1/*
2 * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24#include "precompiled.hpp"
25#include "compiler/compileLog.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "opto/addnode.hpp"
30#include "opto/callnode.hpp"
31#include "opto/castnode.hpp"
32#include "opto/convertnode.hpp"
33#include "opto/divnode.hpp"
34#include "opto/matcher.hpp"
35#include "opto/memnode.hpp"
36#include "opto/mulnode.hpp"
37#include "opto/opcodes.hpp"
38#include "opto/opaquenode.hpp"
39#include "opto/superword.hpp"
40#include "opto/vectornode.hpp"
41#include "opto/movenode.hpp"
42
43//
44// S U P E R W O R D T R A N S F O R M
45//=============================================================================
46
47//------------------------------SuperWord---------------------------
48SuperWord::SuperWord(PhaseIdealLoop* phase) :
49 _phase(phase),
50 _arena(phase->C->comp_arena()),
51 _igvn(phase->_igvn),
52 _packset(arena(), 8, 0, NULL), // packs for the current block
53 _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
54 _block(arena(), 8, 0, NULL), // nodes in current block
55 _post_block(arena(), 8, 0, NULL), // nodes common to current block which are marked as post loop vectorizable
56 _data_entry(arena(), 8, 0, NULL), // nodes with all inputs from outside
57 _mem_slice_head(arena(), 8, 0, NULL), // memory slice heads
58 _mem_slice_tail(arena(), 8, 0, NULL), // memory slice tails
59 _node_info(arena(), 8, 0, SWNodeInfo::initial), // info needed per node
60 _clone_map(phase->C->clone_map()), // map of nodes created in cloning
61 _cmovev_kit(_arena, this), // map to facilitate CMoveV creation
62 _align_to_ref(NULL), // memory reference to align vectors to
63 _disjoint_ptrs(arena(), 8, 0, OrderedPair::initial), // runtime disambiguated pointer pairs
64 _dg(_arena), // dependence graph
65 _visited(arena()), // visited node set
66 _post_visited(arena()), // post visited node set
67 _n_idx_list(arena(), 8), // scratch list of (node,index) pairs
68 _nlist(arena(), 8, 0, NULL), // scratch list of nodes
69 _stk(arena(), 8, 0, NULL), // scratch stack of nodes
70 _lpt(NULL), // loop tree node
71 _lp(NULL), // LoopNode
72 _bb(NULL), // basic block
73 _iv(NULL), // induction var
74 _race_possible(false), // cases where SDMU is true
75 _early_return(true), // analysis evaluations routine
76 _do_vector_loop(phase->C->do_vector_loop()), // whether to do vectorization/simd style
77 _do_reserve_copy(DoReserveCopyInSuperWord),
78 _num_work_vecs(0), // amount of vector work we have
79 _num_reductions(0), // amount of reduction work we have
80 _ii_first(-1), // first loop generation index - only if do_vector_loop()
81 _ii_last(-1), // last loop generation index - only if do_vector_loop()
82 _ii_order(arena(), 8, 0, 0)
83{
84#ifndef PRODUCT
85 _vector_loop_debug = 0;
86 if (_phase->C->method() != NULL) {
87 _vector_loop_debug = phase->C->directive()->VectorizeDebugOption;
88 }
89
90#endif
91}
92
93//------------------------------transform_loop---------------------------
94void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
95 assert(UseSuperWord, "should be");
96 // Do vectors exist on this architecture?
97 if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
98
99 assert(lpt->_head->is_CountedLoop(), "must be");
100 CountedLoopNode *cl = lpt->_head->as_CountedLoop();
101
102 if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
103
104 bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
105 if (post_loop_allowed) {
106 if (cl->is_reduction_loop()) return; // no predication mapping
107 Node *limit = cl->limit();
108 if (limit->is_Con()) return; // non constant limits only
109 // Now check the limit for expressions we do not handle
110 if (limit->is_Add()) {
111 Node *in2 = limit->in(2);
112 if (in2->is_Con()) {
113 int val = in2->get_int();
114 // should not try to program these cases
115 if (val < 0) return;
116 }
117 }
118 }
119
120 // skip any loop that has not been assigned max unroll by analysis
121 if (do_optimization) {
122 if (SuperWordLoopUnrollAnalysis && cl->slp_max_unroll() == 0) return;
123 }
124
125 // Check for no control flow in body (other than exit)
126 Node *cl_exit = cl->loopexit();
127 if (cl->is_main_loop() && (cl_exit->in(0) != lpt->_head)) {
128 #ifndef PRODUCT
129 if (TraceSuperWord) {
130 tty->print_cr("SuperWord::transform_loop: loop too complicated, cl_exit->in(0) != lpt->_head");
131 tty->print("cl_exit %d", cl_exit->_idx); cl_exit->dump();
132 tty->print("cl_exit->in(0) %d", cl_exit->in(0)->_idx); cl_exit->in(0)->dump();
133 tty->print("lpt->_head %d", lpt->_head->_idx); lpt->_head->dump();
134 lpt->dump_head();
135 }
136 #endif
137 return;
138 }
139
140 // Make sure the are no extra control users of the loop backedge
141 if (cl->back_control()->outcnt() != 1) {
142 return;
143 }
144
145 // Skip any loops already optimized by slp
146 if (cl->is_vectorized_loop()) return;
147
148 if (cl->is_unroll_only()) return;
149
150 if (cl->is_main_loop()) {
151 // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
152 CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
153 if (pre_end == NULL) return;
154 Node *pre_opaq1 = pre_end->limit();
155 if (pre_opaq1->Opcode() != Op_Opaque1) return;
156 }
157
158 init(); // initialize data structures
159
160 set_lpt(lpt);
161 set_lp(cl);
162
163 // For now, define one block which is the entire loop body
164 set_bb(cl);
165
166 if (do_optimization) {
167 assert(_packset.length() == 0, "packset must be empty");
168 SLP_extract();
169 if (PostLoopMultiversioning && Matcher::has_predicated_vectors()) {
170 if (cl->is_vectorized_loop() && cl->is_main_loop() && !cl->is_reduction_loop()) {
171 IdealLoopTree *lpt_next = lpt->_next;
172 CountedLoopNode *cl_next = lpt_next->_head->as_CountedLoop();
173 _phase->has_range_checks(lpt_next);
174 if (cl_next->is_post_loop() && !cl_next->range_checks_present()) {
175 if (!cl_next->is_vectorized_loop()) {
176 int slp_max_unroll_factor = cl->slp_max_unroll();
177 cl_next->set_slp_max_unroll(slp_max_unroll_factor);
178 }
179 }
180 }
181 }
182 }
183}
184
185//------------------------------early unrolling analysis------------------------------
186void SuperWord::unrolling_analysis(int &local_loop_unroll_factor) {
187 bool is_slp = true;
188 ResourceMark rm;
189 size_t ignored_size = lpt()->_body.size();
190 int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
191 Node_Stack nstack((int)ignored_size);
192 CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
193 Node *cl_exit = cl->loopexit_or_null();
194 int rpo_idx = _post_block.length();
195
196 assert(rpo_idx == 0, "post loop block is empty");
197
198 // First clear the entries
199 for (uint i = 0; i < lpt()->_body.size(); i++) {
200 ignored_loop_nodes[i] = -1;
201 }
202
203 int max_vector = Matcher::max_vector_size(T_BYTE);
204 bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
205
206 // Process the loop, some/all of the stack entries will not be in order, ergo
207 // need to preprocess the ignored initial state before we process the loop
208 for (uint i = 0; i < lpt()->_body.size(); i++) {
209 Node* n = lpt()->_body.at(i);
210 if (n == cl->incr() ||
211 n->is_reduction() ||
212 n->is_AddP() ||
213 n->is_Cmp() ||
214 n->is_IfTrue() ||
215 n->is_CountedLoop() ||
216 (n == cl_exit)) {
217 ignored_loop_nodes[i] = n->_idx;
218 continue;
219 }
220
221 if (n->is_If()) {
222 IfNode *iff = n->as_If();
223 if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
224 if (lpt()->is_loop_exit(iff)) {
225 ignored_loop_nodes[i] = n->_idx;
226 continue;
227 }
228 }
229 }
230
231 if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
232 Node* n_tail = n->in(LoopNode::LoopBackControl);
233 if (n_tail != n->in(LoopNode::EntryControl)) {
234 if (!n_tail->is_Mem()) {
235 is_slp = false;
236 break;
237 }
238 }
239 }
240
241 // This must happen after check of phi/if
242 if (n->is_Phi() || n->is_If()) {
243 ignored_loop_nodes[i] = n->_idx;
244 continue;
245 }
246
247 if (n->is_LoadStore() || n->is_MergeMem() ||
248 (n->is_Proj() && !n->as_Proj()->is_CFG())) {
249 is_slp = false;
250 break;
251 }
252
253 // Ignore nodes with non-primitive type.
254 BasicType bt;
255 if (n->is_Mem()) {
256 bt = n->as_Mem()->memory_type();
257 } else {
258 bt = n->bottom_type()->basic_type();
259 }
260 if (is_java_primitive(bt) == false) {
261 ignored_loop_nodes[i] = n->_idx;
262 continue;
263 }
264
265 if (n->is_Mem()) {
266 MemNode* current = n->as_Mem();
267 Node* adr = n->in(MemNode::Address);
268 Node* n_ctrl = _phase->get_ctrl(adr);
269
270 // save a queue of post process nodes
271 if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
272 // Process the memory expression
273 int stack_idx = 0;
274 bool have_side_effects = true;
275 if (adr->is_AddP() == false) {
276 nstack.push(adr, stack_idx++);
277 } else {
278 // Mark the components of the memory operation in nstack
279 SWPointer p1(current, this, &nstack, true);
280 have_side_effects = p1.node_stack()->is_nonempty();
281 }
282
283 // Process the pointer stack
284 while (have_side_effects) {
285 Node* pointer_node = nstack.node();
286 for (uint j = 0; j < lpt()->_body.size(); j++) {
287 Node* cur_node = lpt()->_body.at(j);
288 if (cur_node == pointer_node) {
289 ignored_loop_nodes[j] = cur_node->_idx;
290 break;
291 }
292 }
293 nstack.pop();
294 have_side_effects = nstack.is_nonempty();
295 }
296 }
297 }
298 }
299
300 if (is_slp) {
301 // Now we try to find the maximum supported consistent vector which the machine
302 // description can use
303 bool small_basic_type = false;
304 bool flag_small_bt = false;
305 for (uint i = 0; i < lpt()->_body.size(); i++) {
306 if (ignored_loop_nodes[i] != -1) continue;
307
308 BasicType bt;
309 Node* n = lpt()->_body.at(i);
310 if (n->is_Mem()) {
311 bt = n->as_Mem()->memory_type();
312 } else {
313 bt = n->bottom_type()->basic_type();
314 }
315
316 if (post_loop_allowed) {
317 if (!small_basic_type) {
318 switch (bt) {
319 case T_CHAR:
320 case T_BYTE:
321 case T_SHORT:
322 small_basic_type = true;
323 break;
324
325 case T_LONG:
326 // TODO: Remove when support completed for mask context with LONG.
327 // Support needs to be augmented for logical qword operations, currently we map to dword
328 // buckets for vectors on logicals as these were legacy.
329 small_basic_type = true;
330 break;
331
332 default:
333 break;
334 }
335 }
336 }
337
338 if (is_java_primitive(bt) == false) continue;
339
340 int cur_max_vector = Matcher::max_vector_size(bt);
341
342 // If a max vector exists which is not larger than _local_loop_unroll_factor
343 // stop looking, we already have the max vector to map to.
344 if (cur_max_vector < local_loop_unroll_factor) {
345 is_slp = false;
346 if (TraceSuperWordLoopUnrollAnalysis) {
347 tty->print_cr("slp analysis fails: unroll limit greater than max vector\n");
348 }
349 break;
350 }
351
352 // Map the maximal common vector
353 if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
354 if (cur_max_vector < max_vector && !flag_small_bt) {
355 max_vector = cur_max_vector;
356 } else if (cur_max_vector > max_vector && UseSubwordForMaxVector) {
357 // Analyse subword in the loop to set maximum vector size to take advantage of full vector width for subword types.
358 // Here we analyze if narrowing is likely to happen and if it is we set vector size more aggressively.
359 // We check for possibility of narrowing by looking through chain operations using subword types.
360 if (is_subword_type(bt)) {
361 uint start, end;
362 VectorNode::vector_operands(n, &start, &end);
363
364 for (uint j = start; j < end; j++) {
365 Node* in = n->in(j);
366 // Don't propagate through a memory
367 if (!in->is_Mem() && in_bb(in) && in->bottom_type()->basic_type() == T_INT) {
368 bool same_type = true;
369 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
370 Node *use = in->fast_out(k);
371 if (!in_bb(use) && use->bottom_type()->basic_type() != bt) {
372 same_type = false;
373 break;
374 }
375 }
376 if (same_type) {
377 max_vector = cur_max_vector;
378 flag_small_bt = true;
379 cl->mark_subword_loop();
380 }
381 }
382 }
383 }
384 }
385 // We only process post loops on predicated targets where we want to
386 // mask map the loop to a single iteration
387 if (post_loop_allowed) {
388 _post_block.at_put_grow(rpo_idx++, n);
389 }
390 }
391 }
392 if (is_slp) {
393 local_loop_unroll_factor = max_vector;
394 cl->mark_passed_slp();
395 }
396 cl->mark_was_slp();
397 if (cl->is_main_loop()) {
398 cl->set_slp_max_unroll(local_loop_unroll_factor);
399 } else if (post_loop_allowed) {
400 if (!small_basic_type) {
401 // avoid replication context for small basic types in programmable masked loops
402 cl->set_slp_max_unroll(local_loop_unroll_factor);
403 }
404 }
405 }
406}
407
408//------------------------------SLP_extract---------------------------
409// Extract the superword level parallelism
410//
411// 1) A reverse post-order of nodes in the block is constructed. By scanning
412// this list from first to last, all definitions are visited before their uses.
413//
414// 2) A point-to-point dependence graph is constructed between memory references.
415// This simplies the upcoming "independence" checker.
416//
417// 3) The maximum depth in the node graph from the beginning of the block
418// to each node is computed. This is used to prune the graph search
419// in the independence checker.
420//
421// 4) For integer types, the necessary bit width is propagated backwards
422// from stores to allow packed operations on byte, char, and short
423// integers. This reverses the promotion to type "int" that javac
424// did for operations like: char c1,c2,c3; c1 = c2 + c3.
425//
426// 5) One of the memory references is picked to be an aligned vector reference.
427// The pre-loop trip count is adjusted to align this reference in the
428// unrolled body.
429//
430// 6) The initial set of pack pairs is seeded with memory references.
431//
432// 7) The set of pack pairs is extended by following use->def and def->use links.
433//
434// 8) The pairs are combined into vector sized packs.
435//
436// 9) Reorder the memory slices to co-locate members of the memory packs.
437//
438// 10) Generate ideal vector nodes for the final set of packs and where necessary,
439// inserting scalar promotion, vector creation from multiple scalars, and
440// extraction of scalar values from vectors.
441//
442void SuperWord::SLP_extract() {
443
444#ifndef PRODUCT
445 if (_do_vector_loop && TraceSuperWord) {
446 tty->print("SuperWord::SLP_extract\n");
447 tty->print("input loop\n");
448 _lpt->dump_head();
449 _lpt->dump();
450 for (uint i = 0; i < _lpt->_body.size(); i++) {
451 _lpt->_body.at(i)->dump();
452 }
453 }
454#endif
455 // Ready the block
456 if (!construct_bb()) {
457 return; // Exit if no interesting nodes or complex graph.
458 }
459
460 // build _dg, _disjoint_ptrs
461 dependence_graph();
462
463 // compute function depth(Node*)
464 compute_max_depth();
465
466 CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
467 bool post_loop_allowed = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
468 if (cl->is_main_loop()) {
469 if (_do_vector_loop) {
470 if (mark_generations() != -1) {
471 hoist_loads_in_graph(); // this only rebuild the graph; all basic structs need rebuild explicitly
472
473 if (!construct_bb()) {
474 return; // Exit if no interesting nodes or complex graph.
475 }
476 dependence_graph();
477 compute_max_depth();
478 }
479
480#ifndef PRODUCT
481 if (TraceSuperWord) {
482 tty->print_cr("\nSuperWord::_do_vector_loop: graph after hoist_loads_in_graph");
483 _lpt->dump_head();
484 for (int j = 0; j < _block.length(); j++) {
485 Node* n = _block.at(j);
486 int d = depth(n);
487 for (int i = 0; i < d; i++) tty->print("%s", " ");
488 tty->print("%d :", d);
489 n->dump();
490 }
491 }
492#endif
493 }
494
495 compute_vector_element_type();
496
497 // Attempt vectorization
498
499 find_adjacent_refs();
500
501 extend_packlist();
502
503 if (_do_vector_loop) {
504 if (_packset.length() == 0) {
505 if (TraceSuperWord) {
506 tty->print_cr("\nSuperWord::_do_vector_loop DFA could not build packset, now trying to build anyway");
507 }
508 pack_parallel();
509 }
510 }
511
512 combine_packs();
513
514 construct_my_pack_map();
515 if (UseVectorCmov) {
516 merge_packs_to_cmovd();
517 }
518
519 filter_packs();
520
521 schedule();
522 } else if (post_loop_allowed) {
523 int saved_mapped_unroll_factor = cl->slp_max_unroll();
524 if (saved_mapped_unroll_factor) {
525 int vector_mapped_unroll_factor = saved_mapped_unroll_factor;
526
527 // now reset the slp_unroll_factor so that we can check the analysis mapped
528 // what the vector loop was mapped to
529 cl->set_slp_max_unroll(0);
530
531 // do the analysis on the post loop
532 unrolling_analysis(vector_mapped_unroll_factor);
533
534 // if our analyzed loop is a canonical fit, start processing it
535 if (vector_mapped_unroll_factor == saved_mapped_unroll_factor) {
536 // now add the vector nodes to packsets
537 for (int i = 0; i < _post_block.length(); i++) {
538 Node* n = _post_block.at(i);
539 Node_List* singleton = new Node_List();
540 singleton->push(n);
541 _packset.append(singleton);
542 set_my_pack(n, singleton);
543 }
544
545 // map base types for vector usage
546 compute_vector_element_type();
547 } else {
548 return;
549 }
550 } else {
551 // for some reason we could not map the slp analysis state of the vectorized loop
552 return;
553 }
554 }
555
556 output();
557}
558
559//------------------------------find_adjacent_refs---------------------------
560// Find the adjacent memory references and create pack pairs for them.
561// This is the initial set of packs that will then be extended by
562// following use->def and def->use links. The align positions are
563// assigned relative to the reference "align_to_ref"
564void SuperWord::find_adjacent_refs() {
565 // Get list of memory operations
566 Node_List memops;
567 for (int i = 0; i < _block.length(); i++) {
568 Node* n = _block.at(i);
569 if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
570 is_java_primitive(n->as_Mem()->memory_type())) {
571 int align = memory_alignment(n->as_Mem(), 0);
572 if (align != bottom_align) {
573 memops.push(n);
574 }
575 }
576 }
577
578 Node_List align_to_refs;
579 int best_iv_adjustment = 0;
580 MemNode* best_align_to_mem_ref = NULL;
581
582 while (memops.size() != 0) {
583 // Find a memory reference to align to.
584 MemNode* mem_ref = find_align_to_ref(memops);
585 if (mem_ref == NULL) break;
586 align_to_refs.push(mem_ref);
587 int iv_adjustment = get_iv_adjustment(mem_ref);
588
589 if (best_align_to_mem_ref == NULL) {
590 // Set memory reference which is the best from all memory operations
591 // to be used for alignment. The pre-loop trip count is modified to align
592 // this reference to a vector-aligned address.
593 best_align_to_mem_ref = mem_ref;
594 best_iv_adjustment = iv_adjustment;
595 NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
596 }
597
598 SWPointer align_to_ref_p(mem_ref, this, NULL, false);
599 // Set alignment relative to "align_to_ref" for all related memory operations.
600 for (int i = memops.size() - 1; i >= 0; i--) {
601 MemNode* s = memops.at(i)->as_Mem();
602 if (isomorphic(s, mem_ref) &&
603 (!_do_vector_loop || same_origin_idx(s, mem_ref))) {
604 SWPointer p2(s, this, NULL, false);
605 if (p2.comparable(align_to_ref_p)) {
606 int align = memory_alignment(s, iv_adjustment);
607 set_alignment(s, align);
608 }
609 }
610 }
611
612 // Create initial pack pairs of memory operations for which
613 // alignment is set and vectors will be aligned.
614 bool create_pack = true;
615 if (memory_alignment(mem_ref, best_iv_adjustment) == 0 || _do_vector_loop) {
616 if (!Matcher::misaligned_vectors_ok() || AlignVector) {
617 int vw = vector_width(mem_ref);
618 int vw_best = vector_width(best_align_to_mem_ref);
619 if (vw > vw_best) {
620 // Do not vectorize a memory access with more elements per vector
621 // if unaligned memory access is not allowed because number of
622 // iterations in pre-loop will be not enough to align it.
623 create_pack = false;
624 } else {
625 SWPointer p2(best_align_to_mem_ref, this, NULL, false);
626 if (align_to_ref_p.invar() != p2.invar()) {
627 // Do not vectorize memory accesses with different invariants
628 // if unaligned memory accesses are not allowed.
629 create_pack = false;
630 }
631 }
632 }
633 } else {
634 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
635 // Can't allow vectorization of unaligned memory accesses with the
636 // same type since it could be overlapped accesses to the same array.
637 create_pack = false;
638 } else {
639 // Allow independent (different type) unaligned memory operations
640 // if HW supports them.
641 if (!Matcher::misaligned_vectors_ok() || AlignVector) {
642 create_pack = false;
643 } else {
644 // Check if packs of the same memory type but
645 // with a different alignment were created before.
646 for (uint i = 0; i < align_to_refs.size(); i++) {
647 MemNode* mr = align_to_refs.at(i)->as_Mem();
648 if (mr == mem_ref) {
649 // Skip when we are looking at same memory operation.
