1 | /* |
2 | * Copyright 2013 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkStrokeRec.h" |
9 | #include "src/core/SkRRectPriv.h" |
10 | #include "src/gpu/GrCaps.h" |
11 | #include "src/gpu/GrDrawOpTest.h" |
12 | #include "src/gpu/GrGeometryProcessor.h" |
13 | #include "src/gpu/GrOpFlushState.h" |
14 | #include "src/gpu/GrProcessor.h" |
15 | #include "src/gpu/GrProgramInfo.h" |
16 | #include "src/gpu/GrResourceProvider.h" |
17 | #include "src/gpu/GrShaderCaps.h" |
18 | #include "src/gpu/GrStyle.h" |
19 | #include "src/gpu/GrVertexWriter.h" |
20 | #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
21 | #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" |
22 | #include "src/gpu/glsl/GrGLSLProgramDataManager.h" |
23 | #include "src/gpu/glsl/GrGLSLUniformHandler.h" |
24 | #include "src/gpu/glsl/GrGLSLVarying.h" |
25 | #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" |
26 | #include "src/gpu/ops/GrMeshDrawOp.h" |
27 | #include "src/gpu/ops/GrOvalOpFactory.h" |
28 | #include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h" |
29 | |
30 | #include <utility> |
31 | |
32 | namespace { |
33 | |
34 | static inline bool circle_stays_circle(const SkMatrix& m) { return m.isSimilarity(); } |
35 | |
36 | // Produces TriStrip vertex data for an origin-centered rectangle from [-x, -y] to [x, y] |
37 | static inline GrVertexWriter::TriStrip<float> origin_centered_tri_strip(float x, float y) { |
38 | return GrVertexWriter::TriStrip<float>{ -x, -y, x, y }; |
39 | }; |
40 | |
41 | } |
42 | |
43 | /////////////////////////////////////////////////////////////////////////////// |
44 | |
45 | /** |
46 | * The output of this effect is a modulation of the input color and coverage for a circle. It |
47 | * operates in a space normalized by the circle radius (outer radius in the case of a stroke) |
48 | * with origin at the circle center. Three vertex attributes are used: |
49 | * vec2f : position in device space of the bounding geometry vertices |
50 | * vec4ub: color |
51 | * vec4f : (p.xy, outerRad, innerRad) |
52 | * p is the position in the normalized space. |
53 | * outerRad is the outerRadius in device space. |
54 | * innerRad is the innerRadius in normalized space (ignored if not stroking). |
55 | * Additional clip planes are supported for rendering circular arcs. The additional planes are |
56 | * either intersected or unioned together. Up to three planes are supported (an initial plane, |
57 | * a plane intersected with the initial plane, and a plane unioned with the first two). Only two |
58 | * are useful for any given arc, but having all three in one instance allows combining different |
59 | * types of arcs. |
60 | * Round caps for stroking are allowed as well. The caps are specified as two circle center points |
61 | * in the same space as p.xy. |
62 | */ |
63 | |
64 | class CircleGeometryProcessor : public GrGeometryProcessor { |
65 | public: |
66 | static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool stroke, bool clipPlane, |
67 | bool isectPlane, bool unionPlane, bool roundCaps, |
68 | bool wideColor, const SkMatrix& localMatrix) { |
69 | return arena->make<CircleGeometryProcessor>(stroke, clipPlane, isectPlane, unionPlane, |
70 | roundCaps, wideColor, localMatrix); |
71 | } |
72 | |
73 | const char* name() const override { return "CircleGeometryProcessor" ; } |
74 | |
75 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
76 | GLSLProcessor::GenKey(*this, caps, b); |
77 | } |
78 | |
79 | GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
80 | return new GLSLProcessor(); |
81 | } |
82 | |
83 | private: |
84 | friend class ::SkArenaAlloc; // for access to ctor |
85 | |
86 | CircleGeometryProcessor(bool stroke, bool clipPlane, bool isectPlane, bool unionPlane, |
87 | bool roundCaps, bool wideColor, const SkMatrix& localMatrix) |
88 | : INHERITED(kCircleGeometryProcessor_ClassID) |
89 | , fLocalMatrix(localMatrix) |
90 | , fStroke(stroke) { |
91 | fInPosition = {"inPosition" , kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
92 | fInColor = MakeColorAttribute("inColor" , wideColor); |
93 | fInCircleEdge = {"inCircleEdge" , kFloat4_GrVertexAttribType, kFloat4_GrSLType}; |
94 | |
95 | if (clipPlane) { |
96 | fInClipPlane = {"inClipPlane" , kFloat3_GrVertexAttribType, kHalf3_GrSLType}; |
97 | } |
98 | if (isectPlane) { |
99 | fInIsectPlane = {"inIsectPlane" , kFloat3_GrVertexAttribType, kHalf3_GrSLType}; |
100 | } |
101 | if (unionPlane) { |
102 | fInUnionPlane = {"inUnionPlane" , kFloat3_GrVertexAttribType, kHalf3_GrSLType}; |
103 | } |
104 | if (roundCaps) { |
105 | SkASSERT(stroke); |
106 | SkASSERT(clipPlane); |
107 | fInRoundCapCenters = |
108 | {"inRoundCapCenters" , kFloat4_GrVertexAttribType, kFloat4_GrSLType}; |
109 | } |
110 | this->setVertexAttributes(&fInPosition, 7); |
111 | } |
112 | |
113 | class GLSLProcessor : public GrGLSLGeometryProcessor { |
114 | public: |
115 | GLSLProcessor() {} |
116 | |
117 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
118 | const CircleGeometryProcessor& cgp = args.fGP.cast<CircleGeometryProcessor>(); |
119 | GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
120 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
121 | GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
122 | GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
123 | |
124 | // emit attributes |
125 | varyingHandler->emitAttributes(cgp); |
126 | fragBuilder->codeAppend("float4 circleEdge;" ); |
127 | varyingHandler->addPassThroughAttribute(cgp.fInCircleEdge, "circleEdge" ); |
128 | if (cgp.fInClipPlane.isInitialized()) { |
129 | fragBuilder->codeAppend("half3 clipPlane;" ); |
130 | varyingHandler->addPassThroughAttribute(cgp.fInClipPlane, "clipPlane" ); |
131 | } |
132 | if (cgp.fInIsectPlane.isInitialized()) { |
133 | fragBuilder->codeAppend("half3 isectPlane;" ); |
134 | varyingHandler->addPassThroughAttribute(cgp.fInIsectPlane, "isectPlane" ); |
135 | } |
136 | if (cgp.fInUnionPlane.isInitialized()) { |
137 | SkASSERT(cgp.fInClipPlane.isInitialized()); |
138 | fragBuilder->codeAppend("half3 unionPlane;" ); |
139 | varyingHandler->addPassThroughAttribute(cgp.fInUnionPlane, "unionPlane" ); |
140 | } |
141 | GrGLSLVarying capRadius(kFloat_GrSLType); |
142 | if (cgp.fInRoundCapCenters.isInitialized()) { |
143 | fragBuilder->codeAppend("float4 roundCapCenters;" ); |
144 | varyingHandler->addPassThroughAttribute(cgp.fInRoundCapCenters, "roundCapCenters" ); |
145 | varyingHandler->addVarying("capRadius" , &capRadius, |
146 | GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
147 | // This is the cap radius in normalized space where the outer radius is 1 and |
148 | // circledEdge.w is the normalized inner radius. |
149 | vertBuilder->codeAppendf("%s = (1.0 - %s.w) / 2.0;" , capRadius.vsOut(), |
150 | cgp.fInCircleEdge.name()); |
151 | } |
152 | |
153 | // setup pass through color |
154 | varyingHandler->addPassThroughAttribute(cgp.fInColor, args.fOutputColor); |
155 | |
156 | // Setup position |
157 | this->writeOutputPosition(vertBuilder, gpArgs, cgp.fInPosition.name()); |
158 | |
159 | // emit transforms |
160 | this->emitTransforms(vertBuilder, |
161 | varyingHandler, |
162 | uniformHandler, |
163 | cgp.fInPosition.asShaderVar(), |
164 | cgp.fLocalMatrix, |
165 | args.fFPCoordTransformHandler); |
166 | |
167 | fragBuilder->codeAppend("float d = length(circleEdge.xy);" ); |
168 | fragBuilder->codeAppend("half distanceToOuterEdge = half(circleEdge.z * (1.0 - d));" ); |
169 | fragBuilder->codeAppend("half edgeAlpha = saturate(distanceToOuterEdge);" ); |
170 | if (cgp.fStroke) { |
171 | fragBuilder->codeAppend( |
172 | "half distanceToInnerEdge = half(circleEdge.z * (d - circleEdge.w));" ); |
173 | fragBuilder->codeAppend("half innerAlpha = saturate(distanceToInnerEdge);" ); |
174 | fragBuilder->codeAppend("edgeAlpha *= innerAlpha;" ); |
175 | } |
176 | |
177 | if (cgp.fInClipPlane.isInitialized()) { |
178 | fragBuilder->codeAppend( |
179 | "half clip = half(saturate(circleEdge.z * dot(circleEdge.xy, " |
180 | "clipPlane.xy) + clipPlane.z));" ); |
181 | if (cgp.fInIsectPlane.isInitialized()) { |
182 | fragBuilder->codeAppend( |
183 | "clip *= half(saturate(circleEdge.z * dot(circleEdge.xy, " |
184 | "isectPlane.xy) + isectPlane.z));" ); |
185 | } |
186 | if (cgp.fInUnionPlane.isInitialized()) { |
187 | fragBuilder->codeAppend( |
188 | "clip = saturate(clip + half(saturate(circleEdge.z * dot(circleEdge.xy," |
189 | " unionPlane.xy) + unionPlane.z)));" ); |
190 | } |
191 | fragBuilder->codeAppend("edgeAlpha *= clip;" ); |
192 | if (cgp.fInRoundCapCenters.isInitialized()) { |
193 | // We compute coverage of the round caps as circles at the butt caps produced |
194 | // by the clip planes. The inverse of the clip planes is applied so that there |
195 | // is no double counting. |
196 | fragBuilder->codeAppendf( |
197 | "half dcap1 = half(circleEdge.z * (%s - length(circleEdge.xy - " |
198 | " roundCapCenters.xy)));" |
199 | "half dcap2 = half(circleEdge.z * (%s - length(circleEdge.xy - " |
200 | " roundCapCenters.zw)));" |
201 | "half capAlpha = (1 - clip) * (max(dcap1, 0) + max(dcap2, 0));" |
202 | "edgeAlpha = min(edgeAlpha + capAlpha, 1.0);" , |
203 | capRadius.fsIn(), capRadius.fsIn()); |
204 | } |
205 | } |
206 | fragBuilder->codeAppendf("%s = half4(edgeAlpha);" , args.fOutputCoverage); |
207 | } |
208 | |
209 | static void GenKey(const GrGeometryProcessor& gp, |
210 | const GrShaderCaps&, |
211 | GrProcessorKeyBuilder* b) { |
212 | const CircleGeometryProcessor& cgp = gp.cast<CircleGeometryProcessor>(); |
213 | uint16_t key; |
214 | key = cgp.fStroke ? 0x01 : 0x0; |
215 | key |= cgp.fLocalMatrix.hasPerspective() ? 0x02 : 0x0; |
216 | key |= cgp.fInClipPlane.isInitialized() ? 0x04 : 0x0; |
217 | key |= cgp.fInIsectPlane.isInitialized() ? 0x08 : 0x0; |
218 | key |= cgp.fInUnionPlane.isInitialized() ? 0x10 : 0x0; |
219 | key |= cgp.fInRoundCapCenters.isInitialized() ? 0x20 : 0x0; |
220 | b->add32(key); |
221 | } |
222 | |
223 | void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
224 | const CoordTransformRange& transformRange) override { |
225 | this->setTransformDataHelper(primProc.cast<CircleGeometryProcessor>().fLocalMatrix, |
226 | pdman, transformRange); |
227 | } |
228 | |
229 | private: |
230 | typedef GrGLSLGeometryProcessor INHERITED; |
231 | }; |
232 | |
233 | SkMatrix fLocalMatrix; |
234 | |
235 | Attribute fInPosition; |
236 | Attribute fInColor; |
237 | Attribute fInCircleEdge; |
238 | // Optional attributes. |
239 | Attribute fInClipPlane; |
240 | Attribute fInIsectPlane; |
241 | Attribute fInUnionPlane; |
242 | Attribute fInRoundCapCenters; |
243 | |
244 | bool fStroke; |
245 | GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
246 | |
247 | typedef GrGeometryProcessor INHERITED; |
248 | }; |
249 | |
250 | GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleGeometryProcessor); |
251 | |
252 | #if GR_TEST_UTILS |
253 | GrGeometryProcessor* CircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
254 | bool stroke = d->fRandom->nextBool(); |
255 | bool roundCaps = stroke ? d->fRandom->nextBool() : false; |
256 | bool wideColor = d->fRandom->nextBool(); |
257 | bool clipPlane = d->fRandom->nextBool(); |
258 | bool isectPlane = d->fRandom->nextBool(); |
259 | bool unionPlane = d->fRandom->nextBool(); |
260 | const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom); |
261 | return CircleGeometryProcessor::Make(d->allocator(), stroke, clipPlane, isectPlane, |
262 | unionPlane, roundCaps, wideColor, matrix); |
263 | } |
264 | #endif |
265 | |
266 | class ButtCapDashedCircleGeometryProcessor : public GrGeometryProcessor { |
267 | public: |
268 | static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool wideColor, |
269 | const SkMatrix& localMatrix) { |
270 | return arena->make<ButtCapDashedCircleGeometryProcessor>(wideColor, localMatrix); |
271 | } |
272 | |
273 | ~ButtCapDashedCircleGeometryProcessor() override {} |
274 | |
275 | const char* name() const override { return "ButtCapDashedCircleGeometryProcessor" ; } |
276 | |
277 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
278 | GLSLProcessor::GenKey(*this, caps, b); |
279 | } |
280 | |
281 | GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
282 | return new GLSLProcessor(); |
283 | } |
284 | |
285 | private: |
286 | friend class ::SkArenaAlloc; // for access to ctor |
287 | |
288 | ButtCapDashedCircleGeometryProcessor(bool wideColor, const SkMatrix& localMatrix) |
289 | : INHERITED(kButtCapStrokedCircleGeometryProcessor_ClassID) |
290 | , fLocalMatrix(localMatrix) { |
291 | fInPosition = {"inPosition" , kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
292 | fInColor = MakeColorAttribute("inColor" , wideColor); |
293 | fInCircleEdge = {"inCircleEdge" , kFloat4_GrVertexAttribType, kFloat4_GrSLType}; |
294 | fInDashParams = {"inDashParams" , kFloat4_GrVertexAttribType, kFloat4_GrSLType}; |
295 | this->setVertexAttributes(&fInPosition, 4); |
296 | } |
297 | |
298 | class GLSLProcessor : public GrGLSLGeometryProcessor { |
299 | public: |
300 | GLSLProcessor() {} |
301 | |
302 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
303 | const ButtCapDashedCircleGeometryProcessor& bcscgp = |
304 | args.fGP.cast<ButtCapDashedCircleGeometryProcessor>(); |
305 | GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
306 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
307 | GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
308 | GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
309 | |
310 | // emit attributes |
311 | varyingHandler->emitAttributes(bcscgp); |
312 | fragBuilder->codeAppend("float4 circleEdge;" ); |
313 | varyingHandler->addPassThroughAttribute(bcscgp.fInCircleEdge, "circleEdge" ); |
314 | |
315 | fragBuilder->codeAppend("float4 dashParams;" ); |
316 | varyingHandler->addPassThroughAttribute( |
317 | bcscgp.fInDashParams, "dashParams" , |
318 | GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
319 | GrGLSLVarying wrapDashes(kHalf4_GrSLType); |
320 | varyingHandler->addVarying("wrapDashes" , &wrapDashes, |
321 | GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
322 | GrGLSLVarying lastIntervalLength(kHalf_GrSLType); |
323 | varyingHandler->addVarying("lastIntervalLength" , &lastIntervalLength, |
324 | GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
325 | vertBuilder->codeAppendf("float4 dashParams = %s;" , bcscgp.fInDashParams.name()); |
326 | // Our fragment shader works in on/off intervals as specified by dashParams.xy: |
327 | // x = length of on interval, y = length of on + off. |
328 | // There are two other parameters in dashParams.zw: |
329 | // z = start angle in radians, w = phase offset in radians in range -y/2..y/2. |
330 | // Each interval has a "corresponding" dash which may be shifted partially or |
331 | // fully out of its interval by the phase. So there may be up to two "visual" |
332 | // dashes in an interval. |
333 | // When computing coverage in an interval we look at three dashes. These are the |
334 | // "corresponding" dashes from the current, previous, and next intervals. Any of these |
335 | // may be phase shifted into our interval or even when phase=0 they may be within half a |
336 | // pixel distance of a pixel center in the interval. |
337 | // When in the first interval we need to check the dash from the last interval. And |
338 | // similarly when in the last interval we need to check the dash from the first |
339 | // interval. When 2pi is not perfectly divisible dashParams.y this is a boundary case. |
340 | // We compute the dash begin/end angles in the vertex shader and apply them in the |
341 | // fragment shader when we detect we're in the first/last interval. |
342 | vertBuilder->codeAppend(R"( |
343 | // The two boundary dash intervals are stored in wrapDashes.xy and .zw and fed |
344 | // to the fragment shader as a varying. |
345 | float4 wrapDashes; |
346 | half lastIntervalLength = mod(6.28318530718, half(dashParams.y)); |
347 | // We can happen to be perfectly divisible. |
348 | if (0 == lastIntervalLength) { |
349 | lastIntervalLength = half(dashParams.y); |
350 | } |
351 | // Let 'l' be the last interval before reaching 2 pi. |
352 | // Based on the phase determine whether (l-1)th, l-th, or (l+1)th interval's |
353 | // "corresponding" dash appears in the l-th interval and is closest to the 0-th |
354 | // interval. |
355 | half offset = 0; |
356 | if (-dashParams.w >= lastIntervalLength) { |
357 | offset = half(-dashParams.y); |
358 | } else if (dashParams.w > dashParams.y - lastIntervalLength) { |
359 | offset = half(dashParams.y); |
360 | } |
361 | wrapDashes.x = -lastIntervalLength + offset - dashParams.w; |
362 | // The end of this dash may be beyond the 2 pi and therefore clipped. Hence the |
363 | // min. |
364 | wrapDashes.y = min(wrapDashes.x + dashParams.x, 0); |
365 | |
366 | // Based on the phase determine whether the -1st, 0th, or 1st interval's |
367 | // "corresponding" dash appears in the 0th interval and is closest to l. |
368 | offset = 0; |
369 | if (dashParams.w >= dashParams.x) { |
370 | offset = half(dashParams.y); |
371 | } else if (-dashParams.w > dashParams.y - dashParams.x) { |
372 | offset = half(-dashParams.y); |
373 | } |
374 | wrapDashes.z = lastIntervalLength + offset - dashParams.w; |
375 | wrapDashes.w = wrapDashes.z + dashParams.x; |
376 | // The start of the dash we're considering may be clipped by the start of the |
377 | // circle. |
378 | wrapDashes.z = max(wrapDashes.z, lastIntervalLength); |
379 | )" ); |
380 | vertBuilder->codeAppendf("%s = half4(wrapDashes);" , wrapDashes.vsOut()); |
381 | vertBuilder->codeAppendf("%s = lastIntervalLength;" , lastIntervalLength.vsOut()); |
