx, _offset); |
| 4134 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: " , n->in(2)->_idx); n->in(2)->dump(); |
| 4135 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: " , _invar->_idx); _invar->dump(); |
| 4136 | } |
| 4137 | } |
| 4138 | |
| 4139 | void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) { |
| 4140 | if(_slp->is_trace_alignment()) { |
| 4141 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d" , n->_idx, _negate_invar, _invar->_idx, _offset); |
| 4142 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: " , n->in(1)->_idx); n->in(1)->dump(); |
| 4143 | print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: " , _invar->_idx); _invar->dump(); |
| 4144 | } |
| 4145 | } |
| 4146 | |
| 4147 | void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) { |
| 4148 | if(_slp->is_trace_alignment()) { |
| 4149 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d" , n->_idx, _negate_invar, _invar->_idx, _offset); |
| 4150 | print_depth(); tty->print_cr(" \\ %d SWPointer::offset_plus_k: is invariant" , n->_idx); |
| 4151 | } |
| 4152 | } |
| 4153 | |
| 4154 | void SWPointer::Tracer::offset_plus_k_11(Node* n) { |
| 4155 | if(_slp->is_trace_alignment()) { |
| 4156 | print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED" , n->_idx); |
| 4157 | } |
| 4158 | } |
| 4159 | |
| 4160 | #endif |
| 4161 | // ========================= OrderedPair ===================== |
| 4162 | |
| 4163 | const OrderedPair OrderedPair::initial; |
| 4164 | |
| 4165 | // ========================= SWNodeInfo ===================== |
| 4166 | |
| 4167 | const SWNodeInfo SWNodeInfo::initial; |
| 4168 | |
| 4169 | |
| 4170 | // ============================ DepGraph =========================== |
| 4171 | |
| 4172 | //------------------------------make_node--------------------------- |
| 4173 | // Make a new dependence graph node for an ideal node. |
| 4174 | DepMem* DepGraph::make_node(Node* node) { |
| 4175 | DepMem* m = new (_arena) DepMem(node); |
| 4176 | if (node != NULL) { |
| 4177 | assert(_map.at_grow(node->_idx) == NULL, "one init only" ); |
| 4178 | _map.at_put_grow(node->_idx, m); |
| 4179 | } |
| 4180 | return m; |
| 4181 | } |
| 4182 | |
| 4183 | //------------------------------make_edge--------------------------- |
| 4184 | // Make a new dependence graph edge from dpred -> dsucc |
| 4185 | DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) { |
| 4186 | DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head()); |
| 4187 | dpred->set_out_head(e); |
| 4188 | dsucc->set_in_head(e); |
| 4189 | return e; |
| 4190 | } |
| 4191 | |
| 4192 | // ========================== DepMem ======================== |
| 4193 | |
| 4194 | //------------------------------in_cnt--------------------------- |
| 4195 | int DepMem::in_cnt() { |
| 4196 | int ct = 0; |
| 4197 | for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++; |
| 4198 | return ct; |
| 4199 | } |
| 4200 | |
| 4201 | //------------------------------out_cnt--------------------------- |
| 4202 | int DepMem::out_cnt() { |
| 4203 | int ct = 0; |
| 4204 | for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++; |
| 4205 | return ct; |
| 4206 | } |
| 4207 | |
| 4208 | //------------------------------print----------------------------- |
| 4209 | void DepMem::print() { |
| 4210 | #ifndef PRODUCT |
| 4211 | tty->print(" DepNode %d (" , _node->_idx); |
| 4212 | for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) { |
| 4213 | Node* pred = p->pred()->node(); |