650 continue;
651 }
652 if (same_velt_type(mr, mem_ref) &&
653 memory_alignment(mr, iv_adjustment) != 0)
654 create_pack = false;
655 }
656 }
657 }
658 }
659 if (create_pack) {
660 for (uint i = 0; i < memops.size(); i++) {
661 Node* s1 = memops.at(i);
662 int align = alignment(s1);
663 if (align == top_align) continue;
664 for (uint j = 0; j < memops.size(); j++) {
665 Node* s2 = memops.at(j);
666 if (alignment(s2) == top_align) continue;
667 if (s1 != s2 && are_adjacent_refs(s1, s2)) {
668 if (stmts_can_pack(s1, s2, align)) {
669 Node_List* pair = new Node_List();
670 pair->push(s1);
671 pair->push(s2);
672 if (!_do_vector_loop || same_origin_idx(s1, s2)) {
673 _packset.append(pair);
674 }
675 }
676 }
677 }
678 }
679 } else { // Don't create unaligned pack
680 // First, remove remaining memory ops of the same type from the list.
681 for (int i = memops.size() - 1; i >= 0; i--) {
682 MemNode* s = memops.at(i)->as_Mem();
683 if (same_velt_type(s, mem_ref)) {
684 memops.remove(i);
685 }
686 }
687
688 // Second, remove already constructed packs of the same type.
689 for (int i = _packset.length() - 1; i >= 0; i--) {
690 Node_List* p = _packset.at(i);
691 MemNode* s = p->at(0)->as_Mem();
692 if (same_velt_type(s, mem_ref)) {
693 remove_pack_at(i);
694 }
695 }
696
697 // If needed find the best memory reference for loop alignment again.
698 if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
699 // Put memory ops from remaining packs back on memops list for
700 // the best alignment search.
701 uint orig_msize = memops.size();
702 for (int i = 0; i < _packset.length(); i++) {
703 Node_List* p = _packset.at(i);
704 MemNode* s = p->at(0)->as_Mem();
705 assert(!same_velt_type(s, mem_ref), "sanity");
706 memops.push(s);
707 }
708 best_align_to_mem_ref = find_align_to_ref(memops);
709 if (best_align_to_mem_ref == NULL) {
710 if (TraceSuperWord) {
711 tty->print_cr("SuperWord::find_adjacent_refs(): best_align_to_mem_ref == NULL");
712 }
713 break;
714 }
715 best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
716 NOT_PRODUCT(find_adjacent_refs_trace_1(best_align_to_mem_ref, best_iv_adjustment);)
717 // Restore list.
718 while (memops.size() > orig_msize)
719 (void)memops.pop();
720 }
721 } // unaligned memory accesses
722
723 // Remove used mem nodes.
724 for (int i = memops.size() - 1; i >= 0; i--) {
725 MemNode* m = memops.at(i)->as_Mem();
726 if (alignment(m) != top_align) {
727 memops.remove(i);
728 }
729 }
730
731 } // while (memops.size() != 0
732 set_align_to_ref(best_align_to_mem_ref);
733
734 if (TraceSuperWord) {
735 tty->print_cr("\nAfter find_adjacent_refs");
736 print_packset();
737 }
738}
739
740#ifndef PRODUCT
741void SuperWord::find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment) {
742 if (is_trace_adjacent()) {
743 tty->print("SuperWord::find_adjacent_refs best_align_to_mem_ref = %d, best_iv_adjustment = %d",
744 best_align_to_mem_ref->_idx, best_iv_adjustment);
745 best_align_to_mem_ref->dump();
746 }
747}
748#endif
749
750//------------------------------find_align_to_ref---------------------------
751// Find a memory reference to align the loop induction variable to.
752// Looks first at stores then at loads, looking for a memory reference
753// with the largest number of references similar to it.
754MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
755 GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
756
757 // Count number of comparable memory ops
758 for (uint i = 0; i < memops.size(); i++) {
759 MemNode* s1 = memops.at(i)->as_Mem();
760 SWPointer p1(s1, this, NULL, false);
761 // Discard if pre loop can't align this reference
762 if (!ref_is_alignable(p1)) {
763 *cmp_ct.adr_at(i) = 0;
764 continue;
765 }
766 for (uint j = i+1; j < memops.size(); j++) {
767 MemNode* s2 = memops.at(j)->as_Mem();
768 if (isomorphic(s1, s2)) {
769 SWPointer p2(s2, this, NULL, false);
770 if (p1.comparable(p2)) {
771 (*cmp_ct.adr_at(i))++;
772 (*cmp_ct.adr_at(j))++;
773 }
774 }
775 }
776 }
777
778 // Find Store (or Load) with the greatest number of "comparable" references,
779 // biggest vector size, smallest data size and smallest iv offset.
780 int max_ct = 0;
781 int max_vw = 0;
782 int max_idx = -1;
783 int min_size = max_jint;
784 int min_iv_offset = max_jint;
785 for (uint j = 0; j < memops.size(); j++) {
786 MemNode* s = memops.at(j)->as_Mem();
787 if (s->is_Store()) {
788 int vw = vector_width_in_bytes(s);
789 assert(vw > 1, "sanity");
790 SWPointer p(s, this, NULL, false);
791 if ( cmp_ct.at(j) > max_ct ||
792 (cmp_ct.at(j) == max_ct &&
793 ( vw > max_vw ||
794 (vw == max_vw &&
795 ( data_size(s) < min_size ||
796 (data_size(s) == min_size &&
797 p.offset_in_bytes() < min_iv_offset)))))) {
798 max_ct = cmp_ct.at(j);
799 max_vw = vw;
800 max_idx = j;
801 min_size = data_size(s);
802 min_iv_offset = p.offset_in_bytes();
803 }
804 }
805 }
806 // If no stores, look at loads
807 if (max_ct == 0) {
808 for (uint j = 0; j < memops.size(); j++) {
809 MemNode* s = memops.at(j)->as_Mem();
810 if (s->is_Load()) {
811 int vw = vector_width_in_bytes(s);
812 assert(vw > 1, "sanity");
813 SWPointer p(s, this, NULL, false);
814 if ( cmp_ct.at(j) > max_ct ||
815 (cmp_ct.at(j) == max_ct &&
816 ( vw > max_vw ||
817 (vw == max_vw &&
818 ( data_size(s) < min_size ||
819 (data_size(s) == min_size &&
820 p.offset_in_bytes() < min_iv_offset)))))) {
821 max_ct = cmp_ct.at(j);
822 max_vw = vw;
823 max_idx = j;
824 min_size = data_size(s);
825 min_iv_offset = p.offset_in_bytes();
826 }
827 }
828 }
829 }
830
831#ifdef ASSERT
832 if (TraceSuperWord && Verbose) {
833 tty->print_cr("\nVector memops after find_align_to_ref");
834 for (uint i = 0; i < memops.size(); i++) {
835 MemNode* s = memops.at(i)->as_Mem();
836 s->dump();
837 }
838 }
839#endif
840
841 if (max_ct > 0) {
842#ifdef ASSERT
843 if (TraceSuperWord) {
844 tty->print("\nVector align to node: ");
845 memops.at(max_idx)->as_Mem()->dump();
846 }
847#endif
848 return memops.at(max_idx)->as_Mem();
849 }
850 return NULL;
851}
852
853//------------------span_works_for_memory_size-----------------------------
854static bool span_works_for_memory_size(MemNode* mem, int span, int mem_size, int offset) {
855 bool span_matches_memory = false;
856 if ((mem_size == type2aelembytes(T_BYTE) || mem_size == type2aelembytes(T_SHORT))
857 && ABS(span) == type2aelembytes(T_INT)) {
858 // There is a mismatch on span size compared to memory.
859 for (DUIterator_Fast jmax, j = mem->fast_outs(jmax); j < jmax; j++) {
860 Node* use = mem->fast_out(j);
861 if (!VectorNode::is_type_transition_to_int(use)) {
862 return false;
863 }
864 }
865 // If all uses transition to integer, it means that we can successfully align even on mismatch.
866 return true;
867 }
868 else {
869 span_matches_memory = ABS(span) == mem_size;
870 }
871 return span_matches_memory && (ABS(offset) % mem_size) == 0;
872}
873
874//------------------------------ref_is_alignable---------------------------
875// Can the preloop align the reference to position zero in the vector?
876bool SuperWord::ref_is_alignable(SWPointer& p) {
877 if (!p.has_iv()) {
878 return true; // no induction variable
879 }
880 CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
881 assert(pre_end != NULL, "we must have a correct pre-loop");
882 assert(pre_end->stride_is_con(), "pre loop stride is constant");
883 int preloop_stride = pre_end->stride_con();
884
885 int span = preloop_stride * p.scale_in_bytes();
886 int mem_size = p.memory_size();
887 int offset = p.offset_in_bytes();
888 // Stride one accesses are alignable if offset is aligned to memory operation size.
889 // Offset can be unaligned when UseUnalignedAccesses is used.
890 if (span_works_for_memory_size(p.mem(), span, mem_size, offset)) {
891 return true;
892 }
893 // If the initial offset from start of the object is computable,
894 // check if the pre-loop can align the final offset accordingly.
895 //
896 // In other words: Can we find an i such that the offset
897 // after i pre-loop iterations is aligned to vw?
898 // (init_offset + pre_loop) % vw == 0 (1)
899 // where
900 // pre_loop = i * span
901 // is the number of bytes added to the offset by i pre-loop iterations.
902 //
903 // For this to hold we need pre_loop to increase init_offset by
904 // pre_loop = vw - (init_offset % vw)
905 //
906 // This is only possible if pre_loop is divisible by span because each
907 // pre-loop iteration increases the initial offset by 'span' bytes:
908 // (vw - (init_offset % vw)) % span == 0
909 //
910 int vw = vector_width_in_bytes(p.mem());
911 assert(vw > 1, "sanity");
912 Node* init_nd = pre_end->init_trip();
913 if (init_nd->is_Con() && p.invar() == NULL) {
914 int init = init_nd->bottom_type()->is_int()->get_con();
915 int init_offset = init * p.scale_in_bytes() + offset;
916 if (init_offset < 0) { // negative offset from object start?
917 return false; // may happen in dead loop
918 }
919 if (vw % span == 0) {
920 // If vm is a multiple of span, we use formula (1).
921 if (span > 0) {
922 return (vw - (init_offset % vw)) % span == 0;
923 } else {
924 assert(span < 0, "nonzero stride * scale");
925 return (init_offset % vw) % -span == 0;
926 }
927 } else if (span % vw == 0) {
928 // If span is a multiple of vw, we can simplify formula (1) to:
929 // (init_offset + i * span) % vw == 0
930 // =>
931 // (init_offset % vw) + ((i * span) % vw) == 0
932 // =>
933 // init_offset % vw == 0
934 //
935 // Because we add a multiple of vw to the initial offset, the final
936 // offset is a multiple of vw if and only if init_offset is a multiple.
937 //
938 return (init_offset % vw) == 0;
939 }
940 }
941 return false;
942}
943//---------------------------get_vw_bytes_special------------------------
944int SuperWord::get_vw_bytes_special(MemNode* s) {
945 // Get the vector width in bytes.
946 int vw = vector_width_in_bytes(s);
947
948 // Check for special case where there is an MulAddS2I usage where short vectors are going to need combined.
949 BasicType btype = velt_basic_type(s);
950 if (type2aelembytes(btype) == 2) {
951 bool should_combine_adjacent = true;
952 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
953 Node* user = s->fast_out(i);
954 if (!VectorNode::is_muladds2i(user)) {
955 should_combine_adjacent = false;
956 }
957 }
958 if (should_combine_adjacent) {
959 vw = MIN2(Matcher::max_vector_size(btype)*type2aelembytes(btype), vw * 2);
960 }
961 }
962
963 return vw;
964}
965
966//---------------------------get_iv_adjustment---------------------------
967// Calculate loop's iv adjustment for this memory ops.
968int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
969 SWPointer align_to_ref_p(mem_ref, this, NULL, false);
970 int offset = align_to_ref_p.offset_in_bytes();
971 int scale = align_to_ref_p.scale_in_bytes();
972 int elt_size = align_to_ref_p.memory_size();
973 int vw = get_vw_bytes_special(mem_ref);
974 assert(vw > 1, "sanity");
975 int iv_adjustment;
976 if (scale != 0) {
977 int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
978 // At least one iteration is executed in pre-loop by default. As result
979 // several iterations are needed to align memory operations in main-loop even
980 // if offset is 0.
981 int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
982 assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
983 "(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size);
984 iv_adjustment = iv_adjustment_in_bytes/elt_size;
985 } else {
986 // This memory op is not dependent on iv (scale == 0)
987 iv_adjustment = 0;
988 }
989
990#ifndef PRODUCT
991 if (TraceSuperWord) {
992 tty->print("SuperWord::get_iv_adjustment: n = %d, noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d: ",
993 mem_ref->_idx, offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
994 mem_ref->dump();
995 }
996#endif
997 return iv_adjustment;
998}
999
1000//---------------------------dependence_graph---------------------------
1001// Construct dependency graph.
1002// Add dependence edges to load/store nodes for memory dependence
1003// A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
1004void SuperWord::dependence_graph() {
1005 CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
1006 // First, assign a dependence node to each memory node
1007 for (int i = 0; i < _block.length(); i++ ) {
1008 Node *n = _block.at(i);
1009 if (n->is_Mem() || (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1010 _dg.make_node(n);
1011 }
1012 }
1013
1014 // For each memory slice, create the dependences
1015 for (int i = 0; i < _mem_slice_head.length(); i++) {
1016 Node* n = _mem_slice_head.at(i);
1017 Node* n_tail = _mem_slice_tail.at(i);
1018
1019 // Get slice in predecessor order (last is first)
1020 if (cl->is_main_loop()) {
1021 mem_slice_preds(n_tail, n, _nlist);
1022 }
1023
1024#ifndef PRODUCT
1025 if(TraceSuperWord && Verbose) {
1026 tty->print_cr("SuperWord::dependence_graph: built a new mem slice");
1027 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
1028 _nlist.at(j)->dump();
1029 }
1030 }
1031#endif
1032 // Make the slice dependent on the root
1033 DepMem* slice = _dg.dep(n);
1034 _dg.make_edge(_dg.root(), slice);
1035
1036 // Create a sink for the slice
1037 DepMem* slice_sink = _dg.make_node(NULL);
1038 _dg.make_edge(slice_sink, _dg.tail());
1039
1040 // Now visit each pair of memory ops, creating the edges
1041 for (int j = _nlist.length() - 1; j >= 0 ; j--) {
1042 Node* s1 = _nlist.at(j);
1043
1044 // If no dependency yet, use slice
1045 if (_dg.dep(s1)->in_cnt() == 0) {
1046 _dg.make_edge(slice, s1);
1047 }
1048 SWPointer p1(s1->as_Mem(), this, NULL, false);
1049 bool sink_dependent = true;
1050 for (int k = j - 1; k >= 0; k--) {
1051 Node* s2 = _nlist.at(k);
1052 if (s1->is_Load() && s2->is_Load())
1053 continue;
1054 SWPointer p2(s2->as_Mem(), this, NULL, false);
1055
1056 int cmp = p1.cmp(p2);
1057 if (SuperWordRTDepCheck &&
1058 p1.base() != p2.base() && p1.valid() && p2.valid()) {
1059 // Create a runtime check to disambiguate
1060 OrderedPair pp(p1.base(), p2.base());
1061 _disjoint_ptrs.append_if_missing(pp);
1062 } else if (!SWPointer::not_equal(cmp)) {
1063 // Possibly same address
1064 _dg.make_edge(s1, s2);
1065 sink_dependent = false;
1066 }
1067 }
1068 if (sink_dependent) {
1069 _dg.make_edge(s1, slice_sink);
1070 }
1071 }
1072
1073 if (TraceSuperWord) {
1074 tty->print_cr("\nDependence graph for slice: %d", n->_idx);
1075 for (int q = 0; q < _nlist.length(); q++) {
1076 _dg.print(_nlist.at(q));
1077 }
1078 tty->cr();
1079 }
1080
1081 _nlist.clear();
1082 }
1083
1084 if (TraceSuperWord) {
1085 tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
1086 for (int r = 0; r < _disjoint_ptrs.length(); r++) {
1087 _disjoint_ptrs.at(r).print();
1088 tty->cr();
1089 }
1090 tty->cr();
1091 }
1092
1093}
1094
1095//---------------------------mem_slice_preds---------------------------
1096// Return a memory slice (node list) in predecessor order starting at "start"
1097void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
1098 assert(preds.length() == 0, "start empty");
1099 Node* n = start;
1100 Node* prev = NULL;
1101 while (true) {
1102 NOT_PRODUCT( if(is_trace_mem_slice()) tty->print_cr("SuperWord::mem_slice_preds: n %d", n->_idx);)
1103 assert(in_bb(n), "must be in block");
1104 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1105 Node* out = n->fast_out(i);
1106 if (out->is_Load()) {
1107 if (in_bb(out)) {
1108 preds.push(out);
1109 if (TraceSuperWord && Verbose) {
1110 tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", out->_idx);
1111 }
1112 }
1113 } else {
1114 // FIXME
1115 if (out->is_MergeMem() && !in_bb(out)) {
1116 // Either unrolling is causing a memory edge not to disappear,
1117 // or need to run igvn.optimize() again before SLP
1118 } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
1119 // Ditto. Not sure what else to check further.
1120 } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
1121 // StoreCM has an input edge used as a precedence edge.
1122 // Maybe an issue when oop stores are vectorized.
1123 } else {
1124 assert(out == prev || prev == NULL, "no branches off of store slice");
1125 }
1126 }//else
1127 }//for
1128 if (n == stop) break;
1129 preds.push(n);
1130 if (TraceSuperWord && Verbose) {
1131 tty->print_cr("SuperWord::mem_slice_preds: added pred(%d)", n->_idx);
1132 }
1133 prev = n;
1134 assert(n->is_Mem(), "unexpected node %s", n->Name());
1135 n = n->in(MemNode::Memory);
1136 }
1137}
1138
1139//------------------------------stmts_can_pack---------------------------
1140// Can s1 and s2 be in a pack with s1 immediately preceding s2 and
1141// s1 aligned at "align"
1142bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
1143
1144 // Do not use superword for non-primitives
1145 BasicType bt1 = velt_basic_type(s1);
1146 BasicType bt2 = velt_basic_type(s2);
1147 if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
1148 return false;
1149 if (Matcher::max_vector_size(bt1) < 2) {
1150 return false; // No vectors for this type
1151 }
1152
1153 if (isomorphic(s1, s2)) {
1154 if ((independent(s1, s2) && have_similar_inputs(s1, s2)) || reduction(s1, s2)) {
1155 if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
1156 if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
1157 int s1_align = alignment(s1);
1158 int s2_align = alignment(s2);
1159 if (s1_align == top_align || s1_align == align) {
1160 if (s2_align == top_align || s2_align == align + data_size(s1)) {
1161 return true;
1162 }
1163 }
1164 }
1165 }
1166 }
1167 }
1168 return false;
1169}
1170
1171//------------------------------exists_at---------------------------
1172// Does s exist in a pack at position pos?
1173bool SuperWord::exists_at(Node* s, uint pos) {
1174 for (int i = 0; i < _packset.length(); i++) {
1175 Node_List* p = _packset.at(i);
1176 if (p->at(pos) == s) {
1177 return true;
1178 }
1179 }
1180 return false;
1181}
1182
1183//------------------------------are_adjacent_refs---------------------------
1184// Is s1 immediately before s2 in memory?
1185bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
1186 if (!s1->is_Mem() || !s2->is_Mem()) return false;
1187 if (!in_bb(s1) || !in_bb(s2)) return false;
1188
1189 // Do not use superword for non-primitives
1190 if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
1191 !is_java_primitive(s2->as_Mem()->memory_type())) {
1192 return false;
1193 }
1194
1195 // FIXME - co_locate_pack fails on Stores in different mem-slices, so
1196 // only pack memops that are in the same alias set until that's fixed.
1197 if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
1198 _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
1199 return false;
1200 SWPointer p1(s1->as_Mem(), this, NULL, false);
1201 SWPointer p2(s2->as_Mem(), this, NULL, false);
1202 if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
1203 int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
1204 return diff == data_size(s1);
1205}
1206
1207//------------------------------isomorphic---------------------------
1208// Are s1 and s2 similar?
1209bool SuperWord::isomorphic(Node* s1, Node* s2) {
1210 if (s1->Opcode() != s2->Opcode()) return false;
1211 if (s1->req() != s2->req()) return false;
1212 if (!same_velt_type(s1, s2)) return false;
1213 Node* s1_ctrl = s1->in(0);
1214 Node* s2_ctrl = s2->in(0);
1215 // If the control nodes are equivalent, no further checks are required to test for isomorphism.
1216 if (s1_ctrl == s2_ctrl) {
1217 return true;
1218 } else {
1219 bool s1_ctrl_inv = ((s1_ctrl == NULL) ? true : lpt()->is_invariant(s1_ctrl));
1220 bool s2_ctrl_inv = ((s2_ctrl == NULL) ? true : lpt()->is_invariant(s2_ctrl));
1221 // If the control nodes are not invariant for the loop, fail isomorphism test.
1222 if (!s1_ctrl_inv || !s2_ctrl_inv) {
1223 return false;
1224 }
1225 if(s1_ctrl != NULL && s2_ctrl != NULL) {
1226 if (s1_ctrl->is_Proj()) {
1227 s1_ctrl = s1_ctrl->in(0);
1228 assert(lpt()->is_invariant(s1_ctrl), "must be invariant");
1229 }
1230 if (s2_ctrl->is_Proj()) {
1231 s2_ctrl = s2_ctrl->in(0);
1232 assert(lpt()->is_invariant(s2_ctrl), "must be invariant");
1233 }
1234 if (!s1_ctrl->is_RangeCheck() || !s2_ctrl->is_RangeCheck()) {
1235 return false;
1236 }
1237 }
1238 // Control nodes are invariant. However, we have no way of checking whether they resolve
1239 // in an equivalent manner. But, we know that invariant range checks are guaranteed to
1240 // throw before the loop (if they would have thrown). Thus, the loop would not have been reached.
1241 // Therefore, if the control nodes for both are range checks, we accept them to be isomorphic.
