| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #include "bvh_intersector1.h" |
| 5 | #include "node_intersector1.h" |
| 6 | #include "bvh_traverser1.h" |
| 7 | |
| 8 | #include "../geometry/intersector_iterators.h" |
| 9 | #include "../geometry/triangle_intersector.h" |
| 10 | #include "../geometry/trianglev_intersector.h" |
| 11 | #include "../geometry/trianglev_mb_intersector.h" |
| 12 | #include "../geometry/trianglei_intersector.h" |
| 13 | #include "../geometry/quadv_intersector.h" |
| 14 | #include "../geometry/quadi_intersector.h" |
| 15 | #include "../geometry/curveNv_intersector.h" |
| 16 | #include "../geometry/curveNi_intersector.h" |
| 17 | #include "../geometry/curveNi_mb_intersector.h" |
| 18 | #include "../geometry/linei_intersector.h" |
| 19 | #include "../geometry/subdivpatch1_intersector.h" |
| 20 | #include "../geometry/object_intersector.h" |
| 21 | #include "../geometry/instance_intersector.h" |
| 22 | #include "../geometry/subgrid_intersector.h" |
| 23 | #include "../geometry/subgrid_mb_intersector.h" |
| 24 | #include "../geometry/curve_intersector_virtual.h" |
| 25 | |
| 26 | namespace embree |
| 27 | { |
| 28 | namespace isa |
| 29 | { |
| 30 | template<int N, int types, bool robust, typename PrimitiveIntersector1> |
| 31 | void BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::intersect(const Accel::Intersectors* __restrict__ This, |
| 32 | RayHit& __restrict__ ray, |
| 33 | IntersectContext* __restrict__ context) |
| 34 | { |
| 35 | const BVH* __restrict__ bvh = (const BVH*)This->ptr; |
| 36 | |
| 37 | /* we may traverse an empty BVH in case all geometry was invalid */ |
| 38 | if (bvh->root == BVH::emptyNode) |
| 39 | return; |
| 40 | |
| 41 | /* perform per ray precalculations required by the primitive intersector */ |
| 42 | Precalculations pre(ray, bvh); |
| 43 | |
| 44 | /* stack state */ |
| 45 | StackItemT<NodeRef> stack[stackSize]; // stack of nodes |
| 46 | StackItemT<NodeRef>* stackPtr = stack+1; // current stack pointer |
| 47 | StackItemT<NodeRef>* stackEnd = stack+stackSize; |
| 48 | stack[0].ptr = bvh->root; |
| 49 | stack[0].dist = neg_inf; |
| 50 | |
| 51 | if (bvh->root == BVH::emptyNode) |
| 52 | return; |
| 53 | |
| 54 | /* filter out invalid rays */ |
| 55 | #if defined(EMBREE_IGNORE_INVALID_RAYS) |
| 56 | if (!ray.valid()) return; |
| 57 | #endif |
| 58 | /* verify correct input */ |
| 59 | assert(ray.valid()); |
| 60 | assert(ray.tnear() >= 0.0f); |
| 61 | assert(!(types & BVH_MB) || (ray.time() >= 0.0f && ray.time() <= 1.0f)); |
| 62 | |
| 63 | /* load the ray into SIMD registers */ |
| 64 | TravRay<N,robust> tray(ray.org, ray.dir, max(ray.tnear(), 0.0f), max(ray.tfar, 0.0f)); |
| 65 | |
| 66 | /* initialize the node traverser */ |
| 67 | BVHNNodeTraverser1Hit<N, types> nodeTraverser; |
| 68 | |
| 69 | /* pop loop */ |
| 70 | while (true) pop: |
| 71 | { |
| 72 | /* pop next node */ |
| 73 | if (unlikely(stackPtr == stack)) break; |
| 74 | stackPtr--; |
| 75 | NodeRef cur = NodeRef(stackPtr->ptr); |
| 76 | |
| 77 | /* if popped node is too far, pop next one */ |
| 78 | if (unlikely(*(float*)&stackPtr->dist > ray.tfar)) |
| 79 | continue; |
| 80 | |
| 81 | /* downtraversal loop */ |