| 4214 | tty->print(" %d" , pred != NULL ? pred->_idx : 0); |
| 4215 | } |
| 4216 | tty->print(") [" ); |
| 4217 | for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) { |
| 4218 | Node* succ = s->succ()->node(); |
| 4219 | tty->print(" %d" , succ != NULL ? succ->_idx : 0); |
| 4220 | } |
| 4221 | tty->print_cr(" ]" ); |
| 4222 | #endif |
| 4223 | } |
| 4224 | |
| 4225 | // =========================== DepEdge ========================= |
| 4226 | |
| 4227 | //------------------------------DepPreds--------------------------- |
| 4228 | void DepEdge::print() { |
| 4229 | #ifndef PRODUCT |
| 4230 | tty->print_cr("DepEdge: %d [ %d ]" , _pred->node()->_idx, _succ->node()->_idx); |
| 4231 | #endif |
| 4232 | } |
| 4233 | |
| 4234 | // =========================== DepPreds ========================= |
| 4235 | // Iterator over predecessor edges in the dependence graph. |
| 4236 | |
| 4237 | //------------------------------DepPreds--------------------------- |
| 4238 | DepPreds::DepPreds(Node* n, DepGraph& dg) { |
| 4239 | _n = n; |
| 4240 | _done = false; |
| 4241 | if (_n->is_Store() || _n->is_Load()) { |
| 4242 | _next_idx = MemNode::Address; |
| 4243 | _end_idx = n->req(); |
| 4244 | _dep_next = dg.dep(_n)->in_head(); |
| 4245 | } else if (_n->is_Mem()) { |
| 4246 | _next_idx = 0; |
| 4247 | _end_idx = 0; |
| 4248 | _dep_next = dg.dep(_n)->in_head(); |
| 4249 | } else { |
| 4250 | _next_idx = 1; |
| 4251 | _end_idx = _n->req(); |
| 4252 | _dep_next = NULL; |
| 4253 | } |
| 4254 | next(); |
| 4255 | } |
| 4256 | |
| 4257 | //------------------------------next--------------------------- |
| 4258 | void DepPreds::next() { |
| 4259 | if (_dep_next != NULL) { |
| 4260 | _current = _dep_next->pred()->node(); |
| 4261 | _dep_next = _dep_next->next_in(); |
| 4262 | } else if (_next_idx < _end_idx) { |
| 4263 | _current = _n->in(_next_idx++); |
| 4264 | } else { |
| 4265 | _done = true; |
| 4266 | } |
| 4267 | } |
| 4268 | |
| 4269 | // =========================== DepSuccs ========================= |
| 4270 | // Iterator over successor edges in the dependence graph. |
| 4271 | |
| 4272 | //------------------------------DepSuccs--------------------------- |
| 4273 | DepSuccs::DepSuccs(Node* n, DepGraph& dg) { |
| 4274 | _n = n; |
| 4275 | _done = false; |
| 4276 | if (_n->is_Load()) { |
| 4277 | _next_idx = 0; |
| 4278 | _end_idx = _n->outcnt(); |
| 4279 | _dep_next = dg.dep(_n)->out_head(); |
| 4280 | } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) { |
| 4281 | _next_idx = 0; |
| 4282 | _end_idx = 0; |
| 4283 | _dep_next = dg.dep(_n)->out_head(); |
| 4284 | } else { |
| 4285 | _next_idx = 0; |
| 4286 | _end_idx = _n->outcnt(); |
| 4287 | _dep_next = NULL; |
| 4288 | } |
| 4289 | next(); |
| 4290 | } |
| 4291 | |
| 4292 | //-------------------------------next--------------------------- |
| 4293 | void DepSuccs::next() { |
| 4294 | if (_dep_next != NULL) { |
| 4295 | _current = _dep_next->succ()->node(); |
| 4296 | _dep_next = _dep_next->next_out(); |
| 4297 | } else if (_next_idx < _end_idx) { |
| 4298 | _current = _n->raw_out(_next_idx++); |
| 4299 | } else { |
| 4300 | _done = true; |
| 4301 | } |
| 4302 | } |
| 4303 | |
| 4304 | // |
| 4305 | // --------------------------------- vectorization/simd ----------------------------------- |
| 4306 | // |
| 4307 | bool SuperWord::same_origin_idx(Node* a, Node* b) const { |
| 4308 | return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx); |
| 4309 | } |