1242 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1243 Node* t1 = s1->fast_out(i);
1244 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1245 Node* t2 = s2->fast_out(j);
1246 if (VectorNode::is_muladds2i(t1) && VectorNode::is_muladds2i(t2)) {
1247 return true;
1248 }
1249 }
1250 }
1251 }
1252 return false;
1253}
1254
1255//------------------------------independent---------------------------
1256// Is there no data path from s1 to s2 or s2 to s1?
1257bool SuperWord::independent(Node* s1, Node* s2) {
1258 // assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
1259 int d1 = depth(s1);
1260 int d2 = depth(s2);
1261 if (d1 == d2) return s1 != s2;
1262 Node* deep = d1 > d2 ? s1 : s2;
1263 Node* shallow = d1 > d2 ? s2 : s1;
1264
1265 visited_clear();
1266
1267 return independent_path(shallow, deep);
1268}
1269
1270//--------------------------have_similar_inputs-----------------------
1271// For a node pair (s1, s2) which is isomorphic and independent,
1272// do s1 and s2 have similar input edges?
1273bool SuperWord::have_similar_inputs(Node* s1, Node* s2) {
1274 // assert(isomorphic(s1, s2) == true, "check isomorphic");
1275 // assert(independent(s1, s2) == true, "check independent");
1276 if (s1->req() > 1 && !s1->is_Store() && !s1->is_Load()) {
1277 for (uint i = 1; i < s1->req(); i++) {
1278 if (s1->in(i)->Opcode() != s2->in(i)->Opcode()) return false;
1279 }
1280 }
1281 return true;
1282}
1283
1284//------------------------------reduction---------------------------
1285// Is there a data path between s1 and s2 and the nodes reductions?
1286bool SuperWord::reduction(Node* s1, Node* s2) {
1287 bool retValue = false;
1288 int d1 = depth(s1);
1289 int d2 = depth(s2);
1290 if (d1 + 1 == d2) {
1291 if (s1->is_reduction() && s2->is_reduction()) {
1292 // This is an ordered set, so s1 should define s2
1293 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1294 Node* t1 = s1->fast_out(i);
1295 if (t1 == s2) {
1296 // both nodes are reductions and connected
1297 retValue = true;
1298 }
1299 }
1300 }
1301 }
1302
1303 return retValue;
1304}
1305
1306//------------------------------independent_path------------------------------
1307// Helper for independent
1308bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
1309 if (dp >= 1000) return false; // stop deep recursion
1310 visited_set(deep);
1311 int shal_depth = depth(shallow);
1312 assert(shal_depth <= depth(deep), "must be");
1313 for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
1314 Node* pred = preds.current();
1315 if (in_bb(pred) && !visited_test(pred)) {
1316 if (shallow == pred) {
1317 return false;
1318 }
1319 if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
1320 return false;
1321 }
1322 }
1323 }
1324 return true;
1325}
1326
1327//------------------------------set_alignment---------------------------
1328void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
1329 set_alignment(s1, align);
1330 if (align == top_align || align == bottom_align) {
1331 set_alignment(s2, align);
1332 } else {
1333 set_alignment(s2, align + data_size(s1));
1334 }
1335}
1336
1337//------------------------------data_size---------------------------
1338int SuperWord::data_size(Node* s) {
1339 Node* use = NULL; //test if the node is a candidate for CMoveV optimization, then return the size of CMov
1340 if (UseVectorCmov) {
1341 use = _cmovev_kit.is_Bool_candidate(s);
1342 if (use != NULL) {
1343 return data_size(use);
1344 }
1345 use = _cmovev_kit.is_CmpD_candidate(s);
1346 if (use != NULL) {
1347 return data_size(use);
1348 }
1349 }
1350
1351 int bsize = type2aelembytes(velt_basic_type(s));
1352 assert(bsize != 0, "valid size");
1353 return bsize;
1354}
1355
1356//------------------------------extend_packlist---------------------------
1357// Extend packset by following use->def and def->use links from pack members.
1358void SuperWord::extend_packlist() {
1359 bool changed;
1360 do {
1361 packset_sort(_packset.length());
1362 changed = false;
1363 for (int i = 0; i < _packset.length(); i++) {
1364 Node_List* p = _packset.at(i);
1365 changed |= follow_use_defs(p);
1366 changed |= follow_def_uses(p);
1367 }
1368 } while (changed);
1369
1370 if (_race_possible) {
1371 for (int i = 0; i < _packset.length(); i++) {
1372 Node_List* p = _packset.at(i);
1373 order_def_uses(p);
1374 }
1375 }
1376
1377 if (TraceSuperWord) {
1378 tty->print_cr("\nAfter extend_packlist");
1379 print_packset();
1380 }
1381}
1382
1383//------------------------------follow_use_defs---------------------------
1384// Extend the packset by visiting operand definitions of nodes in pack p
1385bool SuperWord::follow_use_defs(Node_List* p) {
1386 assert(p->size() == 2, "just checking");
1387 Node* s1 = p->at(0);
1388 Node* s2 = p->at(1);
1389 assert(s1->req() == s2->req(), "just checking");
1390 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1391
1392 if (s1->is_Load()) return false;
1393
1394 int align = alignment(s1);
1395 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: s1 %d, align %d", s1->_idx, align);)
1396 bool changed = false;
1397 int start = s1->is_Store() ? MemNode::ValueIn : 1;
1398 int end = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
1399 for (int j = start; j < end; j++) {
1400 Node* t1 = s1->in(j);
1401 Node* t2 = s2->in(j);
1402 if (!in_bb(t1) || !in_bb(t2))
1403 continue;
1404 if (stmts_can_pack(t1, t2, align)) {
1405 if (est_savings(t1, t2) >= 0) {
1406 Node_List* pair = new Node_List();
1407 pair->push(t1);
1408 pair->push(t2);
1409 _packset.append(pair);
1410 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_use_defs: set_alignment(%d, %d, %d)", t1->_idx, t2->_idx, align);)
1411 set_alignment(t1, t2, align);
1412 changed = true;
1413 }
1414 }
1415 }
1416 return changed;
1417}
1418
1419//------------------------------follow_def_uses---------------------------
1420// Extend the packset by visiting uses of nodes in pack p
1421bool SuperWord::follow_def_uses(Node_List* p) {
1422 bool changed = false;
1423 Node* s1 = p->at(0);
1424 Node* s2 = p->at(1);
1425 assert(p->size() == 2, "just checking");
1426 assert(s1->req() == s2->req(), "just checking");
1427 assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
1428
1429 if (s1->is_Store()) return false;
1430
1431 int align = alignment(s1);
1432 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: s1 %d, align %d", s1->_idx, align);)
1433 int savings = -1;
1434 int num_s1_uses = 0;
1435 Node* u1 = NULL;
1436 Node* u2 = NULL;
1437 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1438 Node* t1 = s1->fast_out(i);
1439 num_s1_uses++;
1440 if (!in_bb(t1)) continue;
1441 for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
1442 Node* t2 = s2->fast_out(j);
1443 if (!in_bb(t2)) continue;
1444 if (t2->Opcode() == Op_AddI && t2 == _lp->as_CountedLoop()->incr()) continue; // don't mess with the iv
1445 if (!opnd_positions_match(s1, t1, s2, t2))
1446 continue;
1447 if (stmts_can_pack(t1, t2, align)) {
1448 int my_savings = est_savings(t1, t2);
1449 if (my_savings > savings) {
1450 savings = my_savings;
1451 u1 = t1;
1452 u2 = t2;
1453 }
1454 }
1455 }
1456 }
1457 if (num_s1_uses > 1) {
1458 _race_possible = true;
1459 }
1460 if (savings >= 0) {
1461 Node_List* pair = new Node_List();
1462 pair->push(u1);
1463 pair->push(u2);
1464 _packset.append(pair);
1465 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SuperWord::follow_def_uses: set_alignment(%d, %d, %d)", u1->_idx, u2->_idx, align);)
1466 set_alignment(u1, u2, align);
1467 changed = true;
1468 }
1469 return changed;
1470}
1471
1472//------------------------------order_def_uses---------------------------
1473// For extended packsets, ordinally arrange uses packset by major component
1474void SuperWord::order_def_uses(Node_List* p) {
1475 Node* s1 = p->at(0);
1476
1477 if (s1->is_Store()) return;
1478
1479 // reductions are always managed beforehand
1480 if (s1->is_reduction()) return;
1481
1482 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1483 Node* t1 = s1->fast_out(i);
1484
1485 // Only allow operand swap on commuting operations
1486 if (!t1->is_Add() && !t1->is_Mul() && !VectorNode::is_muladds2i(t1)) {
1487 break;
1488 }
1489
1490 // Now find t1's packset
1491 Node_List* p2 = NULL;
1492 for (int j = 0; j < _packset.length(); j++) {
1493 p2 = _packset.at(j);
1494 Node* first = p2->at(0);
1495 if (t1 == first) {
1496 break;
1497 }
1498 p2 = NULL;
1499 }
1500 // Arrange all sub components by the major component
1501 if (p2 != NULL) {
1502 for (uint j = 1; j < p->size(); j++) {
1503 Node* d1 = p->at(j);
1504 Node* u1 = p2->at(j);
1505 opnd_positions_match(s1, t1, d1, u1);
1506 }
1507 }
1508 }
1509}
1510
1511//---------------------------opnd_positions_match-------------------------
1512// Is the use of d1 in u1 at the same operand position as d2 in u2?
1513bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
1514 // check reductions to see if they are marshalled to represent the reduction
1515 // operator in a specified opnd
1516 if (u1->is_reduction() && u2->is_reduction()) {
1517 // ensure reductions have phis and reduction definitions feeding the 1st operand
1518 Node* first = u1->in(2);
1519 if (first->is_Phi() || first->is_reduction()) {
1520 u1->swap_edges(1, 2);
1521 }
1522 // ensure reductions have phis and reduction definitions feeding the 1st operand
1523 first = u2->in(2);
1524 if (first->is_Phi() || first->is_reduction()) {
1525 u2->swap_edges(1, 2);
1526 }
1527 return true;
1528 }
1529
1530 uint ct = u1->req();
1531 if (ct != u2->req()) return false;
1532 uint i1 = 0;
1533 uint i2 = 0;
1534 do {
1535 for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
1536 for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
1537 if (i1 != i2) {
1538 if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
1539 // Further analysis relies on operands position matching.
1540 u2->swap_edges(i1, i2);
1541 } else if (VectorNode::is_muladds2i(u2) && u1 != u2) {
1542 if (i1 == 5 - i2) { // ((i1 == 3 && i2 == 2) || (i1 == 2 && i2 == 3) || (i1 == 1 && i2 == 4) || (i1 == 4 && i2 == 1))
1543 u2->swap_edges(1, 2);
1544 u2->swap_edges(3, 4);
1545 }
1546 if (i1 == 3 - i2 || i1 == 7 - i2) { // ((i1 == 1 && i2 == 2) || (i1 == 2 && i2 == 1) || (i1 == 3 && i2 == 4) || (i1 == 4 && i2 == 3))
1547 u2->swap_edges(2, 3);
1548 u2->swap_edges(1, 4);
1549 }
1550 return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs
1551 } else {
1552 return false;
1553 }
1554 } else if (i1 == i2 && VectorNode::is_muladds2i(u2) && u1 != u2) {
1555 u2->swap_edges(1, 3);
1556 u2->swap_edges(2, 4);
1557 return false; // Just swap the edges, the muladds2i nodes get packed in follow_use_defs
1558 }
1559 } while (i1 < ct);
1560 return true;
1561}
1562
1563//------------------------------est_savings---------------------------
1564// Estimate the savings from executing s1 and s2 as a pack
1565int SuperWord::est_savings(Node* s1, Node* s2) {
1566 int save_in = 2 - 1; // 2 operations per instruction in packed form
1567
1568 // inputs
1569 for (uint i = 1; i < s1->req(); i++) {
1570 Node* x1 = s1->in(i);
1571 Node* x2 = s2->in(i);
1572 if (x1 != x2) {
1573 if (are_adjacent_refs(x1, x2)) {
1574 save_in += adjacent_profit(x1, x2);
1575 } else if (!in_packset(x1, x2)) {
1576 save_in -= pack_cost(2);
1577 } else {
1578 save_in += unpack_cost(2);
1579 }
1580 }
1581 }
1582
1583 // uses of result
1584 uint ct = 0;
1585 int save_use = 0;
1586 for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
1587 Node* s1_use = s1->fast_out(i);
1588 for (int j = 0; j < _packset.length(); j++) {
1589 Node_List* p = _packset.at(j);
1590 if (p->at(0) == s1_use) {
1591 for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1592 Node* s2_use = s2->fast_out(k);
1593 if (p->at(p->size()-1) == s2_use) {
1594 ct++;
1595 if (are_adjacent_refs(s1_use, s2_use)) {
1596 save_use += adjacent_profit(s1_use, s2_use);
1597 }
1598 }
1599 }
1600 }
1601 }
1602 }
1603
1604 if (ct < s1->outcnt()) save_use += unpack_cost(1);
1605 if (ct < s2->outcnt()) save_use += unpack_cost(1);
1606
1607 return MAX2(save_in, save_use);
1608}
1609
1610//------------------------------costs---------------------------
1611int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
1612int SuperWord::pack_cost(int ct) { return ct; }
1613int SuperWord::unpack_cost(int ct) { return ct; }
1614
1615//------------------------------combine_packs---------------------------
1616// Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
1617void SuperWord::combine_packs() {
1618 bool changed = true;
1619 // Combine packs regardless max vector size.
1620 while (changed) {
1621 changed = false;
1622 for (int i = 0; i < _packset.length(); i++) {
1623 Node_List* p1 = _packset.at(i);
1624 if (p1 == NULL) continue;
1625 // Because of sorting we can start at i + 1
1626 for (int j = i + 1; j < _packset.length(); j++) {
1627 Node_List* p2 = _packset.at(j);
1628 if (p2 == NULL) continue;
1629 if (i == j) continue;
1630 if (p1->at(p1->size()-1) == p2->at(0)) {
1631 for (uint k = 1; k < p2->size(); k++) {
1632 p1->push(p2->at(k));
1633 }
1634 _packset.at_put(j, NULL);
1635 changed = true;
1636 }
1637 }
1638 }
1639 }
1640
1641 // Split packs which have size greater then max vector size.
1642 for (int i = 0; i < _packset.length(); i++) {
1643 Node_List* p1 = _packset.at(i);
1644 if (p1 != NULL) {
1645 BasicType bt = velt_basic_type(p1->at(0));
1646 uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1647 assert(is_power_of_2(max_vlen), "sanity");
1648 uint psize = p1->size();
1649 if (!is_power_of_2(psize)) {
1650 // Skip pack which can't be vector.
1651 // case1: for(...) { a[i] = i; } elements values are different (i+x)
1652 // case2: for(...) { a[i] = b[i+1]; } can't align both, load and store
1653 _packset.at_put(i, NULL);
1654 continue;
1655 }
1656 if (psize > max_vlen) {
1657 Node_List* pack = new Node_List();
1658 for (uint j = 0; j < psize; j++) {
1659 pack->push(p1->at(j));
1660 if (pack->size() >= max_vlen) {
1661 assert(is_power_of_2(pack->size()), "sanity");
1662 _packset.append(pack);
1663 pack = new Node_List();
1664 }
1665 }
1666 _packset.at_put(i, NULL);
1667 }
1668 }
1669 }
1670
1671 // Compress list.
1672 for (int i = _packset.length() - 1; i >= 0; i--) {
1673 Node_List* p1 = _packset.at(i);
1674 if (p1 == NULL) {
1675 _packset.remove_at(i);
1676 }
1677 }
1678
1679 if (TraceSuperWord) {
1680 tty->print_cr("\nAfter combine_packs");
1681 print_packset();
1682 }
1683}
1684
1685//-----------------------------construct_my_pack_map--------------------------
1686// Construct the map from nodes to packs. Only valid after the
1687// point where a node is only in one pack (after combine_packs).
1688void SuperWord::construct_my_pack_map() {
1689 Node_List* rslt = NULL;
1690 for (int i = 0; i < _packset.length(); i++) {
1691 Node_List* p = _packset.at(i);
1692 for (uint j = 0; j < p->size(); j++) {
1693 Node* s = p->at(j);
1694 assert(my_pack(s) == NULL, "only in one pack");
1695 set_my_pack(s, p);
1696 }
1697 }
1698}
1699
1700//------------------------------filter_packs---------------------------
1701// Remove packs that are not implemented or not profitable.
1702void SuperWord::filter_packs() {
1703 // Remove packs that are not implemented
1704 for (int i = _packset.length() - 1; i >= 0; i--) {
1705 Node_List* pk = _packset.at(i);
1706 bool impl = implemented(pk);
1707 if (!impl) {
1708#ifndef PRODUCT
1709 if (TraceSuperWord && Verbose) {
1710 tty->print_cr("Unimplemented");
1711 pk->at(0)->dump();
1712 }
1713#endif
1714 remove_pack_at(i);
1715 }
1716 Node *n = pk->at(0);
1717 if (n->is_reduction()) {
1718 _num_reductions++;
1719 } else {
1720 _num_work_vecs++;
1721 }
1722 }
1723
1724 // Remove packs that are not profitable
1725 bool changed;
1726 do {
1727 changed = false;
1728 for (int i = _packset.length() - 1; i >= 0; i--) {
1729 Node_List* pk = _packset.at(i);
1730 bool prof = profitable(pk);
1731 if (!prof) {
1732#ifndef PRODUCT
1733 if (TraceSuperWord && Verbose) {
1734 tty->print_cr("Unprofitable");
1735 pk->at(0)->dump();
1736 }
1737#endif
1738 remove_pack_at(i);
1739 changed = true;
1740 }
1741 }
1742 } while (changed);
1743
1744#ifndef PRODUCT
1745 if (TraceSuperWord) {
1746 tty->print_cr("\nAfter filter_packs");
1747 print_packset();
1748 tty->cr();
1749 }
1750#endif
1751}
1752
1753//------------------------------merge_packs_to_cmovd---------------------------
1754// Merge CMoveD into new vector-nodes
1755// We want to catch this pattern and subsume CmpD and Bool into CMoveD
1756//
1757// SubD ConD
1758// / | /
1759// / | / /
1760// / | / /
1761// / | / /
1762// / / /
1763// / / | /
1764// v / | /
1765// CmpD | /
1766// | | /
1767// v | /
1768// Bool | /
1769// \ | /
1770// \ | /
1771// \ | /
1772// \ | /
1773// \ v /
1774// CMoveD
1775//
1776
1777void SuperWord::merge_packs_to_cmovd() {
1778 for (int i = _packset.length() - 1; i >= 0; i--) {
1779 _cmovev_kit.make_cmovevd_pack(_packset.at(i));
1780 }
1781 #ifndef PRODUCT
1782 if (TraceSuperWord) {
1783 tty->print_cr("\nSuperWord::merge_packs_to_cmovd(): After merge");
1784 print_packset();
1785 tty->cr();
1786 }
1787 #endif
1788}
1789
1790Node* CMoveKit::is_Bool_candidate(Node* def) const {
1791 Node* use = NULL;
1792 if (!def->is_Bool() || def->in(0) != NULL || def->outcnt() != 1) {
1793 return NULL;
1794 }
1795 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1796 use = def->fast_out(j);
1797 if (!_sw->same_generation(def, use) || !use->is_CMove()) {
1798 return NULL;
1799 }
1800 }
1801 return use;
1802}
1803
1804Node* CMoveKit::is_CmpD_candidate(Node* def) const {
1805 Node* use = NULL;
1806 if (!def->is_Cmp() || def->in(0) != NULL || def->outcnt() != 1) {
1807 return NULL;
1808 }
1809 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1810 use = def->fast_out(j);
1811 if (!_sw->same_generation(def, use) || (use = is_Bool_candidate(use)) == NULL || !_sw->same_generation(def, use)) {
1812 return NULL;
1813 }
1814 }
1815 return use;
1816}
1817
1818Node_List* CMoveKit::make_cmovevd_pack(Node_List* cmovd_pk) {
1819 Node *cmovd = cmovd_pk->at(0);
1820 if (!cmovd->is_CMove()) {
1821 return NULL;
1822 }
1823 if (cmovd->Opcode() != Op_CMoveF && cmovd->Opcode() != Op_CMoveD) {
1824 return NULL;
1825 }
1826 if (pack(cmovd) != NULL) { // already in the cmov pack
1827 return NULL;
1828 }
1829 if (cmovd->in(0) != NULL) {
1830 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CMoveD %d has control flow, escaping...", cmovd->_idx); cmovd->dump();})
1831 return NULL;
1832 }
1833
1834 Node* bol = cmovd->as_CMove()->in(CMoveNode::Condition);
1835 if (!bol->is_Bool()
1836 || bol->outcnt() != 1
1837 || !_sw->same_generation(bol, cmovd)
1838 || bol->in(0) != NULL // BoolNode has control flow!!
1839 || _sw->my_pack(bol) == NULL) {
1840 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: Bool %d does not fit CMoveD %d for building vector, escaping...", bol->_idx, cmovd->_idx); bol->dump();})
1841 return NULL;
1842 }
1843 Node_List* bool_pk = _sw->my_pack(bol);
1844 if (bool_pk->size() != cmovd_pk->size() ) {
1845 return NULL;
1846 }
1847
1848 Node* cmpd = bol->in(1);
1849 if (!cmpd->is_Cmp()
1850 || cmpd->outcnt() != 1
1851 || !_sw->same_generation(cmpd, cmovd)
1852 || cmpd->in(0) != NULL // CmpDNode has control flow!!