382 | fragBuilder->codeAppendf("half4 wrapDashes = %s;" , wrapDashes.fsIn()); |
383 | fragBuilder->codeAppendf("half lastIntervalLength = %s;" , lastIntervalLength.fsIn()); |
384 | |
385 | // setup pass through color |
386 | varyingHandler->addPassThroughAttribute( |
387 | bcscgp.fInColor, args.fOutputColor, |
388 | GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
389 | |
390 | // Setup position |
391 | this->writeOutputPosition(vertBuilder, gpArgs, bcscgp.fInPosition.name()); |
392 | |
393 | // emit transforms |
394 | this->emitTransforms(vertBuilder, |
395 | varyingHandler, |
396 | uniformHandler, |
397 | bcscgp.fInPosition.asShaderVar(), |
398 | bcscgp.fLocalMatrix, |
399 | args.fFPCoordTransformHandler); |
400 | GrShaderVar fnArgs[] = { |
401 | GrShaderVar("angleToEdge" , kFloat_GrSLType), |
402 | GrShaderVar("diameter" , kFloat_GrSLType), |
403 | }; |
404 | SkString fnName; |
405 | fragBuilder->emitFunction(kFloat_GrSLType, "coverage_from_dash_edge" , |
406 | SK_ARRAY_COUNT(fnArgs), fnArgs, R"( |
407 | float linearDist; |
408 | angleToEdge = clamp(angleToEdge, -3.1415, 3.1415); |
409 | linearDist = diameter * sin(angleToEdge / 2); |
410 | return saturate(linearDist + 0.5); |
411 | )" , |
412 | &fnName); |
413 | fragBuilder->codeAppend(R"( |
414 | float d = length(circleEdge.xy) * circleEdge.z; |
415 | |
416 | // Compute coverage from outer/inner edges of the stroke. |
417 | half distanceToOuterEdge = half(circleEdge.z - d); |
418 | half edgeAlpha = saturate(distanceToOuterEdge); |
419 | half distanceToInnerEdge = half(d - circleEdge.z * circleEdge.w); |
420 | half innerAlpha = saturate(distanceToInnerEdge); |
421 | edgeAlpha *= innerAlpha; |
422 | |
423 | half angleFromStart = half(atan(circleEdge.y, circleEdge.x) - dashParams.z); |
424 | angleFromStart = mod(angleFromStart, 6.28318530718); |
425 | float x = mod(angleFromStart, dashParams.y); |
426 | // Convert the radial distance from center to pixel into a diameter. |
427 | d *= 2; |
428 | half2 currDash = half2(half(-dashParams.w), half(dashParams.x) - |
429 | half(dashParams.w)); |
430 | half2 nextDash = half2(half(dashParams.y) - half(dashParams.w), |
431 | half(dashParams.y) + half(dashParams.x) - |
432 | half(dashParams.w)); |
433 | half2 prevDash = half2(half(-dashParams.y) - half(dashParams.w), |
434 | half(-dashParams.y) + half(dashParams.x) - |
435 | half(dashParams.w)); |
436 | half dashAlpha = 0; |
437 | )" ); |
438 | fragBuilder->codeAppendf(R"( |
439 | if (angleFromStart - x + dashParams.y >= 6.28318530718) { |
440 | dashAlpha += half(%s(x - wrapDashes.z, d) * %s(wrapDashes.w - x, d)); |
441 | currDash.y = min(currDash.y, lastIntervalLength); |
442 | if (nextDash.x >= lastIntervalLength) { |
443 | // The next dash is outside the 0..2pi range, throw it away |
444 | nextDash.xy = half2(1000); |
445 | } else { |
446 | // Clip the end of the next dash to the end of the circle |
447 | nextDash.y = min(nextDash.y, lastIntervalLength); |
448 | } |
449 | } |
450 | )" , fnName.c_str(), fnName.c_str()); |
451 | fragBuilder->codeAppendf(R"( |
452 | if (angleFromStart - x - dashParams.y < -0.01) { |
453 | dashAlpha += half(%s(x - wrapDashes.x, d) * %s(wrapDashes.y - x, d)); |
454 | currDash.x = max(currDash.x, 0); |
455 | if (prevDash.y <= 0) { |
456 | // The previous dash is outside the 0..2pi range, throw it away |
457 | prevDash.xy = half2(1000); |
458 | } else { |
459 | // Clip the start previous dash to the start of the circle |
460 | prevDash.x = max(prevDash.x, 0); |
461 | } |
462 | } |
463 | )" , fnName.c_str(), fnName.c_str()); |
464 | fragBuilder->codeAppendf(R"( |
465 | dashAlpha += half(%s(x - currDash.x, d) * %s(currDash.y - x, d)); |
466 | dashAlpha += half(%s(x - nextDash.x, d) * %s(nextDash.y - x, d)); |
467 | dashAlpha += half(%s(x - prevDash.x, d) * %s(prevDash.y - x, d)); |
468 | dashAlpha = min(dashAlpha, 1); |
469 | edgeAlpha *= dashAlpha; |
470 | )" , fnName.c_str(), fnName.c_str(), fnName.c_str(), fnName.c_str(), fnName.c_str(), |
471 | fnName.c_str()); |
472 | fragBuilder->codeAppendf("%s = half4(edgeAlpha);" , args.fOutputCoverage); |
473 | } |
474 | |
475 | static void GenKey(const GrGeometryProcessor& gp, |
476 | const GrShaderCaps&, |
477 | GrProcessorKeyBuilder* b) { |
478 | const ButtCapDashedCircleGeometryProcessor& bcscgp = |
479 | gp.cast<ButtCapDashedCircleGeometryProcessor>(); |
480 | b->add32(bcscgp.fLocalMatrix.hasPerspective()); |
481 | } |
482 | |
483 | void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
484 | const CoordTransformRange& transformRange) override { |
485 | this->setTransformDataHelper( |
486 | primProc.cast<ButtCapDashedCircleGeometryProcessor>().fLocalMatrix, pdman, |
487 | transformRange); |
488 | } |
489 | |
490 | private: |
491 | typedef GrGLSLGeometryProcessor INHERITED; |
492 | }; |
493 | |
494 | SkMatrix fLocalMatrix; |
495 | Attribute fInPosition; |
496 | Attribute fInColor; |
497 | Attribute fInCircleEdge; |
498 | Attribute fInDashParams; |
499 | |
500 | GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
501 | |
502 | typedef GrGeometryProcessor INHERITED; |
503 | }; |
504 | |
505 | #if GR_TEST_UTILS |
506 | GrGeometryProcessor* ButtCapDashedCircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
507 | bool wideColor = d->fRandom->nextBool(); |
508 | const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom); |
509 | return ButtCapDashedCircleGeometryProcessor::Make(d->allocator(), wideColor, matrix); |
510 | } |
511 | #endif |
512 | |
513 | /////////////////////////////////////////////////////////////////////////////// |
514 | |
515 | /** |
516 | * The output of this effect is a modulation of the input color and coverage for an axis-aligned |
517 | * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, |
518 | * in both x and y directions. |
519 | * |
520 | * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. |
521 | */ |
522 | |
523 | class EllipseGeometryProcessor : public GrGeometryProcessor { |
524 | public: |
525 | static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool stroke, bool wideColor, |
526 | bool useScale, const SkMatrix& localMatrix) { |
527 | return arena->make<EllipseGeometryProcessor>(stroke, wideColor, useScale, localMatrix); |
528 | } |
529 | |
530 | ~EllipseGeometryProcessor() override {} |
531 | |
532 | const char* name() const override { return "EllipseGeometryProcessor" ; } |
533 | |
534 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
535 | GLSLProcessor::GenKey(*this, caps, b); |
536 | } |
537 | |
538 | GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
539 | return new GLSLProcessor(); |
540 | } |
541 | |
542 | private: |
543 | friend class ::SkArenaAlloc; // for access to ctor |
544 | |
545 | EllipseGeometryProcessor(bool stroke, bool wideColor, bool useScale, |
546 | const SkMatrix& localMatrix) |
547 | : INHERITED(kEllipseGeometryProcessor_ClassID) |
548 | , fLocalMatrix(localMatrix) |
549 | , fStroke(stroke) |
550 | , fUseScale(useScale) { |
551 | fInPosition = {"inPosition" , kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
552 | fInColor = MakeColorAttribute("inColor" , wideColor); |
553 | if (useScale) { |
554 | fInEllipseOffset = {"inEllipseOffset" , kFloat3_GrVertexAttribType, kFloat3_GrSLType}; |
555 | } else { |
556 | fInEllipseOffset = {"inEllipseOffset" , kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
557 | } |
558 | fInEllipseRadii = {"inEllipseRadii" , kFloat4_GrVertexAttribType, kFloat4_GrSLType}; |
559 | this->setVertexAttributes(&fInPosition, 4); |
560 | } |
561 | |
562 | class GLSLProcessor : public GrGLSLGeometryProcessor { |
563 | public: |
564 | GLSLProcessor() {} |
565 | |
566 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
567 | const EllipseGeometryProcessor& egp = args.fGP.cast<EllipseGeometryProcessor>(); |
568 | GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
569 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
570 | GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
571 | |
572 | // emit attributes |
573 | varyingHandler->emitAttributes(egp); |
574 | |
575 | GrSLType offsetType = egp.fUseScale ? kFloat3_GrSLType : kFloat2_GrSLType; |
576 | GrGLSLVarying ellipseOffsets(offsetType); |
577 | varyingHandler->addVarying("EllipseOffsets" , &ellipseOffsets); |
578 | vertBuilder->codeAppendf("%s = %s;" , ellipseOffsets.vsOut(), |
579 | egp.fInEllipseOffset.name()); |
580 | |
581 | GrGLSLVarying ellipseRadii(kFloat4_GrSLType); |
582 | varyingHandler->addVarying("EllipseRadii" , &ellipseRadii); |
583 | vertBuilder->codeAppendf("%s = %s;" , ellipseRadii.vsOut(), egp.fInEllipseRadii.name()); |
584 | |
585 | GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
586 | // setup pass through color |
587 | varyingHandler->addPassThroughAttribute(egp.fInColor, args.fOutputColor); |
588 | |
589 | // Setup position |
590 | this->writeOutputPosition(vertBuilder, gpArgs, egp.fInPosition.name()); |
591 | |
592 | // emit transforms |
593 | this->emitTransforms(vertBuilder, |
594 | varyingHandler, |
595 | uniformHandler, |
596 | egp.fInPosition.asShaderVar(), |
597 | egp.fLocalMatrix, |
598 | args.fFPCoordTransformHandler); |
599 | // For stroked ellipses, we use the full ellipse equation (x^2/a^2 + y^2/b^2 = 1) |
600 | // to compute both the edges because we need two separate test equations for |
601 | // the single offset. |
602 | // For filled ellipses we can use a unit circle equation (x^2 + y^2 = 1), and warp |
603 | // the distance by the gradient, non-uniformly scaled by the inverse of the |
604 | // ellipse size. |
605 | |
606 | // On medium precision devices, we scale the denominator of the distance equation |
607 | // before taking the inverse square root to minimize the chance that we're dividing |
608 | // by zero, then we scale the result back. |
609 | |
610 | // for outer curve |
611 | fragBuilder->codeAppendf("float2 offset = %s.xy;" , ellipseOffsets.fsIn()); |
612 | if (egp.fStroke) { |
613 | fragBuilder->codeAppendf("offset *= %s.xy;" , ellipseRadii.fsIn()); |
614 | } |
615 | fragBuilder->codeAppend("float test = dot(offset, offset) - 1.0;" ); |
616 | if (egp.fUseScale) { |
617 | fragBuilder->codeAppendf("float2 grad = 2.0*offset*(%s.z*%s.xy);" , |
618 | ellipseOffsets.fsIn(), ellipseRadii.fsIn()); |
619 | } else { |
620 | fragBuilder->codeAppendf("float2 grad = 2.0*offset*%s.xy;" , ellipseRadii.fsIn()); |
621 | } |
622 | fragBuilder->codeAppend("float grad_dot = dot(grad, grad);" ); |
623 | |
624 | // avoid calling inversesqrt on zero. |
625 | if (args.fShaderCaps->floatIs32Bits()) { |
626 | fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.1755e-38);" ); |
627 | } else { |
628 | fragBuilder->codeAppend("grad_dot = max(grad_dot, 6.1036e-5);" ); |
629 | } |
630 | if (egp.fUseScale) { |
631 | fragBuilder->codeAppendf("float invlen = %s.z*inversesqrt(grad_dot);" , |
632 | ellipseOffsets.fsIn()); |
633 | } else { |
634 | fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);" ); |
635 | } |
636 | fragBuilder->codeAppend("float edgeAlpha = saturate(0.5-test*invlen);" ); |
637 | |
638 | // for inner curve |
639 | if (egp.fStroke) { |
640 | fragBuilder->codeAppendf("offset = %s.xy*%s.zw;" , ellipseOffsets.fsIn(), |
641 | ellipseRadii.fsIn()); |
642 | fragBuilder->codeAppend("test = dot(offset, offset) - 1.0;" ); |
643 | if (egp.fUseScale) { |
644 | fragBuilder->codeAppendf("grad = 2.0*offset*(%s.z*%s.zw);" , |
645 | ellipseOffsets.fsIn(), ellipseRadii.fsIn()); |
646 | } else { |
647 | fragBuilder->codeAppendf("grad = 2.0*offset*%s.zw;" , ellipseRadii.fsIn()); |
648 | } |
649 | fragBuilder->codeAppend("grad_dot = dot(grad, grad);" ); |
650 | if (!args.fShaderCaps->floatIs32Bits()) { |
651 | fragBuilder->codeAppend("grad_dot = max(grad_dot, 6.1036e-5);" ); |
652 | } |
653 | if (egp.fUseScale) { |
654 | fragBuilder->codeAppendf("invlen = %s.z*inversesqrt(grad_dot);" , |
655 | ellipseOffsets.fsIn()); |
656 | } else { |
657 | fragBuilder->codeAppend("invlen = inversesqrt(grad_dot);" ); |
658 | } |
659 | fragBuilder->codeAppend("edgeAlpha *= saturate(0.5+test*invlen);" ); |
660 | } |
661 | |
662 | fragBuilder->codeAppendf("%s = half4(half(edgeAlpha));" , args.fOutputCoverage); |
663 | } |
664 | |
665 | static void GenKey(const GrGeometryProcessor& gp, |
666 | const GrShaderCaps&, |
667 | GrProcessorKeyBuilder* b) { |
668 | const EllipseGeometryProcessor& egp = gp.cast<EllipseGeometryProcessor>(); |
669 | uint16_t key = egp.fStroke ? 0x1 : 0x0; |
670 | key |= egp.fLocalMatrix.hasPerspective() ? 0x2 : 0x0; |
671 | b->add32(key); |
672 | } |
673 | |
674 | void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
675 | const CoordTransformRange& transformRange) override { |
676 | const EllipseGeometryProcessor& egp = primProc.cast<EllipseGeometryProcessor>(); |
677 | this->setTransformDataHelper(egp.fLocalMatrix, pdman, transformRange); |
678 | } |
679 | |
680 | private: |
681 | typedef GrGLSLGeometryProcessor INHERITED; |
682 | }; |
683 | |
684 | Attribute fInPosition; |
685 | Attribute fInColor; |
686 | Attribute fInEllipseOffset; |
687 | Attribute fInEllipseRadii; |
688 | |
689 | SkMatrix fLocalMatrix; |
690 | bool fStroke; |
691 | bool fUseScale; |
692 | |
693 | GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
694 | |
695 | typedef GrGeometryProcessor INHERITED; |
696 | }; |
697 | |
698 | GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseGeometryProcessor); |
699 | |
700 | #if GR_TEST_UTILS |
701 | GrGeometryProcessor* EllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
702 | return EllipseGeometryProcessor::Make(d->allocator(), d->fRandom->nextBool(), |
703 | d->fRandom->nextBool(), d->fRandom->nextBool(), |
704 | GrTest::TestMatrix(d->fRandom)); |
705 | } |
706 | #endif |
707 | |
708 | /////////////////////////////////////////////////////////////////////////////// |
709 | |
710 | /** |
711 | * The output of this effect is a modulation of the input color and coverage for an ellipse, |
712 | * specified as a 2D offset from center for both the outer and inner paths (if stroked). The |
713 | * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by |
714 | * using differentials. |
715 | * |
716 | * The result is device-independent and can be used with any affine matrix. |
717 | */ |
718 | |
719 | enum class DIEllipseStyle { kStroke = 0, kHairline, kFill }; |
720 | |
721 | class DIEllipseGeometryProcessor : public GrGeometryProcessor { |
722 | public: |
723 | static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool wideColor, bool useScale, |
724 | const SkMatrix& viewMatrix, DIEllipseStyle style) { |
725 | return arena->make<DIEllipseGeometryProcessor>(wideColor, useScale, viewMatrix, style); |
726 | } |
727 | |
728 | ~DIEllipseGeometryProcessor() override {} |
729 | |
730 | const char* name() const override { return "DIEllipseGeometryProcessor" ; } |
731 | |
732 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
733 | GLSLProcessor::GenKey(*this, caps, b); |
734 | } |
735 | |
736 | GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
737 | return new GLSLProcessor(); |
738 | } |
739 | |
740 | private: |
741 | friend class ::SkArenaAlloc; // for access to ctor |
742 | |
743 | DIEllipseGeometryProcessor(bool wideColor, bool useScale, const SkMatrix& viewMatrix, |
744 | DIEllipseStyle style) |
745 | : INHERITED(kDIEllipseGeometryProcessor_ClassID) |
746 | , fViewMatrix(viewMatrix) |
747 | , fUseScale(useScale) |
748 | , fStyle(style) { |
749 | fInPosition = {"inPosition" , kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
750 | fInColor = MakeColorAttribute("inColor" , wideColor); |
751 | if (useScale) { |
752 | fInEllipseOffsets0 = {"inEllipseOffsets0" , kFloat3_GrVertexAttribType, |
753 | kFloat3_GrSLType}; |
754 | } else { |
755 | fInEllipseOffsets0 = {"inEllipseOffsets0" , kFloat2_GrVertexAttribType, |
756 | kFloat2_GrSLType}; |
757 | } |
758 | fInEllipseOffsets1 = {"inEllipseOffsets1" , kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
759 | this->setVertexAttributes(&fInPosition, 4); |
760 | } |
761 | |
762 | class GLSLProcessor : public GrGLSLGeometryProcessor { |
763 | public: |
764 | GLSLProcessor() : fViewMatrix(SkMatrix::InvalidMatrix()) {} |
765 | |
766 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
767 | const DIEllipseGeometryProcessor& diegp = args.fGP.cast<DIEllipseGeometryProcessor>(); |
768 | GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
769 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
770 | GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
771 | |
772 | // emit attributes |
773 | varyingHandler->emitAttributes(diegp); |
774 | |
775 | GrSLType offsetType = (diegp.fUseScale) ? kFloat3_GrSLType : kFloat2_GrSLType; |
776 | GrGLSLVarying offsets0(offsetType); |
777 | varyingHandler->addVarying("EllipseOffsets0" , &offsets0); |
778 | vertBuilder->codeAppendf("%s = %s;" , offsets0.vsOut(), diegp.fInEllipseOffsets0.name()); |
779 | |
780 | GrGLSLVarying offsets1(kFloat2_GrSLType); |
781 | varyingHandler->addVarying("EllipseOffsets1" , &offsets1); |
782 | vertBuilder->codeAppendf("%s = %s;" , offsets1.vsOut(), diegp.fInEllipseOffsets1.name()); |
783 | |
784 | GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
785 | varyingHandler->addPassThroughAttribute(diegp.fInColor, args.fOutputColor); |
786 | |
787 | // Setup position |
788 | this->writeOutputPosition(vertBuilder, |
789 | uniformHandler, |
790 | gpArgs, |
791 | diegp.fInPosition.name(), |
792 | diegp.fViewMatrix, |
793 | &fViewMatrixUniform); |
794 | |
795 | // emit transforms |
796 | this->emitTransforms(vertBuilder, |
797 | varyingHandler, |
798 | uniformHandler, |
799 | diegp.fInPosition.asShaderVar(), |
800 | args.fFPCoordTransformHandler); |