| 4310 | bool SuperWord::same_generation(Node* a, Node* b) const { |
| 4311 | return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx); |
| 4312 | } |
| 4313 | |
| 4314 | Node* SuperWord::find_phi_for_mem_dep(LoadNode* ld) { |
| 4315 | assert(in_bb(ld), "must be in block" ); |
| 4316 | if (_clone_map.gen(ld->_idx) == _ii_first) { |
| 4317 | #ifndef PRODUCT |
| 4318 | if (_vector_loop_debug) { |
| 4319 | tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d" , |
| 4320 | _clone_map.gen(ld->_idx)); |
| 4321 | } |
| 4322 | #endif |
| 4323 | return NULL; //we think that any ld in the first gen being vectorizable |
| 4324 | } |
| 4325 | |
| 4326 | Node* mem = ld->in(MemNode::Memory); |
| 4327 | if (mem->outcnt() <= 1) { |
| 4328 | // we don't want to remove the only edge from mem node to load |
| 4329 | #ifndef PRODUCT |
| 4330 | if (_vector_loop_debug) { |
| 4331 | tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed" , |
| 4332 | mem->_idx, ld->_idx); |
| 4333 | ld->dump(); |
| 4334 | mem->dump(); |
| 4335 | } |
| 4336 | #endif |
| 4337 | return NULL; |
| 4338 | } |
| 4339 | if (!in_bb(mem) || same_generation(mem, ld)) { |
| 4340 | #ifndef PRODUCT |
| 4341 | if (_vector_loop_debug) { |
| 4342 | tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d" , |
| 4343 | _clone_map.gen(mem->_idx)); |
| 4344 | } |
| 4345 | #endif |
| 4346 | return NULL; // does not depend on loop volatile node or depends on the same generation |
| 4347 | } |
| 4348 | |
| 4349 | //otherwise first node should depend on mem-phi |
| 4350 | Node* first = first_node(ld); |
| 4351 | assert(first->is_Load(), "must be Load" ); |
| 4352 | Node* phi = first->as_Load()->in(MemNode::Memory); |
| 4353 | if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) { |
| 4354 | #ifndef PRODUCT |
| 4355 | if (_vector_loop_debug) { |
| 4356 | tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi" ); |
| 4357 | ld->dump(); |
| 4358 | first->dump(); |
| 4359 | } |
| 4360 | #endif |
| 4361 | return NULL; |
| 4362 | } |
| 4363 | |
| 4364 | Node* tail = 0; |
| 4365 | for (int m = 0; m < _mem_slice_head.length(); m++) { |
| 4366 | if (_mem_slice_head.at(m) == phi) { |
| 4367 | tail = _mem_slice_tail.at(m); |
| 4368 | } |
| 4369 | } |
| 4370 | if (tail == 0) { //test that found phi is in the list _mem_slice_head |
| 4371 | #ifndef PRODUCT |
| 4372 | if (_vector_loop_debug) { |
| 4373 | tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head" , |
| 4374 | ld->_idx, phi->_idx); |
| 4375 | ld->dump(); |
| 4376 | phi->dump(); |
| 4377 | } |
| 4378 | #endif |
| 4379 | return NULL; |
| 4380 | } |
| 4381 | |
| 4382 | // now all conditions are met |
| 4383 | return phi; |
| 4384 | } |
| 4385 | |
| 4386 | Node* SuperWord::first_node(Node* nd) { |
| 4387 | for (int ii = 0; ii < _iteration_first.length(); ii++) { |
| 4388 | Node* nnn = _iteration_first.at(ii); |
| 4389 | if (same_origin_idx(nnn, nd)) { |
| 4390 | #ifndef PRODUCT |
| 4391 | if (_vector_loop_debug) { |
| 4392 | tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)" , |
| 4393 | nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx)); |
| 4394 | } |
| 4395 | #endif |
| 4396 | return nnn; |
| 4397 | } |
| 4398 | } |
| 4399 | |
| 4400 | #ifndef PRODUCT |
| 4401 | if (_vector_loop_debug) { |
| 4402 | tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)" , |
| 4403 | nd->_idx, _clone_map.idx(nd->_idx)); |
| 4404 | } |
| 4405 | #endif |
| 4406 | return 0; |
| 4407 | } |
| 4408 | |
| 4409 | Node* SuperWord::last_node(Node* nd) { |