1853 || _sw->my_pack(cmpd) == NULL) {
1854 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: CmpD %d does not fit CMoveD %d for building vector, escaping...", cmpd->_idx, cmovd->_idx); cmpd->dump();})
1855 return NULL;
1856 }
1857 Node_List* cmpd_pk = _sw->my_pack(cmpd);
1858 if (cmpd_pk->size() != cmovd_pk->size() ) {
1859 return NULL;
1860 }
1861
1862 if (!test_cmpd_pack(cmpd_pk, cmovd_pk)) {
1863 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print("CMoveKit::make_cmovevd_pack: cmpd pack for CmpD %d failed vectorization test", cmpd->_idx); cmpd->dump();})
1864 return NULL;
1865 }
1866
1867 Node_List* new_cmpd_pk = new Node_List();
1868 uint sz = cmovd_pk->size() - 1;
1869 for (uint i = 0; i <= sz; ++i) {
1870 Node* cmov = cmovd_pk->at(i);
1871 Node* bol = bool_pk->at(i);
1872 Node* cmp = cmpd_pk->at(i);
1873
1874 new_cmpd_pk->insert(i, cmov);
1875
1876 map(cmov, new_cmpd_pk);
1877 map(bol, new_cmpd_pk);
1878 map(cmp, new_cmpd_pk);
1879
1880 _sw->set_my_pack(cmov, new_cmpd_pk); // and keep old packs for cmp and bool
1881 }
1882 _sw->_packset.remove(cmovd_pk);
1883 _sw->_packset.remove(bool_pk);
1884 _sw->_packset.remove(cmpd_pk);
1885 _sw->_packset.append(new_cmpd_pk);
1886 NOT_PRODUCT(if(_sw->is_trace_cmov()) {tty->print_cr("CMoveKit::make_cmovevd_pack: added syntactic CMoveD pack"); _sw->print_pack(new_cmpd_pk);})
1887 return new_cmpd_pk;
1888}
1889
1890bool CMoveKit::test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk) {
1891 Node* cmpd0 = cmpd_pk->at(0);
1892 assert(cmpd0->is_Cmp(), "CMoveKit::test_cmpd_pack: should be CmpDNode");
1893 assert(cmovd_pk->at(0)->is_CMove(), "CMoveKit::test_cmpd_pack: should be CMoveD");
1894 assert(cmpd_pk->size() == cmovd_pk->size(), "CMoveKit::test_cmpd_pack: should be same size");
1895 Node* in1 = cmpd0->in(1);
1896 Node* in2 = cmpd0->in(2);
1897 Node_List* in1_pk = _sw->my_pack(in1);
1898 Node_List* in2_pk = _sw->my_pack(in2);
1899
1900 if ( (in1_pk != NULL && in1_pk->size() != cmpd_pk->size())
1901 || (in2_pk != NULL && in2_pk->size() != cmpd_pk->size()) ) {
1902 return false;
1903 }
1904
1905 // test if "all" in1 are in the same pack or the same node
1906 if (in1_pk == NULL) {
1907 for (uint j = 1; j < cmpd_pk->size(); j++) {
1908 if (cmpd_pk->at(j)->in(1) != in1) {
1909 return false;
1910 }
1911 }//for: in1_pk is not pack but all CmpD nodes in the pack have the same in(1)
1912 }
1913 // test if "all" in2 are in the same pack or the same node
1914 if (in2_pk == NULL) {
1915 for (uint j = 1; j < cmpd_pk->size(); j++) {
1916 if (cmpd_pk->at(j)->in(2) != in2) {
1917 return false;
1918 }
1919 }//for: in2_pk is not pack but all CmpD nodes in the pack have the same in(2)
1920 }
1921 //now check if cmpd_pk may be subsumed in vector built for cmovd_pk
1922 int cmovd_ind1, cmovd_ind2;
1923 if (cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1924 && cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1925 cmovd_ind1 = CMoveNode::IfFalse;
1926 cmovd_ind2 = CMoveNode::IfTrue;
1927 } else if (cmpd_pk->at(0)->in(2) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfFalse)
1928 && cmpd_pk->at(0)->in(1) == cmovd_pk->at(0)->as_CMove()->in(CMoveNode::IfTrue)) {
1929 cmovd_ind2 = CMoveNode::IfFalse;
1930 cmovd_ind1 = CMoveNode::IfTrue;
1931 }
1932 else {
1933 return false;
1934 }
1935
1936 for (uint j = 1; j < cmpd_pk->size(); j++) {
1937 if (cmpd_pk->at(j)->in(1) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind1)
1938 || cmpd_pk->at(j)->in(2) != cmovd_pk->at(j)->as_CMove()->in(cmovd_ind2)) {
1939 return false;
1940 }//if
1941 }
1942 NOT_PRODUCT(if(_sw->is_trace_cmov()) { tty->print("CMoveKit::test_cmpd_pack: cmpd pack for 1st CmpD %d is OK for vectorization: ", cmpd0->_idx); cmpd0->dump(); })
1943 return true;
1944}
1945
1946//------------------------------implemented---------------------------
1947// Can code be generated for pack p?
1948bool SuperWord::implemented(Node_List* p) {
1949 bool retValue = false;
1950 Node* p0 = p->at(0);
1951 if (p0 != NULL) {
1952 int opc = p0->Opcode();
1953 uint size = p->size();
1954 if (p0->is_reduction()) {
1955 const Type *arith_type = p0->bottom_type();
1956 // Length 2 reductions of INT/LONG do not offer performance benefits
1957 if (((arith_type->basic_type() == T_INT) || (arith_type->basic_type() == T_LONG)) && (size == 2)) {
1958 retValue = false;
1959 } else {
1960 retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1961 }
1962 } else {
1963 retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1964 }
1965 if (!retValue) {
1966 if (is_cmov_pack(p)) {
1967 NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::implemented: found cmpd pack"); print_pack(p);})
1968 return true;
1969 }
1970 }
1971 }
1972 return retValue;
1973}
1974
1975bool SuperWord::is_cmov_pack(Node_List* p) {
1976 return _cmovev_kit.pack(p->at(0)) != NULL;
1977}
1978//------------------------------same_inputs--------------------------
1979// For pack p, are all idx operands the same?
1980bool SuperWord::same_inputs(Node_List* p, int idx) {
1981 Node* p0 = p->at(0);
1982 uint vlen = p->size();
1983 Node* p0_def = p0->in(idx);
1984 for (uint i = 1; i < vlen; i++) {
1985 Node* pi = p->at(i);
1986 Node* pi_def = pi->in(idx);
1987 if (p0_def != pi_def) {
1988 return false;
1989 }
1990 }
1991 return true;
1992}
1993
1994//------------------------------profitable---------------------------
1995// For pack p, are all operands and all uses (with in the block) vector?
1996bool SuperWord::profitable(Node_List* p) {
1997 Node* p0 = p->at(0);
1998 uint start, end;
1999 VectorNode::vector_operands(p0, &start, &end);
2000
2001 // Return false if some inputs are not vectors or vectors with different
2002 // size or alignment.
2003 // Also, for now, return false if not scalar promotion case when inputs are
2004 // the same. Later, implement PackNode and allow differing, non-vector inputs
2005 // (maybe just the ones from outside the block.)
2006 for (uint i = start; i < end; i++) {
2007 if (!is_vector_use(p0, i)) {
2008 return false;
2009 }
2010 }
2011 // Check if reductions are connected
2012 if (p0->is_reduction()) {
2013 Node* second_in = p0->in(2);
2014 Node_List* second_pk = my_pack(second_in);
2015 if ((second_pk == NULL) || (_num_work_vecs == _num_reductions)) {
2016 // Remove reduction flag if no parent pack or if not enough work
2017 // to cover reduction expansion overhead
2018 p0->remove_flag(Node::Flag_is_reduction);
2019 return false;
2020 } else if (second_pk->size() != p->size()) {
2021 return false;
2022 }
2023 }
2024 if (VectorNode::is_shift(p0)) {
2025 // For now, return false if shift count is vector or not scalar promotion
2026 // case (different shift counts) because it is not supported yet.
2027 Node* cnt = p0->in(2);
2028 Node_List* cnt_pk = my_pack(cnt);
2029 if (cnt_pk != NULL)
2030 return false;
2031 if (!same_inputs(p, 2))
2032 return false;
2033 }
2034 if (!p0->is_Store()) {
2035 // For now, return false if not all uses are vector.
2036 // Later, implement ExtractNode and allow non-vector uses (maybe
2037 // just the ones outside the block.)
2038 for (uint i = 0; i < p->size(); i++) {
2039 Node* def = p->at(i);
2040 if (is_cmov_pack_internal_node(p, def)) {
2041 continue;
2042 }
2043 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2044 Node* use = def->fast_out(j);
2045 for (uint k = 0; k < use->req(); k++) {
2046 Node* n = use->in(k);
2047 if (def == n) {
2048 // reductions should only have a Phi use at the the loop
2049 // head and out of loop uses
2050 if (def->is_reduction() &&
2051 ((use->is_Phi() && use->in(0) == _lpt->_head) ||
2052 !_lpt->is_member(_phase->get_loop(_phase->ctrl_or_self(use))))) {
2053 assert(i == p->size()-1, "must be last element of the pack");
2054 continue;
2055 }
2056 if (!is_vector_use(use, k)) {
2057 return false;
2058 }
2059 }
2060 }
2061 }
2062 }
2063 }
2064 return true;
2065}
2066
2067//------------------------------schedule---------------------------
2068// Adjust the memory graph for the packed operations
2069void SuperWord::schedule() {
2070
2071 // Co-locate in the memory graph the members of each memory pack
2072 for (int i = 0; i < _packset.length(); i++) {
2073 co_locate_pack(_packset.at(i));
2074 }
2075}
2076
2077//-------------------------------remove_and_insert-------------------
2078// Remove "current" from its current position in the memory graph and insert
2079// it after the appropriate insertion point (lip or uip).
2080void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
2081 Node *uip, Unique_Node_List &sched_before) {
2082 Node* my_mem = current->in(MemNode::Memory);
2083 bool sched_up = sched_before.member(current);
2084
2085 // remove current_store from its current position in the memmory graph
2086 for (DUIterator i = current->outs(); current->has_out(i); i++) {
2087 Node* use = current->out(i);
2088 if (use->is_Mem()) {
2089 assert(use->in(MemNode::Memory) == current, "must be");
2090 if (use == prev) { // connect prev to my_mem
2091 _igvn.replace_input_of(use, MemNode::Memory, my_mem);
2092 --i; //deleted this edge; rescan position
2093 } else if (sched_before.member(use)) {
2094 if (!sched_up) { // Will be moved together with current
2095 _igvn.replace_input_of(use, MemNode::Memory, uip);
2096 --i; //deleted this edge; rescan position
2097 }
2098 } else {
2099 if (sched_up) { // Will be moved together with current
2100 _igvn.replace_input_of(use, MemNode::Memory, lip);
2101 --i; //deleted this edge; rescan position
2102 }
2103 }
2104 }
2105 }
2106
2107 Node *insert_pt = sched_up ? uip : lip;
2108
2109 // all uses of insert_pt's memory state should use current's instead
2110 for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
2111 Node* use = insert_pt->out(i);
2112 if (use->is_Mem()) {
2113 assert(use->in(MemNode::Memory) == insert_pt, "must be");
2114 _igvn.replace_input_of(use, MemNode::Memory, current);
2115 --i; //deleted this edge; rescan position
2116 } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
2117 uint pos; //lip (lower insert point) must be the last one in the memory slice
2118 for (pos=1; pos < use->req(); pos++) {
2119 if (use->in(pos) == insert_pt) break;
2120 }
2121 _igvn.replace_input_of(use, pos, current);
2122 --i;
2123 }
2124 }
2125
2126 //connect current to insert_pt
2127 _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
2128}
2129
2130//------------------------------co_locate_pack----------------------------------
2131// To schedule a store pack, we need to move any sandwiched memory ops either before
2132// or after the pack, based upon dependence information:
2133// (1) If any store in the pack depends on the sandwiched memory op, the
2134// sandwiched memory op must be scheduled BEFORE the pack;
2135// (2) If a sandwiched memory op depends on any store in the pack, the
2136// sandwiched memory op must be scheduled AFTER the pack;
2137// (3) If a sandwiched memory op (say, memA) depends on another sandwiched
2138// memory op (say memB), memB must be scheduled before memA. So, if memA is
2139// scheduled before the pack, memB must also be scheduled before the pack;
2140// (4) If there is no dependence restriction for a sandwiched memory op, we simply
2141// schedule this store AFTER the pack
2142// (5) We know there is no dependence cycle, so there in no other case;
2143// (6) Finally, all memory ops in another single pack should be moved in the same direction.
2144//
2145// To schedule a load pack, we use the memory state of either the first or the last load in
2146// the pack, based on the dependence constraint.
2147void SuperWord::co_locate_pack(Node_List* pk) {
2148 if (pk->at(0)->is_Store()) {
2149 MemNode* first = executed_first(pk)->as_Mem();
2150 MemNode* last = executed_last(pk)->as_Mem();
2151 Unique_Node_List schedule_before_pack;
2152 Unique_Node_List memops;
2153
2154 MemNode* current = last->in(MemNode::Memory)->as_Mem();
2155 MemNode* previous = last;
2156 while (true) {
2157 assert(in_bb(current), "stay in block");
2158 memops.push(previous);
2159 for (DUIterator i = current->outs(); current->has_out(i); i++) {
2160 Node* use = current->out(i);
2161 if (use->is_Mem() && use != previous)
2162 memops.push(use);
2163 }
2164 if (current == first) break;
2165 previous = current;
2166 current = current->in(MemNode::Memory)->as_Mem();
2167 }
2168
2169 // determine which memory operations should be scheduled before the pack
2170 for (uint i = 1; i < memops.size(); i++) {
2171 Node *s1 = memops.at(i);
2172 if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
2173 for (uint j = 0; j< i; j++) {
2174 Node *s2 = memops.at(j);
2175 if (!independent(s1, s2)) {
2176 if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
2177 schedule_before_pack.push(s1); // s1 must be scheduled before
2178 Node_List* mem_pk = my_pack(s1);
2179 if (mem_pk != NULL) {
2180 for (uint ii = 0; ii < mem_pk->size(); ii++) {
2181 Node* s = mem_pk->at(ii); // follow partner
2182 if (memops.member(s) && !schedule_before_pack.member(s))
2183 schedule_before_pack.push(s);
2184 }
2185 }
2186 break;
2187 }
2188 }
2189 }
2190 }
2191 }
2192
2193 Node* upper_insert_pt = first->in(MemNode::Memory);
2194 // Following code moves loads connected to upper_insert_pt below aliased stores.
2195 // Collect such loads here and reconnect them back to upper_insert_pt later.
2196 memops.clear();
2197 for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
2198 Node* use = upper_insert_pt->out(i);
2199 if (use->is_Mem() && !use->is_Store()) {
2200 memops.push(use);
2201 }
2202 }
2203
2204 MemNode* lower_insert_pt = last;
2205 previous = last; //previous store in pk
2206 current = last->in(MemNode::Memory)->as_Mem();
2207
2208 // start scheduling from "last" to "first"
2209 while (true) {
2210 assert(in_bb(current), "stay in block");
2211 assert(in_pack(previous, pk), "previous stays in pack");
2212 Node* my_mem = current->in(MemNode::Memory);
2213
2214 if (in_pack(current, pk)) {
2215 // Forward users of my memory state (except "previous) to my input memory state
2216 for (DUIterator i = current->outs(); current->has_out(i); i++) {
2217 Node* use = current->out(i);
2218 if (use->is_Mem() && use != previous) {
2219 assert(use->in(MemNode::Memory) == current, "must be");
2220 if (schedule_before_pack.member(use)) {
2221 _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
2222 } else {
2223 _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
2224 }
2225 --i; // deleted this edge; rescan position
2226 }
2227 }
2228 previous = current;
2229 } else { // !in_pack(current, pk) ==> a sandwiched store
2230 remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
2231 }
2232
2233 if (current == first) break;
2234 current = my_mem->as_Mem();
2235 } // end while
2236
2237 // Reconnect loads back to upper_insert_pt.
2238 for (uint i = 0; i < memops.size(); i++) {
2239 Node *ld = memops.at(i);
2240 if (ld->in(MemNode::Memory) != upper_insert_pt) {
2241 _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
2242 }
2243 }
2244 } else if (pk->at(0)->is_Load()) { //load
2245 // all loads in the pack should have the same memory state. By default,
2246 // we use the memory state of the last load. However, if any load could
2247 // not be moved down due to the dependence constraint, we use the memory
2248 // state of the first load.
2249 Node* first_mem = pk->at(0)->in(MemNode::Memory);
2250 Node* last_mem = first_mem;
2251 for (uint i = 1; i < pk->size(); i++) {
2252 Node* ld = pk->at(i);
2253 Node* mem = ld->in(MemNode::Memory);
2254 assert(in_bb(first_mem) || in_bb(mem) || mem == first_mem, "2 different memory state from outside the loop?");
2255 if (in_bb(mem)) {
2256 if (in_bb(first_mem) && bb_idx(mem) < bb_idx(first_mem)) {
2257 first_mem = mem;
2258 }
2259 if (!in_bb(last_mem) || bb_idx(mem) > bb_idx(last_mem)) {
2260 last_mem = mem;
2261 }
2262 }
2263 }
2264 bool schedule_last = true;
2265 for (uint i = 0; i < pk->size(); i++) {
2266 Node* ld = pk->at(i);
2267 for (Node* current = last_mem; current != ld->in(MemNode::Memory);
2268 current=current->in(MemNode::Memory)) {
2269 assert(current != first_mem, "corrupted memory graph");
2270 if(current->is_Mem() && !independent(current, ld)){
2271 schedule_last = false; // a later store depends on this load
2272 break;
2273 }
2274 }
2275 }
2276
2277 Node* mem_input = schedule_last ? last_mem : first_mem;
2278 _igvn.hash_delete(mem_input);
2279 // Give each load the same memory state
2280 for (uint i = 0; i < pk->size(); i++) {
2281 LoadNode* ld = pk->at(i)->as_Load();
2282 _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
2283 }
2284 }
2285}
2286
2287#ifndef PRODUCT
2288void SuperWord::print_loop(bool whole) {
2289 Node_Stack stack(_arena, _phase->C->unique() >> 2);
2290 Node_List rpo_list;
2291 VectorSet visited(_arena);
2292 visited.set(lpt()->_head->_idx);
2293 _phase->rpo(lpt()->_head, stack, visited, rpo_list);
2294 _phase->dump(lpt(), rpo_list.size(), rpo_list );
2295 if(whole) {
2296 tty->print_cr("\n Whole loop tree");
2297 _phase->dump();
2298 tty->print_cr(" End of whole loop tree\n");
2299 }
2300}
2301#endif
2302
2303//------------------------------output---------------------------
2304// Convert packs into vector node operations
2305void SuperWord::output() {
2306 CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2307 Compile* C = _phase->C;
2308 if (_packset.length() == 0) {
2309 if (cl->is_main_loop()) {
2310 // Instigate more unrolling for optimization when vectorization fails.
2311 C->set_major_progress();
2312 cl->set_notpassed_slp();
2313 cl->mark_do_unroll_only();
2314 }
2315 return;
2316 }
2317
2318#ifndef PRODUCT
2319 if (TraceLoopOpts) {
2320 tty->print("SuperWord::output ");
2321 lpt()->dump_head();
2322 }
2323#endif
2324
2325 if (cl->is_main_loop()) {
2326 // MUST ENSURE main loop's initial value is properly aligned:
2327 // (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
2328
2329 align_initial_loop_index(align_to_ref());
2330
2331 // Insert extract (unpack) operations for scalar uses
2332 for (int i = 0; i < _packset.length(); i++) {
2333 insert_extracts(_packset.at(i));
2334 }
2335 }
2336
2337 uint max_vlen_in_bytes = 0;
2338 uint max_vlen = 0;
2339 bool can_process_post_loop = (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop());
2340
2341 NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop before create_reserve_version_of_loop"); print_loop(true);})
2342
2343 CountedLoopReserveKit make_reversable(_phase, _lpt, do_reserve_copy());
2344
2345 NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("SWPointer::output: print loop after create_reserve_version_of_loop"); print_loop(true);})
2346
2347 if (do_reserve_copy() && !make_reversable.has_reserved()) {
2348 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: loop was not reserved correctly, exiting SuperWord");})
2349 return;
2350 }
2351
2352 for (int i = 0; i < _block.length(); i++) {
2353 Node* n = _block.at(i);
2354 Node_List* p = my_pack(n);
2355 if (p && n == executed_last(p)) {
2356 uint vlen = p->size();
2357 uint vlen_in_bytes = 0;
2358 Node* vn = NULL;
2359 Node* low_adr = p->at(0);
2360 Node* first = executed_first(p);
2361 if (can_process_post_loop) {
2362 // override vlen with the main loops vector length
2363 vlen = cl->slp_max_unroll();
2364 }
2365 NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d executed first, %d executed last in pack", first->_idx, n->_idx); print_pack(p);})
2366 int opc = n->Opcode();
2367 if (n->is_Load()) {
2368 Node* ctl = n->in(MemNode::Control);
2369 Node* mem = first->in(MemNode::Memory);
2370 SWPointer p1(n->as_Mem(), this, NULL, false);
2371 // Identify the memory dependency for the new loadVector node by
2372 // walking up through memory chain.
2373 // This is done to give flexibility to the new loadVector node so that
2374 // it can move above independent storeVector nodes.
2375 while (mem->is_StoreVector()) {
2376 SWPointer p2(mem->as_Mem(), this, NULL, false);
2377 int cmp = p1.cmp(p2);
2378 if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
2379 mem = mem->in(MemNode::Memory);
2380 } else {
2381 break; // dependent memory
2382 }
2383 }
2384 Node* adr = low_adr->in(MemNode::Address);
2385 const TypePtr* atyp = n->adr_type();
2386 vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n), control_dependency(p));
2387 vlen_in_bytes = vn->as_LoadVector()->memory_size();
2388 } else if (n->is_Store()) {
2389 // Promote value to be stored to vector
2390 Node* val = vector_opd(p, MemNode::ValueIn);
2391 if (val == NULL) {
2392 if (do_reserve_copy()) {
2393 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: val should not be NULL, exiting SuperWord");})
2394 return; //and reverse to backup IG
2395 }
2396 ShouldNotReachHere();
2397 }
2398
2399 Node* ctl = n->in(MemNode::Control);
2400 Node* mem = first->in(MemNode::Memory);
2401 Node* adr = low_adr->in(MemNode::Address);
2402 const TypePtr* atyp = n->adr_type();
2403 vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
2404 vlen_in_bytes = vn->as_StoreVector()->memory_size();
2405 } else if (VectorNode::is_muladds2i(n)) {
2406 assert(n->req() == 5u, "MulAddS2I should have 4 operands.");
2407 Node* in1 = vector_opd(p, 1);
2408 Node* in2 = vector_opd(p, 2);
2409 vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2410 vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2411 } else if (n->req() == 3 && !is_cmov_pack(p)) {
2412 // Promote operands to vector
2413 Node* in1 = NULL;
2414 bool node_isa_reduction = n->is_reduction();
2415 if (node_isa_reduction) {
2416 // the input to the first reduction operation is retained
2417 in1 = low_adr->in(1);
2418 } else {
2419 in1 = vector_opd(p, 1);
2420 if (in1 == NULL) {
2421 if (do_reserve_copy()) {
2422 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in1 should not be NULL, exiting SuperWord");})
2423 return; //and reverse to backup IG
2424 }
2425 ShouldNotReachHere();
2426 }
2427 }
2428 Node* in2 = vector_opd(p, 2);
2429 if (in2 == NULL) {
2430 if (do_reserve_copy()) {
2431 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: in2 should not be NULL, exiting SuperWord");})
2432 return; //and reverse to backup IG
2433 }
2434 ShouldNotReachHere();
2435 }
2436 if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
2437 // Move invariant vector input into second position to avoid register spilling.