801 | |
802 | // for outer curve |
803 | fragBuilder->codeAppendf("float2 scaledOffset = %s.xy;" , offsets0.fsIn()); |
804 | fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;" ); |
805 | fragBuilder->codeAppendf("float2 duvdx = dFdx(%s.xy);" , offsets0.fsIn()); |
806 | fragBuilder->codeAppendf("float2 duvdy = dFdy(%s.xy);" , offsets0.fsIn()); |
807 | fragBuilder->codeAppendf( |
808 | "float2 grad = float2(%s.x*duvdx.x + %s.y*duvdx.y," |
809 | " %s.x*duvdy.x + %s.y*duvdy.y);" , |
810 | offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn()); |
811 | if (diegp.fUseScale) { |
812 | fragBuilder->codeAppendf("grad *= %s.z;" , offsets0.fsIn()); |
813 | } |
814 | |
815 | fragBuilder->codeAppend("float grad_dot = 4.0*dot(grad, grad);" ); |
816 | // avoid calling inversesqrt on zero. |
817 | if (args.fShaderCaps->floatIs32Bits()) { |
818 | fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.1755e-38);" ); |
819 | } else { |
820 | fragBuilder->codeAppend("grad_dot = max(grad_dot, 6.1036e-5);" ); |
821 | } |
822 | fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);" ); |
823 | if (diegp.fUseScale) { |
824 | fragBuilder->codeAppendf("invlen *= %s.z;" , offsets0.fsIn()); |
825 | } |
826 | if (DIEllipseStyle::kHairline == diegp.fStyle) { |
827 | // can probably do this with one step |
828 | fragBuilder->codeAppend("float edgeAlpha = saturate(1.0-test*invlen);" ); |
829 | fragBuilder->codeAppend("edgeAlpha *= saturate(1.0+test*invlen);" ); |
830 | } else { |
831 | fragBuilder->codeAppend("float edgeAlpha = saturate(0.5-test*invlen);" ); |
832 | } |
833 | |
834 | // for inner curve |
835 | if (DIEllipseStyle::kStroke == diegp.fStyle) { |
836 | fragBuilder->codeAppendf("scaledOffset = %s.xy;" , offsets1.fsIn()); |
837 | fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;" ); |
838 | fragBuilder->codeAppendf("duvdx = float2(dFdx(%s));" , offsets1.fsIn()); |
839 | fragBuilder->codeAppendf("duvdy = float2(dFdy(%s));" , offsets1.fsIn()); |
840 | fragBuilder->codeAppendf( |
841 | "grad = float2(%s.x*duvdx.x + %s.y*duvdx.y," |
842 | " %s.x*duvdy.x + %s.y*duvdy.y);" , |
843 | offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn()); |
844 | if (diegp.fUseScale) { |
845 | fragBuilder->codeAppendf("grad *= %s.z;" , offsets0.fsIn()); |
846 | } |
847 | fragBuilder->codeAppend("grad_dot = 4.0*dot(grad, grad);" ); |
848 | if (!args.fShaderCaps->floatIs32Bits()) { |
849 | fragBuilder->codeAppend("grad_dot = max(grad_dot, 6.1036e-5);" ); |
850 | } |
851 | fragBuilder->codeAppend("invlen = inversesqrt(grad_dot);" ); |
852 | if (diegp.fUseScale) { |
853 | fragBuilder->codeAppendf("invlen *= %s.z;" , offsets0.fsIn()); |
854 | } |
855 | fragBuilder->codeAppend("edgeAlpha *= saturate(0.5+test*invlen);" ); |
856 | } |
857 | |
858 | fragBuilder->codeAppendf("%s = half4(half(edgeAlpha));" , args.fOutputCoverage); |
859 | } |
860 | |
861 | static void GenKey(const GrGeometryProcessor& gp, |
862 | const GrShaderCaps&, |
863 | GrProcessorKeyBuilder* b) { |
864 | const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>(); |
865 | uint16_t key = static_cast<uint16_t>(diegp.fStyle); |
866 | key |= ComputePosKey(diegp.fViewMatrix) << 10; |
867 | b->add32(key); |
868 | } |
869 | |
870 | void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, |
871 | const CoordTransformRange& transformRange) override { |
872 | const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>(); |
873 | |
874 | if (!diegp.fViewMatrix.isIdentity() && |
875 | !SkMatrixPriv::CheapEqual(fViewMatrix, diegp.fViewMatrix)) |
876 | { |
877 | fViewMatrix = diegp.fViewMatrix; |
878 | pdman.setSkMatrix(fViewMatrixUniform, fViewMatrix); |
879 | } |
880 | this->setTransformDataHelper(SkMatrix::I(), pdman, transformRange); |
881 | } |
882 | |
883 | private: |
884 | SkMatrix fViewMatrix; |
885 | UniformHandle fViewMatrixUniform; |
886 | |
887 | typedef GrGLSLGeometryProcessor INHERITED; |
888 | }; |
889 | |
890 | |
891 | Attribute fInPosition; |
892 | Attribute fInColor; |
893 | Attribute fInEllipseOffsets0; |
894 | Attribute fInEllipseOffsets1; |
895 | |
896 | SkMatrix fViewMatrix; |
897 | bool fUseScale; |
898 | DIEllipseStyle fStyle; |
899 | |
900 | GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
901 | |
902 | typedef GrGeometryProcessor INHERITED; |
903 | }; |
904 | |
905 | GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseGeometryProcessor); |
906 | |
907 | #if GR_TEST_UTILS |
908 | GrGeometryProcessor* DIEllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
909 | return DIEllipseGeometryProcessor::Make(d->allocator(), d->fRandom->nextBool(), |
910 | d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom), |
911 | (DIEllipseStyle)(d->fRandom->nextRangeU(0, 2))); |
912 | } |
913 | #endif |
914 | |
915 | /////////////////////////////////////////////////////////////////////////////// |
916 | |
917 | // We have two possible cases for geometry for a circle: |
918 | |
919 | // In the case of a normal fill, we draw geometry for the circle as an octagon. |
920 | static const uint16_t gFillCircleIndices[] = { |
921 | // enter the octagon |
922 | // clang-format off |
923 | 0, 1, 8, 1, 2, 8, |
924 | 2, 3, 8, 3, 4, 8, |
925 | 4, 5, 8, 5, 6, 8, |
926 | 6, 7, 8, 7, 0, 8 |
927 | // clang-format on |
928 | }; |
929 | |
930 | // For stroked circles, we use two nested octagons. |
931 | static const uint16_t gStrokeCircleIndices[] = { |
932 | // enter the octagon |
933 | // clang-format off |
934 | 0, 1, 9, 0, 9, 8, |
935 | 1, 2, 10, 1, 10, 9, |
936 | 2, 3, 11, 2, 11, 10, |
937 | 3, 4, 12, 3, 12, 11, |
938 | 4, 5, 13, 4, 13, 12, |
939 | 5, 6, 14, 5, 14, 13, |
940 | 6, 7, 15, 6, 15, 14, |
941 | 7, 0, 8, 7, 8, 15, |
942 | // clang-format on |
943 | }; |
944 | |
945 | // Normalized geometry for octagons that circumscribe and lie on a circle: |
946 | |
947 | static constexpr SkScalar kOctOffset = 0.41421356237f; // sqrt(2) - 1 |
948 | static constexpr SkPoint kOctagonOuter[] = { |
949 | SkPoint::Make(-kOctOffset, -1), |
950 | SkPoint::Make( kOctOffset, -1), |
951 | SkPoint::Make( 1, -kOctOffset), |
952 | SkPoint::Make( 1, kOctOffset), |
953 | SkPoint::Make( kOctOffset, 1), |
954 | SkPoint::Make(-kOctOffset, 1), |
955 | SkPoint::Make(-1, kOctOffset), |
956 | SkPoint::Make(-1, -kOctOffset), |
957 | }; |
958 | |
959 | // cosine and sine of pi/8 |
960 | static constexpr SkScalar kCosPi8 = 0.923579533f; |
961 | static constexpr SkScalar kSinPi8 = 0.382683432f; |
962 | static constexpr SkPoint kOctagonInner[] = { |
963 | SkPoint::Make(-kSinPi8, -kCosPi8), |
964 | SkPoint::Make( kSinPi8, -kCosPi8), |
965 | SkPoint::Make( kCosPi8, -kSinPi8), |
966 | SkPoint::Make( kCosPi8, kSinPi8), |
967 | SkPoint::Make( kSinPi8, kCosPi8), |
968 | SkPoint::Make(-kSinPi8, kCosPi8), |
969 | SkPoint::Make(-kCosPi8, kSinPi8), |
970 | SkPoint::Make(-kCosPi8, -kSinPi8), |
971 | }; |
972 | |
973 | static const int kIndicesPerFillCircle = SK_ARRAY_COUNT(gFillCircleIndices); |
974 | static const int kIndicesPerStrokeCircle = SK_ARRAY_COUNT(gStrokeCircleIndices); |
975 | static const int kVertsPerStrokeCircle = 16; |
976 | static const int kVertsPerFillCircle = 9; |
977 | |
978 | static int circle_type_to_vert_count(bool stroked) { |
979 | return stroked ? kVertsPerStrokeCircle : kVertsPerFillCircle; |
980 | } |
981 | |
982 | static int circle_type_to_index_count(bool stroked) { |
983 | return stroked ? kIndicesPerStrokeCircle : kIndicesPerFillCircle; |
984 | } |
985 | |
986 | static const uint16_t* circle_type_to_indices(bool stroked) { |
987 | return stroked ? gStrokeCircleIndices : gFillCircleIndices; |
988 | } |
989 | |
990 | /////////////////////////////////////////////////////////////////////////////// |
991 | |
992 | class CircleOp final : public GrMeshDrawOp { |
993 | private: |
994 | using Helper = GrSimpleMeshDrawOpHelper; |
995 | |
996 | public: |
997 | DEFINE_OP_CLASS_ID |
998 | |
999 | /** Optional extra params to render a partial arc rather than a full circle. */ |
1000 | struct ArcParams { |
1001 | SkScalar fStartAngleRadians; |
1002 | SkScalar fSweepAngleRadians; |
1003 | bool fUseCenter; |
1004 | }; |
1005 | |
1006 | static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
1007 | GrPaint&& paint, |
1008 | const SkMatrix& viewMatrix, |
1009 | SkPoint center, |
1010 | SkScalar radius, |
1011 | const GrStyle& style, |
1012 | const ArcParams* arcParams = nullptr) { |
1013 | SkASSERT(circle_stays_circle(viewMatrix)); |
1014 | if (style.hasPathEffect()) { |
1015 | return nullptr; |
1016 | } |
1017 | const SkStrokeRec& stroke = style.strokeRec(); |
1018 | SkStrokeRec::Style recStyle = stroke.getStyle(); |
1019 | if (arcParams) { |
1020 | // Arc support depends on the style. |
1021 | switch (recStyle) { |
1022 | case SkStrokeRec::kStrokeAndFill_Style: |
1023 | // This produces a strange result that this op doesn't implement. |
1024 | return nullptr; |
1025 | case SkStrokeRec::kFill_Style: |
1026 | // This supports all fills. |
1027 | break; |
1028 | case SkStrokeRec::kStroke_Style: |
1029 | // Strokes that don't use the center point are supported with butt and round |
1030 | // caps. |
1031 | if (arcParams->fUseCenter || stroke.getCap() == SkPaint::kSquare_Cap) { |
1032 | return nullptr; |
1033 | } |
1034 | break; |
1035 | case SkStrokeRec::kHairline_Style: |
1036 | // Hairline only supports butt cap. Round caps could be emulated by slightly |
1037 | // extending the angle range if we ever care to. |
1038 | if (arcParams->fUseCenter || stroke.getCap() != SkPaint::kButt_Cap) { |
1039 | return nullptr; |
1040 | } |
1041 | break; |
1042 | } |
1043 | } |
1044 | return Helper::FactoryHelper<CircleOp>(context, std::move(paint), viewMatrix, center, |
1045 | radius, style, arcParams); |
1046 | } |
1047 | |
1048 | CircleOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, |
1049 | const SkMatrix& viewMatrix, SkPoint center, SkScalar radius, const GrStyle& style, |
1050 | const ArcParams* arcParams) |
1051 | : GrMeshDrawOp(ClassID()) |
1052 | , fHelper(helperArgs, GrAAType::kCoverage) { |
1053 | const SkStrokeRec& stroke = style.strokeRec(); |
1054 | SkStrokeRec::Style recStyle = stroke.getStyle(); |
1055 | |
1056 | fRoundCaps = false; |
1057 | |
1058 | viewMatrix.mapPoints(¢er, 1); |
1059 | radius = viewMatrix.mapRadius(radius); |
1060 | SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth()); |
1061 | |
1062 | bool isStrokeOnly = |
1063 | SkStrokeRec::kStroke_Style == recStyle || SkStrokeRec::kHairline_Style == recStyle; |
1064 | bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == recStyle; |
1065 | |
1066 | SkScalar innerRadius = -SK_ScalarHalf; |
1067 | SkScalar outerRadius = radius; |
1068 | SkScalar halfWidth = 0; |
1069 | if (hasStroke) { |
1070 | if (SkScalarNearlyZero(strokeWidth)) { |
1071 | halfWidth = SK_ScalarHalf; |
1072 | } else { |
1073 | halfWidth = SkScalarHalf(strokeWidth); |
1074 | } |
1075 | |
1076 | outerRadius += halfWidth; |
1077 | if (isStrokeOnly) { |
1078 | innerRadius = radius - halfWidth; |
1079 | } |
1080 | } |
1081 | |
1082 | // The radii are outset for two reasons. First, it allows the shader to simply perform |
1083 | // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
1084 | // Second, the outer radius is used to compute the verts of the bounding box that is |
1085 | // rendered and the outset ensures the box will cover all partially covered by the circle. |
1086 | outerRadius += SK_ScalarHalf; |
1087 | innerRadius -= SK_ScalarHalf; |
1088 | bool stroked = isStrokeOnly && innerRadius > 0.0f; |
1089 | fViewMatrixIfUsingLocalCoords = viewMatrix; |
1090 | |
1091 | // This makes every point fully inside the intersection plane. |
1092 | static constexpr SkScalar kUnusedIsectPlane[] = {0.f, 0.f, 1.f}; |
1093 | // This makes every point fully outside the union plane. |
1094 | static constexpr SkScalar kUnusedUnionPlane[] = {0.f, 0.f, 0.f}; |
1095 | static constexpr SkPoint kUnusedRoundCaps[] = {{1e10f, 1e10f}, {1e10f, 1e10f}}; |
1096 | SkRect devBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
1097 | center.fX + outerRadius, center.fY + outerRadius); |
1098 | if (arcParams) { |
1099 | // The shader operates in a space where the circle is translated to be centered at the |
1100 | // origin. Here we compute points on the unit circle at the starting and ending angles. |
1101 | SkPoint startPoint, stopPoint; |
1102 | startPoint.fY = SkScalarSin(arcParams->fStartAngleRadians); |
1103 | startPoint.fX = SkScalarCos(arcParams->fStartAngleRadians); |
1104 | SkScalar endAngle = arcParams->fStartAngleRadians + arcParams->fSweepAngleRadians; |
1105 | stopPoint.fY = SkScalarSin(endAngle); |
1106 | stopPoint.fX = SkScalarCos(endAngle); |
1107 | |
1108 | // Adjust the start and end points based on the view matrix (to handle rotated arcs) |
1109 | startPoint = viewMatrix.mapVector(startPoint.fX, startPoint.fY); |
1110 | stopPoint = viewMatrix.mapVector(stopPoint.fX, stopPoint.fY); |
1111 | startPoint.normalize(); |
1112 | stopPoint.normalize(); |
1113 | |
1114 | // We know the matrix is a similarity here. Detect mirroring which will affect how we |
1115 | // should orient the clip planes for arcs. |
1116 | SkASSERT(viewMatrix.isSimilarity()); |
1117 | auto upperLeftDet = viewMatrix.getScaleX()*viewMatrix.getScaleY() - |
1118 | viewMatrix.getSkewX() *viewMatrix.getSkewY(); |
1119 | if (upperLeftDet < 0) { |
1120 | std::swap(startPoint, stopPoint); |
1121 | } |
1122 | |
1123 | fRoundCaps = style.strokeRec().getWidth() > 0 && |
1124 | style.strokeRec().getCap() == SkPaint::kRound_Cap; |
1125 | SkPoint roundCaps[2]; |
1126 | if (fRoundCaps) { |
1127 | // Compute the cap center points in the normalized space. |
1128 | SkScalar midRadius = (innerRadius + outerRadius) / (2 * outerRadius); |
1129 | roundCaps[0] = startPoint * midRadius; |
1130 | roundCaps[1] = stopPoint * midRadius; |
1131 | } else { |
1132 | roundCaps[0] = kUnusedRoundCaps[0]; |
1133 | roundCaps[1] = kUnusedRoundCaps[1]; |
1134 | } |
1135 | |
1136 | // Like a fill without useCenter, butt-cap stroke can be implemented by clipping against |
1137 | // radial lines. We treat round caps the same way, but tack coverage of circles at the |
1138 | // center of the butts. |
1139 | // However, in both cases we have to be careful about the half-circle. |
1140 | // case. In that case the two radial lines are equal and so that edge gets clipped |
1141 | // twice. Since the shared edge goes through the center we fall back on the !useCenter |
1142 | // case. |
1143 | auto absSweep = SkScalarAbs(arcParams->fSweepAngleRadians); |
1144 | bool useCenter = (arcParams->fUseCenter || isStrokeOnly) && |
1145 | !SkScalarNearlyEqual(absSweep, SK_ScalarPI); |
1146 | if (useCenter) { |
1147 | SkVector norm0 = {startPoint.fY, -startPoint.fX}; |
1148 | SkVector norm1 = {stopPoint.fY, -stopPoint.fX}; |
1149 | // This ensures that norm0 is always the clockwise plane, and norm1 is CCW. |
1150 | if (arcParams->fSweepAngleRadians < 0) { |
1151 | std::swap(norm0, norm1); |
1152 | } |
1153 | norm0.negate(); |
1154 | fClipPlane = true; |
1155 | if (absSweep > SK_ScalarPI) { |
1156 | fCircles.emplace_back(Circle{ |
1157 | color, |
1158 | innerRadius, |
1159 | outerRadius, |
1160 | {norm0.fX, norm0.fY, 0.5f}, |
1161 | {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
1162 | {norm1.fX, norm1.fY, 0.5f}, |
1163 | {roundCaps[0], roundCaps[1]}, |
1164 | devBounds, |
1165 | stroked}); |
1166 | fClipPlaneIsect = false; |
1167 | fClipPlaneUnion = true; |
1168 | } else { |
1169 | fCircles.emplace_back(Circle{ |
1170 | color, |
1171 | innerRadius, |
1172 | outerRadius, |
1173 | {norm0.fX, norm0.fY, 0.5f}, |
1174 | {norm1.fX, norm1.fY, 0.5f}, |
1175 | {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
1176 | {roundCaps[0], roundCaps[1]}, |
1177 | devBounds, |
1178 | stroked}); |
1179 | fClipPlaneIsect = true; |
1180 | fClipPlaneUnion = false; |
1181 | } |
1182 | } else { |
1183 | // We clip to a secant of the original circle. |
1184 | startPoint.scale(radius); |
1185 | stopPoint.scale(radius); |
1186 | SkVector norm = {startPoint.fY - stopPoint.fY, stopPoint.fX - startPoint.fX}; |
1187 | norm.normalize(); |
1188 | if (arcParams->fSweepAngleRadians > 0) { |
1189 | norm.negate(); |
1190 | } |
1191 | SkScalar d = -norm.dot(startPoint) + 0.5f; |
1192 | |
1193 | fCircles.emplace_back( |
1194 | Circle{color, |
1195 | innerRadius, |
1196 | outerRadius, |
1197 | {norm.fX, norm.fY, d}, |
1198 | {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
1199 | {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
1200 | {roundCaps[0], roundCaps[1]}, |
1201 | devBounds, |
1202 | stroked}); |
1203 | fClipPlane = true; |
1204 | fClipPlaneIsect = false; |
1205 | fClipPlaneUnion = false; |
1206 | } |
1207 | } else { |
1208 | fCircles.emplace_back( |
1209 | Circle{color, |
1210 | innerRadius, |
1211 | outerRadius, |
1212 | {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
1213 | {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
1214 | {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
1215 | {kUnusedRoundCaps[0], kUnusedRoundCaps[1]}, |
1216 | devBounds, |
1217 | stroked}); |
1218 | fClipPlane = false; |
1219 | fClipPlaneIsect = false; |
1220 | fClipPlaneUnion = false; |
1221 | } |
1222 | // Use the original radius and stroke radius for the bounds so that it does not include the |
1223 | // AA bloat. |
1224 | radius += halfWidth; |
1225 | this->setBounds( |
1226 | {center.fX - radius, center.fY - radius, center.fX + radius, center.fY + radius}, |
1227 | HasAABloat::kYes, IsHairline::kNo); |
1228 | fVertCount = circle_type_to_vert_count(stroked); |
1229 | fIndexCount = circle_type_to_index_count(stroked); |
1230 | fAllFill = !stroked; |
1231 | } |