| 82 | while (true) |
| 83 | { |
| 84 | /* intersect node */ |
| 85 | size_t mask; vfloat<N> tNear; |
| 86 | STAT3(normal.trav_nodes,1,1,1); |
| 87 | bool nodeIntersected = BVHNNodeIntersector1<N, types, robust>::intersect(cur, tray, ray.time(), tNear, mask); |
| 88 | if (unlikely(!nodeIntersected)) { STAT3(normal.trav_nodes,-1,-1,-1); break; } |
| 89 | |
| 90 | /* if no child is hit, pop next node */ |
| 91 | if (unlikely(mask == 0)) |
| 92 | goto pop; |
| 93 | |
| 94 | /* select next child and push other children */ |
| 95 | nodeTraverser.traverseClosestHit(cur, mask, tNear, stackPtr, stackEnd); |
| 96 | } |
| 97 | |
| 98 | /* this is a leaf node */ |
| 99 | assert(cur != BVH::emptyNode); |
| 100 | STAT3(normal.trav_leaves,1,1,1); |
| 101 | size_t num; Primitive* prim = (Primitive*)cur.leaf(num); |
| 102 | size_t lazy_node = 0; |
| 103 | PrimitiveIntersector1::intersect(This, pre, ray, context, prim, num, tray, lazy_node); |
| 104 | tray.tfar = ray.tfar; |
| 105 | |
| 106 | /* push lazy node onto stack */ |
| 107 | if (unlikely(lazy_node)) { |
| 108 | stackPtr->ptr = lazy_node; |
| 109 | stackPtr->dist = neg_inf; |
| 110 | stackPtr++; |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | template<int N, int types, bool robust, typename PrimitiveIntersector1> |
| 116 | void BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::occluded(const Accel::Intersectors* __restrict__ This, |
| 117 | Ray& __restrict__ ray, |
| 118 | IntersectContext* __restrict__ context) |
| 119 | { |
| 120 | const BVH* __restrict__ bvh = (const BVH*)This->ptr; |
| 121 | |
| 122 | /* we may traverse an empty BVH in case all geometry was invalid */ |
| 123 | if (bvh->root == BVH::emptyNode) |
| 124 | return; |
| 125 | |
| 126 | /* early out for already occluded rays */ |
| 127 | if (unlikely(ray.tfar < 0.0f)) |
| 128 | return; |
| 129 | |
| 130 | /* perform per ray precalculations required by the primitive intersector */ |
| 131 | Precalculations pre(ray, bvh); |
| 132 | |
| 133 | /* stack state */ |
| 134 | NodeRef stack[stackSize]; // stack of nodes that still need to get traversed |
| 135 | NodeRef* stackPtr = stack+1; // current stack pointer |
| 136 | NodeRef* stackEnd = stack+stackSize; |
| 137 | stack[0] = bvh->root; |
| 138 | |
| 139 | /* filter out invalid rays */ |
| 140 | #if defined(EMBREE_IGNORE_INVALID_RAYS) |
| 141 | if (!ray.valid()) return; |
| 142 | #endif |
| 143 | |
| 144 | /* verify correct input */ |
| 145 | assert(ray.valid()); |
| 146 | assert(ray.tnear() >= 0.0f); |
| 147 | assert(!(types & BVH_MB) || (ray.time() >= 0.0f && ray.time() <= 1.0f)); |
| 148 | |
| 149 | /* load the ray into SIMD registers */ |
| 150 | TravRay<N,robust> tray(ray.org, ray.dir, max(ray.tnear(), 0.0f), max(ray.tfar, 0.0f)); |
| 151 | |
| 152 | /* initialize the node traverser */ |
| 153 | BVHNNodeTraverser1Hit<N, types> nodeTraverser; |
| 154 | |
| 155 | /* pop loop */ |
| 156 | while (true) pop: |
| 157 | { |
| 158 | /* pop next node */ |
| 159 | if (unlikely(stackPtr == stack)) break; |
| 160 | stackPtr--; |
| 161 | NodeRef cur = (NodeRef)*stackPtr; |
| 162 | |
| 163 | /* downtraversal loop */ |
| 164 | while (true) |
| 165 | { |
| 166 | /* intersect node */ |