2438 Node* tmp = in1;
2439 in1 = in2;
2440 in2 = tmp;
2441 }
2442 if (node_isa_reduction) {
2443 const Type *arith_type = n->bottom_type();
2444 vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
2445 if (in2->is_Load()) {
2446 vlen_in_bytes = in2->as_LoadVector()->memory_size();
2447 } else {
2448 vlen_in_bytes = in2->as_Vector()->length_in_bytes();
2449 }
2450 } else {
2451 vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
2452 vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2453 }
2454 } else if (opc == Op_SqrtF || opc == Op_SqrtD ||
2455 opc == Op_AbsF || opc == Op_AbsD ||
2456 opc == Op_AbsI || opc == Op_AbsL ||
2457 opc == Op_NegF || opc == Op_NegD ||
2458 opc == Op_PopCountI) {
2459 assert(n->req() == 2, "only one input expected");
2460 Node* in = vector_opd(p, 1);
2461 vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
2462 vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2463 } else if (is_cmov_pack(p)) {
2464 if (can_process_post_loop) {
2465 // do not refactor of flow in post loop context
2466 return;
2467 }
2468 if (!n->is_CMove()) {
2469 continue;
2470 }
2471 // place here CMoveVDNode
2472 NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: print before CMove vectorization"); print_loop(false);})
2473 Node* bol = n->in(CMoveNode::Condition);
2474 if (!bol->is_Bool() && bol->Opcode() == Op_ExtractI && bol->req() > 1 ) {
2475 NOT_PRODUCT(if(is_trace_cmov()) {tty->print_cr("SWPointer::output: %d is not Bool node, trying its in(1) node %d", bol->_idx, bol->in(1)->_idx); bol->dump(); bol->in(1)->dump();})
2476 bol = bol->in(1); //may be ExtractNode
2477 }
2478
2479 assert(bol->is_Bool(), "should be BoolNode - too late to bail out!");
2480 if (!bol->is_Bool()) {
2481 if (do_reserve_copy()) {
2482 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: expected %d bool node, exiting SuperWord", bol->_idx); bol->dump();})
2483 return; //and reverse to backup IG
2484 }
2485 ShouldNotReachHere();
2486 }
2487
2488 int cond = (int)bol->as_Bool()->_test._test;
2489 Node* in_cc = _igvn.intcon(cond);
2490 NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created intcon in_cc node %d", in_cc->_idx); in_cc->dump();})
2491 Node* cc = bol->clone();
2492 cc->set_req(1, in_cc);
2493 NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created bool cc node %d", cc->_idx); cc->dump();})
2494
2495 Node* src1 = vector_opd(p, 2); //2=CMoveNode::IfFalse
2496 if (src1 == NULL) {
2497 if (do_reserve_copy()) {
2498 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src1 should not be NULL, exiting SuperWord");})
2499 return; //and reverse to backup IG
2500 }
2501 ShouldNotReachHere();
2502 }
2503 Node* src2 = vector_opd(p, 3); //3=CMoveNode::IfTrue
2504 if (src2 == NULL) {
2505 if (do_reserve_copy()) {
2506 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: src2 should not be NULL, exiting SuperWord");})
2507 return; //and reverse to backup IG
2508 }
2509 ShouldNotReachHere();
2510 }
2511 BasicType bt = velt_basic_type(n);
2512 const TypeVect* vt = TypeVect::make(bt, vlen);
2513 assert(bt == T_FLOAT || bt == T_DOUBLE, "Only vectorization for FP cmovs is supported");
2514 if (bt == T_FLOAT) {
2515 vn = new CMoveVFNode(cc, src1, src2, vt);
2516 } else {
2517 assert(bt == T_DOUBLE, "Expected double");
2518 vn = new CMoveVDNode(cc, src1, src2, vt);
2519 }
2520 NOT_PRODUCT(if(is_trace_cmov()) {tty->print("SWPointer::output: created new CMove node %d: ", vn->_idx); vn->dump();})
2521 } else if (opc == Op_FmaD || opc == Op_FmaF) {
2522 // Promote operands to vector
2523 Node* in1 = vector_opd(p, 1);
2524 Node* in2 = vector_opd(p, 2);
2525 Node* in3 = vector_opd(p, 3);
2526 vn = VectorNode::make(opc, in1, in2, in3, vlen, velt_basic_type(n));
2527 vlen_in_bytes = vn->as_Vector()->length_in_bytes();
2528 } else {
2529 if (do_reserve_copy()) {
2530 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: ShouldNotReachHere, exiting SuperWord");})
2531 return; //and reverse to backup IG
2532 }
2533 ShouldNotReachHere();
2534 }
2535
2536 assert(vn != NULL, "sanity");
2537 if (vn == NULL) {
2538 if (do_reserve_copy()){
2539 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("SWPointer::output: got NULL node, cannot proceed, exiting SuperWord");})
2540 return; //and reverse to backup IG
2541 }
2542 ShouldNotReachHere();
2543 }
2544
2545 _block.at_put(i, vn);
2546 _igvn.register_new_node_with_optimizer(vn);
2547 _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
2548 for (uint j = 0; j < p->size(); j++) {
2549 Node* pm = p->at(j);
2550 _igvn.replace_node(pm, vn);
2551 }
2552 _igvn._worklist.push(vn);
2553
2554 if (can_process_post_loop) {
2555 // first check if the vector size if the maximum vector which we can use on the machine,
2556 // other vector size have reduced values for predicated data mapping.
2557 if (vlen_in_bytes != (uint)MaxVectorSize) {
2558 return;
2559 }
2560 }
2561
2562 if (vlen_in_bytes >= max_vlen_in_bytes && vlen > max_vlen) {
2563 max_vlen = vlen;
2564 max_vlen_in_bytes = vlen_in_bytes;
2565 }
2566#ifdef ASSERT
2567 if (TraceNewVectors) {
2568 tty->print("new Vector node: ");
2569 vn->dump();
2570 }
2571#endif
2572 }
2573 }//for (int i = 0; i < _block.length(); i++)
2574
2575 if (max_vlen_in_bytes > C->max_vector_size()) {
2576 C->set_max_vector_size(max_vlen_in_bytes);
2577 }
2578 if (max_vlen_in_bytes > 0) {
2579 cl->mark_loop_vectorized();
2580 }
2581
2582 if (SuperWordLoopUnrollAnalysis) {
2583 if (cl->has_passed_slp()) {
2584 uint slp_max_unroll_factor = cl->slp_max_unroll();
2585 if (slp_max_unroll_factor == max_vlen) {
2586 if (TraceSuperWordLoopUnrollAnalysis) {
2587 tty->print_cr("vector loop(unroll=%d, len=%d)\n", max_vlen, max_vlen_in_bytes*BitsPerByte);
2588 }
2589
2590 // For atomic unrolled loops which are vector mapped, instigate more unrolling
2591 cl->set_notpassed_slp();
2592 if (cl->is_main_loop()) {
2593 // if vector resources are limited, do not allow additional unrolling, also
2594 // do not unroll more on pure vector loops which were not reduced so that we can
2595 // program the post loop to single iteration execution.
2596 if (FLOATPRESSURE > 8) {
2597 C->set_major_progress();
2598 cl->mark_do_unroll_only();
2599 }
2600 }
2601
2602 if (do_reserve_copy()) {
2603 if (can_process_post_loop) {
2604 // Now create the difference of trip and limit and use it as our mask index.
2605 // Note: We limited the unroll of the vectorized loop so that
2606 // only vlen-1 size iterations can remain to be mask programmed.
2607 Node *incr = cl->incr();
2608 SubINode *index = new SubINode(cl->limit(), cl->init_trip());
2609 _igvn.register_new_node_with_optimizer(index);
2610 SetVectMaskINode *mask = new SetVectMaskINode(_phase->get_ctrl(cl->init_trip()), index);
2611 _igvn.register_new_node_with_optimizer(mask);
2612 // make this a single iteration loop
2613 AddINode *new_incr = new AddINode(incr->in(1), mask);
2614 _igvn.register_new_node_with_optimizer(new_incr);
2615 _phase->set_ctrl(new_incr, _phase->get_ctrl(incr));
2616 _igvn.replace_node(incr, new_incr);
2617 cl->mark_is_multiversioned();
2618 cl->loopexit()->add_flag(Node::Flag_has_vector_mask_set);
2619 }
2620 }
2621 }
2622 }
2623 }
2624
2625 if (do_reserve_copy()) {
2626 make_reversable.use_new();
2627 }
2628 NOT_PRODUCT(if(is_trace_loop_reverse()) {tty->print_cr("\n Final loop after SuperWord"); print_loop(true);})
2629 return;
2630}
2631
2632//------------------------------vector_opd---------------------------
2633// Create a vector operand for the nodes in pack p for operand: in(opd_idx)
2634Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
2635 Node* p0 = p->at(0);
2636 uint vlen = p->size();
2637 Node* opd = p0->in(opd_idx);
2638 CountedLoopNode *cl = lpt()->_head->as_CountedLoop();
2639
2640 if (PostLoopMultiversioning && Matcher::has_predicated_vectors() && cl->is_post_loop()) {
2641 // override vlen with the main loops vector length
2642 vlen = cl->slp_max_unroll();
2643 }
2644
2645 if (same_inputs(p, opd_idx)) {
2646 if (opd->is_Vector() || opd->is_LoadVector()) {
2647 assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
2648 if (opd_idx == 2 && VectorNode::is_shift(p0)) {
2649 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("shift's count can't be vector");})
2650 return NULL;
2651 }
2652 return opd; // input is matching vector
2653 }
2654 if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
2655 Compile* C = _phase->C;
2656 Node* cnt = opd;
2657 // Vector instructions do not mask shift count, do it here.
2658 juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2659 const TypeInt* t = opd->find_int_type();
2660 if (t != NULL && t->is_con()) {
2661 juint shift = t->get_con();
2662 if (shift > mask) { // Unsigned cmp
2663 cnt = ConNode::make(TypeInt::make(shift & mask));
2664 }
2665 } else {
2666 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2667 cnt = ConNode::make(TypeInt::make(mask));
2668 _igvn.register_new_node_with_optimizer(cnt);
2669 cnt = new AndINode(opd, cnt);
2670 _igvn.register_new_node_with_optimizer(cnt);
2671 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2672 }
2673 assert(opd->bottom_type()->isa_int(), "int type only");
2674 if (!opd->bottom_type()->isa_int()) {
2675 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should be int type only");})
2676 return NULL;
2677 }
2678 // Move non constant shift count into vector register.
2679 cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
2680 }
2681 if (cnt != opd) {
2682 _igvn.register_new_node_with_optimizer(cnt);
2683 _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
2684 }
2685 return cnt;
2686 }
2687 assert(!opd->is_StoreVector(), "such vector is not expected here");
2688 if (opd->is_StoreVector()) {
2689 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("StoreVector is not expected here");})
2690 return NULL;
2691 }
2692 // Convert scalar input to vector with the same number of elements as
2693 // p0's vector. Use p0's type because size of operand's container in
2694 // vector should match p0's size regardless operand's size.
2695 const Type* p0_t = velt_type(p0);
2696 VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
2697
2698 _igvn.register_new_node_with_optimizer(vn);
2699 _phase->set_ctrl(vn, _phase->get_ctrl(opd));
2700#ifdef ASSERT
2701 if (TraceNewVectors) {
2702 tty->print("new Vector node: ");
2703 vn->dump();
2704 }
2705#endif
2706 return vn;
2707 }
2708
2709 // Insert pack operation
2710 BasicType bt = velt_basic_type(p0);
2711 PackNode* pk = PackNode::make(opd, vlen, bt);
2712 DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
2713
2714 for (uint i = 1; i < vlen; i++) {
2715 Node* pi = p->at(i);
2716 Node* in = pi->in(opd_idx);
2717 assert(my_pack(in) == NULL, "Should already have been unpacked");
2718 if (my_pack(in) != NULL) {
2719 NOT_PRODUCT(if(is_trace_loop_reverse() || TraceLoopOpts) {tty->print_cr("Should already have been unpacked");})
2720 return NULL;
2721 }
2722 assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
2723 pk->add_opd(in);
2724 if (VectorNode::is_muladds2i(pi)) {
2725 Node* in2 = pi->in(opd_idx + 2);
2726 assert(my_pack(in2) == NULL, "Should already have been unpacked");
2727 if (my_pack(in2) != NULL) {
2728 NOT_PRODUCT(if (is_trace_loop_reverse() || TraceLoopOpts) { tty->print_cr("Should already have been unpacked"); })
2729 return NULL;
2730 }
2731 assert(opd_bt == in2->bottom_type()->basic_type(), "all same type");
2732 pk->add_opd(in2);
2733 }
2734 }
2735 _igvn.register_new_node_with_optimizer(pk);
2736 _phase->set_ctrl(pk, _phase->get_ctrl(opd));
2737#ifdef ASSERT
2738 if (TraceNewVectors) {
2739 tty->print("new Vector node: ");
2740 pk->dump();
2741 }
2742#endif
2743 return pk;
2744}
2745
2746//------------------------------insert_extracts---------------------------
2747// If a use of pack p is not a vector use, then replace the
2748// use with an extract operation.
2749void SuperWord::insert_extracts(Node_List* p) {
2750 if (p->at(0)->is_Store()) return;
2751 assert(_n_idx_list.is_empty(), "empty (node,index) list");
2752
2753 // Inspect each use of each pack member. For each use that is
2754 // not a vector use, replace the use with an extract operation.
2755
2756 for (uint i = 0; i < p->size(); i++) {
2757 Node* def = p->at(i);
2758 for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
2759 Node* use = def->fast_out(j);
2760 for (uint k = 0; k < use->req(); k++) {
2761 Node* n = use->in(k);
2762 if (def == n) {
2763 Node_List* u_pk = my_pack(use);
2764 if ((u_pk == NULL || !is_cmov_pack(u_pk) || use->is_CMove()) && !is_vector_use(use, k)) {
2765 _n_idx_list.push(use, k);
2766 }
2767 }
2768 }
2769 }
2770 }
2771
2772 while (_n_idx_list.is_nonempty()) {
2773 Node* use = _n_idx_list.node();
2774 int idx = _n_idx_list.index();
2775 _n_idx_list.pop();
2776 Node* def = use->in(idx);
2777
2778 if (def->is_reduction()) continue;
2779
2780 // Insert extract operation
2781 _igvn.hash_delete(def);
2782 int def_pos = alignment(def) / data_size(def);
2783
2784 Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
2785 _igvn.register_new_node_with_optimizer(ex);
2786 _phase->set_ctrl(ex, _phase->get_ctrl(def));
2787 _igvn.replace_input_of(use, idx, ex);
2788 _igvn._worklist.push(def);
2789
2790 bb_insert_after(ex, bb_idx(def));
2791 set_velt_type(ex, velt_type(def));
2792 }
2793}
2794
2795//------------------------------is_vector_use---------------------------
2796// Is use->in(u_idx) a vector use?
2797bool SuperWord::is_vector_use(Node* use, int u_idx) {
2798 Node_List* u_pk = my_pack(use);
2799 if (u_pk == NULL) return false;
2800 if (use->is_reduction()) return true;
2801 Node* def = use->in(u_idx);
2802 Node_List* d_pk = my_pack(def);
2803 if (d_pk == NULL) {
2804 // check for scalar promotion
2805 Node* n = u_pk->at(0)->in(u_idx);
2806 for (uint i = 1; i < u_pk->size(); i++) {
2807 if (u_pk->at(i)->in(u_idx) != n) return false;
2808 }
2809 return true;
2810 }
2811 if (VectorNode::is_muladds2i(use)) {
2812 // MulAddS2I takes shorts and produces ints - hence the special checks
2813 // on alignment and size.
2814 if (u_pk->size() * 2 != d_pk->size()) {
2815 return false;
2816 }
2817 for (uint i = 0; i < MIN2(d_pk->size(), u_pk->size()); i++) {
2818 Node* ui = u_pk->at(i);
2819 Node* di = d_pk->at(i);
2820 if (alignment(ui) != alignment(di) * 2) {
2821 return false;
2822 }
2823 }
2824 return true;
2825 }
2826 if (u_pk->size() != d_pk->size())
2827 return false;
2828 for (uint i = 0; i < u_pk->size(); i++) {
2829 Node* ui = u_pk->at(i);
2830 Node* di = d_pk->at(i);
2831 if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
2832 return false;
2833 }
2834 return true;
2835}
2836
2837//------------------------------construct_bb---------------------------
2838// Construct reverse postorder list of block members
2839bool SuperWord::construct_bb() {
2840 Node* entry = bb();
2841
2842 assert(_stk.length() == 0, "stk is empty");
2843 assert(_block.length() == 0, "block is empty");
2844 assert(_data_entry.length() == 0, "data_entry is empty");
2845 assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
2846 assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
2847
2848 // Find non-control nodes with no inputs from within block,
2849 // create a temporary map from node _idx to bb_idx for use
2850 // by the visited and post_visited sets,
2851 // and count number of nodes in block.
2852 int bb_ct = 0;
2853 for (uint i = 0; i < lpt()->_body.size(); i++) {
2854 Node *n = lpt()->_body.at(i);
2855 set_bb_idx(n, i); // Create a temporary map
2856 if (in_bb(n)) {
2857 if (n->is_LoadStore() || n->is_MergeMem() ||
2858 (n->is_Proj() && !n->as_Proj()->is_CFG())) {
2859 // Bailout if the loop has LoadStore, MergeMem or data Proj
2860 // nodes. Superword optimization does not work with them.
2861 return false;
2862 }
2863 bb_ct++;
2864 if (!n->is_CFG()) {
2865 bool found = false;
2866 for (uint j = 0; j < n->req(); j++) {
2867 Node* def = n->in(j);
2868 if (def && in_bb(def)) {
2869 found = true;
2870 break;
2871 }
2872 }
2873 if (!found) {
2874 assert(n != entry, "can't be entry");
2875 _data_entry.push(n);
2876 }
2877 }
2878 }
2879 }
2880
2881 // Find memory slices (head and tail)
2882 for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
2883 Node *n = lp()->fast_out(i);
2884 if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
2885 Node* n_tail = n->in(LoopNode::LoopBackControl);
2886 if (n_tail != n->in(LoopNode::EntryControl)) {
2887 if (!n_tail->is_Mem()) {
2888 assert(n_tail->is_Mem(), "unexpected node for memory slice: %s", n_tail->Name());
2889 return false; // Bailout
2890 }
2891 _mem_slice_head.push(n);
2892 _mem_slice_tail.push(n_tail);
2893 }
2894 }
2895 }
2896
2897 // Create an RPO list of nodes in block
2898
2899 visited_clear();
2900 post_visited_clear();
2901
2902 // Push all non-control nodes with no inputs from within block, then control entry
2903 for (int j = 0; j < _data_entry.length(); j++) {
2904 Node* n = _data_entry.at(j);
2905 visited_set(n);
2906 _stk.push(n);
2907 }
2908 visited_set(entry);
2909 _stk.push(entry);
2910
2911 // Do a depth first walk over out edges
2912 int rpo_idx = bb_ct - 1;
2913 int size;
2914 int reduction_uses = 0;
2915 while ((size = _stk.length()) > 0) {
2916 Node* n = _stk.top(); // Leave node on stack
2917 if (!visited_test_set(n)) {
2918 // forward arc in graph
2919 } else if (!post_visited_test(n)) {
2920 // cross or back arc
2921 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2922 Node *use = n->fast_out(i);
2923 if (in_bb(use) && !visited_test(use) &&
2924 // Don't go around backedge
2925 (!use->is_Phi() || n == entry)) {
2926 if (use->is_reduction()) {
2927 // First see if we can map the reduction on the given system we are on, then
2928 // make a data entry operation for each reduction we see.
2929 BasicType bt = use->bottom_type()->basic_type();
2930 if (ReductionNode::implemented(use->Opcode(), Matcher::min_vector_size(bt), bt)) {
2931 reduction_uses++;
2932 }
2933 }
2934 _stk.push(use);
2935 }
2936 }
2937 if (_stk.length() == size) {
2938 // There were no additional uses, post visit node now
2939 _stk.pop(); // Remove node from stack
2940 assert(rpo_idx >= 0, "");
2941 _block.at_put_grow(rpo_idx, n);
2942 rpo_idx--;
2943 post_visited_set(n);
2944 assert(rpo_idx >= 0 || _stk.is_empty(), "");
2945 }
2946 } else {
2947 _stk.pop(); // Remove post-visited node from stack
2948 }
2949 }//while
2950
2951 int ii_current = -1;
2952 unsigned int load_idx = (unsigned int)-1;
2953 _ii_order.clear();
2954 // Create real map of block indices for nodes
2955 for (int j = 0; j < _block.length(); j++) {
2956 Node* n = _block.at(j);
2957 set_bb_idx(n, j);
2958 if (_do_vector_loop && n->is_Load()) {
2959 if (ii_current == -1) {
2960 ii_current = _clone_map.gen(n->_idx);
2961 _ii_order.push(ii_current);
2962 load_idx = _clone_map.idx(n->_idx);
2963 } else if (_clone_map.idx(n->_idx) == load_idx && _clone_map.gen(n->_idx) != ii_current) {
2964 ii_current = _clone_map.gen(n->_idx);
2965 _ii_order.push(ii_current);
2966 }
2967 }
2968 }//for
2969
2970 // Ensure extra info is allocated.