1232 | |
1233 | const char* name() const override { return "CircleOp" ; } |
1234 | |
1235 | void visitProxies(const VisitProxyFunc& func) const override { |
1236 | if (fProgramInfo) { |
1237 | fProgramInfo->visitFPProxies(func); |
1238 | } else { |
1239 | fHelper.visitProxies(func); |
1240 | } |
1241 | } |
1242 | |
1243 | #ifdef SK_DEBUG |
1244 | SkString dumpInfo() const override { |
1245 | SkString string; |
1246 | for (int i = 0; i < fCircles.count(); ++i) { |
1247 | string.appendf( |
1248 | "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
1249 | "InnerRad: %.2f, OuterRad: %.2f\n" , |
1250 | fCircles[i].fColor.toBytes_RGBA(), fCircles[i].fDevBounds.fLeft, |
1251 | fCircles[i].fDevBounds.fTop, fCircles[i].fDevBounds.fRight, |
1252 | fCircles[i].fDevBounds.fBottom, fCircles[i].fInnerRadius, |
1253 | fCircles[i].fOuterRadius); |
1254 | } |
1255 | string += fHelper.dumpInfo(); |
1256 | string += INHERITED::dumpInfo(); |
1257 | return string; |
1258 | } |
1259 | #endif |
1260 | |
1261 | GrProcessorSet::Analysis finalize( |
1262 | const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
1263 | GrClampType clampType) override { |
1264 | SkPMColor4f* color = &fCircles.front().fColor; |
1265 | return fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType, |
1266 | GrProcessorAnalysisCoverage::kSingleChannel, color, |
1267 | &fWideColor); |
1268 | } |
1269 | |
1270 | FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
1271 | |
1272 | private: |
1273 | GrProgramInfo* programInfo() override { return fProgramInfo; } |
1274 | |
1275 | void onCreateProgramInfo(const GrCaps* caps, |
1276 | SkArenaAlloc* arena, |
1277 | const GrSurfaceProxyView* writeView, |
1278 | GrAppliedClip&& appliedClip, |
1279 | const GrXferProcessor::DstProxyView& dstProxyView) override { |
1280 | SkMatrix localMatrix; |
1281 | if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
1282 | return; |
1283 | } |
1284 | |
1285 | GrGeometryProcessor* gp = CircleGeometryProcessor::Make(arena, !fAllFill, fClipPlane, |
1286 | fClipPlaneIsect, fClipPlaneUnion, |
1287 | fRoundCaps, fWideColor, |
1288 | localMatrix); |
1289 | |
1290 | fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, std::move(appliedClip), |
1291 | dstProxyView, gp, GrPrimitiveType::kTriangles); |
1292 | } |
1293 | |
1294 | void onPrepareDraws(Target* target) override { |
1295 | if (!fProgramInfo) { |
1296 | this->createProgramInfo(target); |
1297 | if (!fProgramInfo) { |
1298 | return; |
1299 | } |
1300 | } |
1301 | |
1302 | sk_sp<const GrBuffer> vertexBuffer; |
1303 | int firstVertex; |
1304 | GrVertexWriter vertices{target->makeVertexSpace(fProgramInfo->primProc().vertexStride(), |
1305 | fVertCount, &vertexBuffer, &firstVertex)}; |
1306 | if (!vertices.fPtr) { |
1307 | SkDebugf("Could not allocate vertices\n" ); |
1308 | return; |
1309 | } |
1310 | |
1311 | sk_sp<const GrBuffer> indexBuffer = nullptr; |
1312 | int firstIndex = 0; |
1313 | uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
1314 | if (!indices) { |
1315 | SkDebugf("Could not allocate indices\n" ); |
1316 | return; |
1317 | } |
1318 | |
1319 | int currStartVertex = 0; |
1320 | for (const auto& circle : fCircles) { |
1321 | SkScalar innerRadius = circle.fInnerRadius; |
1322 | SkScalar outerRadius = circle.fOuterRadius; |
1323 | GrVertexColor color(circle.fColor, fWideColor); |
1324 | const SkRect& bounds = circle.fDevBounds; |
1325 | |
1326 | // The inner radius in the vertex data must be specified in normalized space. |
1327 | innerRadius = innerRadius / outerRadius; |
1328 | SkPoint radii = { outerRadius, innerRadius }; |
1329 | |
1330 | SkPoint center = SkPoint::Make(bounds.centerX(), bounds.centerY()); |
1331 | SkScalar halfWidth = 0.5f * bounds.width(); |
1332 | |
1333 | SkVector geoClipPlane = { 0, 0 }; |
1334 | SkScalar offsetClipDist = SK_Scalar1; |
1335 | if (!circle.fStroked && fClipPlane && fClipPlaneIsect && |
1336 | (circle.fClipPlane[0] * circle.fIsectPlane[0] + |
1337 | circle.fClipPlane[1] * circle.fIsectPlane[1]) < 0.0f) { |
1338 | // Acute arc. Clip the vertices to the perpendicular half-plane. We've constructed |
1339 | // fClipPlane to be clockwise, and fISectPlane to be CCW, so we can can rotate them |
1340 | // each 90 degrees to point "out", then average them. We back off by 1/2 pixel so |
1341 | // the AA can extend just past the center of the circle. |
1342 | geoClipPlane.set(circle.fClipPlane[1] - circle.fIsectPlane[1], |
1343 | circle.fIsectPlane[0] - circle.fClipPlane[0]); |
1344 | SkAssertResult(geoClipPlane.normalize()); |
1345 | offsetClipDist = 0.5f / halfWidth; |
1346 | } |
1347 | |
1348 | for (int i = 0; i < 8; ++i) { |
1349 | // This clips the normalized offset to the half-plane we computed above. Then we |
1350 | // compute the vertex position from this. |
1351 | SkScalar dist = std::min(kOctagonOuter[i].dot(geoClipPlane) + offsetClipDist, 0.0f); |
1352 | SkVector offset = kOctagonOuter[i] - geoClipPlane * dist; |
1353 | vertices.write(center + offset * halfWidth, |
1354 | color, |
1355 | offset, |
1356 | radii); |
1357 | if (fClipPlane) { |
1358 | vertices.write(circle.fClipPlane); |
1359 | } |
1360 | if (fClipPlaneIsect) { |
1361 | vertices.write(circle.fIsectPlane); |
1362 | } |
1363 | if (fClipPlaneUnion) { |
1364 | vertices.write(circle.fUnionPlane); |
1365 | } |
1366 | if (fRoundCaps) { |
1367 | vertices.write(circle.fRoundCapCenters); |
1368 | } |
1369 | } |
1370 | |
1371 | if (circle.fStroked) { |
1372 | // compute the inner ring |
1373 | |
1374 | for (int i = 0; i < 8; ++i) { |
1375 | vertices.write(center + kOctagonInner[i] * circle.fInnerRadius, |
1376 | color, |
1377 | kOctagonInner[i] * innerRadius, |
1378 | radii); |
1379 | if (fClipPlane) { |
1380 | vertices.write(circle.fClipPlane); |
1381 | } |
1382 | if (fClipPlaneIsect) { |
1383 | vertices.write(circle.fIsectPlane); |
1384 | } |
1385 | if (fClipPlaneUnion) { |
1386 | vertices.write(circle.fUnionPlane); |
1387 | } |
1388 | if (fRoundCaps) { |
1389 | vertices.write(circle.fRoundCapCenters); |
1390 | } |
1391 | } |
1392 | } else { |
1393 | // filled |
1394 | vertices.write(center, color, SkPoint::Make(0, 0), radii); |
1395 | if (fClipPlane) { |
1396 | vertices.write(circle.fClipPlane); |
1397 | } |
1398 | if (fClipPlaneIsect) { |
1399 | vertices.write(circle.fIsectPlane); |
1400 | } |
1401 | if (fClipPlaneUnion) { |
1402 | vertices.write(circle.fUnionPlane); |
1403 | } |
1404 | if (fRoundCaps) { |
1405 | vertices.write(circle.fRoundCapCenters); |
1406 | } |
1407 | } |
1408 | |
1409 | const uint16_t* primIndices = circle_type_to_indices(circle.fStroked); |
1410 | const int primIndexCount = circle_type_to_index_count(circle.fStroked); |
1411 | for (int i = 0; i < primIndexCount; ++i) { |
1412 | *indices++ = primIndices[i] + currStartVertex; |
1413 | } |
1414 | |
1415 | currStartVertex += circle_type_to_vert_count(circle.fStroked); |
1416 | } |
1417 | |
1418 | fMesh = target->allocMesh(); |
1419 | fMesh->setIndexed(std::move(indexBuffer), fIndexCount, firstIndex, 0, fVertCount - 1, |
1420 | GrPrimitiveRestart::kNo, std::move(vertexBuffer), firstVertex); |
1421 | } |
1422 | |
1423 | void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
1424 | if (!fProgramInfo || !fMesh) { |
1425 | return; |
1426 | } |
1427 | |
1428 | flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
1429 | flushState->bindTextures(fProgramInfo->primProc(), nullptr, fProgramInfo->pipeline()); |
1430 | flushState->drawMesh(*fMesh); |
1431 | } |
1432 | |
1433 | CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*, |
1434 | const GrCaps& caps) override { |
1435 | CircleOp* that = t->cast<CircleOp>(); |
1436 | |
1437 | // can only represent 65535 unique vertices with 16-bit indices |
1438 | if (fVertCount + that->fVertCount > 65536) { |
1439 | return CombineResult::kCannotCombine; |
1440 | } |
1441 | |
1442 | if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
1443 | return CombineResult::kCannotCombine; |
1444 | } |
1445 | |
1446 | if (fHelper.usesLocalCoords() && |
1447 | !SkMatrixPriv::CheapEqual(fViewMatrixIfUsingLocalCoords, |
1448 | that->fViewMatrixIfUsingLocalCoords)) { |
1449 | return CombineResult::kCannotCombine; |
1450 | } |
1451 | |
1452 | // Because we've set up the ops that don't use the planes with noop values |
1453 | // we can just accumulate used planes by later ops. |
1454 | fClipPlane |= that->fClipPlane; |
1455 | fClipPlaneIsect |= that->fClipPlaneIsect; |
1456 | fClipPlaneUnion |= that->fClipPlaneUnion; |
1457 | fRoundCaps |= that->fRoundCaps; |
1458 | fWideColor |= that->fWideColor; |
1459 | |
1460 | fCircles.push_back_n(that->fCircles.count(), that->fCircles.begin()); |
1461 | fVertCount += that->fVertCount; |
1462 | fIndexCount += that->fIndexCount; |
1463 | fAllFill = fAllFill && that->fAllFill; |
1464 | return CombineResult::kMerged; |
1465 | } |
1466 | |
1467 | struct Circle { |
1468 | SkPMColor4f fColor; |
1469 | SkScalar fInnerRadius; |
1470 | SkScalar fOuterRadius; |
1471 | SkScalar fClipPlane[3]; |
1472 | SkScalar fIsectPlane[3]; |
1473 | SkScalar fUnionPlane[3]; |
1474 | SkPoint fRoundCapCenters[2]; |
1475 | SkRect fDevBounds; |
1476 | bool fStroked; |
1477 | }; |
1478 | |
1479 | SkMatrix fViewMatrixIfUsingLocalCoords; |
1480 | Helper fHelper; |
1481 | SkSTArray<1, Circle, true> fCircles; |
1482 | int fVertCount; |
1483 | int fIndexCount; |
1484 | bool fAllFill; |
1485 | bool fClipPlane; |
1486 | bool fClipPlaneIsect; |
1487 | bool fClipPlaneUnion; |
1488 | bool fRoundCaps; |
1489 | bool fWideColor; |
1490 | |
1491 | GrSimpleMesh* fMesh = nullptr; |
1492 | GrProgramInfo* fProgramInfo = nullptr; |
1493 | |
1494 | typedef GrMeshDrawOp INHERITED; |
1495 | }; |
1496 | |
1497 | class ButtCapDashedCircleOp final : public GrMeshDrawOp { |
1498 | private: |
1499 | using Helper = GrSimpleMeshDrawOpHelper; |
1500 | |
1501 | public: |
1502 | DEFINE_OP_CLASS_ID |
1503 | |
1504 | static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
1505 | GrPaint&& paint, |
1506 | const SkMatrix& viewMatrix, |
1507 | SkPoint center, |
1508 | SkScalar radius, |
1509 | SkScalar strokeWidth, |
1510 | SkScalar startAngle, |
1511 | SkScalar onAngle, |
1512 | SkScalar offAngle, |
1513 | SkScalar phaseAngle) { |
1514 | SkASSERT(circle_stays_circle(viewMatrix)); |
1515 | SkASSERT(strokeWidth < 2 * radius); |
1516 | return Helper::FactoryHelper<ButtCapDashedCircleOp>(context, std::move(paint), viewMatrix, |
1517 | center, radius, strokeWidth, startAngle, |
1518 | onAngle, offAngle, phaseAngle); |
1519 | } |
1520 | |
1521 | ButtCapDashedCircleOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, |
1522 | const SkMatrix& viewMatrix, SkPoint center, SkScalar radius, |
1523 | SkScalar strokeWidth, SkScalar startAngle, SkScalar onAngle, |
1524 | SkScalar offAngle, SkScalar phaseAngle) |
1525 | : GrMeshDrawOp(ClassID()) |
1526 | , fHelper(helperArgs, GrAAType::kCoverage) { |
1527 | SkASSERT(circle_stays_circle(viewMatrix)); |
1528 | viewMatrix.mapPoints(¢er, 1); |
1529 | radius = viewMatrix.mapRadius(radius); |
1530 | strokeWidth = viewMatrix.mapRadius(strokeWidth); |
1531 | |
1532 | // Determine the angle where the circle starts in device space and whether its orientation |
1533 | // has been reversed. |
1534 | SkVector start; |
1535 | bool reflection; |
1536 | if (!startAngle) { |
1537 | start = {1, 0}; |
1538 | } else { |
1539 | start.fY = SkScalarSin(startAngle); |
1540 | start.fX = SkScalarCos(startAngle); |
1541 | } |
1542 | viewMatrix.mapVectors(&start, 1); |
1543 | startAngle = SkScalarATan2(start.fY, start.fX); |
1544 | reflection = (viewMatrix.getScaleX() * viewMatrix.getScaleY() - |
1545 | viewMatrix.getSkewX() * viewMatrix.getSkewY()) < 0; |
1546 | |
1547 | auto totalAngle = onAngle + offAngle; |
1548 | phaseAngle = SkScalarMod(phaseAngle + totalAngle / 2, totalAngle) - totalAngle / 2; |
1549 | |
1550 | SkScalar halfWidth = 0; |
1551 | if (SkScalarNearlyZero(strokeWidth)) { |
1552 | halfWidth = SK_ScalarHalf; |
1553 | } else { |
1554 | halfWidth = SkScalarHalf(strokeWidth); |
1555 | } |
1556 | |
1557 | SkScalar outerRadius = radius + halfWidth; |
1558 | SkScalar innerRadius = radius - halfWidth; |
1559 | |
1560 | // The radii are outset for two reasons. First, it allows the shader to simply perform |
1561 | // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
1562 | // Second, the outer radius is used to compute the verts of the bounding box that is |
1563 | // rendered and the outset ensures the box will cover all partially covered by the circle. |
1564 | outerRadius += SK_ScalarHalf; |
1565 | innerRadius -= SK_ScalarHalf; |
1566 | fViewMatrixIfUsingLocalCoords = viewMatrix; |
1567 | |
1568 | SkRect devBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
1569 | center.fX + outerRadius, center.fY + outerRadius); |
1570 | |
1571 | // We store whether there is a reflection as a negative total angle. |
1572 | if (reflection) { |
1573 | totalAngle = -totalAngle; |
1574 | } |
1575 | fCircles.push_back(Circle{ |
1576 | color, |
1577 | outerRadius, |
1578 | innerRadius, |
1579 | onAngle, |
1580 | totalAngle, |
1581 | startAngle, |
1582 | phaseAngle, |
1583 | devBounds |
1584 | }); |
1585 | // Use the original radius and stroke radius for the bounds so that it does not include the |
1586 | // AA bloat. |
1587 | radius += halfWidth; |
1588 | this->setBounds( |
1589 | {center.fX - radius, center.fY - radius, center.fX + radius, center.fY + radius}, |
1590 | HasAABloat::kYes, IsHairline::kNo); |
1591 | fVertCount = circle_type_to_vert_count(true); |
1592 | fIndexCount = circle_type_to_index_count(true); |
1593 | } |
1594 | |
1595 | const char* name() const override { return "ButtCappedDashedCircleOp" ; } |
1596 | |
1597 | void visitProxies(const VisitProxyFunc& func) const override { |
1598 | if (fProgramInfo) { |
1599 | fProgramInfo->visitFPProxies(func); |
1600 | } else { |
1601 | fHelper.visitProxies(func); |
1602 | } |
1603 | } |
1604 | |
1605 | #ifdef SK_DEBUG |
1606 | SkString dumpInfo() const override { |
1607 | SkString string; |
1608 | for (int i = 0; i < fCircles.count(); ++i) { |
1609 | string.appendf( |
1610 | "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
1611 | "InnerRad: %.2f, OuterRad: %.2f, OnAngle: %.2f, TotalAngle: %.2f, " |
1612 | "Phase: %.2f\n" , |
1613 | fCircles[i].fColor.toBytes_RGBA(), fCircles[i].fDevBounds.fLeft, |
1614 | fCircles[i].fDevBounds.fTop, fCircles[i].fDevBounds.fRight, |
1615 | fCircles[i].fDevBounds.fBottom, fCircles[i].fInnerRadius, |
1616 | fCircles[i].fOuterRadius, fCircles[i].fOnAngle, fCircles[i].fTotalAngle, |
1617 | fCircles[i].fPhaseAngle); |
1618 | } |
1619 | string += fHelper.dumpInfo(); |
1620 | string += INHERITED::dumpInfo(); |
1621 | return string; |
1622 | } |
1623 | #endif |
1624 | |
1625 | GrProcessorSet::Analysis finalize( |
1626 | const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
1627 | GrClampType clampType) override { |
1628 | SkPMColor4f* color = &fCircles.front().fColor; |
1629 | return fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType, |
1630 | GrProcessorAnalysisCoverage::kSingleChannel, color, |
1631 | &fWideColor); |
1632 | } |
1633 | |
1634 | FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
1635 | |
1636 | private: |
1637 | GrProgramInfo* programInfo() override { return fProgramInfo; } |
1638 | |
1639 | void onCreateProgramInfo(const GrCaps* caps, |
1640 | SkArenaAlloc* arena, |
1641 | const GrSurfaceProxyView* writeView, |
1642 | GrAppliedClip&& appliedClip, |
1643 | const GrXferProcessor::DstProxyView& dstProxyView) override { |
1644 | SkMatrix localMatrix; |
1645 | if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
1646 | return; |
1647 | } |
1648 | |
1649 | // Setup geometry processor |
1650 | GrGeometryProcessor* gp = ButtCapDashedCircleGeometryProcessor::Make(arena, |
1651 | fWideColor, |
1652 | localMatrix); |
1653 | |
1654 | fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, std::move(appliedClip), |
1655 | dstProxyView, gp, GrPrimitiveType::kTriangles); |
1656 | } |
1657 | |
1658 | void onPrepareDraws(Target* target) override { |
1659 | if (!fProgramInfo) { |
1660 | this->createProgramInfo(target); |
1661 | if (!fProgramInfo) { |
1662 | return; |
1663 | } |
1664 | } |
1665 | |
1666 | sk_sp<const GrBuffer> vertexBuffer; |
1667 | int firstVertex; |
1668 | GrVertexWriter vertices{target->makeVertexSpace(fProgramInfo->primProc().vertexStride(), |
1669 | fVertCount, &vertexBuffer, &firstVertex)}; |
1670 | if (!vertices.fPtr) { |
1671 | SkDebugf("Could not allocate vertices\n" ); |
1672 | return; |
1673 | } |
1674 | |
1675 | sk_sp<const GrBuffer> indexBuffer; |
1676 | int firstIndex = 0; |
1677 | uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
1678 | if (!indices) { |
1679 | SkDebugf("Could not allocate indices\n" ); |
1680 | return; |
1681 | } |
1682 | |
1683 | int currStartVertex = 0; |
1684 | for (const auto& circle : fCircles) { |
1685 | // The inner radius in the vertex data must be specified in normalized space so that |
1686 | // length() can be called with smaller values to avoid precision issues with half |
1687 | // floats. |
1688 | auto normInnerRadius = circle.fInnerRadius / circle.fOuterRadius; |
1689 | const SkRect& bounds = circle.fDevBounds; |
1690 | bool reflect = false; |
1691 | struct { float onAngle, totalAngle, startAngle, phaseAngle; } dashParams = { |
1692 | circle.fOnAngle, circle.fTotalAngle, circle.fStartAngle, circle.fPhaseAngle |
1693 | }; |
1694 | if (dashParams.totalAngle < 0) { |
1695 | reflect = true; |
1696 | dashParams.totalAngle = -dashParams.totalAngle; |
1697 | dashParams.startAngle = -dashParams.startAngle; |
1698 | } |
1699 | |
1700 | GrVertexColor color(circle.fColor, fWideColor); |