| 4410 | for (int ii = 0; ii < _iteration_last.length(); ii++) { |
| 4411 | Node* nnn = _iteration_last.at(ii); |
| 4412 | if (same_origin_idx(nnn, nd)) { |
| 4413 | #ifndef PRODUCT |
| 4414 | if (_vector_loop_debug) { |
| 4415 | tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d" , |
| 4416 | _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx)); |
| 4417 | } |
| 4418 | #endif |
| 4419 | return nnn; |
| 4420 | } |
| 4421 | } |
| 4422 | return 0; |
| 4423 | } |
| 4424 | |
| 4425 | int SuperWord::mark_generations() { |
| 4426 | Node *ii_err = NULL, *tail_err = NULL; |
| 4427 | for (int i = 0; i < _mem_slice_head.length(); i++) { |
| 4428 | Node* phi = _mem_slice_head.at(i); |
| 4429 | assert(phi->is_Phi(), "must be phi" ); |
| 4430 | |
| 4431 | Node* tail = _mem_slice_tail.at(i); |
| 4432 | if (_ii_last == -1) { |
| 4433 | tail_err = tail; |
| 4434 | _ii_last = _clone_map.gen(tail->_idx); |
| 4435 | } |
| 4436 | else if (_ii_last != _clone_map.gen(tail->_idx)) { |
| 4437 | #ifndef PRODUCT |
| 4438 | if (TraceSuperWord && Verbose) { |
| 4439 | tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes " ); |
| 4440 | tail->dump(); |
| 4441 | tail_err->dump(); |
| 4442 | } |
| 4443 | #endif |
| 4444 | return -1; |
| 4445 | } |
| 4446 | |
| 4447 | // find first iteration in the loop |
| 4448 | for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) { |
| 4449 | Node* ii = phi->fast_out(i); |
| 4450 | if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi |
| 4451 | if (_ii_first == -1) { |
| 4452 | ii_err = ii; |
| 4453 | _ii_first = _clone_map.gen(ii->_idx); |
| 4454 | } else if (_ii_first != _clone_map.gen(ii->_idx)) { |
| 4455 | #ifndef PRODUCT |
| 4456 | if (TraceSuperWord && Verbose) { |
| 4457 | tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)" , _ii_first); |
| 4458 | ii->dump(); |
| 4459 | if (ii_err!= 0) { |
| 4460 | ii_err->dump(); |
| 4461 | } |
| 4462 | } |
| 4463 | #endif |
| 4464 | return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized |
| 4465 | } |
| 4466 | } |
| 4467 | }//for (DUIterator_Fast imax, |
| 4468 | }//for (int i... |
| 4469 | |
| 4470 | if (_ii_first == -1 || _ii_last == -1) { |
| 4471 | if (TraceSuperWord && Verbose) { |
| 4472 | tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong" ); |
| 4473 | } |
| 4474 | return -1; // something vent wrong |
| 4475 | } |
| 4476 | // collect nodes in the first and last generations |
| 4477 | assert(_iteration_first.length() == 0, "_iteration_first must be empty" ); |
| 4478 | assert(_iteration_last.length() == 0, "_iteration_last must be empty" ); |
| 4479 | for (int j = 0; j < _block.length(); j++) { |
| 4480 | Node* n = _block.at(j); |
| 4481 | node_idx_t gen = _clone_map.gen(n->_idx); |
| 4482 | if ((signed)gen == _ii_first) { |
| 4483 | _iteration_first.push(n); |
| 4484 | } else if ((signed)gen == _ii_last) { |
| 4485 | _iteration_last.push(n); |
| 4486 | } |
| 4487 | } |
| 4488 | |
| 4489 | // building order of iterations |
| 4490 | if (_ii_order.length() == 0 && ii_err != 0) { |
| 4491 | assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb" ); |
| 4492 | Node* nd = ii_err; |
| 4493 | while(_clone_map.gen(nd->_idx) != _ii_last) { |
| 4494 | _ii_order.push(_clone_map.gen(nd->_idx)); |
| 4495 | bool found = false; |
| 4496 | for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) { |
| 4497 | Node* use = nd->fast_out(i); |
| 4498 | if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) { |
| 4499 | found = true; |