2971 initialize_bb();
2972
2973#ifndef PRODUCT
2974 if (_vector_loop_debug && _ii_order.length() > 0) {
2975 tty->print("SuperWord::construct_bb: List of generations: ");
2976 for (int jj = 0; jj < _ii_order.length(); ++jj) {
2977 tty->print(" %d:%d", jj, _ii_order.at(jj));
2978 }
2979 tty->print_cr(" ");
2980 }
2981 if (TraceSuperWord) {
2982 print_bb();
2983 tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
2984 for (int m = 0; m < _data_entry.length(); m++) {
2985 tty->print("%3d ", m);
2986 _data_entry.at(m)->dump();
2987 }
2988 tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
2989 for (int m = 0; m < _mem_slice_head.length(); m++) {
2990 tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
2991 tty->print(" "); _mem_slice_tail.at(m)->dump();
2992 }
2993 }
2994#endif
2995 assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
2996 return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
2997}
2998
2999//------------------------------initialize_bb---------------------------
3000// Initialize per node info
3001void SuperWord::initialize_bb() {
3002 Node* last = _block.at(_block.length() - 1);
3003 grow_node_info(bb_idx(last));
3004}
3005
3006//------------------------------bb_insert_after---------------------------
3007// Insert n into block after pos
3008void SuperWord::bb_insert_after(Node* n, int pos) {
3009 int n_pos = pos + 1;
3010 // Make room
3011 for (int i = _block.length() - 1; i >= n_pos; i--) {
3012 _block.at_put_grow(i+1, _block.at(i));
3013 }
3014 for (int j = _node_info.length() - 1; j >= n_pos; j--) {
3015 _node_info.at_put_grow(j+1, _node_info.at(j));
3016 }
3017 // Set value
3018 _block.at_put_grow(n_pos, n);
3019 _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
3020 // Adjust map from node->_idx to _block index
3021 for (int i = n_pos; i < _block.length(); i++) {
3022 set_bb_idx(_block.at(i), i);
3023 }
3024}
3025
3026//------------------------------compute_max_depth---------------------------
3027// Compute max depth for expressions from beginning of block
3028// Use to prune search paths during test for independence.
3029void SuperWord::compute_max_depth() {
3030 int ct = 0;
3031 bool again;
3032 do {
3033 again = false;
3034 for (int i = 0; i < _block.length(); i++) {
3035 Node* n = _block.at(i);
3036 if (!n->is_Phi()) {
3037 int d_orig = depth(n);
3038 int d_in = 0;
3039 for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
3040 Node* pred = preds.current();
3041 if (in_bb(pred)) {
3042 d_in = MAX2(d_in, depth(pred));
3043 }
3044 }
3045 if (d_in + 1 != d_orig) {
3046 set_depth(n, d_in + 1);
3047 again = true;
3048 }
3049 }
3050 }
3051 ct++;
3052 } while (again);
3053
3054 if (TraceSuperWord && Verbose) {
3055 tty->print_cr("compute_max_depth iterated: %d times", ct);
3056 }
3057}
3058
3059//-------------------------compute_vector_element_type-----------------------
3060// Compute necessary vector element type for expressions
3061// This propagates backwards a narrower integer type when the
3062// upper bits of the value are not needed.
3063// Example: char a,b,c; a = b + c;
3064// Normally the type of the add is integer, but for packed character
3065// operations the type of the add needs to be char.
3066void SuperWord::compute_vector_element_type() {
3067 if (TraceSuperWord && Verbose) {
3068 tty->print_cr("\ncompute_velt_type:");
3069 }
3070
3071 // Initial type
3072 for (int i = 0; i < _block.length(); i++) {
3073 Node* n = _block.at(i);
3074 set_velt_type(n, container_type(n));
3075 }
3076
3077 // Propagate integer narrowed type backwards through operations
3078 // that don't depend on higher order bits
3079 for (int i = _block.length() - 1; i >= 0; i--) {
3080 Node* n = _block.at(i);
3081 // Only integer types need be examined
3082 const Type* vtn = velt_type(n);
3083 if (vtn->basic_type() == T_INT) {
3084 uint start, end;
3085 VectorNode::vector_operands(n, &start, &end);
3086
3087 for (uint j = start; j < end; j++) {
3088 Node* in = n->in(j);
3089 // Don't propagate through a memory
3090 if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
3091 data_size(n) < data_size(in)) {
3092 bool same_type = true;
3093 for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
3094 Node *use = in->fast_out(k);
3095 if (!in_bb(use) || !same_velt_type(use, n)) {
3096 same_type = false;
3097 break;
3098 }
3099 }
3100 if (same_type) {
3101 // For right shifts of small integer types (bool, byte, char, short)
3102 // we need precise information about sign-ness. Only Load nodes have
3103 // this information because Store nodes are the same for signed and
3104 // unsigned values. And any arithmetic operation after a load may
3105 // expand a value to signed Int so such right shifts can't be used
3106 // because vector elements do not have upper bits of Int.
3107 const Type* vt = vtn;
3108 if (VectorNode::is_shift(in)) {
3109 Node* load = in->in(1);
3110 if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
3111 vt = velt_type(load);
3112 } else if (in->Opcode() != Op_LShiftI) {
3113 // Widen type to Int to avoid creation of right shift vector
3114 // (align + data_size(s1) check in stmts_can_pack() will fail).
3115 // Note, left shifts work regardless type.
3116 vt = TypeInt::INT;
3117 }
3118 }
3119 set_velt_type(in, vt);
3120 }
3121 }
3122 }
3123 }
3124 }
3125#ifndef PRODUCT
3126 if (TraceSuperWord && Verbose) {
3127 for (int i = 0; i < _block.length(); i++) {
3128 Node* n = _block.at(i);
3129 velt_type(n)->dump();
3130 tty->print("\t");
3131 n->dump();
3132 }
3133 }
3134#endif
3135}
3136
3137//------------------------------memory_alignment---------------------------
3138// Alignment within a vector memory reference
3139int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
3140 #ifndef PRODUCT
3141 if(TraceSuperWord && Verbose) {
3142 tty->print("SuperWord::memory_alignment within a vector memory reference for %d: ", s->_idx); s->dump();
3143 }
3144 #endif
3145 NOT_PRODUCT(SWPointer::Tracer::Depth ddd(0);)
3146 SWPointer p(s, this, NULL, false);
3147 if (!p.valid()) {
3148 NOT_PRODUCT(if(is_trace_alignment()) tty->print("SWPointer::memory_alignment: SWPointer p invalid, return bottom_align");)
3149 return bottom_align;
3150 }
3151 int vw = get_vw_bytes_special(s);
3152 if (vw < 2) {
3153 NOT_PRODUCT(if(is_trace_alignment()) tty->print_cr("SWPointer::memory_alignment: vector_width_in_bytes < 2, return bottom_align");)
3154 return bottom_align; // No vectors for this type
3155 }
3156 int offset = p.offset_in_bytes();
3157 offset += iv_adjust*p.memory_size();
3158 int off_rem = offset % vw;
3159 int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
3160 if (TraceSuperWord && Verbose) {
3161 tty->print_cr("SWPointer::memory_alignment: off_rem = %d, off_mod = %d", off_rem, off_mod);
3162 }
3163 return off_mod;
3164}
3165
3166//---------------------------container_type---------------------------
3167// Smallest type containing range of values
3168const Type* SuperWord::container_type(Node* n) {
3169 if (n->is_Mem()) {
3170 BasicType bt = n->as_Mem()->memory_type();
3171 if (n->is_Store() && (bt == T_CHAR)) {
3172 // Use T_SHORT type instead of T_CHAR for stored values because any
3173 // preceding arithmetic operation extends values to signed Int.
3174 bt = T_SHORT;
3175 }
3176 if (n->Opcode() == Op_LoadUB) {
3177 // Adjust type for unsigned byte loads, it is important for right shifts.
3178 // T_BOOLEAN is used because there is no basic type representing type
3179 // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
3180 // size (one byte) and sign is important.
3181 bt = T_BOOLEAN;
3182 }
3183 return Type::get_const_basic_type(bt);
3184 }
3185 const Type* t = _igvn.type(n);
3186 if (t->basic_type() == T_INT) {
3187 // A narrow type of arithmetic operations will be determined by
3188 // propagating the type of memory operations.
3189 return TypeInt::INT;
3190 }
3191 return t;
3192}
3193
3194bool SuperWord::same_velt_type(Node* n1, Node* n2) {
3195 const Type* vt1 = velt_type(n1);
3196 const Type* vt2 = velt_type(n2);
3197 if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
3198 // Compare vectors element sizes for integer types.
3199 return data_size(n1) == data_size(n2);
3200 }
3201 return vt1 == vt2;
3202}
3203
3204//------------------------------in_packset---------------------------
3205// Are s1 and s2 in a pack pair and ordered as s1,s2?
3206bool SuperWord::in_packset(Node* s1, Node* s2) {
3207 for (int i = 0; i < _packset.length(); i++) {
3208 Node_List* p = _packset.at(i);
3209 assert(p->size() == 2, "must be");
3210 if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
3211 return true;
3212 }
3213 }
3214 return false;
3215}
3216
3217//------------------------------in_pack---------------------------
3218// Is s in pack p?
3219Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
3220 for (uint i = 0; i < p->size(); i++) {
3221 if (p->at(i) == s) {
3222 return p;
3223 }
3224 }
3225 return NULL;
3226}
3227
3228//------------------------------remove_pack_at---------------------------
3229// Remove the pack at position pos in the packset
3230void SuperWord::remove_pack_at(int pos) {
3231 Node_List* p = _packset.at(pos);
3232 for (uint i = 0; i < p->size(); i++) {
3233 Node* s = p->at(i);
3234 set_my_pack(s, NULL);
3235 }
3236 _packset.remove_at(pos);
3237}
3238
3239void SuperWord::packset_sort(int n) {
3240 // simple bubble sort so that we capitalize with O(n) when its already sorted
3241 while (n != 0) {
3242 bool swapped = false;
3243 for (int i = 1; i < n; i++) {
3244 Node_List* q_low = _packset.at(i-1);
3245 Node_List* q_i = _packset.at(i);
3246
3247 // only swap when we find something to swap
3248 if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
3249 Node_List* t = q_i;
3250 *(_packset.adr_at(i)) = q_low;
3251 *(_packset.adr_at(i-1)) = q_i;
3252 swapped = true;
3253 }
3254 }
3255 if (swapped == false) break;
3256 n--;
3257 }
3258}
3259
3260//------------------------------executed_first---------------------------
3261// Return the node executed first in pack p. Uses the RPO block list
3262// to determine order.
3263Node* SuperWord::executed_first(Node_List* p) {
3264 Node* n = p->at(0);
3265 int n_rpo = bb_idx(n);
3266 for (uint i = 1; i < p->size(); i++) {
3267 Node* s = p->at(i);
3268 int s_rpo = bb_idx(s);
3269 if (s_rpo < n_rpo) {
3270 n = s;
3271 n_rpo = s_rpo;
3272 }
3273 }
3274 return n;
3275}
3276
3277//------------------------------executed_last---------------------------
3278// Return the node executed last in pack p.
3279Node* SuperWord::executed_last(Node_List* p) {
3280 Node* n = p->at(0);
3281 int n_rpo = bb_idx(n);
3282 for (uint i = 1; i < p->size(); i++) {
3283 Node* s = p->at(i);
3284 int s_rpo = bb_idx(s);
3285 if (s_rpo > n_rpo) {
3286 n = s;
3287 n_rpo = s_rpo;
3288 }
3289 }
3290 return n;
3291}
3292
3293LoadNode::ControlDependency SuperWord::control_dependency(Node_List* p) {
3294 LoadNode::ControlDependency dep = LoadNode::DependsOnlyOnTest;
3295 for (uint i = 0; i < p->size(); i++) {
3296 Node* n = p->at(i);
3297 assert(n->is_Load(), "only meaningful for loads");
3298 if (!n->depends_only_on_test()) {
3299 dep = LoadNode::Pinned;
3300 }
3301 }
3302 return dep;
3303}
3304
3305
3306//----------------------------align_initial_loop_index---------------------------
3307// Adjust pre-loop limit so that in main loop, a load/store reference
3308// to align_to_ref will be a position zero in the vector.
3309// (iv + k) mod vector_align == 0
3310void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
3311 CountedLoopNode *main_head = lp()->as_CountedLoop();
3312 assert(main_head->is_main_loop(), "");
3313 CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
3314 assert(pre_end != NULL, "we must have a correct pre-loop");
3315 Node *pre_opaq1 = pre_end->limit();
3316 assert(pre_opaq1->Opcode() == Op_Opaque1, "");
3317 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
3318 Node *lim0 = pre_opaq->in(1);
3319
3320 // Where we put new limit calculations
3321 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
3322
3323 // Ensure the original loop limit is available from the
3324 // pre-loop Opaque1 node.
3325 Node *orig_limit = pre_opaq->original_loop_limit();
3326 assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
3327
3328 SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
3329 assert(align_to_ref_p.valid(), "sanity");
3330
3331 // Given:
3332 // lim0 == original pre loop limit
3333 // V == v_align (power of 2)
3334 // invar == extra invariant piece of the address expression
3335 // e == offset [ +/- invar ]
3336 //
3337 // When reassociating expressions involving '%' the basic rules are:
3338 // (a - b) % k == 0 => a % k == b % k
3339 // and:
3340 // (a + b) % k == 0 => a % k == (k - b) % k
3341 //
3342 // For stride > 0 && scale > 0,
3343 // Derive the new pre-loop limit "lim" such that the two constraints:
3344 // (1) lim = lim0 + N (where N is some positive integer < V)
3345 // (2) (e + lim) % V == 0
3346 // are true.
3347 //
3348 // Substituting (1) into (2),
3349 // (e + lim0 + N) % V == 0
3350 // solve for N:
3351 // N = (V - (e + lim0)) % V
3352 // substitute back into (1), so that new limit
3353 // lim = lim0 + (V - (e + lim0)) % V
3354 //
3355 // For stride > 0 && scale < 0
3356 // Constraints:
3357 // lim = lim0 + N
3358 // (e - lim) % V == 0
3359 // Solving for lim:
3360 // (e - lim0 - N) % V == 0
3361 // N = (e - lim0) % V
3362 // lim = lim0 + (e - lim0) % V
3363 //
3364 // For stride < 0 && scale > 0
3365 // Constraints:
3366 // lim = lim0 - N
3367 // (e + lim) % V == 0
3368 // Solving for lim:
3369 // (e + lim0 - N) % V == 0
3370 // N = (e + lim0) % V
3371 // lim = lim0 - (e + lim0) % V
3372 //
3373 // For stride < 0 && scale < 0
3374 // Constraints:
3375 // lim = lim0 - N
3376 // (e - lim) % V == 0
3377 // Solving for lim:
3378 // (e - lim0 + N) % V == 0
3379 // N = (V - (e - lim0)) % V
3380 // lim = lim0 - (V - (e - lim0)) % V
3381
3382 int vw = vector_width_in_bytes(align_to_ref);
3383 int stride = iv_stride();
3384 int scale = align_to_ref_p.scale_in_bytes();
3385 int elt_size = align_to_ref_p.memory_size();
3386 int v_align = vw / elt_size;
3387 assert(v_align > 1, "sanity");
3388 int offset = align_to_ref_p.offset_in_bytes() / elt_size;
3389 Node *offsn = _igvn.intcon(offset);
3390
3391 Node *e = offsn;
3392 if (align_to_ref_p.invar() != NULL) {
3393 // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
3394 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3395 Node* invar = align_to_ref_p.invar();
3396 if (_igvn.type(invar)->isa_long()) {
3397 // Computations are done % (vector width/element size) so it's
3398 // safe to simply convert invar to an int and loose the upper 32
3399 // bit half.
3400 invar = new ConvL2INode(invar);
3401 _igvn.register_new_node_with_optimizer(invar);
3402 }
3403 Node* aref = new URShiftINode(invar, log2_elt);
3404 _igvn.register_new_node_with_optimizer(aref);
3405 _phase->set_ctrl(aref, pre_ctrl);
3406 if (align_to_ref_p.negate_invar()) {
3407 e = new SubINode(e, aref);
3408 } else {
3409 e = new AddINode(e, aref);
3410 }
3411 _igvn.register_new_node_with_optimizer(e);
3412 _phase->set_ctrl(e, pre_ctrl);
3413 }
3414 if (vw > ObjectAlignmentInBytes || align_to_ref_p.base()->is_top()) {
3415 // incorporate base e +/- base && Mask >>> log2(elt)
3416 Node* xbase = new CastP2XNode(NULL, align_to_ref_p.adr());
3417 _igvn.register_new_node_with_optimizer(xbase);
3418#ifdef _LP64
3419 xbase = new ConvL2INode(xbase);
3420 _igvn.register_new_node_with_optimizer(xbase);
3421#endif
3422 Node* mask = _igvn.intcon(vw-1);
3423 Node* masked_xbase = new AndINode(xbase, mask);
3424 _igvn.register_new_node_with_optimizer(masked_xbase);
3425 Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
3426 Node* bref = new URShiftINode(masked_xbase, log2_elt);
3427 _igvn.register_new_node_with_optimizer(bref);
3428 _phase->set_ctrl(bref, pre_ctrl);
3429 e = new AddINode(e, bref);
3430 _igvn.register_new_node_with_optimizer(e);
3431 _phase->set_ctrl(e, pre_ctrl);
3432 }
3433
3434 // compute e +/- lim0
3435 if (scale < 0) {
3436 e = new SubINode(e, lim0);
3437 } else {
3438 e = new AddINode(e, lim0);
3439 }
3440 _igvn.register_new_node_with_optimizer(e);
3441 _phase->set_ctrl(e, pre_ctrl);
3442
3443 if (stride * scale > 0) {
3444 // compute V - (e +/- lim0)
3445 Node* va = _igvn.intcon(v_align);
3446 e = new SubINode(va, e);
3447 _igvn.register_new_node_with_optimizer(e);
3448 _phase->set_ctrl(e, pre_ctrl);
3449 }
3450 // compute N = (exp) % V
3451 Node* va_msk = _igvn.intcon(v_align - 1);
3452 Node* N = new AndINode(e, va_msk);
3453 _igvn.register_new_node_with_optimizer(N);
3454 _phase->set_ctrl(N, pre_ctrl);
3455
3456 // substitute back into (1), so that new limit
3457 // lim = lim0 + N
3458 Node* lim;
3459 if (stride < 0) {
3460 lim = new SubINode(lim0, N);
3461 } else {
3462 lim = new AddINode(lim0, N);
3463 }
3464 _igvn.register_new_node_with_optimizer(lim);
3465 _phase->set_ctrl(lim, pre_ctrl);
3466 Node* constrained =
3467 (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
3468 : (Node*) new MaxINode(lim, orig_limit);
3469 _igvn.register_new_node_with_optimizer(constrained);
3470 _phase->set_ctrl(constrained, pre_ctrl);
3471 _igvn.replace_input_of(pre_opaq, 1, constrained);
3472}
3473
3474//----------------------------get_pre_loop_end---------------------------
3475// Find pre loop end from main loop. Returns null if none.
3476CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode* cl) {
3477 // The loop cannot be optimized if the graph shape at
3478 // the loop entry is inappropriate.
3479 if (!PhaseIdealLoop::is_canonical_loop_entry(cl)) {
3480 return NULL;
3481 }
3482
3483 Node* p_f = cl->skip_predicates()->in(0)->in(0);
3484 if (!p_f->is_IfFalse()) return NULL;
3485 if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
3486 CountedLoopEndNode* pre_end = p_f->in(0)->as_CountedLoopEnd();
3487 CountedLoopNode* loop_node = pre_end->loopnode();
3488 if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
3489 return pre_end;
3490}
3491
3492//------------------------------init---------------------------
3493void SuperWord::init() {
3494 _dg.init();
3495 _packset.clear();
3496 _disjoint_ptrs.clear();
3497 _block.clear();
3498 _post_block.clear();
3499 _data_entry.clear();
3500 _mem_slice_head.clear();
3501 _mem_slice_tail.clear();
3502 _iteration_first.clear();
3503 _iteration_last.clear();
3504 _node_info.clear();
3505 _align_to_ref = NULL;
3506 _lpt = NULL;
3507 _lp = NULL;
3508 _bb = NULL;
3509 _iv = NULL;
3510 _race_possible = 0;
3511 _early_return = false;
3512 _num_work_vecs = 0;
3513 _num_reductions = 0;
3514}
3515
3516//------------------------------restart---------------------------
3517void SuperWord::restart() {
3518 _dg.init();
3519 _packset.clear();
3520 _disjoint_ptrs.clear();
3521 _block.clear();
3522 _post_block.clear();
3523 _data_entry.clear();
3524 _mem_slice_head.clear();
3525 _mem_slice_tail.clear();
3526 _node_info.clear();
3527}
3528
3529//------------------------------print_packset---------------------------
3530void SuperWord::print_packset() {
3531#ifndef PRODUCT
3532 tty->print_cr("packset");
3533 for (int i = 0; i < _packset.length(); i++) {
3534 tty->print_cr("Pack: %d", i);
3535 Node_List* p = _packset.at(i);
3536 print_pack(p);
3537 }
3538#endif
3539}
3540
3541//------------------------------print_pack---------------------------
3542void SuperWord::print_pack(Node_List* p) {
3543 for (uint i = 0; i < p->size(); i++) {
3544 print_stmt(p->at(i));
3545 }
3546}
3547
3548//------------------------------print_bb---------------------------
3549void SuperWord::print_bb() {
3550#ifndef PRODUCT
3551 tty->print_cr("\nBlock");
3552 for (int i = 0; i < _block.length(); i++) {
3553 Node* n = _block.at(i);
3554 tty->print("%d ", i);
3555 if (n) {
3556 n->dump();
3557 }
3558 }
3559#endif
3560}
3561
3562//------------------------------print_stmt---------------------------
3563void SuperWord::print_stmt(Node* s) {
3564#ifndef PRODUCT
3565 tty->print(" align: %d \t", alignment(s));
3566 s->dump();
3567#endif
3568}
3569
3570//------------------------------blank---------------------------
3571char* SuperWord::blank(uint depth) {
3572 static char blanks[101];
3573 assert(depth < 101, "too deep");
3574 for (uint i = 0; i < depth; i++) blanks[i] = ' ';
3575 blanks[depth] = '\0';
3576 return blanks;
3577}
3578
3579
3580//==============================SWPointer===========================
3581#ifndef PRODUCT
3582int SWPointer::Tracer::_depth = 0;
3583#endif
3584//----------------------------SWPointer------------------------
3585SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
3586 _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
3587 _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3588 _nstack(nstack), _analyze_only(analyze_only),
3589 _stack_idx(0)
3590#ifndef PRODUCT
3591 , _tracer(slp)
3592#endif
3593{
3594 NOT_PRODUCT(_tracer.ctor_1(mem);)
3595
3596 Node* adr = mem->in(MemNode::Address);
3597 if (!adr->is_AddP()) {
3598 assert(!valid(), "too complex");
3599 return;
3600 }
3601 // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
3602 Node* base = adr->in(AddPNode::Base);
3603 // The base address should be loop invariant
3604 if (!invariant(base)) {
3605 assert(!valid(), "base address is loop variant");
3606 return;
3607 }
3608 // unsafe references require misaligned vector access support
3609 if (base->is_top() && !Matcher::misaligned_vectors_ok()) {
3610 assert(!valid(), "unsafe access");
3611 return;
3612 }
3613
3614 NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.store_depth();)
3615 NOT_PRODUCT(_tracer.ctor_2(adr);)
3616
3617 int i;
3618 for (i = 0; i < 3; i++) {
3619 NOT_PRODUCT(_tracer.ctor_3(adr, i);)
3620
3621 if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
3622 assert(!valid(), "too complex");
3623 return;
3624 }
3625 adr = adr->in(AddPNode::Address);
3626 NOT_PRODUCT(_tracer.ctor_4(adr, i);)
3627
3628 if (base == adr || !adr->is_AddP()) {
3629 NOT_PRODUCT(_tracer.ctor_5(adr, base, i);)
3630 break; // stop looking at addp's
3631 }
3632 }
3633 if (!invariant(adr)) {
3634 assert(!valid(), "adr is loop variant");
3635 return;
3636 }
3637
3638 if (!base->is_top() && adr != base) {
3639 assert(!valid(), "adr and base differ");
3640 return;
3641 }
3642
3643 NOT_PRODUCT(if(_slp->is_trace_alignment()) _tracer.restore_depth();)
3644 NOT_PRODUCT(_tracer.ctor_6(mem);)
3645
3646 _base = base;
3647 _adr = adr;
3648 assert(valid(), "Usable");
3649}
3650
3651// Following is used to create a temporary object during
3652// the pattern match of an address expression.