1701 | |
1702 | // The bounding geometry for the circle is composed of an outer bounding octagon and |
1703 | // an inner bounded octagon. |
1704 | |
1705 | // Compute the vertices of the outer octagon. |
1706 | SkPoint center = SkPoint::Make(bounds.centerX(), bounds.centerY()); |
1707 | SkScalar halfWidth = 0.5f * bounds.width(); |
1708 | |
1709 | auto reflectY = [=](const SkPoint& p) { |
1710 | return SkPoint{ p.fX, reflect ? -p.fY : p.fY }; |
1711 | }; |
1712 | |
1713 | for (int i = 0; i < 8; ++i) { |
1714 | vertices.write(center + kOctagonOuter[i] * halfWidth, |
1715 | color, |
1716 | reflectY(kOctagonOuter[i]), |
1717 | circle.fOuterRadius, |
1718 | normInnerRadius, |
1719 | dashParams); |
1720 | } |
1721 | |
1722 | // Compute the vertices of the inner octagon. |
1723 | for (int i = 0; i < 8; ++i) { |
1724 | vertices.write(center + kOctagonInner[i] * circle.fInnerRadius, |
1725 | color, |
1726 | reflectY(kOctagonInner[i]) * normInnerRadius, |
1727 | circle.fOuterRadius, |
1728 | normInnerRadius, |
1729 | dashParams); |
1730 | } |
1731 | |
1732 | const uint16_t* primIndices = circle_type_to_indices(true); |
1733 | const int primIndexCount = circle_type_to_index_count(true); |
1734 | for (int i = 0; i < primIndexCount; ++i) { |
1735 | *indices++ = primIndices[i] + currStartVertex; |
1736 | } |
1737 | |
1738 | currStartVertex += circle_type_to_vert_count(true); |
1739 | } |
1740 | |
1741 | fMesh = target->allocMesh(); |
1742 | fMesh->setIndexed(std::move(indexBuffer), fIndexCount, firstIndex, 0, fVertCount - 1, |
1743 | GrPrimitiveRestart::kNo, std::move(vertexBuffer), firstVertex); |
1744 | } |
1745 | |
1746 | void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
1747 | if (!fProgramInfo || !fMesh) { |
1748 | return; |
1749 | } |
1750 | |
1751 | flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
1752 | flushState->bindTextures(fProgramInfo->primProc(), nullptr, fProgramInfo->pipeline()); |
1753 | flushState->drawMesh(*fMesh); |
1754 | } |
1755 | |
1756 | CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*, |
1757 | const GrCaps& caps) override { |
1758 | ButtCapDashedCircleOp* that = t->cast<ButtCapDashedCircleOp>(); |
1759 | |
1760 | // can only represent 65535 unique vertices with 16-bit indices |
1761 | if (fVertCount + that->fVertCount > 65536) { |
1762 | return CombineResult::kCannotCombine; |
1763 | } |
1764 | |
1765 | if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
1766 | return CombineResult::kCannotCombine; |
1767 | } |
1768 | |
1769 | if (fHelper.usesLocalCoords() && |
1770 | !SkMatrixPriv::CheapEqual(fViewMatrixIfUsingLocalCoords, |
1771 | that->fViewMatrixIfUsingLocalCoords)) { |
1772 | return CombineResult::kCannotCombine; |
1773 | } |
1774 | |
1775 | fCircles.push_back_n(that->fCircles.count(), that->fCircles.begin()); |
1776 | fVertCount += that->fVertCount; |
1777 | fIndexCount += that->fIndexCount; |
1778 | fWideColor |= that->fWideColor; |
1779 | return CombineResult::kMerged; |
1780 | } |
1781 | |
1782 | struct Circle { |
1783 | SkPMColor4f fColor; |
1784 | SkScalar fOuterRadius; |
1785 | SkScalar fInnerRadius; |
1786 | SkScalar fOnAngle; |
1787 | SkScalar fTotalAngle; |
1788 | SkScalar fStartAngle; |
1789 | SkScalar fPhaseAngle; |
1790 | SkRect fDevBounds; |
1791 | }; |
1792 | |
1793 | SkMatrix fViewMatrixIfUsingLocalCoords; |
1794 | Helper fHelper; |
1795 | SkSTArray<1, Circle, true> fCircles; |
1796 | int fVertCount; |
1797 | int fIndexCount; |
1798 | bool fWideColor; |
1799 | |
1800 | GrSimpleMesh* fMesh = nullptr; |
1801 | GrProgramInfo* fProgramInfo = nullptr; |
1802 | |
1803 | typedef GrMeshDrawOp INHERITED; |
1804 | }; |
1805 | |
1806 | /////////////////////////////////////////////////////////////////////////////// |
1807 | |
1808 | class EllipseOp : public GrMeshDrawOp { |
1809 | private: |
1810 | using Helper = GrSimpleMeshDrawOpHelper; |
1811 | |
1812 | struct DeviceSpaceParams { |
1813 | SkPoint fCenter; |
1814 | SkScalar fXRadius; |
1815 | SkScalar fYRadius; |
1816 | SkScalar fInnerXRadius; |
1817 | SkScalar fInnerYRadius; |
1818 | }; |
1819 | |
1820 | public: |
1821 | DEFINE_OP_CLASS_ID |
1822 | |
1823 | static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
1824 | GrPaint&& paint, |
1825 | const SkMatrix& viewMatrix, |
1826 | const SkRect& ellipse, |
1827 | const SkStrokeRec& stroke) { |
1828 | DeviceSpaceParams params; |
1829 | // do any matrix crunching before we reset the draw state for device coords |
1830 | params.fCenter = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
1831 | viewMatrix.mapPoints(¶ms.fCenter, 1); |
1832 | SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); |
1833 | SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); |
1834 | params.fXRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX] * ellipseXRadius + |
1835 | viewMatrix[SkMatrix::kMSkewX] * ellipseYRadius); |
1836 | params.fYRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewY] * ellipseXRadius + |
1837 | viewMatrix[SkMatrix::kMScaleY] * ellipseYRadius); |
1838 | |
1839 | // do (potentially) anisotropic mapping of stroke |
1840 | SkVector scaledStroke; |
1841 | SkScalar strokeWidth = stroke.getWidth(); |
1842 | scaledStroke.fX = SkScalarAbs( |
1843 | strokeWidth * (viewMatrix[SkMatrix::kMScaleX] + viewMatrix[SkMatrix::kMSkewY])); |
1844 | scaledStroke.fY = SkScalarAbs( |
1845 | strokeWidth * (viewMatrix[SkMatrix::kMSkewX] + viewMatrix[SkMatrix::kMScaleY])); |
1846 | |
1847 | SkStrokeRec::Style style = stroke.getStyle(); |
1848 | bool isStrokeOnly = |
1849 | SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; |
1850 | bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
1851 | |
1852 | params.fInnerXRadius = 0; |
1853 | params.fInnerYRadius = 0; |
1854 | if (hasStroke) { |
1855 | if (SkScalarNearlyZero(scaledStroke.length())) { |
1856 | scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
1857 | } else { |
1858 | scaledStroke.scale(SK_ScalarHalf); |
1859 | } |
1860 | |
1861 | // we only handle thick strokes for near-circular ellipses |
1862 | if (scaledStroke.length() > SK_ScalarHalf && |
1863 | (0.5f * params.fXRadius > params.fYRadius || |
1864 | 0.5f * params.fYRadius > params.fXRadius)) { |
1865 | return nullptr; |
1866 | } |
1867 | |
1868 | // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
1869 | if (scaledStroke.fX * (params.fXRadius * params.fYRadius) < |
1870 | (scaledStroke.fY * scaledStroke.fY) * params.fXRadius || |
1871 | scaledStroke.fY * (params.fXRadius * params.fXRadius) < |
1872 | (scaledStroke.fX * scaledStroke.fX) * params.fYRadius) { |
1873 | return nullptr; |
1874 | } |
1875 | |
1876 | // this is legit only if scale & translation (which should be the case at the moment) |
1877 | if (isStrokeOnly) { |
1878 | params.fInnerXRadius = params.fXRadius - scaledStroke.fX; |
1879 | params.fInnerYRadius = params.fYRadius - scaledStroke.fY; |
1880 | } |
1881 | |
1882 | params.fXRadius += scaledStroke.fX; |
1883 | params.fYRadius += scaledStroke.fY; |
1884 | } |
1885 | |
1886 | // For large ovals with low precision floats, we fall back to the path renderer. |
1887 | // To compute the AA at the edge we divide by the gradient, which is clamped to a |
1888 | // minimum value to avoid divides by zero. With large ovals and low precision this |
1889 | // leads to blurring at the edge of the oval. |
1890 | const SkScalar kMaxOvalRadius = 16384; |
1891 | if (!context->priv().caps()->shaderCaps()->floatIs32Bits() && |
1892 | (params.fXRadius >= kMaxOvalRadius || params.fYRadius >= kMaxOvalRadius)) { |
1893 | return nullptr; |
1894 | } |
1895 | |
1896 | return Helper::FactoryHelper<EllipseOp>(context, std::move(paint), viewMatrix, |
1897 | params, stroke); |
1898 | } |
1899 | |
1900 | EllipseOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, |
1901 | const SkMatrix& viewMatrix, const DeviceSpaceParams& params, |
1902 | const SkStrokeRec& stroke) |
1903 | : INHERITED(ClassID()) |
1904 | , fHelper(helperArgs, GrAAType::kCoverage) |
1905 | , fUseScale(false) { |
1906 | SkStrokeRec::Style style = stroke.getStyle(); |
1907 | bool isStrokeOnly = |
1908 | SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; |
1909 | |
1910 | fEllipses.emplace_back(Ellipse{color, params.fXRadius, params.fYRadius, |
1911 | params.fInnerXRadius, params.fInnerYRadius, |
1912 | SkRect::MakeLTRB(params.fCenter.fX - params.fXRadius, |
1913 | params.fCenter.fY - params.fYRadius, |
1914 | params.fCenter.fX + params.fXRadius, |
1915 | params.fCenter.fY + params.fYRadius)}); |
1916 | |
1917 | this->setBounds(fEllipses.back().fDevBounds, HasAABloat::kYes, IsHairline::kNo); |
1918 | |
1919 | // Outset bounds to include half-pixel width antialiasing. |
1920 | fEllipses[0].fDevBounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
1921 | |
1922 | fStroked = isStrokeOnly && params.fInnerXRadius > 0 && params.fInnerYRadius > 0; |
1923 | fViewMatrixIfUsingLocalCoords = viewMatrix; |
1924 | } |
1925 | |
1926 | const char* name() const override { return "EllipseOp" ; } |
1927 | |
1928 | void visitProxies(const VisitProxyFunc& func) const override { |
1929 | if (fProgramInfo) { |
1930 | fProgramInfo->visitFPProxies(func); |
1931 | } else { |
1932 | fHelper.visitProxies(func); |
1933 | } |
1934 | } |
1935 | |
1936 | #ifdef SK_DEBUG |
1937 | SkString dumpInfo() const override { |
1938 | SkString string; |
1939 | string.appendf("Stroked: %d\n" , fStroked); |
1940 | for (const auto& geo : fEllipses) { |
1941 | string.appendf( |
1942 | "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " |
1943 | "XRad: %.2f, YRad: %.2f, InnerXRad: %.2f, InnerYRad: %.2f\n" , |
1944 | geo.fColor.toBytes_RGBA(), geo.fDevBounds.fLeft, geo.fDevBounds.fTop, |
1945 | geo.fDevBounds.fRight, geo.fDevBounds.fBottom, geo.fXRadius, geo.fYRadius, |
1946 | geo.fInnerXRadius, geo.fInnerYRadius); |
1947 | } |
1948 | string += fHelper.dumpInfo(); |
1949 | string += INHERITED::dumpInfo(); |
1950 | return string; |
1951 | } |
1952 | #endif |
1953 | |
1954 | GrProcessorSet::Analysis finalize( |
1955 | const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
1956 | GrClampType clampType) override { |
1957 | fUseScale = !caps.shaderCaps()->floatIs32Bits() && |
1958 | !caps.shaderCaps()->hasLowFragmentPrecision(); |
1959 | SkPMColor4f* color = &fEllipses.front().fColor; |
1960 | return fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType, |
1961 | GrProcessorAnalysisCoverage::kSingleChannel, color, |
1962 | &fWideColor); |
1963 | } |
1964 | |
1965 | FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
1966 | |
1967 | private: |
1968 | GrProgramInfo* programInfo() override { return fProgramInfo; } |
1969 | |
1970 | void onCreateProgramInfo(const GrCaps* caps, |
1971 | SkArenaAlloc* arena, |
1972 | const GrSurfaceProxyView* writeView, |
1973 | GrAppliedClip&& appliedClip, |
1974 | const GrXferProcessor::DstProxyView& dstProxyView) override { |
1975 | SkMatrix localMatrix; |
1976 | if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
1977 | return; |
1978 | } |
1979 | |
1980 | GrGeometryProcessor* gp = EllipseGeometryProcessor::Make(arena, fStroked, fWideColor, |
1981 | fUseScale, localMatrix); |
1982 | |
1983 | fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, std::move(appliedClip), |
1984 | dstProxyView, gp, GrPrimitiveType::kTriangles); |
1985 | } |
1986 | |
1987 | void onPrepareDraws(Target* target) override { |
1988 | if (!fProgramInfo) { |
1989 | this->createProgramInfo(target); |
1990 | if (!fProgramInfo) { |
1991 | return; |
1992 | } |
1993 | } |
1994 | |
1995 | QuadHelper helper(target, fProgramInfo->primProc().vertexStride(), fEllipses.count()); |
1996 | GrVertexWriter verts{helper.vertices()}; |
1997 | if (!verts.fPtr) { |
1998 | SkDebugf("Could not allocate vertices\n" ); |
1999 | return; |
2000 | } |
2001 | |
2002 | for (const auto& ellipse : fEllipses) { |
2003 | GrVertexColor color(ellipse.fColor, fWideColor); |
2004 | SkScalar xRadius = ellipse.fXRadius; |
2005 | SkScalar yRadius = ellipse.fYRadius; |
2006 | |
2007 | // Compute the reciprocals of the radii here to save time in the shader |
2008 | struct { float xOuter, yOuter, xInner, yInner; } invRadii = { |
2009 | SkScalarInvert(xRadius), |
2010 | SkScalarInvert(yRadius), |
2011 | SkScalarInvert(ellipse.fInnerXRadius), |
2012 | SkScalarInvert(ellipse.fInnerYRadius) |
2013 | }; |
2014 | SkScalar xMaxOffset = xRadius + SK_ScalarHalf; |
2015 | SkScalar yMaxOffset = yRadius + SK_ScalarHalf; |
2016 | |
2017 | if (!fStroked) { |
2018 | // For filled ellipses we map a unit circle in the vertex attributes rather than |
2019 | // computing an ellipse and modifying that distance, so we normalize to 1 |
2020 | xMaxOffset /= xRadius; |
2021 | yMaxOffset /= yRadius; |
2022 | } |
2023 | |
2024 | // The inner radius in the vertex data must be specified in normalized space. |
2025 | verts.writeQuad(GrVertexWriter::TriStripFromRect(ellipse.fDevBounds), |
2026 | color, |
2027 | origin_centered_tri_strip(xMaxOffset, yMaxOffset), |
2028 | GrVertexWriter::If(fUseScale, std::max(xRadius, yRadius)), |
2029 | invRadii); |
2030 | } |
2031 | fMesh = helper.mesh(); |
2032 | } |
2033 | |
2034 | void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
2035 | if (!fProgramInfo || !fMesh) { |
2036 | return; |
2037 | } |
2038 | |
2039 | flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
2040 | flushState->bindTextures(fProgramInfo->primProc(), nullptr, fProgramInfo->pipeline()); |
2041 | flushState->drawMesh(*fMesh); |
2042 | } |
2043 | |
2044 | CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*, |
2045 | const GrCaps& caps) override { |
2046 | EllipseOp* that = t->cast<EllipseOp>(); |
2047 | |
2048 | if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
2049 | return CombineResult::kCannotCombine; |
2050 | } |
2051 | |
2052 | if (fStroked != that->fStroked) { |
2053 | return CombineResult::kCannotCombine; |
2054 | } |
2055 | |
2056 | if (fHelper.usesLocalCoords() && |
2057 | !SkMatrixPriv::CheapEqual(fViewMatrixIfUsingLocalCoords, |
2058 | that->fViewMatrixIfUsingLocalCoords)) { |
2059 | return CombineResult::kCannotCombine; |
2060 | } |
2061 | |
2062 | fEllipses.push_back_n(that->fEllipses.count(), that->fEllipses.begin()); |
2063 | fWideColor |= that->fWideColor; |
2064 | return CombineResult::kMerged; |
2065 | } |
2066 | |
2067 | struct Ellipse { |
2068 | SkPMColor4f fColor; |
2069 | SkScalar fXRadius; |
2070 | SkScalar fYRadius; |
2071 | SkScalar fInnerXRadius; |
2072 | SkScalar fInnerYRadius; |
2073 | SkRect fDevBounds; |
2074 | }; |
2075 | |
2076 | SkMatrix fViewMatrixIfUsingLocalCoords; |
2077 | Helper fHelper; |
2078 | bool fStroked; |
2079 | bool fWideColor; |
2080 | bool fUseScale; |
2081 | SkSTArray<1, Ellipse, true> fEllipses; |
2082 | |
2083 | GrSimpleMesh* fMesh = nullptr; |
2084 | GrProgramInfo* fProgramInfo = nullptr; |
2085 | |
2086 | typedef GrMeshDrawOp INHERITED; |
2087 | }; |
2088 | |
2089 | ///////////////////////////////////////////////////////////////////////////////////////////////// |
2090 | |
2091 | class DIEllipseOp : public GrMeshDrawOp { |
2092 | private: |
2093 | using Helper = GrSimpleMeshDrawOpHelper; |
2094 | |
2095 | struct DeviceSpaceParams { |
2096 | SkPoint fCenter; |
2097 | SkScalar fXRadius; |
2098 | SkScalar fYRadius; |
2099 | SkScalar fInnerXRadius; |
2100 | SkScalar fInnerYRadius; |
2101 | DIEllipseStyle fStyle; |
2102 | }; |
2103 | |
2104 | public: |
2105 | DEFINE_OP_CLASS_ID |
2106 | |
2107 | static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
2108 | GrPaint&& paint, |
2109 | const SkMatrix& viewMatrix, |
2110 | const SkRect& ellipse, |
2111 | const SkStrokeRec& stroke) { |
2112 | DeviceSpaceParams params; |
2113 | params.fCenter = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
2114 | params.fXRadius = SkScalarHalf(ellipse.width()); |
2115 | params.fYRadius = SkScalarHalf(ellipse.height()); |
2116 | |
2117 | SkStrokeRec::Style style = stroke.getStyle(); |
2118 | params.fStyle = (SkStrokeRec::kStroke_Style == style) |
2119 | ? DIEllipseStyle::kStroke |
2120 | : (SkStrokeRec::kHairline_Style == style) |
2121 | ? DIEllipseStyle::kHairline |
2122 | : DIEllipseStyle::kFill; |
2123 | |
2124 | params.fInnerXRadius = 0; |
2125 | params.fInnerYRadius = 0; |
2126 | if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { |
2127 | SkScalar strokeWidth = stroke.getWidth(); |
2128 | |
2129 | if (SkScalarNearlyZero(strokeWidth)) { |
2130 | strokeWidth = SK_ScalarHalf; |
2131 | } else { |
2132 | strokeWidth *= SK_ScalarHalf; |
2133 | } |
2134 | |
2135 | // we only handle thick strokes for near-circular ellipses |
2136 | if (strokeWidth > SK_ScalarHalf && |
2137 | (SK_ScalarHalf * params.fXRadius > params.fYRadius || |
2138 | SK_ScalarHalf * params.fYRadius > params.fXRadius)) { |
2139 | return nullptr; |
2140 | } |
2141 | |
2142 | // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
2143 | if (strokeWidth * (params.fYRadius * params.fYRadius) < |
2144 | (strokeWidth * strokeWidth) * params.fXRadius) { |
2145 | return nullptr; |
2146 | } |
2147 | if (strokeWidth * (params.fXRadius * params.fXRadius) < |
2148 | (strokeWidth * strokeWidth) * params.fYRadius) { |
2149 | return nullptr; |
2150 | } |
2151 | |
2152 | // set inner radius (if needed) |
2153 | if (SkStrokeRec::kStroke_Style == style) { |
2154 | params.fInnerXRadius = params.fXRadius - strokeWidth; |
2155 | params.fInnerYRadius = params.fYRadius - strokeWidth; |
2156 | } |
2157 | |
2158 | params.fXRadius += strokeWidth; |
2159 | params.fYRadius += strokeWidth; |
2160 | } |
2161 | |
2162 | // For large ovals with low precision floats, we fall back to the path renderer. |
2163 | // To compute the AA at the edge we divide by the gradient, which is clamped to a |