| 4500 | nd = use; |
| 4501 | break; |
| 4502 | } |
| 4503 | }//for |
| 4504 | |
| 4505 | if (found == false) { |
| 4506 | if (TraceSuperWord && Verbose) { |
| 4507 | tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d" , nd->_idx); |
| 4508 | } |
| 4509 | _ii_order.clear(); |
| 4510 | return -1; |
| 4511 | } |
| 4512 | } //while |
| 4513 | _ii_order.push(_clone_map.gen(nd->_idx)); |
| 4514 | } |
| 4515 | |
| 4516 | #ifndef PRODUCT |
| 4517 | if (_vector_loop_debug) { |
| 4518 | tty->print_cr("SuperWord::mark_generations" ); |
| 4519 | tty->print_cr("First generation (%d) nodes:" , _ii_first); |
| 4520 | for (int ii = 0; ii < _iteration_first.length(); ii++) _iteration_first.at(ii)->dump(); |
| 4521 | tty->print_cr("Last generation (%d) nodes:" , _ii_last); |
| 4522 | for (int ii = 0; ii < _iteration_last.length(); ii++) _iteration_last.at(ii)->dump(); |
| 4523 | tty->print_cr(" " ); |
| 4524 | |
| 4525 | tty->print("SuperWord::List of generations: " ); |
| 4526 | for (int jj = 0; jj < _ii_order.length(); ++jj) { |
| 4527 | tty->print("%d:%d " , jj, _ii_order.at(jj)); |
| 4528 | } |
| 4529 | tty->print_cr(" " ); |
| 4530 | } |
| 4531 | #endif |
| 4532 | |
| 4533 | return _ii_first; |
| 4534 | } |
| 4535 | |
| 4536 | bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) { |
| 4537 | assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes" ); |
| 4538 | assert(same_origin_idx(gold, fix), "should be clones of the same node" ); |
| 4539 | Node* gin1 = gold->in(1); |
| 4540 | Node* gin2 = gold->in(2); |
| 4541 | Node* fin1 = fix->in(1); |
| 4542 | Node* fin2 = fix->in(2); |
| 4543 | bool swapped = false; |
| 4544 | |
| 4545 | if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) { |
| 4546 | if (same_origin_idx(gin1, fin1) && |
| 4547 | same_origin_idx(gin2, fin2)) { |
| 4548 | return true; // nothing to fix |
| 4549 | } |
| 4550 | if (same_origin_idx(gin1, fin2) && |
| 4551 | same_origin_idx(gin2, fin1)) { |
| 4552 | fix->swap_edges(1, 2); |
| 4553 | swapped = true; |
| 4554 | } |
| 4555 | } |
| 4556 | // at least one input comes from outside of bb |
| 4557 | if (gin1->_idx == fin1->_idx) { |
| 4558 | return true; // nothing to fix |
| 4559 | } |
| 4560 | if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx)) { //swapping is expensive, check condition first |
| 4561 | fix->swap_edges(1, 2); |
| 4562 | swapped = true; |
| 4563 | } |
| 4564 | |
| 4565 | if (swapped) { |
| 4566 | #ifndef PRODUCT |
| 4567 | if (_vector_loop_debug) { |
| 4568 | tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d" , fix->_idx); |
| 4569 | } |
| 4570 | #endif |
| 4571 | return true; |
| 4572 | } |
| 4573 | |
| 4574 | if (TraceSuperWord && Verbose) { |
| 4575 | tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d" , fix->_idx); |
| 4576 | } |
| 4577 | |
| 4578 | return false; |
| 4579 | } |
| 4580 | |
| 4581 | bool SuperWord::pack_parallel() { |
| 4582 | #ifndef PRODUCT |
| 4583 | if (_vector_loop_debug) { |
| 4584 | tty->print_cr("SuperWord::pack_parallel: START" ); |
| 4585 | } |
| 4586 | #endif |
| 4587 | |
| 4588 | _packset.clear(); |
| 4589 | |
| 4590 | for (int ii = 0; ii < _iteration_first.length(); ii++) { |
| 4591 | Node* nd = _iteration_first.at(ii); |
| 4592 | if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) { |
| 4593 | Node_List* pk = new Node_List(); |
| 4594 | pk->push(nd); |
| 4595 | for (int gen = 1; gen < _ii_order.length(); ++gen) { |
| 4596 | for (int kk = 0; kk < _block.length(); kk++) { |