3653SWPointer::SWPointer(SWPointer* p) :
3654 _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
3655 _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
3656 _nstack(p->_nstack), _analyze_only(p->_analyze_only),
3657 _stack_idx(p->_stack_idx)
3658 #ifndef PRODUCT
3659 , _tracer(p->_slp)
3660 #endif
3661{}
3662
3663
3664bool SWPointer::invariant(Node* n) {
3665 NOT_PRODUCT(Tracer::Depth dd;)
3666 Node *n_c = phase()->get_ctrl(n);
3667 NOT_PRODUCT(_tracer.invariant_1(n, n_c);)
3668 return !lpt()->is_member(phase()->get_loop(n_c));
3669}
3670//------------------------scaled_iv_plus_offset--------------------
3671// Match: k*iv + offset
3672// where: k is a constant that maybe zero, and
3673// offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
3674bool SWPointer::scaled_iv_plus_offset(Node* n) {
3675 NOT_PRODUCT(Tracer::Depth ddd;)
3676 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_1(n);)
3677
3678 if (scaled_iv(n)) {
3679 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_2(n);)
3680 return true;
3681 }
3682
3683 if (offset_plus_k(n)) {
3684 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_3(n);)
3685 return true;
3686 }
3687
3688 int opc = n->Opcode();
3689 if (opc == Op_AddI) {
3690 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
3691 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_4(n);)
3692 return true;
3693 }
3694 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3695 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_5(n);)
3696 return true;
3697 }
3698 } else if (opc == Op_SubI) {
3699 if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
3700 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_6(n);)
3701 return true;
3702 }
3703 if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
3704 _scale *= -1;
3705 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_7(n);)
3706 return true;
3707 }
3708 }
3709
3710 NOT_PRODUCT(_tracer.scaled_iv_plus_offset_8(n);)
3711 return false;
3712}
3713
3714//----------------------------scaled_iv------------------------
3715// Match: k*iv where k is a constant that's not zero
3716bool SWPointer::scaled_iv(Node* n) {
3717 NOT_PRODUCT(Tracer::Depth ddd;)
3718 NOT_PRODUCT(_tracer.scaled_iv_1(n);)
3719
3720 if (_scale != 0) { // already found a scale
3721 NOT_PRODUCT(_tracer.scaled_iv_2(n, _scale);)
3722 return false;
3723 }
3724
3725 if (n == iv()) {
3726 _scale = 1;
3727 NOT_PRODUCT(_tracer.scaled_iv_3(n, _scale);)
3728 return true;
3729 }
3730 if (_analyze_only && (invariant(n) == false)) {
3731 _nstack->push(n, _stack_idx++);
3732 }
3733
3734 int opc = n->Opcode();
3735 if (opc == Op_MulI) {
3736 if (n->in(1) == iv() && n->in(2)->is_Con()) {
3737 _scale = n->in(2)->get_int();
3738 NOT_PRODUCT(_tracer.scaled_iv_4(n, _scale);)
3739 return true;
3740 } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
3741 _scale = n->in(1)->get_int();
3742 NOT_PRODUCT(_tracer.scaled_iv_5(n, _scale);)
3743 return true;
3744 }
3745 } else if (opc == Op_LShiftI) {
3746 if (n->in(1) == iv() && n->in(2)->is_Con()) {
3747 _scale = 1 << n->in(2)->get_int();
3748 NOT_PRODUCT(_tracer.scaled_iv_6(n, _scale);)
3749 return true;
3750 }
3751 } else if (opc == Op_ConvI2L) {
3752 if (n->in(1)->Opcode() == Op_CastII &&
3753 n->in(1)->as_CastII()->has_range_check()) {
3754 // Skip range check dependent CastII nodes
3755 n = n->in(1);
3756 }
3757 if (scaled_iv_plus_offset(n->in(1))) {
3758 NOT_PRODUCT(_tracer.scaled_iv_7(n);)
3759 return true;
3760 }
3761 } else if (opc == Op_LShiftL) {
3762 if (!has_iv() && _invar == NULL) {
3763 // Need to preserve the current _offset value, so
3764 // create a temporary object for this expression subtree.
3765 // Hacky, so should re-engineer the address pattern match.
3766 NOT_PRODUCT(Tracer::Depth dddd;)
3767 SWPointer tmp(this);
3768 NOT_PRODUCT(_tracer.scaled_iv_8(n, &tmp);)
3769
3770 if (tmp.scaled_iv_plus_offset(n->in(1))) {
3771 if (tmp._invar == NULL || _slp->do_vector_loop()) {
3772 int mult = 1 << n->in(2)->get_int();
3773 _scale = tmp._scale * mult;
3774 _offset += tmp._offset * mult;
3775 NOT_PRODUCT(_tracer.scaled_iv_9(n, _scale, _offset, mult);)
3776 return true;
3777 }
3778 }
3779 }
3780 }
3781 NOT_PRODUCT(_tracer.scaled_iv_10(n);)
3782 return false;
3783}
3784
3785//----------------------------offset_plus_k------------------------
3786// Match: offset is (k [+/- invariant])
3787// where k maybe zero and invariant is optional, but not both.
3788bool SWPointer::offset_plus_k(Node* n, bool negate) {
3789 NOT_PRODUCT(Tracer::Depth ddd;)
3790 NOT_PRODUCT(_tracer.offset_plus_k_1(n);)
3791
3792 int opc = n->Opcode();
3793 if (opc == Op_ConI) {
3794 _offset += negate ? -(n->get_int()) : n->get_int();
3795 NOT_PRODUCT(_tracer.offset_plus_k_2(n, _offset);)
3796 return true;
3797 } else if (opc == Op_ConL) {
3798 // Okay if value fits into an int
3799 const TypeLong* t = n->find_long_type();
3800 if (t->higher_equal(TypeLong::INT)) {
3801 jlong loff = n->get_long();
3802 jint off = (jint)loff;
3803 _offset += negate ? -off : loff;
3804 NOT_PRODUCT(_tracer.offset_plus_k_3(n, _offset);)
3805 return true;
3806 }
3807 NOT_PRODUCT(_tracer.offset_plus_k_4(n);)
3808 return false;
3809 }
3810 if (_invar != NULL) { // already has an invariant
3811 NOT_PRODUCT(_tracer.offset_plus_k_5(n, _invar);)
3812 return false;
3813 }
3814
3815 if (_analyze_only && (invariant(n) == false)) {
3816 _nstack->push(n, _stack_idx++);
3817 }
3818 if (opc == Op_AddI) {
3819 if (n->in(2)->is_Con() && invariant(n->in(1))) {
3820 _negate_invar = negate;
3821 _invar = n->in(1);
3822 _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3823 NOT_PRODUCT(_tracer.offset_plus_k_6(n, _invar, _negate_invar, _offset);)
3824 return true;
3825 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3826 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3827 _negate_invar = negate;
3828 _invar = n->in(2);
3829 NOT_PRODUCT(_tracer.offset_plus_k_7(n, _invar, _negate_invar, _offset);)
3830 return true;
3831 }
3832 }
3833 if (opc == Op_SubI) {
3834 if (n->in(2)->is_Con() && invariant(n->in(1))) {
3835 _negate_invar = negate;
3836 _invar = n->in(1);
3837 _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
3838 NOT_PRODUCT(_tracer.offset_plus_k_8(n, _invar, _negate_invar, _offset);)
3839 return true;
3840 } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
3841 _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
3842 _negate_invar = !negate;
3843 _invar = n->in(2);
3844 NOT_PRODUCT(_tracer.offset_plus_k_9(n, _invar, _negate_invar, _offset);)
3845 return true;
3846 }
3847 }
3848 if (invariant(n)) {
3849 if (opc == Op_ConvI2L) {
3850 n = n->in(1);
3851 if (n->Opcode() == Op_CastII &&
3852 n->as_CastII()->has_range_check()) {
3853 // Skip range check dependent CastII nodes
3854 assert(invariant(n), "sanity");
3855 n = n->in(1);
3856 }
3857 }
3858 _negate_invar = negate;
3859 _invar = n;
3860 NOT_PRODUCT(_tracer.offset_plus_k_10(n, _invar, _negate_invar, _offset);)
3861 return true;
3862 }
3863
3864 NOT_PRODUCT(_tracer.offset_plus_k_11(n);)
3865 return false;
3866}
3867
3868//----------------------------print------------------------
3869void SWPointer::print() {
3870#ifndef PRODUCT
3871 tty->print("base: %d adr: %d scale: %d offset: %d invar: %c%d\n",
3872 _base != NULL ? _base->_idx : 0,
3873 _adr != NULL ? _adr->_idx : 0,
3874 _scale, _offset,
3875 _negate_invar?'-':'+',
3876 _invar != NULL ? _invar->_idx : 0);
3877#endif
3878}
3879
3880//----------------------------tracing------------------------
3881#ifndef PRODUCT
3882void SWPointer::Tracer::print_depth() {
3883 for (int ii = 0; ii<_depth; ++ii) tty->print(" ");
3884}
3885
3886void SWPointer::Tracer::ctor_1 (Node* mem) {
3887 if(_slp->is_trace_alignment()) {
3888 print_depth(); tty->print(" %d SWPointer::SWPointer: start alignment analysis", mem->_idx); mem->dump();
3889 }
3890}
3891
3892void SWPointer::Tracer::ctor_2(Node* adr) {
3893 if(_slp->is_trace_alignment()) {
3894 //store_depth();
3895 inc_depth();
3896 print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: ", adr->_idx); adr->dump();
3897 inc_depth();
3898 print_depth(); tty->print(" %d (base) SWPointer::SWPointer: ", adr->in(AddPNode::Base)->_idx); adr->in(AddPNode::Base)->dump();
3899 }
3900}
3901
3902void SWPointer::Tracer::ctor_3(Node* adr, int i) {
3903 if(_slp->is_trace_alignment()) {
3904 inc_depth();
3905 Node* offset = adr->in(AddPNode::Offset);
3906 print_depth(); tty->print(" %d (offset) SWPointer::SWPointer: i = %d: ", offset->_idx, i); offset->dump();
3907 }
3908}
3909
3910void SWPointer::Tracer::ctor_4(Node* adr, int i) {
3911 if(_slp->is_trace_alignment()) {
3912 inc_depth();
3913 print_depth(); tty->print(" %d (adr) SWPointer::SWPointer: i = %d: ", adr->_idx, i); adr->dump();
3914 }
3915}
3916
3917void SWPointer::Tracer::ctor_5(Node* adr, Node* base, int i) {
3918 if(_slp->is_trace_alignment()) {
3919 inc_depth();
3920 if (base == adr) {
3921 print_depth(); tty->print_cr(" \\ %d (adr) == %d (base) SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, base->_idx, i);
3922 } else if (!adr->is_AddP()) {
3923 print_depth(); tty->print_cr(" \\ %d (adr) is NOT Addp SWPointer::SWPointer: breaking analysis at i = %d", adr->_idx, i);
3924 }
3925 }
3926}
3927
3928void SWPointer::Tracer::ctor_6(Node* mem) {
3929 if(_slp->is_trace_alignment()) {
3930 //restore_depth();
3931 print_depth(); tty->print_cr(" %d (adr) SWPointer::SWPointer: stop analysis", mem->_idx);
3932 }
3933}
3934
3935void SWPointer::Tracer::invariant_1(Node *n, Node *n_c) {
3936 if (_slp->do_vector_loop() && _slp->is_debug() && _slp->_lpt->is_member(_slp->_phase->get_loop(n_c)) != (int)_slp->in_bb(n)) {
3937 int is_member = _slp->_lpt->is_member(_slp->_phase->get_loop(n_c));
3938 int in_bb = _slp->in_bb(n);
3939 print_depth(); tty->print(" \\ "); tty->print_cr(" %d SWPointer::invariant conditions differ: n_c %d", n->_idx, n_c->_idx);
3940 print_depth(); tty->print(" \\ "); tty->print_cr("is_member %d, in_bb %d", is_member, in_bb);
3941 print_depth(); tty->print(" \\ "); n->dump();
3942 print_depth(); tty->print(" \\ "); n_c->dump();
3943 }
3944}
3945
3946void SWPointer::Tracer::scaled_iv_plus_offset_1(Node* n) {
3947 if(_slp->is_trace_alignment()) {
3948 print_depth(); tty->print(" %d SWPointer::scaled_iv_plus_offset testing node: ", n->_idx);
3949 n->dump();
3950 }
3951}
3952
3953void SWPointer::Tracer::scaled_iv_plus_offset_2(Node* n) {
3954 if(_slp->is_trace_alignment()) {
3955 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3956 }
3957}
3958
3959void SWPointer::Tracer::scaled_iv_plus_offset_3(Node* n) {
3960 if(_slp->is_trace_alignment()) {
3961 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: PASSED", n->_idx);
3962 }
3963}
3964
3965void SWPointer::Tracer::scaled_iv_plus_offset_4(Node* n) {
3966 if(_slp->is_trace_alignment()) {
3967 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3968 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3969 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3970 }
3971}
3972
3973void SWPointer::Tracer::scaled_iv_plus_offset_5(Node* n) {
3974 if(_slp->is_trace_alignment()) {
3975 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_AddI PASSED", n->_idx);
3976 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3977 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3978 }
3979}
3980
3981void SWPointer::Tracer::scaled_iv_plus_offset_6(Node* n) {
3982 if(_slp->is_trace_alignment()) {
3983 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3984 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is scaled_iv: ", n->in(1)->_idx); n->in(1)->dump();
3985 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is offset_plus_k: ", n->in(2)->_idx); n->in(2)->dump();
3986 }
3987}
3988
3989void SWPointer::Tracer::scaled_iv_plus_offset_7(Node* n) {
3990 if(_slp->is_trace_alignment()) {
3991 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: Op_SubI PASSED", n->_idx);
3992 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(2) is scaled_iv: ", n->in(2)->_idx); n->in(2)->dump();
3993 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv_plus_offset: in(1) is offset_plus_k: ", n->in(1)->_idx); n->in(1)->dump();
3994 }
3995}
3996
3997void SWPointer::Tracer::scaled_iv_plus_offset_8(Node* n) {
3998 if(_slp->is_trace_alignment()) {
3999 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv_plus_offset: FAILED", n->_idx);
4000 }
4001}
4002
4003void SWPointer::Tracer::scaled_iv_1(Node* n) {
4004 if(_slp->is_trace_alignment()) {
4005 print_depth(); tty->print(" %d SWPointer::scaled_iv: testing node: ", n->_idx); n->dump();
4006 }
4007}
4008
4009void SWPointer::Tracer::scaled_iv_2(Node* n, int scale) {
4010 if(_slp->is_trace_alignment()) {
4011 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED since another _scale has been detected before", n->_idx);
4012 print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: _scale (%d) != 0", scale);
4013 }
4014}
4015
4016void SWPointer::Tracer::scaled_iv_3(Node* n, int scale) {
4017 if(_slp->is_trace_alignment()) {
4018 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: is iv, setting _scale = %d", n->_idx, scale);
4019 }
4020}
4021
4022void SWPointer::Tracer::scaled_iv_4(Node* n, int scale) {
4023 if(_slp->is_trace_alignment()) {
4024 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
4025 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
4026 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4027 }
4028}
4029
4030void SWPointer::Tracer::scaled_iv_5(Node* n, int scale) {
4031 if(_slp->is_trace_alignment()) {
4032 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_MulI PASSED, setting _scale = %d", n->_idx, scale);
4033 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is iv: ", n->in(2)->_idx); n->in(2)->dump();
4034 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4035 }
4036}
4037
4038void SWPointer::Tracer::scaled_iv_6(Node* n, int scale) {
4039 if(_slp->is_trace_alignment()) {
4040 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftI PASSED, setting _scale = %d", n->_idx, scale);
4041 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(1) is iv: ", n->in(1)->_idx); n->in(1)->dump();
4042 print_depth(); tty->print(" \\ %d SWPointer::scaled_iv: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4043 }
4044}
4045
4046void SWPointer::Tracer::scaled_iv_7(Node* n) {
4047 if(_slp->is_trace_alignment()) {
4048 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_ConvI2L PASSED", n->_idx);
4049 print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset: ", n->in(1)->_idx);
4050 inc_depth(); inc_depth();
4051 print_depth(); n->in(1)->dump();
4052 dec_depth(); dec_depth();
4053 }
4054}
4055
4056void SWPointer::Tracer::scaled_iv_8(Node* n, SWPointer* tmp) {
4057 if(_slp->is_trace_alignment()) {
4058 print_depth(); tty->print(" %d SWPointer::scaled_iv: Op_LShiftL, creating tmp SWPointer: ", n->_idx); tmp->print();
4059 }
4060}
4061
4062void SWPointer::Tracer::scaled_iv_9(Node* n, int scale, int _offset, int mult) {
4063 if(_slp->is_trace_alignment()) {
4064 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: Op_LShiftL PASSED, setting _scale = %d, _offset = %d", n->_idx, scale, _offset);
4065 print_depth(); tty->print_cr(" \\ SWPointer::scaled_iv: in(1) %d is scaled_iv_plus_offset, in(2) %d used to get mult = %d: _scale = %d, _offset = %d",
4066 n->in(1)->_idx, n->in(2)->_idx, mult, scale, _offset);
4067 inc_depth(); inc_depth();
4068 print_depth(); n->in(1)->dump();
4069 print_depth(); n->in(2)->dump();
4070 dec_depth(); dec_depth();
4071 }
4072}
4073
4074void SWPointer::Tracer::scaled_iv_10(Node* n) {
4075 if(_slp->is_trace_alignment()) {
4076 print_depth(); tty->print_cr(" %d SWPointer::scaled_iv: FAILED", n->_idx);
4077 }
4078}
4079
4080void SWPointer::Tracer::offset_plus_k_1(Node* n) {
4081 if(_slp->is_trace_alignment()) {
4082 print_depth(); tty->print(" %d SWPointer::offset_plus_k: testing node: ", n->_idx); n->dump();
4083 }
4084}
4085
4086void SWPointer::Tracer::offset_plus_k_2(Node* n, int _offset) {
4087 if(_slp->is_trace_alignment()) {
4088 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConI PASSED, setting _offset = %d", n->_idx, _offset);
4089 }
4090}
4091
4092void SWPointer::Tracer::offset_plus_k_3(Node* n, int _offset) {
4093 if(_slp->is_trace_alignment()) {
4094 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_ConL PASSED, setting _offset = %d", n->_idx, _offset);
4095 }
4096}
4097
4098void SWPointer::Tracer::offset_plus_k_4(Node* n) {
4099 if(_slp->is_trace_alignment()) {
4100 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
4101 print_depth(); tty->print_cr(" \\ " JLONG_FORMAT " SWPointer::offset_plus_k: Op_ConL FAILED, k is too big", n->get_long());
4102 }
4103}
4104
4105void SWPointer::Tracer::offset_plus_k_5(Node* n, Node* _invar) {
4106 if(_slp->is_trace_alignment()) {
4107 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED since another invariant has been detected before", n->_idx);
4108 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: _invar != NULL: ", _invar->_idx); _invar->dump();
4109 }
4110}
4111
4112void SWPointer::Tracer::offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4113 if(_slp->is_trace_alignment()) {
4114 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4115 n->_idx, _negate_invar, _invar->_idx, _offset);
4116 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4117 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
4118 }
4119}
4120
4121void SWPointer::Tracer::offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4122 if(_slp->is_trace_alignment()) {
4123 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_AddI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4124 n->_idx, _negate_invar, _invar->_idx, _offset);
4125 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4126 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
4127 }
4128}
4129
4130void SWPointer::Tracer::offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4131 if(_slp->is_trace_alignment()) {
4132 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI is PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d",
4133 n->_idx, _negate_invar, _invar->_idx, _offset);
4134 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is Con: ", n->in(2)->_idx); n->in(2)->dump();
4135 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is invariant: ", _invar->_idx); _invar->dump();
4136 }
4137}
4138
4139void SWPointer::Tracer::offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4140 if(_slp->is_trace_alignment()) {
4141 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: Op_SubI PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
4142 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(1) is Con: ", n->in(1)->_idx); n->in(1)->dump();
4143 print_depth(); tty->print(" \\ %d SWPointer::offset_plus_k: in(2) is invariant: ", _invar->_idx); _invar->dump();
4144 }
4145}
4146
4147void SWPointer::Tracer::offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset) {
4148 if(_slp->is_trace_alignment()) {
4149 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: PASSED, setting _negate_invar = %d, _invar = %d, _offset = %d", n->_idx, _negate_invar, _invar->_idx, _offset);
4150 print_depth(); tty->print_cr(" \\ %d SWPointer::offset_plus_k: is invariant", n->_idx);
4151 }
4152}
4153
4154void SWPointer::Tracer::offset_plus_k_11(Node* n) {
4155 if(_slp->is_trace_alignment()) {
4156 print_depth(); tty->print_cr(" %d SWPointer::offset_plus_k: FAILED", n->_idx);
4157 }
4158}
4159
4160#endif
4161// ========================= OrderedPair =====================
4162
4163const OrderedPair OrderedPair::initial;
4164
4165// ========================= SWNodeInfo =====================
4166
4167const SWNodeInfo SWNodeInfo::initial;
4168
4169
4170// ============================ DepGraph ===========================
4171
4172//------------------------------make_node---------------------------
4173// Make a new dependence graph node for an ideal node.