2164 | // minimum value to avoid divides by zero. With large ovals and low precision this |
2165 | // leads to blurring at the edge of the oval. |
2166 | const SkScalar kMaxOvalRadius = 16384; |
2167 | if (!context->priv().caps()->shaderCaps()->floatIs32Bits() && |
2168 | (params.fXRadius >= kMaxOvalRadius || params.fYRadius >= kMaxOvalRadius)) { |
2169 | return nullptr; |
2170 | } |
2171 | |
2172 | if (DIEllipseStyle::kStroke == params.fStyle && |
2173 | (params.fInnerXRadius <= 0 || params.fInnerYRadius <= 0)) { |
2174 | params.fStyle = DIEllipseStyle::kFill; |
2175 | } |
2176 | return Helper::FactoryHelper<DIEllipseOp>(context, std::move(paint), params, viewMatrix); |
2177 | } |
2178 | |
2179 | DIEllipseOp(Helper::MakeArgs& helperArgs, const SkPMColor4f& color, |
2180 | const DeviceSpaceParams& params, const SkMatrix& viewMatrix) |
2181 | : INHERITED(ClassID()) |
2182 | , fHelper(helperArgs, GrAAType::kCoverage) |
2183 | , fUseScale(false) { |
2184 | // This expands the outer rect so that after CTM we end up with a half-pixel border |
2185 | SkScalar a = viewMatrix[SkMatrix::kMScaleX]; |
2186 | SkScalar b = viewMatrix[SkMatrix::kMSkewX]; |
2187 | SkScalar c = viewMatrix[SkMatrix::kMSkewY]; |
2188 | SkScalar d = viewMatrix[SkMatrix::kMScaleY]; |
2189 | SkScalar geoDx = SK_ScalarHalf / SkScalarSqrt(a * a + c * c); |
2190 | SkScalar geoDy = SK_ScalarHalf / SkScalarSqrt(b * b + d * d); |
2191 | |
2192 | fEllipses.emplace_back( |
2193 | Ellipse{viewMatrix, color, params.fXRadius, params.fYRadius, params.fInnerXRadius, |
2194 | params.fInnerYRadius, geoDx, geoDy, params.fStyle, |
2195 | SkRect::MakeLTRB(params.fCenter.fX - params.fXRadius - geoDx, |
2196 | params.fCenter.fY - params.fYRadius - geoDy, |
2197 | params.fCenter.fX + params.fXRadius + geoDx, |
2198 | params.fCenter.fY + params.fYRadius + geoDy)}); |
2199 | this->setTransformedBounds(fEllipses[0].fBounds, viewMatrix, HasAABloat::kYes, |
2200 | IsHairline::kNo); |
2201 | } |
2202 | |
2203 | const char* name() const override { return "DIEllipseOp" ; } |
2204 | |
2205 | void visitProxies(const VisitProxyFunc& func) const override { |
2206 | if (fProgramInfo) { |
2207 | fProgramInfo->visitFPProxies(func); |
2208 | } else { |
2209 | fHelper.visitProxies(func); |
2210 | } |
2211 | } |
2212 | |
2213 | #ifdef SK_DEBUG |
2214 | SkString dumpInfo() const override { |
2215 | SkString string; |
2216 | for (const auto& geo : fEllipses) { |
2217 | string.appendf( |
2218 | "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], XRad: %.2f, " |
2219 | "YRad: %.2f, InnerXRad: %.2f, InnerYRad: %.2f, GeoDX: %.2f, " |
2220 | "GeoDY: %.2f\n" , |
2221 | geo.fColor.toBytes_RGBA(), geo.fBounds.fLeft, geo.fBounds.fTop, |
2222 | geo.fBounds.fRight, geo.fBounds.fBottom, geo.fXRadius, geo.fYRadius, |
2223 | geo.fInnerXRadius, geo.fInnerYRadius, geo.fGeoDx, geo.fGeoDy); |
2224 | } |
2225 | string += fHelper.dumpInfo(); |
2226 | string += INHERITED::dumpInfo(); |
2227 | return string; |
2228 | } |
2229 | #endif |
2230 | |
2231 | GrProcessorSet::Analysis finalize( |
2232 | const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
2233 | GrClampType clampType) override { |
2234 | fUseScale = !caps.shaderCaps()->floatIs32Bits() && |
2235 | !caps.shaderCaps()->hasLowFragmentPrecision(); |
2236 | SkPMColor4f* color = &fEllipses.front().fColor; |
2237 | return fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType, |
2238 | GrProcessorAnalysisCoverage::kSingleChannel, color, |
2239 | &fWideColor); |
2240 | } |
2241 | |
2242 | FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
2243 | |
2244 | private: |
2245 | GrProgramInfo* programInfo() override { return fProgramInfo; } |
2246 | |
2247 | void onCreateProgramInfo(const GrCaps* caps, |
2248 | SkArenaAlloc* arena, |
2249 | const GrSurfaceProxyView* writeView, |
2250 | GrAppliedClip&& appliedClip, |
2251 | const GrXferProcessor::DstProxyView& dstProxyView) override { |
2252 | GrGeometryProcessor* gp = DIEllipseGeometryProcessor::Make(arena, fWideColor, fUseScale, |
2253 | this->viewMatrix(), |
2254 | this->style()); |
2255 | |
2256 | fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, std::move(appliedClip), |
2257 | dstProxyView, gp, GrPrimitiveType::kTriangles); |
2258 | } |
2259 | |
2260 | void onPrepareDraws(Target* target) override { |
2261 | if (!fProgramInfo) { |
2262 | this->createProgramInfo(target); |
2263 | } |
2264 | |
2265 | QuadHelper helper(target, fProgramInfo->primProc().vertexStride(), fEllipses.count()); |
2266 | GrVertexWriter verts{helper.vertices()}; |
2267 | if (!verts.fPtr) { |
2268 | return; |
2269 | } |
2270 | |
2271 | for (const auto& ellipse : fEllipses) { |
2272 | GrVertexColor color(ellipse.fColor, fWideColor); |
2273 | SkScalar xRadius = ellipse.fXRadius; |
2274 | SkScalar yRadius = ellipse.fYRadius; |
2275 | |
2276 | // This adjusts the "radius" to include the half-pixel border |
2277 | SkScalar offsetDx = ellipse.fGeoDx / xRadius; |
2278 | SkScalar offsetDy = ellipse.fGeoDy / yRadius; |
2279 | |
2280 | // By default, constructed so that inner offset is (0, 0) for all points |
2281 | SkScalar innerRatioX = -offsetDx; |
2282 | SkScalar innerRatioY = -offsetDy; |
2283 | |
2284 | // ... unless we're stroked |
2285 | if (DIEllipseStyle::kStroke == this->style()) { |
2286 | innerRatioX = xRadius / ellipse.fInnerXRadius; |
2287 | innerRatioY = yRadius / ellipse.fInnerYRadius; |
2288 | } |
2289 | |
2290 | verts.writeQuad(GrVertexWriter::TriStripFromRect(ellipse.fBounds), |
2291 | color, |
2292 | origin_centered_tri_strip(1.0f + offsetDx, 1.0f + offsetDy), |
2293 | GrVertexWriter::If(fUseScale, std::max(xRadius, yRadius)), |
2294 | origin_centered_tri_strip(innerRatioX + offsetDx, |
2295 | innerRatioY + offsetDy)); |
2296 | } |
2297 | fMesh = helper.mesh(); |
2298 | } |
2299 | |
2300 | void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
2301 | if (!fProgramInfo || !fMesh) { |
2302 | return; |
2303 | } |
2304 | |
2305 | flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
2306 | flushState->bindTextures(fProgramInfo->primProc(), nullptr, fProgramInfo->pipeline()); |
2307 | flushState->drawMesh(*fMesh); |
2308 | } |
2309 | |
2310 | CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*, |
2311 | const GrCaps& caps) override { |
2312 | DIEllipseOp* that = t->cast<DIEllipseOp>(); |
2313 | if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
2314 | return CombineResult::kCannotCombine; |
2315 | } |
2316 | |
2317 | if (this->style() != that->style()) { |
2318 | return CombineResult::kCannotCombine; |
2319 | } |
2320 | |
2321 | // TODO rewrite to allow positioning on CPU |
2322 | if (!SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) { |
2323 | return CombineResult::kCannotCombine; |
2324 | } |
2325 | |
2326 | fEllipses.push_back_n(that->fEllipses.count(), that->fEllipses.begin()); |
2327 | fWideColor |= that->fWideColor; |
2328 | return CombineResult::kMerged; |
2329 | } |
2330 | |
2331 | const SkMatrix& viewMatrix() const { return fEllipses[0].fViewMatrix; } |
2332 | DIEllipseStyle style() const { return fEllipses[0].fStyle; } |
2333 | |
2334 | struct Ellipse { |
2335 | SkMatrix fViewMatrix; |
2336 | SkPMColor4f fColor; |
2337 | SkScalar fXRadius; |
2338 | SkScalar fYRadius; |
2339 | SkScalar fInnerXRadius; |
2340 | SkScalar fInnerYRadius; |
2341 | SkScalar fGeoDx; |
2342 | SkScalar fGeoDy; |
2343 | DIEllipseStyle fStyle; |
2344 | SkRect fBounds; |
2345 | }; |
2346 | |
2347 | Helper fHelper; |
2348 | bool fWideColor; |
2349 | bool fUseScale; |
2350 | SkSTArray<1, Ellipse, true> fEllipses; |
2351 | |
2352 | GrSimpleMesh* fMesh = nullptr; |
2353 | GrProgramInfo* fProgramInfo = nullptr; |
2354 | |
2355 | typedef GrMeshDrawOp INHERITED; |
2356 | }; |
2357 | |
2358 | /////////////////////////////////////////////////////////////////////////////// |
2359 | |
2360 | // We have three possible cases for geometry for a roundrect. |
2361 | // |
2362 | // In the case of a normal fill or a stroke, we draw the roundrect as a 9-patch: |
2363 | // ____________ |
2364 | // |_|________|_| |
2365 | // | | | | |
2366 | // | | | | |
2367 | // | | | | |
2368 | // |_|________|_| |
2369 | // |_|________|_| |
2370 | // |
2371 | // For strokes, we don't draw the center quad. |
2372 | // |
2373 | // For circular roundrects, in the case where the stroke width is greater than twice |
2374 | // the corner radius (overstroke), we add additional geometry to mark out the rectangle |
2375 | // in the center. The shared vertices are duplicated so we can set a different outer radius |
2376 | // for the fill calculation. |
2377 | // ____________ |
2378 | // |_|________|_| |
2379 | // | |\ ____ /| | |
2380 | // | | | | | | |
2381 | // | | |____| | | |
2382 | // |_|/______\|_| |
2383 | // |_|________|_| |
2384 | // |
2385 | // We don't draw the center quad from the fill rect in this case. |
2386 | // |
2387 | // For filled rrects that need to provide a distance vector we resuse the overstroke |
2388 | // geometry but make the inner rect degenerate (either a point or a horizontal or |
2389 | // vertical line). |
2390 | |
2391 | static const uint16_t gOverstrokeRRectIndices[] = { |
2392 | // clang-format off |
2393 | // overstroke quads |
2394 | // we place this at the beginning so that we can skip these indices when rendering normally |
2395 | 16, 17, 19, 16, 19, 18, |
2396 | 19, 17, 23, 19, 23, 21, |
2397 | 21, 23, 22, 21, 22, 20, |
2398 | 22, 16, 18, 22, 18, 20, |
2399 | |
2400 | // corners |
2401 | 0, 1, 5, 0, 5, 4, |
2402 | 2, 3, 7, 2, 7, 6, |
2403 | 8, 9, 13, 8, 13, 12, |
2404 | 10, 11, 15, 10, 15, 14, |
2405 | |
2406 | // edges |
2407 | 1, 2, 6, 1, 6, 5, |
2408 | 4, 5, 9, 4, 9, 8, |
2409 | 6, 7, 11, 6, 11, 10, |
2410 | 9, 10, 14, 9, 14, 13, |
2411 | |
2412 | // center |
2413 | // we place this at the end so that we can ignore these indices when not rendering as filled |
2414 | 5, 6, 10, 5, 10, 9, |
2415 | // clang-format on |
2416 | }; |
2417 | |
2418 | // fill and standard stroke indices skip the overstroke "ring" |
2419 | static const uint16_t* gStandardRRectIndices = gOverstrokeRRectIndices + 6 * 4; |
2420 | |
2421 | // overstroke count is arraysize minus the center indices |
2422 | static const int kIndicesPerOverstrokeRRect = SK_ARRAY_COUNT(gOverstrokeRRectIndices) - 6; |
2423 | // fill count skips overstroke indices and includes center |
2424 | static const int kIndicesPerFillRRect = kIndicesPerOverstrokeRRect - 6 * 4 + 6; |
2425 | // stroke count is fill count minus center indices |
2426 | static const int kIndicesPerStrokeRRect = kIndicesPerFillRRect - 6; |
2427 | static const int kVertsPerStandardRRect = 16; |
2428 | static const int kVertsPerOverstrokeRRect = 24; |
2429 | |
2430 | enum RRectType { |
2431 | kFill_RRectType, |
2432 | kStroke_RRectType, |
2433 | kOverstroke_RRectType, |
2434 | }; |
2435 | |
2436 | static int rrect_type_to_vert_count(RRectType type) { |
2437 | switch (type) { |
2438 | case kFill_RRectType: |
2439 | case kStroke_RRectType: |
2440 | return kVertsPerStandardRRect; |
2441 | case kOverstroke_RRectType: |
2442 | return kVertsPerOverstrokeRRect; |
2443 | } |
2444 | SK_ABORT("Invalid type" ); |
2445 | } |
2446 | |
2447 | static int rrect_type_to_index_count(RRectType type) { |
2448 | switch (type) { |
2449 | case kFill_RRectType: |
2450 | return kIndicesPerFillRRect; |
2451 | case kStroke_RRectType: |
2452 | return kIndicesPerStrokeRRect; |
2453 | case kOverstroke_RRectType: |
2454 | return kIndicesPerOverstrokeRRect; |
2455 | } |
2456 | SK_ABORT("Invalid type" ); |
2457 | } |
2458 | |
2459 | static const uint16_t* rrect_type_to_indices(RRectType type) { |
2460 | switch (type) { |
2461 | case kFill_RRectType: |
2462 | case kStroke_RRectType: |
2463 | return gStandardRRectIndices; |
2464 | case kOverstroke_RRectType: |
2465 | return gOverstrokeRRectIndices; |
2466 | } |
2467 | SK_ABORT("Invalid type" ); |
2468 | } |
2469 | |
2470 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
2471 | |
2472 | // For distance computations in the interior of filled rrects we: |
2473 | // |
2474 | // add a interior degenerate (point or line) rect |
2475 | // each vertex of that rect gets -outerRad as its radius |
2476 | // this makes the computation of the distance to the outer edge be negative |
2477 | // negative values are caught and then handled differently in the GP's onEmitCode |
2478 | // each vertex is also given the normalized x & y distance from the interior rect's edge |
2479 | // the GP takes the min of those depths +1 to get the normalized distance to the outer edge |
2480 | |
2481 | class CircularRRectOp : public GrMeshDrawOp { |
2482 | private: |
2483 | using Helper = GrSimpleMeshDrawOpHelper; |
2484 | |
2485 | public: |
2486 | DEFINE_OP_CLASS_ID |
2487 | |
2488 | // A devStrokeWidth <= 0 indicates a fill only. If devStrokeWidth > 0 then strokeOnly indicates |
2489 | // whether the rrect is only stroked or stroked and filled. |
2490 | static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
2491 | GrPaint&& paint, |
2492 | const SkMatrix& viewMatrix, |
2493 | const SkRect& devRect, |
2494 | float devRadius, |
2495 | float devStrokeWidth, |
2496 | bool strokeOnly) { |
2497 | return Helper::FactoryHelper<CircularRRectOp>(context, std::move(paint), viewMatrix, |
2498 | devRect, devRadius, |
2499 | devStrokeWidth, strokeOnly); |
2500 | } |
2501 | CircularRRectOp(Helper::MakeArgs& helperArgs, const SkPMColor4f& color, |
2502 | const SkMatrix& viewMatrix, const SkRect& devRect, float devRadius, |
2503 | float devStrokeWidth, bool strokeOnly) |
2504 | : INHERITED(ClassID()) |
2505 | , fViewMatrixIfUsingLocalCoords(viewMatrix) |
2506 | , fHelper(helperArgs, GrAAType::kCoverage) { |
2507 | SkRect bounds = devRect; |
2508 | SkASSERT(!(devStrokeWidth <= 0 && strokeOnly)); |
2509 | SkScalar innerRadius = 0.0f; |
2510 | SkScalar outerRadius = devRadius; |
2511 | SkScalar halfWidth = 0; |
2512 | RRectType type = kFill_RRectType; |
2513 | if (devStrokeWidth > 0) { |
2514 | if (SkScalarNearlyZero(devStrokeWidth)) { |
2515 | halfWidth = SK_ScalarHalf; |
2516 | } else { |
2517 | halfWidth = SkScalarHalf(devStrokeWidth); |
2518 | } |
2519 | |
2520 | if (strokeOnly) { |
2521 | // Outset stroke by 1/4 pixel |
2522 | devStrokeWidth += 0.25f; |
2523 | // If stroke is greater than width or height, this is still a fill |
2524 | // Otherwise we compute stroke params |
2525 | if (devStrokeWidth <= devRect.width() && devStrokeWidth <= devRect.height()) { |
2526 | innerRadius = devRadius - halfWidth; |
2527 | type = (innerRadius >= 0) ? kStroke_RRectType : kOverstroke_RRectType; |
2528 | } |
2529 | } |
2530 | outerRadius += halfWidth; |
2531 | bounds.outset(halfWidth, halfWidth); |
2532 | } |
2533 | |
2534 | // The radii are outset for two reasons. First, it allows the shader to simply perform |
2535 | // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
2536 | // Second, the outer radius is used to compute the verts of the bounding box that is |
2537 | // rendered and the outset ensures the box will cover all partially covered by the rrect |
2538 | // corners. |
2539 | outerRadius += SK_ScalarHalf; |
2540 | innerRadius -= SK_ScalarHalf; |
2541 | |
2542 | this->setBounds(bounds, HasAABloat::kYes, IsHairline::kNo); |
2543 | |
2544 | // Expand the rect for aa to generate correct vertices. |
2545 | bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
2546 | |
2547 | fRRects.emplace_back(RRect{color, innerRadius, outerRadius, bounds, type}); |
2548 | fVertCount = rrect_type_to_vert_count(type); |
2549 | fIndexCount = rrect_type_to_index_count(type); |
2550 | fAllFill = (kFill_RRectType == type); |
2551 | } |
2552 | |
2553 | const char* name() const override { return "CircularRRectOp" ; } |
2554 | |
2555 | void visitProxies(const VisitProxyFunc& func) const override { |
2556 | if (fProgramInfo) { |
2557 | fProgramInfo->visitFPProxies(func); |
2558 | } else { |
2559 | fHelper.visitProxies(func); |
2560 | } |
2561 | } |
2562 | |
2563 | #ifdef SK_DEBUG |
2564 | SkString dumpInfo() const override { |
2565 | SkString string; |
2566 | for (int i = 0; i < fRRects.count(); ++i) { |
2567 | string.appendf( |
2568 | "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
2569 | "InnerRad: %.2f, OuterRad: %.2f\n" , |
2570 | fRRects[i].fColor.toBytes_RGBA(), fRRects[i].fDevBounds.fLeft, |
2571 | fRRects[i].fDevBounds.fTop, fRRects[i].fDevBounds.fRight, |
2572 | fRRects[i].fDevBounds.fBottom, fRRects[i].fInnerRadius, |
2573 | fRRects[i].fOuterRadius); |
2574 | } |
2575 | string += fHelper.dumpInfo(); |
2576 | string += INHERITED::dumpInfo(); |
2577 | return string; |
2578 | } |
2579 | #endif |
2580 | |
2581 | GrProcessorSet::Analysis finalize( |
2582 | const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
2583 | GrClampType clampType) override { |
2584 | SkPMColor4f* color = &fRRects.front().fColor; |
2585 | return fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType, |
2586 | GrProcessorAnalysisCoverage::kSingleChannel, color, |
2587 | &fWideColor); |
2588 | } |
2589 | |
2590 | FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
2591 | |
2592 | private: |
2593 | static void FillInOverstrokeVerts(GrVertexWriter& verts, const SkRect& bounds, SkScalar smInset, |
2594 | SkScalar bigInset, SkScalar xOffset, SkScalar outerRadius, |
2595 | SkScalar innerRadius, const GrVertexColor& color) { |
2596 | SkASSERT(smInset < bigInset); |
2597 | |
2598 | // TL |
2599 | verts.write(bounds.fLeft + smInset, bounds.fTop + smInset, |
2600 | color, |
2601 | xOffset, 0.0f, |
2602 | outerRadius, innerRadius); |
2603 | |
2604 | // TR |
2605 | verts.write(bounds.fRight - smInset, bounds.fTop + smInset, |
2606 | color, |
2607 | xOffset, 0.0f, |