| 167 | size_t mask; vfloat<N> tNear; |
| 168 | STAT3(shadow.trav_nodes,1,1,1); |
| 169 | bool nodeIntersected = BVHNNodeIntersector1<N, types, robust>::intersect(cur, tray, ray.time(), tNear, mask); |
| 170 | if (unlikely(!nodeIntersected)) { STAT3(shadow.trav_nodes,-1,-1,-1); break; } |
| 171 | |
| 172 | /* if no child is hit, pop next node */ |
| 173 | if (unlikely(mask == 0)) |
| 174 | goto pop; |
| 175 | |
| 176 | /* select next child and push other children */ |
| 177 | nodeTraverser.traverseAnyHit(cur, mask, tNear, stackPtr, stackEnd); |
| 178 | } |
| 179 | |
| 180 | /* this is a leaf node */ |
| 181 | assert(cur != BVH::emptyNode); |
| 182 | STAT3(shadow.trav_leaves,1,1,1); |
| 183 | size_t num; Primitive* prim = (Primitive*)cur.leaf(num); |
| 184 | size_t lazy_node = 0; |
| 185 | if (PrimitiveIntersector1::occluded(This, pre, ray, context, prim, num, tray, lazy_node)) { |
| 186 | ray.tfar = neg_inf; |
| 187 | break; |
| 188 | } |
| 189 | |
| 190 | /* push lazy node onto stack */ |
| 191 | if (unlikely(lazy_node)) { |
| 192 | *stackPtr = (NodeRef)lazy_node; |
| 193 | stackPtr++; |
| 194 | } |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | template<int N, int types, bool robust, typename PrimitiveIntersector1> |
| 199 | struct PointQueryDispatch |
| 200 | { |
| 201 | typedef typename PrimitiveIntersector1::Precalculations Precalculations; |
| 202 | typedef typename PrimitiveIntersector1::Primitive Primitive; |
| 203 | typedef BVHN<N> BVH; |
| 204 | typedef typename BVH::NodeRef NodeRef; |
| 205 | typedef typename BVH::AABBNode AABBNode; |
| 206 | typedef typename BVH::AABBNodeMB4D AABBNodeMB4D; |
| 207 | |
| 208 | static const size_t stackSize = 1+(N-1)*BVH::maxDepth+3; // +3 due to 16-wide store |
| 209 | |
| 210 | static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) |
| 211 | { |
| 212 | const BVH* __restrict__ bvh = (const BVH*)This->ptr; |
| 213 | |
| 214 | /* we may traverse an empty BVH in case all geometry was invalid */ |
| 215 | if (bvh->root == BVH::emptyNode) |
| 216 | return false; |
| 217 | |
| 218 | /* stack state */ |
| 219 | StackItemT<NodeRef> stack[stackSize]; // stack of nodes |
| 220 | StackItemT<NodeRef>* stackPtr = stack+1; // current stack pointer |
| 221 | StackItemT<NodeRef>* stackEnd = stack+stackSize; |
| 222 | stack[0].ptr = bvh->root; |
| 223 | stack[0].dist = neg_inf; |
| 224 | |
| 225 | /* verify correct input */ |
| 226 | assert(!(types & BVH_MB) || (query->time >= 0.0f && query->time <= 1.0f)); |
| 227 | |
| 228 | /* load the point query into SIMD registers */ |
| 229 | TravPointQuery<N> tquery(query->p, context->query_radius); |
| 230 | |
| 231 | /* initialize the node traverser */ |
| 232 | BVHNNodeTraverser1Hit<N,types> nodeTraverser; |
| 233 | |
| 234 | bool changed = false; |
| 235 | float cull_radius = context->query_type == POINT_QUERY_TYPE_SPHERE |
| 236 | ? query->radius * query->radius |
| 237 | : dot(context->query_radius, context->query_radius); |
| 238 | |
| 239 | /* pop loop */ |
| 240 | while (true) pop: |
| 241 | { |
| 242 | /* pop next node */ |
| 243 | if (unlikely(stackPtr == stack)) break; |
| 244 | stackPtr--; |
| 245 | NodeRef cur = NodeRef(stackPtr->ptr); |
| 246 | |