4174DepMem* DepGraph::make_node(Node* node) {
4175 DepMem* m = new (_arena) DepMem(node);
4176 if (node != NULL) {
4177 assert(_map.at_grow(node->_idx) == NULL, "one init only");
4178 _map.at_put_grow(node->_idx, m);
4179 }
4180 return m;
4181}
4182
4183//------------------------------make_edge---------------------------
4184// Make a new dependence graph edge from dpred -> dsucc
4185DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
4186 DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
4187 dpred->set_out_head(e);
4188 dsucc->set_in_head(e);
4189 return e;
4190}
4191
4192// ========================== DepMem ========================
4193
4194//------------------------------in_cnt---------------------------
4195int DepMem::in_cnt() {
4196 int ct = 0;
4197 for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
4198 return ct;
4199}
4200
4201//------------------------------out_cnt---------------------------
4202int DepMem::out_cnt() {
4203 int ct = 0;
4204 for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
4205 return ct;
4206}
4207
4208//------------------------------print-----------------------------
4209void DepMem::print() {
4210#ifndef PRODUCT
4211 tty->print(" DepNode %d (", _node->_idx);
4212 for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
4213 Node* pred = p->pred()->node();
4214 tty->print(" %d", pred != NULL ? pred->_idx : 0);
4215 }
4216 tty->print(") [");
4217 for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
4218 Node* succ = s->succ()->node();
4219 tty->print(" %d", succ != NULL ? succ->_idx : 0);
4220 }
4221 tty->print_cr(" ]");
4222#endif
4223}
4224
4225// =========================== DepEdge =========================
4226
4227//------------------------------DepPreds---------------------------
4228void DepEdge::print() {
4229#ifndef PRODUCT
4230 tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
4231#endif
4232}
4233
4234// =========================== DepPreds =========================
4235// Iterator over predecessor edges in the dependence graph.
4236
4237//------------------------------DepPreds---------------------------
4238DepPreds::DepPreds(Node* n, DepGraph& dg) {
4239 _n = n;
4240 _done = false;
4241 if (_n->is_Store() || _n->is_Load()) {
4242 _next_idx = MemNode::Address;
4243 _end_idx = n->req();
4244 _dep_next = dg.dep(_n)->in_head();
4245 } else if (_n->is_Mem()) {
4246 _next_idx = 0;
4247 _end_idx = 0;
4248 _dep_next = dg.dep(_n)->in_head();
4249 } else {
4250 _next_idx = 1;
4251 _end_idx = _n->req();
4252 _dep_next = NULL;
4253 }
4254 next();
4255}
4256
4257//------------------------------next---------------------------
4258void DepPreds::next() {
4259 if (_dep_next != NULL) {
4260 _current = _dep_next->pred()->node();
4261 _dep_next = _dep_next->next_in();
4262 } else if (_next_idx < _end_idx) {
4263 _current = _n->in(_next_idx++);
4264 } else {
4265 _done = true;
4266 }
4267}
4268
4269// =========================== DepSuccs =========================
4270// Iterator over successor edges in the dependence graph.
4271
4272//------------------------------DepSuccs---------------------------
4273DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
4274 _n = n;
4275 _done = false;
4276 if (_n->is_Load()) {
4277 _next_idx = 0;
4278 _end_idx = _n->outcnt();
4279 _dep_next = dg.dep(_n)->out_head();
4280 } else if (_n->is_Mem() || (_n->is_Phi() && _n->bottom_type() == Type::MEMORY)) {
4281 _next_idx = 0;
4282 _end_idx = 0;
4283 _dep_next = dg.dep(_n)->out_head();
4284 } else {
4285 _next_idx = 0;
4286 _end_idx = _n->outcnt();
4287 _dep_next = NULL;
4288 }
4289 next();
4290}
4291
4292//-------------------------------next---------------------------
4293void DepSuccs::next() {
4294 if (_dep_next != NULL) {
4295 _current = _dep_next->succ()->node();
4296 _dep_next = _dep_next->next_out();
4297 } else if (_next_idx < _end_idx) {
4298 _current = _n->raw_out(_next_idx++);
4299 } else {
4300 _done = true;
4301 }
4302}
4303
4304//
4305// --------------------------------- vectorization/simd -----------------------------------
4306//
4307bool SuperWord::same_origin_idx(Node* a, Node* b) const {
4308 return a != NULL && b != NULL && _clone_map.same_idx(a->_idx, b->_idx);
4309}
4310bool SuperWord::same_generation(Node* a, Node* b) const {
4311 return a != NULL && b != NULL && _clone_map.same_gen(a->_idx, b->_idx);
4312}
4313
4314Node* SuperWord::find_phi_for_mem_dep(LoadNode* ld) {
4315 assert(in_bb(ld), "must be in block");
4316 if (_clone_map.gen(ld->_idx) == _ii_first) {
4317#ifndef PRODUCT
4318 if (_vector_loop_debug) {
4319 tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(ld->_idx)=%d",
4320 _clone_map.gen(ld->_idx));
4321 }
4322#endif
4323 return NULL; //we think that any ld in the first gen being vectorizable
4324 }
4325
4326 Node* mem = ld->in(MemNode::Memory);
4327 if (mem->outcnt() <= 1) {
4328 // we don't want to remove the only edge from mem node to load
4329#ifndef PRODUCT
4330 if (_vector_loop_debug) {
4331 tty->print_cr("SuperWord::find_phi_for_mem_dep input node %d to load %d has no other outputs and edge mem->load cannot be removed",
4332 mem->_idx, ld->_idx);
4333 ld->dump();
4334 mem->dump();
4335 }
4336#endif
4337 return NULL;
4338 }
4339 if (!in_bb(mem) || same_generation(mem, ld)) {
4340#ifndef PRODUCT
4341 if (_vector_loop_debug) {
4342 tty->print_cr("SuperWord::find_phi_for_mem_dep _clone_map.gen(mem->_idx)=%d",
4343 _clone_map.gen(mem->_idx));
4344 }
4345#endif
4346 return NULL; // does not depend on loop volatile node or depends on the same generation
4347 }
4348
4349 //otherwise first node should depend on mem-phi
4350 Node* first = first_node(ld);
4351 assert(first->is_Load(), "must be Load");
4352 Node* phi = first->as_Load()->in(MemNode::Memory);
4353 if (!phi->is_Phi() || phi->bottom_type() != Type::MEMORY) {
4354#ifndef PRODUCT
4355 if (_vector_loop_debug) {
4356 tty->print_cr("SuperWord::find_phi_for_mem_dep load is not vectorizable node, since it's `first` does not take input from mem phi");
4357 ld->dump();
4358 first->dump();
4359 }
4360#endif
4361 return NULL;
4362 }
4363
4364 Node* tail = 0;
4365 for (int m = 0; m < _mem_slice_head.length(); m++) {
4366 if (_mem_slice_head.at(m) == phi) {
4367 tail = _mem_slice_tail.at(m);
4368 }
4369 }
4370 if (tail == 0) { //test that found phi is in the list _mem_slice_head
4371#ifndef PRODUCT
4372 if (_vector_loop_debug) {
4373 tty->print_cr("SuperWord::find_phi_for_mem_dep load %d is not vectorizable node, its phi %d is not _mem_slice_head",
4374 ld->_idx, phi->_idx);
4375 ld->dump();
4376 phi->dump();
4377 }
4378#endif
4379 return NULL;
4380 }
4381
4382 // now all conditions are met
4383 return phi;
4384}
4385
4386Node* SuperWord::first_node(Node* nd) {
4387 for (int ii = 0; ii < _iteration_first.length(); ii++) {
4388 Node* nnn = _iteration_first.at(ii);
4389 if (same_origin_idx(nnn, nd)) {
4390#ifndef PRODUCT
4391 if (_vector_loop_debug) {
4392 tty->print_cr("SuperWord::first_node: %d is the first iteration node for %d (_clone_map.idx(nnn->_idx) = %d)",
4393 nnn->_idx, nd->_idx, _clone_map.idx(nnn->_idx));
4394 }
4395#endif
4396 return nnn;
4397 }
4398 }
4399
4400#ifndef PRODUCT
4401 if (_vector_loop_debug) {
4402 tty->print_cr("SuperWord::first_node: did not find first iteration node for %d (_clone_map.idx(nd->_idx)=%d)",
4403 nd->_idx, _clone_map.idx(nd->_idx));
4404 }
4405#endif
4406 return 0;
4407}
4408
4409Node* SuperWord::last_node(Node* nd) {
4410 for (int ii = 0; ii < _iteration_last.length(); ii++) {
4411 Node* nnn = _iteration_last.at(ii);
4412 if (same_origin_idx(nnn, nd)) {
4413#ifndef PRODUCT
4414 if (_vector_loop_debug) {
4415 tty->print_cr("SuperWord::last_node _clone_map.idx(nnn->_idx)=%d, _clone_map.idx(nd->_idx)=%d",
4416 _clone_map.idx(nnn->_idx), _clone_map.idx(nd->_idx));
4417 }
4418#endif
4419 return nnn;
4420 }
4421 }
4422 return 0;
4423}
4424
4425int SuperWord::mark_generations() {
4426 Node *ii_err = NULL, *tail_err = NULL;
4427 for (int i = 0; i < _mem_slice_head.length(); i++) {
4428 Node* phi = _mem_slice_head.at(i);
4429 assert(phi->is_Phi(), "must be phi");
4430
4431 Node* tail = _mem_slice_tail.at(i);
4432 if (_ii_last == -1) {
4433 tail_err = tail;
4434 _ii_last = _clone_map.gen(tail->_idx);
4435 }
4436 else if (_ii_last != _clone_map.gen(tail->_idx)) {
4437#ifndef PRODUCT
4438 if (TraceSuperWord && Verbose) {
4439 tty->print_cr("SuperWord::mark_generations _ii_last error - found different generations in two tail nodes ");
4440 tail->dump();
4441 tail_err->dump();
4442 }
4443#endif
4444 return -1;
4445 }
4446
4447 // find first iteration in the loop
4448 for (DUIterator_Fast imax, i = phi->fast_outs(imax); i < imax; i++) {
4449 Node* ii = phi->fast_out(i);
4450 if (in_bb(ii) && ii->is_Store()) { // we speculate that normally Stores of one and one only generation have deps from mem phi
4451 if (_ii_first == -1) {
4452 ii_err = ii;
4453 _ii_first = _clone_map.gen(ii->_idx);
4454 } else if (_ii_first != _clone_map.gen(ii->_idx)) {
4455#ifndef PRODUCT
4456 if (TraceSuperWord && Verbose) {
4457 tty->print_cr("SuperWord::mark_generations: _ii_first was found before and not equal to one in this node (%d)", _ii_first);
4458 ii->dump();
4459 if (ii_err!= 0) {
4460 ii_err->dump();
4461 }
4462 }
4463#endif
4464 return -1; // this phi has Stores from different generations of unroll and cannot be simd/vectorized
4465 }
4466 }
4467 }//for (DUIterator_Fast imax,
4468 }//for (int i...
4469
4470 if (_ii_first == -1 || _ii_last == -1) {
4471 if (TraceSuperWord && Verbose) {
4472 tty->print_cr("SuperWord::mark_generations unknown error, something vent wrong");
4473 }
4474 return -1; // something vent wrong
4475 }
4476 // collect nodes in the first and last generations
4477 assert(_iteration_first.length() == 0, "_iteration_first must be empty");
4478 assert(_iteration_last.length() == 0, "_iteration_last must be empty");
4479 for (int j = 0; j < _block.length(); j++) {
4480 Node* n = _block.at(j);
4481 node_idx_t gen = _clone_map.gen(n->_idx);
4482 if ((signed)gen == _ii_first) {
4483 _iteration_first.push(n);
4484 } else if ((signed)gen == _ii_last) {
4485 _iteration_last.push(n);
4486 }
4487 }
4488
4489 // building order of iterations
4490 if (_ii_order.length() == 0 && ii_err != 0) {
4491 assert(in_bb(ii_err) && ii_err->is_Store(), "should be Store in bb");
4492 Node* nd = ii_err;
4493 while(_clone_map.gen(nd->_idx) != _ii_last) {
4494 _ii_order.push(_clone_map.gen(nd->_idx));
4495 bool found = false;
4496 for (DUIterator_Fast imax, i = nd->fast_outs(imax); i < imax; i++) {
4497 Node* use = nd->fast_out(i);
4498 if (same_origin_idx(use, nd) && use->as_Store()->in(MemNode::Memory) == nd) {
4499 found = true;
4500 nd = use;
4501 break;
4502 }
4503 }//for
4504
4505 if (found == false) {
4506 if (TraceSuperWord && Verbose) {
4507 tty->print_cr("SuperWord::mark_generations: Cannot build order of iterations - no dependent Store for %d", nd->_idx);
4508 }
4509 _ii_order.clear();
4510 return -1;
4511 }
4512 } //while
4513 _ii_order.push(_clone_map.gen(nd->_idx));
4514 }
4515
4516#ifndef PRODUCT
4517 if (_vector_loop_debug) {
4518 tty->print_cr("SuperWord::mark_generations");
4519 tty->print_cr("First generation (%d) nodes:", _ii_first);
4520 for (int ii = 0; ii < _iteration_first.length(); ii++) _iteration_first.at(ii)->dump();
4521 tty->print_cr("Last generation (%d) nodes:", _ii_last);
4522 for (int ii = 0; ii < _iteration_last.length(); ii++) _iteration_last.at(ii)->dump();
4523 tty->print_cr(" ");
4524
4525 tty->print("SuperWord::List of generations: ");
4526 for (int jj = 0; jj < _ii_order.length(); ++jj) {
4527 tty->print("%d:%d ", jj, _ii_order.at(jj));
4528 }
4529 tty->print_cr(" ");
4530 }
4531#endif
4532
4533 return _ii_first;
4534}
4535
4536bool SuperWord::fix_commutative_inputs(Node* gold, Node* fix) {
4537 assert(gold->is_Add() && fix->is_Add() || gold->is_Mul() && fix->is_Mul(), "should be only Add or Mul nodes");
4538 assert(same_origin_idx(gold, fix), "should be clones of the same node");
4539 Node* gin1 = gold->in(1);
4540 Node* gin2 = gold->in(2);
4541 Node* fin1 = fix->in(1);
4542 Node* fin2 = fix->in(2);
4543 bool swapped = false;
4544
4545 if (in_bb(gin1) && in_bb(gin2) && in_bb(fin1) && in_bb(fin1)) {
4546 if (same_origin_idx(gin1, fin1) &&
4547 same_origin_idx(gin2, fin2)) {
4548 return true; // nothing to fix
4549 }
4550 if (same_origin_idx(gin1, fin2) &&
4551 same_origin_idx(gin2, fin1)) {
4552 fix->swap_edges(1, 2);
4553 swapped = true;
4554 }
4555 }
4556 // at least one input comes from outside of bb
4557 if (gin1->_idx == fin1->_idx) {
4558 return true; // nothing to fix
4559 }
4560 if (!swapped && (gin1->_idx == fin2->_idx || gin2->_idx == fin1->_idx)) { //swapping is expensive, check condition first
4561 fix->swap_edges(1, 2);
4562 swapped = true;
4563 }
4564
4565 if (swapped) {
4566#ifndef PRODUCT
4567 if (_vector_loop_debug) {
4568 tty->print_cr("SuperWord::fix_commutative_inputs: fixed node %d", fix->_idx);
4569 }
4570#endif
4571 return true;
4572 }
4573
4574 if (TraceSuperWord && Verbose) {
4575 tty->print_cr("SuperWord::fix_commutative_inputs: cannot fix node %d", fix->_idx);
4576 }
4577
4578 return false;
4579}
4580
4581bool SuperWord::pack_parallel() {
4582#ifndef PRODUCT
4583 if (_vector_loop_debug) {
4584 tty->print_cr("SuperWord::pack_parallel: START");
4585 }
4586#endif
4587
4588 _packset.clear();
4589
4590 for (int ii = 0; ii < _iteration_first.length(); ii++) {
4591 Node* nd = _iteration_first.at(ii);
4592 if (in_bb(nd) && (nd->is_Load() || nd->is_Store() || nd->is_Add() || nd->is_Mul())) {
4593 Node_List* pk = new Node_List();
4594 pk->push(nd);
4595 for (int gen = 1; gen < _ii_order.length(); ++gen) {
4596 for (int kk = 0; kk < _block.length(); kk++) {
4597 Node* clone = _block.at(kk);
4598 if (same_origin_idx(clone, nd) &&
4599 _clone_map.gen(clone->_idx) == _ii_order.at(gen)) {
4600 if (nd->is_Add() || nd->is_Mul()) {
4601 fix_commutative_inputs(nd, clone);
4602 }
4603 pk->push(clone);
4604 if (pk->size() == 4) {
4605 _packset.append(pk);
4606#ifndef PRODUCT
4607 if (_vector_loop_debug) {
4608 tty->print_cr("SuperWord::pack_parallel: added pack ");
4609 pk->dump();
4610 }
4611#endif
4612 if (_clone_map.gen(clone->_idx) != _ii_last) {
4613 pk = new Node_List();
4614 }
4615 }
4616 break;
4617 }
4618 }
4619 }//for
4620 }//if
4621 }//for
4622
4623#ifndef PRODUCT
4624 if (_vector_loop_debug) {
4625 tty->print_cr("SuperWord::pack_parallel: END");
4626 }
4627#endif
4628
4629 return true;
4630}
4631
4632bool SuperWord::hoist_loads_in_graph() {
4633 GrowableArray<Node*> loads;
4634
4635#ifndef PRODUCT
4636 if (_vector_loop_debug) {
4637 tty->print_cr("SuperWord::hoist_loads_in_graph: total number _mem_slice_head.length() = %d", _mem_slice_head.length());
4638 }
4639#endif
4640
4641 for (int i = 0; i < _mem_slice_head.length(); i++) {
4642 Node* n = _mem_slice_head.at(i);
4643 if ( !in_bb(n) || !n->is_Phi() || n->bottom_type() != Type::MEMORY) {
4644 if (TraceSuperWord && Verbose) {
4645 tty->print_cr("SuperWord::hoist_loads_in_graph: skipping unexpected node n=%d", n->_idx);
4646 }
4647 continue;
4648 }
4649
4650#ifndef PRODUCT
4651 if (_vector_loop_debug) {
4652 tty->print_cr("SuperWord::hoist_loads_in_graph: processing phi %d = _mem_slice_head.at(%d);", n->_idx, i);
4653 }
4654#endif
4655
4656 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4657 Node* ld = n->fast_out(i);
4658 if (ld->is_Load() && ld->as_Load()->in(MemNode::Memory) == n && in_bb(ld)) {
4659 for (int i = 0; i < _block.length(); i++) {
4660 Node* ld2 = _block.at(i);
4661 if (ld2->is_Load() && same_origin_idx(ld, ld2) &&
4662 !same_generation(ld, ld2)) { // <= do not collect the first generation ld
4663#ifndef PRODUCT
4664 if (_vector_loop_debug) {
4665 tty->print_cr("SuperWord::hoist_loads_in_graph: will try to hoist load ld2->_idx=%d, cloned from %d (ld->_idx=%d)",
4666 ld2->_idx, _clone_map.idx(ld->_idx), ld->_idx);
4667 }
4668#endif
4669 // could not do on-the-fly, since iterator is immutable
4670 loads.push(ld2);
4671 }
4672 }// for
4673 }//if
4674 }//for (DUIterator_Fast imax,
4675 }//for (int i = 0; i
4676
4677 for (int i = 0; i < loads.length(); i++) {
4678 LoadNode* ld = loads.at(i)->as_Load();
4679 Node* phi = find_phi_for_mem_dep(ld);
4680 if (phi != NULL) {
4681#ifndef PRODUCT
4682 if (_vector_loop_debug) {
4683 tty->print_cr("SuperWord::hoist_loads_in_graph replacing MemNode::Memory(%d) edge in %d with one from %d",
4684 MemNode::Memory, ld->_idx, phi->_idx);
4685 }
4686#endif
4687 _igvn.replace_input_of(ld, MemNode::Memory, phi);
4688 }
4689 }//for
4690
4691 restart(); // invalidate all basic structures, since we rebuilt the graph
4692
4693 if (TraceSuperWord && Verbose) {
4694 tty->print_cr("\nSuperWord::hoist_loads_in_graph() the graph was rebuilt, all structures invalidated and need rebuild");
4695 }
4696
4697 return true;
4698}
4699