2608 | outerRadius, innerRadius); |
2609 | |
2610 | verts.write(bounds.fLeft + bigInset, bounds.fTop + bigInset, |
2611 | color, |
2612 | 0.0f, 0.0f, |
2613 | outerRadius, innerRadius); |
2614 | |
2615 | verts.write(bounds.fRight - bigInset, bounds.fTop + bigInset, |
2616 | color, |
2617 | 0.0f, 0.0f, |
2618 | outerRadius, innerRadius); |
2619 | |
2620 | verts.write(bounds.fLeft + bigInset, bounds.fBottom - bigInset, |
2621 | color, |
2622 | 0.0f, 0.0f, |
2623 | outerRadius, innerRadius); |
2624 | |
2625 | verts.write(bounds.fRight - bigInset, bounds.fBottom - bigInset, |
2626 | color, |
2627 | 0.0f, 0.0f, |
2628 | outerRadius, innerRadius); |
2629 | |
2630 | // BL |
2631 | verts.write(bounds.fLeft + smInset, bounds.fBottom - smInset, |
2632 | color, |
2633 | xOffset, 0.0f, |
2634 | outerRadius, innerRadius); |
2635 | |
2636 | // BR |
2637 | verts.write(bounds.fRight - smInset, bounds.fBottom - smInset, |
2638 | color, |
2639 | xOffset, 0.0f, |
2640 | outerRadius, innerRadius); |
2641 | } |
2642 | |
2643 | GrProgramInfo* programInfo() override { return fProgramInfo; } |
2644 | |
2645 | void onCreateProgramInfo(const GrCaps* caps, |
2646 | SkArenaAlloc* arena, |
2647 | const GrSurfaceProxyView* writeView, |
2648 | GrAppliedClip&& appliedClip, |
2649 | const GrXferProcessor::DstProxyView& dstProxyView) override { |
2650 | // Invert the view matrix as a local matrix (if any other processors require coords). |
2651 | SkMatrix localMatrix; |
2652 | if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
2653 | return; |
2654 | } |
2655 | |
2656 | GrGeometryProcessor* gp = CircleGeometryProcessor::Make(arena, !fAllFill, |
2657 | false, false, false, false, |
2658 | fWideColor, localMatrix); |
2659 | |
2660 | fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, std::move(appliedClip), |
2661 | dstProxyView, gp, GrPrimitiveType::kTriangles); |
2662 | } |
2663 | |
2664 | void onPrepareDraws(Target* target) override { |
2665 | if (!fProgramInfo) { |
2666 | this->createProgramInfo(target); |
2667 | if (!fProgramInfo) { |
2668 | return; |
2669 | } |
2670 | } |
2671 | |
2672 | sk_sp<const GrBuffer> vertexBuffer; |
2673 | int firstVertex; |
2674 | |
2675 | GrVertexWriter verts{target->makeVertexSpace(fProgramInfo->primProc().vertexStride(), |
2676 | fVertCount, &vertexBuffer, &firstVertex)}; |
2677 | if (!verts.fPtr) { |
2678 | SkDebugf("Could not allocate vertices\n" ); |
2679 | return; |
2680 | } |
2681 | |
2682 | sk_sp<const GrBuffer> indexBuffer; |
2683 | int firstIndex = 0; |
2684 | uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
2685 | if (!indices) { |
2686 | SkDebugf("Could not allocate indices\n" ); |
2687 | return; |
2688 | } |
2689 | |
2690 | int currStartVertex = 0; |
2691 | for (const auto& rrect : fRRects) { |
2692 | GrVertexColor color(rrect.fColor, fWideColor); |
2693 | SkScalar outerRadius = rrect.fOuterRadius; |
2694 | const SkRect& bounds = rrect.fDevBounds; |
2695 | |
2696 | SkScalar yCoords[4] = {bounds.fTop, bounds.fTop + outerRadius, |
2697 | bounds.fBottom - outerRadius, bounds.fBottom}; |
2698 | |
2699 | SkScalar yOuterRadii[4] = {-1, 0, 0, 1}; |
2700 | // The inner radius in the vertex data must be specified in normalized space. |
2701 | // For fills, specifying -1/outerRadius guarantees an alpha of 1.0 at the inner radius. |
2702 | SkScalar innerRadius = rrect.fType != kFill_RRectType |
2703 | ? rrect.fInnerRadius / rrect.fOuterRadius |
2704 | : -1.0f / rrect.fOuterRadius; |
2705 | for (int i = 0; i < 4; ++i) { |
2706 | verts.write(bounds.fLeft, yCoords[i], |
2707 | color, |
2708 | -1.0f, yOuterRadii[i], |
2709 | outerRadius, innerRadius); |
2710 | |
2711 | verts.write(bounds.fLeft + outerRadius, yCoords[i], |
2712 | color, |
2713 | 0.0f, yOuterRadii[i], |
2714 | outerRadius, innerRadius); |
2715 | |
2716 | verts.write(bounds.fRight - outerRadius, yCoords[i], |
2717 | color, |
2718 | 0.0f, yOuterRadii[i], |
2719 | outerRadius, innerRadius); |
2720 | |
2721 | verts.write(bounds.fRight, yCoords[i], |
2722 | color, |
2723 | 1.0f, yOuterRadii[i], |
2724 | outerRadius, innerRadius); |
2725 | } |
2726 | // Add the additional vertices for overstroked rrects. |
2727 | // Effectively this is an additional stroked rrect, with its |
2728 | // outer radius = outerRadius - innerRadius, and inner radius = 0. |
2729 | // This will give us correct AA in the center and the correct |
2730 | // distance to the outer edge. |
2731 | // |
2732 | // Also, the outer offset is a constant vector pointing to the right, which |
2733 | // guarantees that the distance value along the outer rectangle is constant. |
2734 | if (kOverstroke_RRectType == rrect.fType) { |
2735 | SkASSERT(rrect.fInnerRadius <= 0.0f); |
2736 | |
2737 | SkScalar overstrokeOuterRadius = outerRadius - rrect.fInnerRadius; |
2738 | // this is the normalized distance from the outer rectangle of this |
2739 | // geometry to the outer edge |
2740 | SkScalar maxOffset = -rrect.fInnerRadius / overstrokeOuterRadius; |
2741 | |
2742 | FillInOverstrokeVerts(verts, bounds, outerRadius, overstrokeOuterRadius, maxOffset, |
2743 | overstrokeOuterRadius, 0.0f, color); |
2744 | } |
2745 | |
2746 | const uint16_t* primIndices = rrect_type_to_indices(rrect.fType); |
2747 | const int primIndexCount = rrect_type_to_index_count(rrect.fType); |
2748 | for (int i = 0; i < primIndexCount; ++i) { |
2749 | *indices++ = primIndices[i] + currStartVertex; |
2750 | } |
2751 | |
2752 | currStartVertex += rrect_type_to_vert_count(rrect.fType); |
2753 | } |
2754 | |
2755 | fMesh = target->allocMesh(); |
2756 | fMesh->setIndexed(std::move(indexBuffer), fIndexCount, firstIndex, 0, fVertCount - 1, |
2757 | GrPrimitiveRestart::kNo, std::move(vertexBuffer), firstVertex); |
2758 | } |
2759 | |
2760 | void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
2761 | if (!fProgramInfo || !fMesh) { |
2762 | return; |
2763 | } |
2764 | |
2765 | flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
2766 | flushState->bindTextures(fProgramInfo->primProc(), nullptr, fProgramInfo->pipeline()); |
2767 | flushState->drawMesh(*fMesh); |
2768 | } |
2769 | |
2770 | CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*, |
2771 | const GrCaps& caps) override { |
2772 | CircularRRectOp* that = t->cast<CircularRRectOp>(); |
2773 | |
2774 | // can only represent 65535 unique vertices with 16-bit indices |
2775 | if (fVertCount + that->fVertCount > 65536) { |
2776 | return CombineResult::kCannotCombine; |
2777 | } |
2778 | |
2779 | if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
2780 | return CombineResult::kCannotCombine; |
2781 | } |
2782 | |
2783 | if (fHelper.usesLocalCoords() && |
2784 | !SkMatrixPriv::CheapEqual(fViewMatrixIfUsingLocalCoords, |
2785 | that->fViewMatrixIfUsingLocalCoords)) { |
2786 | return CombineResult::kCannotCombine; |
2787 | } |
2788 | |
2789 | fRRects.push_back_n(that->fRRects.count(), that->fRRects.begin()); |
2790 | fVertCount += that->fVertCount; |
2791 | fIndexCount += that->fIndexCount; |
2792 | fAllFill = fAllFill && that->fAllFill; |
2793 | fWideColor = fWideColor || that->fWideColor; |
2794 | return CombineResult::kMerged; |
2795 | } |
2796 | |
2797 | struct RRect { |
2798 | SkPMColor4f fColor; |
2799 | SkScalar fInnerRadius; |
2800 | SkScalar fOuterRadius; |
2801 | SkRect fDevBounds; |
2802 | RRectType fType; |
2803 | }; |
2804 | |
2805 | SkMatrix fViewMatrixIfUsingLocalCoords; |
2806 | Helper fHelper; |
2807 | int fVertCount; |
2808 | int fIndexCount; |
2809 | bool fAllFill; |
2810 | bool fWideColor; |
2811 | SkSTArray<1, RRect, true> fRRects; |
2812 | |
2813 | GrSimpleMesh* fMesh = nullptr; |
2814 | GrProgramInfo* fProgramInfo = nullptr; |
2815 | |
2816 | typedef GrMeshDrawOp INHERITED; |
2817 | }; |
2818 | |
2819 | static const int kNumRRectsInIndexBuffer = 256; |
2820 | |
2821 | GR_DECLARE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); |
2822 | GR_DECLARE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); |
2823 | static sk_sp<const GrBuffer> get_rrect_index_buffer(RRectType type, |
2824 | GrResourceProvider* resourceProvider) { |
2825 | GR_DEFINE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); |
2826 | GR_DEFINE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); |
2827 | switch (type) { |
2828 | case kFill_RRectType: |
2829 | return resourceProvider->findOrCreatePatternedIndexBuffer( |
2830 | gStandardRRectIndices, kIndicesPerFillRRect, kNumRRectsInIndexBuffer, |
2831 | kVertsPerStandardRRect, gRRectOnlyIndexBufferKey); |
2832 | case kStroke_RRectType: |
2833 | return resourceProvider->findOrCreatePatternedIndexBuffer( |
2834 | gStandardRRectIndices, kIndicesPerStrokeRRect, kNumRRectsInIndexBuffer, |
2835 | kVertsPerStandardRRect, gStrokeRRectOnlyIndexBufferKey); |
2836 | default: |
2837 | SkASSERT(false); |
2838 | return nullptr; |
2839 | } |
2840 | } |
2841 | |
2842 | class EllipticalRRectOp : public GrMeshDrawOp { |
2843 | private: |
2844 | using Helper = GrSimpleMeshDrawOpHelper; |
2845 | |
2846 | public: |
2847 | DEFINE_OP_CLASS_ID |
2848 | |
2849 | // If devStrokeWidths values are <= 0 indicates then fill only. Otherwise, strokeOnly indicates |
2850 | // whether the rrect is only stroked or stroked and filled. |
2851 | static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
2852 | GrPaint&& paint, |
2853 | const SkMatrix& viewMatrix, |
2854 | const SkRect& devRect, |
2855 | float devXRadius, |
2856 | float devYRadius, |
2857 | SkVector devStrokeWidths, |
2858 | bool strokeOnly) { |
2859 | SkASSERT(devXRadius >= 0.5); |
2860 | SkASSERT(devYRadius >= 0.5); |
2861 | SkASSERT((devStrokeWidths.fX > 0) == (devStrokeWidths.fY > 0)); |
2862 | SkASSERT(!(strokeOnly && devStrokeWidths.fX <= 0)); |
2863 | if (devStrokeWidths.fX > 0) { |
2864 | if (SkScalarNearlyZero(devStrokeWidths.length())) { |
2865 | devStrokeWidths.set(SK_ScalarHalf, SK_ScalarHalf); |
2866 | } else { |
2867 | devStrokeWidths.scale(SK_ScalarHalf); |
2868 | } |
2869 | |
2870 | // we only handle thick strokes for near-circular ellipses |
2871 | if (devStrokeWidths.length() > SK_ScalarHalf && |
2872 | (SK_ScalarHalf * devXRadius > devYRadius || |
2873 | SK_ScalarHalf * devYRadius > devXRadius)) { |
2874 | return nullptr; |
2875 | } |
2876 | |
2877 | // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
2878 | if (devStrokeWidths.fX * (devYRadius * devYRadius) < |
2879 | (devStrokeWidths.fY * devStrokeWidths.fY) * devXRadius) { |
2880 | return nullptr; |
2881 | } |
2882 | if (devStrokeWidths.fY * (devXRadius * devXRadius) < |
2883 | (devStrokeWidths.fX * devStrokeWidths.fX) * devYRadius) { |
2884 | return nullptr; |
2885 | } |
2886 | } |
2887 | return Helper::FactoryHelper<EllipticalRRectOp>(context, std::move(paint), |
2888 | viewMatrix, devRect, |
2889 | devXRadius, devYRadius, devStrokeWidths, |
2890 | strokeOnly); |
2891 | } |
2892 | |
2893 | EllipticalRRectOp(Helper::MakeArgs helperArgs, const SkPMColor4f& color, |
2894 | const SkMatrix& viewMatrix, const SkRect& devRect, float devXRadius, |
2895 | float devYRadius, SkVector devStrokeHalfWidths, bool strokeOnly) |
2896 | : INHERITED(ClassID()) |
2897 | , fHelper(helperArgs, GrAAType::kCoverage) |
2898 | , fUseScale(false) { |
2899 | SkScalar innerXRadius = 0.0f; |
2900 | SkScalar innerYRadius = 0.0f; |
2901 | SkRect bounds = devRect; |
2902 | bool stroked = false; |
2903 | if (devStrokeHalfWidths.fX > 0) { |
2904 | // this is legit only if scale & translation (which should be the case at the moment) |
2905 | if (strokeOnly) { |
2906 | innerXRadius = devXRadius - devStrokeHalfWidths.fX; |
2907 | innerYRadius = devYRadius - devStrokeHalfWidths.fY; |
2908 | stroked = (innerXRadius >= 0 && innerYRadius >= 0); |
2909 | } |
2910 | |
2911 | devXRadius += devStrokeHalfWidths.fX; |
2912 | devYRadius += devStrokeHalfWidths.fY; |
2913 | bounds.outset(devStrokeHalfWidths.fX, devStrokeHalfWidths.fY); |
2914 | } |
2915 | |
2916 | fStroked = stroked; |
2917 | fViewMatrixIfUsingLocalCoords = viewMatrix; |
2918 | this->setBounds(bounds, HasAABloat::kYes, IsHairline::kNo); |
2919 | // Expand the rect for aa in order to generate the correct vertices. |
2920 | bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
2921 | fRRects.emplace_back( |
2922 | RRect{color, devXRadius, devYRadius, innerXRadius, innerYRadius, bounds}); |
2923 | } |
2924 | |
2925 | const char* name() const override { return "EllipticalRRectOp" ; } |
2926 | |
2927 | void visitProxies(const VisitProxyFunc& func) const override { |
2928 | if (fProgramInfo) { |
2929 | fProgramInfo->visitFPProxies(func); |
2930 | } else { |
2931 | fHelper.visitProxies(func); |
2932 | } |
2933 | } |
2934 | |
2935 | #ifdef SK_DEBUG |
2936 | SkString dumpInfo() const override { |
2937 | SkString string; |
2938 | string.appendf("Stroked: %d\n" , fStroked); |
2939 | for (const auto& geo : fRRects) { |
2940 | string.appendf( |
2941 | "Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " |
2942 | "XRad: %.2f, YRad: %.2f, InnerXRad: %.2f, InnerYRad: %.2f\n" , |
2943 | geo.fColor.toBytes_RGBA(), geo.fDevBounds.fLeft, geo.fDevBounds.fTop, |
2944 | geo.fDevBounds.fRight, geo.fDevBounds.fBottom, geo.fXRadius, geo.fYRadius, |
2945 | geo.fInnerXRadius, geo.fInnerYRadius); |
2946 | } |
2947 | string += fHelper.dumpInfo(); |
2948 | string += INHERITED::dumpInfo(); |
2949 | return string; |
2950 | } |
2951 | #endif |
2952 | |
2953 | GrProcessorSet::Analysis finalize( |
2954 | const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
2955 | GrClampType clampType) override { |
2956 | fUseScale = !caps.shaderCaps()->floatIs32Bits(); |
2957 | SkPMColor4f* color = &fRRects.front().fColor; |
2958 | return fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType, |
2959 | GrProcessorAnalysisCoverage::kSingleChannel, color, |
2960 | &fWideColor); |
2961 | } |
2962 | |
2963 | FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
2964 | |
2965 | private: |
2966 | GrProgramInfo* programInfo() override { return fProgramInfo; } |
2967 | |
2968 | void onCreateProgramInfo(const GrCaps* caps, |
2969 | SkArenaAlloc* arena, |
2970 | const GrSurfaceProxyView* writeView, |
2971 | GrAppliedClip&& appliedClip, |
2972 | const GrXferProcessor::DstProxyView& dstProxyView) override { |
2973 | SkMatrix localMatrix; |
2974 | if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
2975 | return; |
2976 | } |
2977 | |
2978 | GrGeometryProcessor* gp = EllipseGeometryProcessor::Make(arena, fStroked, fWideColor, |
2979 | fUseScale, localMatrix); |
2980 | |
2981 | fProgramInfo = fHelper.createProgramInfo(caps, arena, writeView, std::move(appliedClip), |
2982 | dstProxyView, gp, GrPrimitiveType::kTriangles); |
2983 | } |
2984 | |
2985 | void onPrepareDraws(Target* target) override { |
2986 | if (!fProgramInfo) { |
2987 | this->createProgramInfo(target); |
2988 | if (!fProgramInfo) { |
2989 | return; |
2990 | } |
2991 | } |
2992 | |
2993 | // drop out the middle quad if we're stroked |
2994 | int indicesPerInstance = fStroked ? kIndicesPerStrokeRRect : kIndicesPerFillRRect; |
2995 | sk_sp<const GrBuffer> indexBuffer = get_rrect_index_buffer( |
2996 | fStroked ? kStroke_RRectType : kFill_RRectType, target->resourceProvider()); |
2997 | |
2998 | if (!indexBuffer) { |
2999 | SkDebugf("Could not allocate indices\n" ); |
3000 | return; |
3001 | } |
3002 | PatternHelper helper(target, GrPrimitiveType::kTriangles, |
3003 | fProgramInfo->primProc().vertexStride(), |
3004 | std::move(indexBuffer), kVertsPerStandardRRect, indicesPerInstance, |
3005 | fRRects.count(), kNumRRectsInIndexBuffer); |
3006 | GrVertexWriter verts{helper.vertices()}; |
3007 | if (!verts.fPtr) { |
3008 | SkDebugf("Could not allocate vertices\n" ); |
3009 | return; |
3010 | } |
3011 | |
3012 | for (const auto& rrect : fRRects) { |
3013 | GrVertexColor color(rrect.fColor, fWideColor); |
3014 | // Compute the reciprocals of the radii here to save time in the shader |
3015 | float reciprocalRadii[4] = { |
3016 | SkScalarInvert(rrect.fXRadius), |
3017 | SkScalarInvert(rrect.fYRadius), |
3018 | SkScalarInvert(rrect.fInnerXRadius), |
3019 | SkScalarInvert(rrect.fInnerYRadius) |
3020 | }; |
3021 | |
3022 | // Extend the radii out half a pixel to antialias. |
3023 | SkScalar xOuterRadius = rrect.fXRadius + SK_ScalarHalf; |
3024 | SkScalar yOuterRadius = rrect.fYRadius + SK_ScalarHalf; |
3025 | |
3026 | SkScalar xMaxOffset = xOuterRadius; |
3027 | SkScalar yMaxOffset = yOuterRadius; |
3028 | if (!fStroked) { |
3029 | // For filled rrects we map a unit circle in the vertex attributes rather than |
3030 | // computing an ellipse and modifying that distance, so we normalize to 1. |
3031 | xMaxOffset /= rrect.fXRadius; |
3032 | yMaxOffset /= rrect.fYRadius; |
3033 | } |
3034 | |
3035 | const SkRect& bounds = rrect.fDevBounds; |
3036 | |
3037 | SkScalar yCoords[4] = {bounds.fTop, bounds.fTop + yOuterRadius, |
3038 | bounds.fBottom - yOuterRadius, bounds.fBottom}; |
3039 | SkScalar yOuterOffsets[4] = {yMaxOffset, |
3040 | SK_ScalarNearlyZero, // we're using inversesqrt() in |
3041 | // shader, so can't be exactly 0 |
3042 | SK_ScalarNearlyZero, yMaxOffset}; |
3043 | |
3044 | auto maybeScale = GrVertexWriter::If(fUseScale, std::max(rrect.fXRadius, rrect.fYRadius)); |
3045 | for (int i = 0; i < 4; ++i) { |
3046 | verts.write(bounds.fLeft, yCoords[i], |
3047 | color, |
3048 | xMaxOffset, yOuterOffsets[i], |
3049 | maybeScale, |
3050 | reciprocalRadii); |
3051 | |
3052 | verts.write(bounds.fLeft + xOuterRadius, yCoords[i], |
3053 | color, |
3054 | SK_ScalarNearlyZero, yOuterOffsets[i], |
3055 | maybeScale, |
3056 | reciprocalRadii); |
3057 | |
3058 | verts.write(bounds.fRight - xOuterRadius, yCoords[i], |
3059 | color, |
3060 | SK_ScalarNearlyZero, yOuterOffsets[i], |
3061 | maybeScale, |
3062 | reciprocalRadii); |
3063 | |
3064 | verts.write(bounds.fRight, yCoords[i], |
3065 | color, |
3066 | xMaxOffset, yOuterOffsets[i], |
3067 | maybeScale, |
3068 | reciprocalRadii); |
3069 | } |
3070 | } |
3071 | fMesh = helper.mesh(); |
3072 | } |
3073 | |
3074 | void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
3075 | if (!fProgramInfo || !fMesh) { |
3076 | return; |
3077 | } |
3078 | |
3079 | flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
3080 | flushState->bindTextures(fProgramInfo->primProc(), nullptr, fProgramInfo->pipeline()); |
3081 | flushState->drawMesh(*fMesh); |
3082 | } |
3083 | |
3084 | CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*, |
3085 | const GrCaps& caps) override { |
3086 | EllipticalRRectOp* that = t->cast<EllipticalRRectOp>(); |
3087 | |
3088 | if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
3089 | return CombineResult::kCannotCombine; |
3090 | } |
3091 | |
3092 | if (fStroked != that->fStroked) { |
3093 | return CombineResult::kCannotCombine; |
3094 | } |
3095 | |
3096 | if (fHelper.usesLocalCoords() && |
3097 | !SkMatrixPriv::CheapEqual(fViewMatrixIfUsingLocalCoords, |
3098 | that->fViewMatrixIfUsingLocalCoords)) { |
3099 | return CombineResult::kCannotCombine; |
3100 | } |
3101 | |
3102 | fRRects.push_back_n(that->fRRects.count(), that->fRRects.begin()); |
3103 | fWideColor = fWideColor || that->fWideColor; |
3104 | return CombineResult::kMerged; |
3105 | } |
3106 | |
3107 | struct RRect { |
3108 | SkPMColor4f fColor; |
3109 | SkScalar fXRadius; |
3110 | SkScalar fYRadius; |
3111 | SkScalar fInnerXRadius; |
3112 | SkScalar fInnerYRadius; |
3113 | SkRect fDevBounds; |
3114 | }; |
3115 | |
3116 | SkMatrix fViewMatrixIfUsingLocalCoords; |
3117 | Helper fHelper; |
3118 | bool fStroked; |
3119 | bool fWideColor; |
3120 | bool fUseScale; |
3121 | SkSTArray<1, RRect, true> fRRects; |
3122 | |
3123 | GrSimpleMesh* fMesh = nullptr; |
3124 | GrProgramInfo* fProgramInfo = nullptr; |
3125 | |
3126 | typedef GrMeshDrawOp INHERITED; |
3127 | }; |
3128 | |
3129 | std::unique_ptr<GrDrawOp> GrOvalOpFactory::MakeCircularRRectOp(GrRecordingContext* context, |
3130 | GrPaint&& paint, |
3131 | const SkMatrix& viewMatrix, |
3132 | const SkRRect& rrect, |
3133 | const SkStrokeRec& stroke, |
3134 | const GrShaderCaps* shaderCaps) { |
3135 | SkASSERT(viewMatrix.rectStaysRect()); |
3136 | SkASSERT(viewMatrix.isSimilarity()); |
3137 | SkASSERT(rrect.isSimple()); |
3138 | SkASSERT(!rrect.isOval()); |
3139 | SkASSERT(SkRRectPriv::GetSimpleRadii(rrect).fX == SkRRectPriv::GetSimpleRadii(rrect).fY); |
3140 | |
3141 | // RRect ops only handle simple, but not too simple, rrects. |
3142 | // Do any matrix crunching before we reset the draw state for device coords. |
3143 | const SkRect& rrectBounds = rrect.getBounds(); |
3144 | SkRect bounds; |
3145 | viewMatrix.mapRect(&bounds, rrectBounds); |
3146 | |
3147 | SkScalar radius = SkRRectPriv::GetSimpleRadii(rrect).fX; |
3148 | SkScalar scaledRadius = SkScalarAbs(radius * (viewMatrix[SkMatrix::kMScaleX] + |
3149 | viewMatrix[SkMatrix::kMSkewY])); |
3150 | |
3151 | // Do mapping of stroke. Use -1 to indicate fill-only draws. |
3152 | SkScalar scaledStroke = -1; |
3153 | SkScalar strokeWidth = stroke.getWidth(); |
3154 | SkStrokeRec::Style style = stroke.getStyle(); |
3155 | |
3156 | bool isStrokeOnly = |
3157 | SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; |
3158 | bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
3159 | |
3160 | if (hasStroke) { |
3161 | if (SkStrokeRec::kHairline_Style == style) { |
3162 | scaledStroke = SK_Scalar1; |
3163 | } else { |
3164 | scaledStroke = SkScalarAbs(strokeWidth * (viewMatrix[SkMatrix::kMScaleX] + |
3165 | viewMatrix[SkMatrix::kMSkewY])); |
3166 | } |
3167 | } |
3168 | |
3169 | // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on |
3170 | // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- |
3171 | // patch will have fractional coverage. This only matters when the interior is actually filled. |
3172 | // We could consider falling back to rect rendering here, since a tiny radius is |
3173 | // indistinguishable from a square corner. |
3174 | if (!isStrokeOnly && SK_ScalarHalf > scaledRadius) { |
3175 | return nullptr; |
3176 | } |
3177 | |
3178 | return CircularRRectOp::Make(context, std::move(paint), viewMatrix, bounds, scaledRadius, |
3179 | scaledStroke, isStrokeOnly); |
3180 | } |
3181 | |
3182 | static std::unique_ptr<GrDrawOp> make_rrect_op(GrRecordingContext* context, |
3183 | GrPaint&& paint, |
3184 | const SkMatrix& viewMatrix, |
3185 | const SkRRect& rrect, |
3186 | const SkStrokeRec& stroke) { |
3187 | SkASSERT(viewMatrix.rectStaysRect()); |
3188 | SkASSERT(rrect.isSimple()); |
3189 | SkASSERT(!rrect.isOval()); |
3190 | |
3191 | // RRect ops only handle simple, but not too simple, rrects. |
3192 | // Do any matrix crunching before we reset the draw state for device coords. |
3193 | const SkRect& rrectBounds = rrect.getBounds(); |
3194 | SkRect bounds; |
3195 | viewMatrix.mapRect(&bounds, rrectBounds); |
3196 | |
3197 | SkVector radii = SkRRectPriv::GetSimpleRadii(rrect); |
3198 | SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX] * radii.fX + |
3199 | viewMatrix[SkMatrix::kMSkewY] * radii.fY); |
3200 | SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX] * radii.fX + |
3201 | viewMatrix[SkMatrix::kMScaleY] * radii.fY); |
3202 | |
3203 | SkStrokeRec::Style style = stroke.getStyle(); |
3204 | |
3205 | // Do (potentially) anisotropic mapping of stroke. Use -1s to indicate fill-only draws. |
3206 | SkVector scaledStroke = {-1, -1}; |
3207 | SkScalar strokeWidth = stroke.getWidth(); |
3208 | |
3209 | bool isStrokeOnly = |
3210 | SkStrokeRec::kStroke_Style == style || SkStrokeRec::kHairline_Style == style; |
3211 | bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
3212 | |
3213 | if (hasStroke) { |
3214 | if (SkStrokeRec::kHairline_Style == style) { |
3215 | scaledStroke.set(1, 1); |
3216 | } else { |
3217 | scaledStroke.fX = SkScalarAbs( |
3218 | strokeWidth * (viewMatrix[SkMatrix::kMScaleX] + viewMatrix[SkMatrix::kMSkewY])); |
3219 | scaledStroke.fY = SkScalarAbs( |
3220 | strokeWidth * (viewMatrix[SkMatrix::kMSkewX] + viewMatrix[SkMatrix::kMScaleY])); |
3221 | } |
3222 | |
3223 | // if half of strokewidth is greater than radius, we don't handle that right now |
3224 | if ((SK_ScalarHalf * scaledStroke.fX > xRadius || |
3225 | SK_ScalarHalf * scaledStroke.fY > yRadius)) { |
3226 | return nullptr; |
3227 | } |
3228 | } |
3229 | |
3230 | // The matrix may have a rotation by an odd multiple of 90 degrees. |
3231 | if (viewMatrix.getScaleX() == 0) { |
3232 | std::swap(xRadius, yRadius); |
3233 | std::swap(scaledStroke.fX, scaledStroke.fY); |
3234 | } |
3235 | |
3236 | // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on |
3237 | // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- |
3238 | // patch will have fractional coverage. This only matters when the interior is actually filled. |
3239 | // We could consider falling back to rect rendering here, since a tiny radius is |
3240 | // indistinguishable from a square corner. |
3241 | if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) { |
3242 | return nullptr; |
3243 | } |
3244 | |
3245 | // if the corners are circles, use the circle renderer |
3246 | return EllipticalRRectOp::Make(context, std::move(paint), viewMatrix, bounds, |
3247 | xRadius, yRadius, scaledStroke, isStrokeOnly); |
3248 | } |
3249 | |
3250 | std::unique_ptr<GrDrawOp> GrOvalOpFactory::MakeRRectOp(GrRecordingContext* context, |
3251 | GrPaint&& paint, |
3252 | const SkMatrix& viewMatrix, |
3253 | const SkRRect& rrect, |
3254 | const SkStrokeRec& stroke, |
3255 | const GrShaderCaps* shaderCaps) { |
3256 | if (rrect.isOval()) { |
3257 | return MakeOvalOp(context, std::move(paint), viewMatrix, rrect.getBounds(), |
3258 | GrStyle(stroke, nullptr), shaderCaps); |
3259 | } |
3260 | |
3261 | if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) { |
3262 | return nullptr; |
3263 | } |
3264 | |
3265 | return make_rrect_op(context, std::move(paint), viewMatrix, rrect, stroke); |
3266 | } |
3267 | |
3268 | /////////////////////////////////////////////////////////////////////////////// |
3269 | |
3270 | std::unique_ptr<GrDrawOp> GrOvalOpFactory::MakeCircleOp(GrRecordingContext* context, |
3271 | GrPaint&& paint, |
3272 | const SkMatrix& viewMatrix, |
3273 | const SkRect& oval, |
3274 | const GrStyle& style, |
3275 | const GrShaderCaps* shaderCaps) { |
3276 | SkScalar width = oval.width(); |
3277 | SkASSERT(width > SK_ScalarNearlyZero && SkScalarNearlyEqual(width, oval.height()) && |
3278 | circle_stays_circle(viewMatrix)); |
3279 | |
3280 | auto r = width / 2.f; |
3281 | SkPoint center = { oval.centerX(), oval.centerY() }; |
3282 | if (style.hasNonDashPathEffect()) { |
3283 | return nullptr; |
3284 | } else if (style.isDashed()) { |
3285 | if (style.strokeRec().getCap() != SkPaint::kButt_Cap || |
3286 | style.dashIntervalCnt() != 2 || style.strokeRec().getWidth() >= width) { |
3287 | return nullptr; |
3288 | } |
3289 | auto onInterval = style.dashIntervals()[0]; |
3290 | auto offInterval = style.dashIntervals()[1]; |
3291 | if (offInterval == 0) { |
3292 | GrStyle strokeStyle(style.strokeRec(), nullptr); |
3293 | return MakeOvalOp(context, std::move(paint), viewMatrix, oval, |
3294 | strokeStyle, shaderCaps); |
3295 | } else if (onInterval == 0) { |
3296 | // There is nothing to draw but we have no way to indicate that here. |
3297 | return nullptr; |
3298 | } |
3299 | auto angularOnInterval = onInterval / r; |
3300 | auto angularOffInterval = offInterval / r; |
3301 | auto phaseAngle = style.dashPhase() / r; |
3302 | // Currently this function doesn't accept ovals with different start angles, though |
3303 | // it could. |
3304 | static const SkScalar kStartAngle = 0.f; |
3305 | return ButtCapDashedCircleOp::Make(context, std::move(paint), viewMatrix, center, r, |
3306 | style.strokeRec().getWidth(), kStartAngle, |
3307 | angularOnInterval, angularOffInterval, phaseAngle); |
3308 | } |
3309 | return CircleOp::Make(context, std::move(paint), viewMatrix, center, r, style); |
3310 | } |
3311 | |
3312 | std::unique_ptr<GrDrawOp> GrOvalOpFactory::MakeOvalOp(GrRecordingContext* context, |
3313 | GrPaint&& paint, |
3314 | const SkMatrix& viewMatrix, |
3315 | const SkRect& oval, |
3316 | const GrStyle& style, |
3317 | const GrShaderCaps* shaderCaps) { |
3318 | // we can draw circles |
3319 | SkScalar width = oval.width(); |
3320 | if (width > SK_ScalarNearlyZero && SkScalarNearlyEqual(width, oval.height()) && |
3321 | circle_stays_circle(viewMatrix)) { |
3322 | return MakeCircleOp(context, std::move(paint), viewMatrix, oval, style, shaderCaps); |
3323 | } |
3324 | |
3325 | if (style.pathEffect()) { |
3326 | return nullptr; |
3327 | } |
3328 | |
3329 | // prefer the device space ellipse op for batchability |
3330 | if (viewMatrix.rectStaysRect()) { |
3331 | return EllipseOp::Make(context, std::move(paint), viewMatrix, oval, style.strokeRec()); |
3332 | } |
3333 | |
3334 | // Otherwise, if we have shader derivative support, render as device-independent |
3335 | if (shaderCaps->shaderDerivativeSupport()) { |
3336 | SkScalar a = viewMatrix[SkMatrix::kMScaleX]; |
3337 | SkScalar b = viewMatrix[SkMatrix::kMSkewX]; |
3338 | SkScalar c = viewMatrix[SkMatrix::kMSkewY]; |
3339 | SkScalar d = viewMatrix[SkMatrix::kMScaleY]; |
3340 | // Check for near-degenerate matrix |
3341 | if (a*a + c*c > SK_ScalarNearlyZero && b*b + d*d > SK_ScalarNearlyZero) { |
3342 | return DIEllipseOp::Make(context, std::move(paint), viewMatrix, oval, |
3343 | style.strokeRec()); |
3344 | } |
3345 | } |
3346 | |
3347 | return nullptr; |
3348 | } |
3349 | |
3350 | /////////////////////////////////////////////////////////////////////////////// |
3351 | |
3352 | std::unique_ptr<GrDrawOp> GrOvalOpFactory::MakeArcOp(GrRecordingContext* context, |
3353 | GrPaint&& paint, |
3354 | const SkMatrix& viewMatrix, |
3355 | const SkRect& oval, SkScalar startAngle, |
3356 | SkScalar sweepAngle, bool useCenter, |
3357 | const GrStyle& style, |
3358 | const GrShaderCaps* shaderCaps) { |
3359 | SkASSERT(!oval.isEmpty()); |
3360 | SkASSERT(sweepAngle); |
3361 | SkScalar width = oval.width(); |
3362 | if (SkScalarAbs(sweepAngle) >= 360.f) { |
3363 | return nullptr; |
3364 | } |
3365 | if (!SkScalarNearlyEqual(width, oval.height()) || !circle_stays_circle(viewMatrix)) { |
3366 | return nullptr; |
3367 | } |
3368 | SkPoint center = {oval.centerX(), oval.centerY()}; |
3369 | CircleOp::ArcParams arcParams = {SkDegreesToRadians(startAngle), SkDegreesToRadians(sweepAngle), |
3370 | useCenter}; |
3371 | return CircleOp::Make(context, std::move(paint), viewMatrix, |
3372 | center, width / 2.f, style, &arcParams); |
3373 | } |
3374 | |
3375 | /////////////////////////////////////////////////////////////////////////////// |
3376 | |
3377 | #if GR_TEST_UTILS |
3378 | |
3379 | GR_DRAW_OP_TEST_DEFINE(CircleOp) { |
3380 | do { |
3381 | SkScalar rotate = random->nextSScalar1() * 360.f; |
3382 | SkScalar translateX = random->nextSScalar1() * 1000.f; |
3383 | SkScalar translateY = random->nextSScalar1() * 1000.f; |
3384 | SkScalar scale; |
3385 | do { |
3386 | scale = random->nextSScalar1() * 100.f; |
3387 | } while (scale == 0); |
3388 | SkMatrix viewMatrix; |
3389 | viewMatrix.setRotate(rotate); |
3390 | viewMatrix.postTranslate(translateX, translateY); |
3391 | viewMatrix.postScale(scale, scale); |
3392 | SkRect circle = GrTest::TestSquare(random); |
3393 | SkPoint center = {circle.centerX(), circle.centerY()}; |
3394 | SkScalar radius = circle.width() / 2.f; |
3395 | SkStrokeRec stroke = GrTest::TestStrokeRec(random); |
3396 | CircleOp::ArcParams arcParamsTmp; |
3397 | const CircleOp::ArcParams* arcParams = nullptr; |
3398 | if (random->nextBool()) { |
3399 | arcParamsTmp.fStartAngleRadians = random->nextSScalar1() * SK_ScalarPI * 2; |
3400 | arcParamsTmp.fSweepAngleRadians = random->nextSScalar1() * SK_ScalarPI * 2 - .01f; |
3401 | arcParamsTmp.fUseCenter = random->nextBool(); |
3402 | arcParams = &arcParamsTmp; |
3403 | } |
3404 | std::unique_ptr<GrDrawOp> op = CircleOp::Make(context, std::move(paint), viewMatrix, |
3405 | center, radius, |
3406 | GrStyle(stroke, nullptr), arcParams); |
3407 | if (op) { |
3408 | return op; |
3409 | } |
3410 | assert_alive(paint); |
3411 | } while (true); |
3412 | } |
3413 | |
3414 | GR_DRAW_OP_TEST_DEFINE(ButtCapDashedCircleOp) { |
3415 | SkScalar rotate = random->nextSScalar1() * 360.f; |
3416 | SkScalar translateX = random->nextSScalar1() * 1000.f; |
3417 | SkScalar translateY = random->nextSScalar1() * 1000.f; |
3418 | SkScalar scale; |
3419 | do { |
3420 | scale = random->nextSScalar1() * 100.f; |
3421 | } while (scale == 0); |
3422 | SkMatrix viewMatrix; |
3423 | viewMatrix.setRotate(rotate); |
3424 | viewMatrix.postTranslate(translateX, translateY); |
3425 | viewMatrix.postScale(scale, scale); |
3426 | SkRect circle = GrTest::TestSquare(random); |
3427 | SkPoint center = {circle.centerX(), circle.centerY()}; |
3428 | SkScalar radius = circle.width() / 2.f; |
3429 | SkScalar strokeWidth = random->nextRangeScalar(0.001f * radius, 1.8f * radius); |
3430 | SkScalar onAngle = random->nextRangeScalar(0.01f, 1000.f); |
3431 | SkScalar offAngle = random->nextRangeScalar(0.01f, 1000.f); |
3432 | SkScalar startAngle = random->nextRangeScalar(-1000.f, 1000.f); |
3433 | SkScalar phase = random->nextRangeScalar(-1000.f, 1000.f); |
3434 | return ButtCapDashedCircleOp::Make(context, std::move(paint), viewMatrix, |
3435 | center, radius, strokeWidth, |
3436 | startAngle, onAngle, offAngle, phase); |
3437 | } |
3438 | |
3439 | GR_DRAW_OP_TEST_DEFINE(EllipseOp) { |
3440 | SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); |
3441 | SkRect ellipse = GrTest::TestSquare(random); |
3442 | return EllipseOp::Make(context, std::move(paint), viewMatrix, ellipse, |
3443 | GrTest::TestStrokeRec(random)); |
3444 | } |
3445 | |
3446 | GR_DRAW_OP_TEST_DEFINE(DIEllipseOp) { |
3447 | SkMatrix viewMatrix = GrTest::TestMatrix(random); |
3448 | SkRect ellipse = GrTest::TestSquare(random); |
3449 | return DIEllipseOp::Make(context, std::move(paint), viewMatrix, ellipse, |
3450 | GrTest::TestStrokeRec(random)); |
3451 | } |
3452 | |
3453 | GR_DRAW_OP_TEST_DEFINE(CircularRRectOp) { |
3454 | do { |
3455 | SkScalar rotate = random->nextSScalar1() * 360.f; |
3456 | SkScalar translateX = random->nextSScalar1() * 1000.f; |
3457 | SkScalar translateY = random->nextSScalar1() * 1000.f; |
3458 | SkScalar scale; |
3459 | do { |
3460 | scale = random->nextSScalar1() * 100.f; |
3461 | } while (scale == 0); |
3462 | SkMatrix viewMatrix; |
3463 | viewMatrix.setRotate(rotate); |
3464 | viewMatrix.postTranslate(translateX, translateY); |
3465 | viewMatrix.postScale(scale, scale); |
3466 | SkRect rect = GrTest::TestRect(random); |
3467 | SkScalar radius = random->nextRangeF(0.1f, 10.f); |
3468 | SkRRect rrect = SkRRect::MakeRectXY(rect, radius, radius); |
3469 | if (rrect.isOval()) { |
3470 | continue; |
3471 | } |
3472 | std::unique_ptr<GrDrawOp> op = |
3473 | GrOvalOpFactory::MakeCircularRRectOp(context, std::move(paint), viewMatrix, rrect, |
3474 | GrTest::TestStrokeRec(random), nullptr); |
3475 | if (op) { |
3476 | return op; |
3477 | } |
3478 | assert_alive(paint); |
3479 | } while (true); |
3480 | } |
3481 | |
3482 | GR_DRAW_OP_TEST_DEFINE(RRectOp) { |
3483 | SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); |
3484 | const SkRRect& rrect = GrTest::TestRRectSimple(random); |
3485 | return make_rrect_op(context, std::move(paint), viewMatrix, rrect, |
3486 | GrTest::TestStrokeRec(random)); |
3487 | } |
3488 | |
3489 | #endif |
3490 | |