| 4597 | Node* clone = _block.at(kk); |
| 4598 | if (same_origin_idx(clone, nd) && |
| 4599 | _clone_map.gen(clone->_idx) == _ii_order.at(gen)) { |
| 4600 | if (nd->is_Add() || nd->is_Mul()) { |
| 4601 | fix_commutative_inputs(nd, clone); |
| 4602 | } |
| 4603 | pk->push(clone); |
| 4604 | if (pk->size() == 4) { |
| 4605 | _packset.append(pk); |
| 4606 | #ifndef PRODUCT |
| 4607 | if (_vector_loop_debug) { |
| 4608 | tty->print_cr("SuperWord::pack_parallel: added pack " ); |
| 4609 | pk->dump(); |
| 4610 | } |
| 4611 | #endif |
| 4612 | if (_clone_map.gen(clone->_idx) != _ii_last) { |
| 4613 | pk = new Node_List(); |
| 4614 | } |
| 4615 | } |
| 4616 | break; |
| 4617 | } |
| 4618 | } |
| 4619 | }//for |
| 4620 | }//if |
| 4621 | }//for |
| 4622 | |
| 4623 | #ifndef PRODUCT |
| 4624 | if (_vector_loop_debug) { |
| 4625 | tty->print_cr("SuperWord::pack_parallel: END" ); |
| 4626 | } |
| 4627 | #endif |
| 4628 | |
| 4629 | return true; |
| 4630 | } |
| 4631 | |
| 4632 | bool SuperWord::hoist_loads_in_graph() { |
| 4633 | GrowableArray<Node*> loads; |
| 4634 | |
| 4635 | #ifndef PRODUCT |
| 4636 | if (_vector_loop_debug) { |
| 4637 | tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d" , _mem_slice_head.length()); |
| 4638 | } |
| 4639 | #endif |
| 4640 | |
| 4641 | for (int i = 0; i < _mem_slice_head.length(); i++) { |
| 4642 | Node* n = _mem_slice_head.at(i); |
| 4643 | if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) { |
| 4644 | if (TraceSuperWord && Verbose) { |
| 4645 | tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d" , n->_idx); |
| 4646 | } |
| 4647 | continue; |
| 4648 | } |
| 4649 | |
| 4650 | #ifndef PRODUCT |
| 4651 | if (_vector_loop_debug) { |
| 4652 | tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d = _mem_slice_head.at(%d);" , n->_idx, i); |
| 4653 | } |
| 4654 | #endif |
| 4655 | |
| 4656 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 4657 | Node* ld = n->fast_out(i); |
| 4658 | if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) { |
| 4659 | for (int i = 0; i < _block.length(); i++) { |
| 4660 | Node* ld2 = _block.at(i); |
| 4661 | if (ld2->is_Load() && same_origin_idx(ld, ld2) && |
| 4662 | !same_generation(ld, ld2)) { // <= do not collect the first generation ld |
| 4663 | #ifndef PRODUCT |
| 4664 | if (_vector_loop_debug) { |
| 4665 | tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)" , |
| 4666 | ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx); |
| 4667 | } |
| 4668 | #endif |
| 4669 | // could not do on-the-fly, since iterator is immutable |
| 4670 | loads.push(ld2); |
| 4671 | } |
| 4672 | }// for |
| 4673 | }//if |
| 4674 | }//for (DUIterator_Fast imax, |
| 4675 | }//for (int i = 0; i |
| 4676 | |
| 4677 | for (int i = 0; i < loads.length(); i++) { |
| 4678 | LoadNode* ld = loads.at(i)->as_Load(); |
| 4679 | Node* phi = find_phi_for_mem_dep(ld); |
| 4680 | if (phi != NULL) { |
| 4681 | #ifndef PRODUCT |
| 4682 | if (_vector_loop_debug) { |
| 4683 | tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d" , |
| 4684 | MemNode::Memory, ld->_idx, phi->_idx); |
| 4685 | } |
| 4686 | #endif |
| 4687 | _igvn.replace_input_of(ld, MemNode::Memory, phi); |
| 4688 | } |
| 4689 | }//for |
| 4690 | |
| 4691 | restart(); // invalidate all basic structures, since we rebuilt the graph |
| 4692 | |
| 4693 | if (TraceSuperWord && Verbose) { |
| 4694 | tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild" ); |
| 4695 | } |
| 4696 | |
| 4697 | return true; |
| 4698 | } |
| 4699 | |