| 247 | /* if popped node is too far, pop next one */ |
| 248 | if (unlikely(*(float*)&stackPtr->dist > cull_radius)) |
| 249 | continue; |
| 250 | |
| 251 | /* downtraversal loop */ |
| 252 | while (true) |
| 253 | { |
| 254 | /* intersect node */ |
| 255 | size_t mask; vfloat<N> tNear; |
| 256 | STAT3(point_query.trav_nodes,1,1,1); |
| 257 | bool nodeIntersected; |
| 258 | if (likely(context->query_type == POINT_QUERY_TYPE_SPHERE)) { |
| 259 | nodeIntersected = BVHNNodePointQuerySphere1<N, types>::pointQuery(cur, tquery, query->time, tNear, mask); |
| 260 | } else { |
| 261 | nodeIntersected = BVHNNodePointQueryAABB1 <N, types>::pointQuery(cur, tquery, query->time, tNear, mask); |
| 262 | } |
| 263 | if (unlikely(!nodeIntersected)) { STAT3(point_query.trav_nodes,-1,-1,-1); break; } |
| 264 | |
| 265 | /* if no child is hit, pop next node */ |
| 266 | if (unlikely(mask == 0)) |
| 267 | goto pop; |
| 268 | |
| 269 | /* select next child and push other children */ |
| 270 | nodeTraverser.traverseClosestHit(cur, mask, tNear, stackPtr, stackEnd); |
| 271 | } |
| 272 | |
| 273 | /* this is a leaf node */ |
| 274 | assert(cur != BVH::emptyNode); |
| 275 | STAT3(point_query.trav_leaves,1,1,1); |
| 276 | size_t num; Primitive* prim = (Primitive*)cur.leaf(num); |
| 277 | size_t lazy_node = 0; |
| 278 | if (PrimitiveIntersector1::pointQuery(This, query, context, prim, num, tquery, lazy_node)) |
| 279 | { |
| 280 | changed = true; |
| 281 | tquery.rad = context->query_radius; |
| 282 | cull_radius = context->query_type == POINT_QUERY_TYPE_SPHERE |
| 283 | ? query->radius * query->radius |
| 284 | : dot(context->query_radius, context->query_radius); |
| 285 | } |
| 286 | |
| 287 | /* push lazy node onto stack */ |
| 288 | if (unlikely(lazy_node)) { |
| 289 | stackPtr->ptr = lazy_node; |
| 290 | stackPtr->dist = neg_inf; |
| 291 | stackPtr++; |
| 292 | } |
| 293 | } |
| 294 | return changed; |
| 295 | } |
| 296 | }; |
| 297 | |
| 298 | /* disable point queries for not yet supported geometry types */ |
| 299 | template<int N, int types, bool robust> |
| 300 | struct PointQueryDispatch<N, types, robust, VirtualCurveIntersector1> { |
| 301 | static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; } |
| 302 | }; |
| 303 | |
| 304 | template<int N, int types, bool robust> |
| 305 | struct PointQueryDispatch<N, types, robust, SubdivPatch1Intersector1> { |
| 306 | static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; } |
| 307 | }; |
| 308 | |
| 309 | template<int N, int types, bool robust> |
| 310 | struct PointQueryDispatch<N, types, robust, SubdivPatch1MBIntersector1> { |
| 311 | static __forceinline bool pointQuery(const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) { return false; } |
| 312 | }; |
| 313 | |
| 314 | template<int N, int types, bool robust, typename PrimitiveIntersector1> |
| 315 | bool BVHNIntersector1<N, types, robust, PrimitiveIntersector1>::pointQuery( |
| 316 | const Accel::Intersectors* This, PointQuery* query, PointQueryContext* context) |
| 317 | { |
| 318 | return PointQueryDispatch<N, types, robust, PrimitiveIntersector1>::pointQuery(This, query, context); |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | |