| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #include "bvh_intersector_hybrid.h" |
| 5 | #include "bvh_traverser1.h" |
| 6 | #include "node_intersector1.h" |
| 7 | #include "node_intersector_packet.h" |
| 8 | |
| 9 | #include "../geometry/intersector_iterators.h" |
| 10 | #include "../geometry/triangle_intersector.h" |
| 11 | #include "../geometry/trianglev_intersector.h" |
| 12 | #include "../geometry/trianglev_mb_intersector.h" |
| 13 | #include "../geometry/trianglei_intersector.h" |
| 14 | #include "../geometry/quadv_intersector.h" |
| 15 | #include "../geometry/quadi_intersector.h" |
| 16 | #include "../geometry/curveNv_intersector.h" |
| 17 | #include "../geometry/curveNi_intersector.h" |
| 18 | #include "../geometry/curveNi_mb_intersector.h" |
| 19 | #include "../geometry/linei_intersector.h" |
| 20 | #include "../geometry/subdivpatch1_intersector.h" |
| 21 | #include "../geometry/object_intersector.h" |
| 22 | #include "../geometry/instance_intersector.h" |
| 23 | #include "../geometry/subgrid_intersector.h" |
| 24 | #include "../geometry/subgrid_mb_intersector.h" |
| 25 | #include "../geometry/curve_intersector_virtual.h" |
| 26 | |
| 27 | #define SWITCH_DURING_DOWN_TRAVERSAL 1 |
| 28 | #define FORCE_SINGLE_MODE 0 |
| 29 | |
| 30 | #define ENABLE_FAST_COHERENT_CODEPATHS 1 |
| 31 | |
| 32 | namespace embree |
| 33 | { |
| 34 | namespace isa |
| 35 | { |
| 36 | template<int N, int K, int types, bool robust, typename PrimitiveIntersectorK, bool single> |
| 37 | void BVHNIntersectorKHybrid<N, K, types, robust, PrimitiveIntersectorK, single>::intersect1(Accel::Intersectors* This, |
| 38 | const BVH* bvh, |
| 39 | NodeRef root, |
| 40 | size_t k, |
| 41 | Precalculations& pre, |
| 42 | RayHitK<K>& ray, |
| 43 | const TravRayK<K, robust>& tray, |
| 44 | IntersectContext* context) |
| 45 | { |
| 46 | /* stack state */ |
| 47 | StackItemT<NodeRef> stack[stackSizeSingle]; // stack of nodes |
| 48 | StackItemT<NodeRef>* stackPtr = stack + 1; // current stack pointer |
| 49 | StackItemT<NodeRef>* stackEnd = stack + stackSizeSingle; |
| 50 | stack[0].ptr = root; |
| 51 | stack[0].dist = neg_inf; |
| 52 | |
| 53 | /* load the ray into SIMD registers */ |
| 54 | TravRay<N,robust> tray1; |
| 55 | tray1.template init<K>(k, tray.org, tray.dir, tray.rdir, tray.nearXYZ, tray.tnear[k], tray.tfar[k]); |
| 56 | |
| 57 | /* pop loop */ |
| 58 | while (true) pop: |
| 59 | { |
| 60 | /* pop next node */ |
| 61 | if (unlikely(stackPtr == stack)) break; |
| 62 | stackPtr--; |
| 63 | NodeRef cur = NodeRef(stackPtr->ptr); |
| 64 | |
| 65 | /* if popped node is too far, pop next one */ |
| 66 | if (unlikely(*(float*)&stackPtr->dist > ray.tfar[k])) |
| 67 | continue; |
| 68 | |
| 69 | /* downtraversal loop */ |
| 70 | while (true) |
| 71 | { |
| 72 | /* intersect node */ |
| 73 | size_t mask; vfloat<N> tNear; |
| 74 | STAT3(normal.trav_nodes, 1, 1, 1); |
| 75 | bool nodeIntersected = BVHNNodeIntersector1<N, types, robust>::intersect(cur, tray1, ray.time()[k], tNear, mask); |
| 76 | if (unlikely(!nodeIntersected)) { STAT3(normal.trav_nodes,-1,-1,-1); break; } |
| 77 | |
| 78 | /* if no child is hit, pop next node */ |
| 79 | if (unlikely(mask == 0)) |
| 80 | goto pop; |
| 81 | |
| 82 | /* select next child and push other children */ |
| 83 | BVHNNodeTraverser1Hit<N, types>::traverseClosestHit(cur, mask, tNear, stackPtr, stackEnd); |
| 84 | } |
| 85 | |
| 86 | /* this is a leaf node */ |
| 87 | assert(cur != BVH::emptyNode); |
| 88 | STAT3(normal.trav_leaves, 1, 1, 1); |
| 89 | size_t num; Primitive* prim = (Primitive*)cur.leaf(num); |
| 90 | |
| 91 | size_t lazy_node = 0; |
| 92 | PrimitiveIntersectorK::intersect(This, pre, ray, k, context, prim, num, tray1, lazy_node); |
| 93 | |
| 94 | tray1.tfar = ray.tfar[k]; |
| 95 | |
| 96 | if (unlikely(lazy_node)) { |
| 97 | stackPtr->ptr = lazy_node; |
| 98 | stackPtr->dist = neg_inf; |
| 99 | stackPtr++; |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | template<int N, int K, int types, bool robust, typename PrimitiveIntersectorK, bool single> |
| 105 | void BVHNIntersectorKHybrid<N, K, types, robust, PrimitiveIntersectorK, single>::intersect(vint<K>* __restrict__ valid_i, |
| 106 | Accel::Intersectors* __restrict__ This, |
| 107 | RayHitK<K>& __restrict__ ray, |
| 108 | IntersectContext* __restrict__ context) |
| 109 | { |
| 110 | BVH* __restrict__ bvh = (BVH*)This->ptr; |
| 111 | |
| 112 | /* we may traverse an empty BVH in case all geometry was invalid */ |
| 113 | if (bvh->root == BVH::emptyNode) |
| 114 | return; |
| 115 | |
| 116 | #if ENABLE_FAST_COHERENT_CODEPATHS == 1 |
| 117 | assert(context); |
| 118 | if (unlikely(types == BVH_AN1 && context->user && context->isCoherent())) |
| 119 | { |
| 120 | intersectCoherent(valid_i, This, ray, context); |
| 121 | return; |
| 122 | } |
| 123 | #endif |
| 124 | |
| 125 | /* filter out invalid rays */ |
| 126 | vbool<K> valid = *valid_i == -1; |
| 127 | #if defined(EMBREE_IGNORE_INVALID_RAYS) |
| 128 | valid &= ray.valid(); |
| 129 | #endif |
| 130 | |
| 131 | /* return if there are no valid rays */ |
| 132 | size_t valid_bits = movemask(valid); |
| 133 | |
| 134 | #if defined(__AVX__) |
| 135 | STAT3(normal.trav_hit_boxes[popcnt(movemask(valid))], 1, 1, 1); |
| 136 | #endif |
| 137 | |
| 138 | if (unlikely(valid_bits == 0)) return; |
| 139 | |
| 140 | /* verify correct input */ |
| 141 | assert(all(valid, ray.valid())); |
| 142 | assert(all(valid, ray.tnear() >= 0.0f)); |
| 143 | assert(!(types & BVH_MB) || all(valid, (ray.time() >= 0.0f) & (ray.time() <= 1.0f))); |
| 144 | Precalculations pre(valid, ray); |
| 145 | |
| 146 | /* load ray */ |
| 147 | TravRayK<K, robust> tray(ray.org, ray.dir, single ? N : 0); |
| 148 | const vfloat<K> org_ray_tnear = max(ray.tnear(), 0.0f); |
| 149 | const vfloat<K> org_ray_tfar = max(ray.tfar , 0.0f); |
| 150 | |
| 151 | if (single) |
| 152 | { |
| 153 | tray.tnear = select(valid, org_ray_tnear, vfloat<K>(pos_inf)); |
| 154 | tray.tfar = select(valid, org_ray_tfar , vfloat<K>(neg_inf)); |
| 155 | |
| 156 | for (; valid_bits!=0; ) { |
| 157 | const size_t i = bscf(valid_bits); |
| 158 | intersect1(This, bvh, bvh->root, i, pre, ray, tray, context); |
| 159 | } |
| 160 | return; |
| 161 | } |
| 162 | |
| 163 | /* determine switch threshold based on flags */ |
| 164 | const size_t switchThreshold = (context->user && context->isCoherent()) ? 2 : switchThresholdIncoherent; |
| 165 | |
| 166 | vint<K> octant = ray.octant(); |
| 167 | octant = select(valid, octant, vint<K>(0xffffffff)); |
| 168 | |
| 169 | /* test whether we have ray with opposing direction signs in the packet */ |
| 170 | bool split = false; |
| 171 | { |
| 172 | size_t bits = valid_bits; |
| 173 | vbool<K> vsplit( false ); |
| 174 | do |
| 175 | { |
| 176 | const size_t valid_index = bsf(bits); |
| 177 | vbool<K> octant_valid = octant[valid_index] == octant; |
| 178 | bits &= ~(size_t)movemask(octant_valid); |
| 179 | vsplit |= vint<K>(octant[valid_index]) == (octant^vint<K>(0x7)); |
| 180 | } while (bits); |
| 181 | if (any(vsplit)) split = true; |
| 182 | } |
| 183 | |
| 184 | do |
| 185 | { |
| 186 | const size_t valid_index = bsf(valid_bits); |
| 187 | const vint<K> diff_octant = vint<K>(octant[valid_index])^octant; |
| 188 | const vint<K> count_diff_octant = \ |
| 189 | ((diff_octant >> 2) & 1) + |
| 190 | ((diff_octant >> 1) & 1) + |
| 191 | ((diff_octant >> 0) & 1); |
| 192 | |
| 193 | vbool<K> octant_valid = (count_diff_octant <= 1) & (octant != vint<K>(0xffffffff)); |
| 194 | if (!single || !split) octant_valid = valid; // deactivate octant sorting in pure chunk mode, otherwise instance traversal performance goes down |
| 195 | |
| 196 | |
| 197 | octant = select(octant_valid,vint<K>(0xffffffff),octant); |
| 198 | valid_bits &= ~(size_t)movemask(octant_valid); |
| 199 | |
| 200 | tray.tnear = select(octant_valid, org_ray_tnear, vfloat<K>(pos_inf)); |
| 201 | tray.tfar = select(octant_valid, org_ray_tfar , vfloat<K>(neg_inf)); |
| 202 | |
| 203 | /* allocate stack and push root node */ |
| 204 | vfloat<K> stack_near[stackSizeChunk]; |
| 205 | NodeRef stack_node[stackSizeChunk]; |
| 206 | stack_node[0] = BVH::invalidNode; |
| 207 | stack_near[0] = inf; |
| 208 | stack_node[1] = bvh->root; |
| 209 | stack_near[1] = tray.tnear; |
| 210 | NodeRef* stackEnd MAYBE_UNUSED = stack_node+stackSizeChunk; |
| 211 | NodeRef* __restrict__ sptr_node = stack_node + 2; |
| 212 | vfloat<K>* __restrict__ sptr_near = stack_near + 2; |
| 213 | |
| 214 | while (1) pop: |
| 215 | { |
| 216 | /* pop next node from stack */ |
| 217 | assert(sptr_node > stack_node); |
| 218 | sptr_node--; |
| 219 | sptr_near--; |
| 220 | NodeRef cur = *sptr_node; |
| 221 | if (unlikely(cur == BVH::invalidNode)) { |
| 222 | assert(sptr_node == stack_node); |
| 223 | break; |
| 224 | } |
| 225 | |
| 226 | /* cull node if behind closest hit point */ |
| 227 | vfloat<K> curDist = *sptr_near; |
| 228 | const vbool<K> active = curDist < tray.tfar; |
| 229 | if (unlikely(none(active))) |
| 230 | continue; |
| 231 | |
| 232 | /* switch to single ray traversal */ |
| 233 | #if (!defined(__WIN32__) || defined(__X86_64__)) && ((defined(__aarch64__)) || defined(__SSE4_2__)) |
| 234 | #if FORCE_SINGLE_MODE == 0 |
| 235 | if (single) |
| 236 | #endif |
| 237 | { |
| 238 | size_t bits = movemask(active); |
| 239 | #if FORCE_SINGLE_MODE == 0 |
| 240 | if (unlikely(popcnt(bits) <= switchThreshold)) |
| 241 | #endif |
| 242 | { |
| 243 | for (; bits!=0; ) { |
| 244 | const size_t i = bscf(bits); |
| 245 | intersect1(This, bvh, cur, i, pre, ray, tray, context); |
| 246 | } |
| 247 | tray.tfar = min(tray.tfar, ray.tfar); |
| 248 | continue; |
| 249 | } |
| 250 | } |
| 251 | #endif |
| 252 | while (likely(!cur.isLeaf())) |
| 253 | { |
| 254 | /* process nodes */ |
| 255 | const vbool<K> valid_node = tray.tfar > curDist; |
| 256 | STAT3(normal.trav_nodes, 1, popcnt(valid_node), K); |
| 257 | const NodeRef nodeRef = cur; |
| 258 | const BaseNode* __restrict__ const node = nodeRef.baseNode(); |
| 259 | |
| 260 | /* set cur to invalid */ |
| 261 | cur = BVH::emptyNode; |
| 262 | curDist = pos_inf; |
| 263 | |
| 264 | size_t num_child_hits = 0; |
| 265 | |
| 266 | for (unsigned i = 0; i < N; i++) |
| 267 | { |
| 268 | const NodeRef child = node->children[i]; |
| 269 | if (unlikely(child == BVH::emptyNode)) break; |
| 270 | vfloat<K> lnearP; |
| 271 | vbool<K> lhit = valid_node; |
| 272 | BVHNNodeIntersectorK<N, K, types, robust>::intersect(nodeRef, i, tray, ray.time(), lnearP, lhit); |
| 273 | |
| 274 | /* if we hit the child we choose to continue with that child if it |
| 275 | is closer than the current next child, or we push it onto the stack */ |
| 276 | if (likely(any(lhit))) |
| 277 | { |
| 278 | assert(sptr_node < stackEnd); |
| 279 | assert(child != BVH::emptyNode); |
| 280 | const vfloat<K> childDist = select(lhit, lnearP, inf); |
| 281 | /* push cur node onto stack and continue with hit child */ |
| 282 | if (any(childDist < curDist)) |
| 283 | { |
| 284 | if (likely(cur != BVH::emptyNode)) { |
| 285 | num_child_hits++; |
| 286 | *sptr_node = cur; sptr_node++; |
| 287 | *sptr_near = curDist; sptr_near++; |
| 288 | } |
| 289 | curDist = childDist; |
| 290 | cur = child; |
| 291 | } |
| 292 | |
| 293 | /* push hit child onto stack */ |
| 294 | else { |
| 295 | num_child_hits++; |
| 296 | *sptr_node = child; sptr_node++; |
| 297 | *sptr_near = childDist; sptr_near++; |
| 298 | } |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | #if defined(__AVX__) |
| 303 | //STAT3(normal.trav_hit_boxes[num_child_hits], 1, 1, 1); |
| 304 | #endif |
| 305 | |
| 306 | if (unlikely(cur == BVH::emptyNode)) |
| 307 | goto pop; |
| 308 | |
| 309 | /* improved distance sorting for 3 or more hits */ |
| 310 | if (unlikely(num_child_hits >= 2)) |
| 311 | { |
| 312 | if (any(sptr_near[-2] < sptr_near[-1])) |
| 313 | { |
| 314 | std::swap(sptr_near[-2],sptr_near[-1]); |
| 315 | std::swap(sptr_node[-2],sptr_node[-1]); |
| 316 | } |
| 317 | if (unlikely(num_child_hits >= 3)) |
| 318 | { |
| 319 | if (any(sptr_near[-3] < sptr_near[-1])) |
| 320 | { |
| 321 | std::swap(sptr_near[-3],sptr_near[-1]); |
| 322 | std::swap(sptr_node[-3],sptr_node[-1]); |
| 323 | } |
| 324 | if (any(sptr_near[-3] < sptr_near[-2])) |
| 325 | { |
| 326 | std::swap(sptr_near[-3],sptr_near[-2]); |
| 327 | std::swap(sptr_node[-3],sptr_node[-2]); |
| 328 | } |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | #if SWITCH_DURING_DOWN_TRAVERSAL == 1 |
| 333 | if (single) |
| 334 | { |
| 335 | // seems to be the best place for testing utilization |
| 336 | if (unlikely(popcnt(tray.tfar > curDist) <= switchThreshold)) |
| 337 | { |
| 338 | *sptr_node++ = cur; |
| 339 | *sptr_near++ = curDist; |
| 340 | goto pop; |
| 341 | } |
| 342 | } |
| 343 | #endif |
| 344 | } |
| 345 | |
| 346 | /* return if stack is empty */ |
| 347 | if (unlikely(cur == BVH::invalidNode)) { |
| 348 | assert(sptr_node == stack_node); |
| 349 | break; |
| 350 | } |
| 351 | |
| 352 | /* intersect leaf */ |
| 353 | assert(cur != BVH::emptyNode); |
| 354 | const vbool<K> valid_leaf = tray.tfar > curDist; |
| 355 | STAT3(normal.trav_leaves, 1, popcnt(valid_leaf), K); |
| 356 | if (unlikely(none(valid_leaf))) continue; |
| 357 | size_t items; const Primitive* prim = (Primitive*)cur.leaf(items); |
| 358 | |
| 359 | size_t lazy_node = 0; |
| 360 | PrimitiveIntersectorK::intersect(valid_leaf, This, pre, ray, context, prim, items, tray, lazy_node); |
| 361 | tray.tfar = select(valid_leaf, ray.tfar, tray.tfar); |
| 362 | |
| 363 | if (unlikely(lazy_node)) { |
| 364 | *sptr_node = lazy_node; sptr_node++; |
| 365 | *sptr_near = neg_inf; sptr_near++; |
| 366 | } |
| 367 | } |
| 368 | } while(valid_bits); |
| 369 | } |
| 370 | |
| 371 | |
| 372 | template<int N, int K, int types, bool robust, typename PrimitiveIntersectorK, bool single> |
| 373 | void BVHNIntersectorKHybrid<N, K, types, robust, PrimitiveIntersectorK, single>::intersectCoherent(vint<K>* __restrict__ valid_i, |
| 374 | Accel::Intersectors* __restrict__ This, |
| 375 | RayHitK<K>& __restrict__ ray, |
| 376 | IntersectContext* context) |
| 377 | { |
| 378 | BVH* __restrict__ bvh = (BVH*)This->ptr; |
| 379 | |
| 380 | /* filter out invalid rays */ |
| 381 | vbool<K> valid = *valid_i == -1; |
| 382 | #if defined(EMBREE_IGNORE_INVALID_RAYS) |
| 383 | valid &= ray.valid(); |
| 384 | #endif |
| 385 | |
| 386 | /* return if there are no valid rays */ |
| 387 | size_t valid_bits = movemask(valid); |
| 388 | if (unlikely(valid_bits == 0)) return; |
| 389 | |
| 390 | /* verify correct input */ |
| 391 | assert(all(valid, ray.valid())); |
| 392 | assert(all(valid, ray.tnear() >= 0.0f)); |
| 393 | assert(!(types & BVH_MB) || all(valid, (ray.time() >= 0.0f) & (ray.time() <= 1.0f))); |
| 394 | Precalculations pre(valid, ray); |
| 395 | |
| 396 | /* load ray */ |
| 397 | TravRayK<K, robust> tray(ray.org, ray.dir, single ? N : 0); |
| 398 | const vfloat<K> org_ray_tnear = max(ray.tnear(), 0.0f); |
| 399 | const vfloat<K> org_ray_tfar = max(ray.tfar , 0.0f); |
| 400 | |
| 401 | vint<K> octant = ray.octant(); |
| 402 | octant = select(valid, octant, vint<K>(0xffffffff)); |
| 403 | |
| 404 | do |
| 405 | { |
| 406 | const size_t valid_index = bsf(valid_bits); |
| 407 | const vbool<K> octant_valid = octant[valid_index] == octant; |
| 408 | valid_bits &= ~(size_t)movemask(octant_valid); |
| 409 | |
| 410 | tray.tnear = select(octant_valid, org_ray_tnear, vfloat<K>(pos_inf)); |
| 411 | tray.tfar = select(octant_valid, org_ray_tfar , vfloat<K>(neg_inf)); |
| 412 | |
| 413 | Frustum<robust> frustum; |
| 414 | frustum.template init<K>(octant_valid, tray.org, tray.rdir, tray.tnear, tray.tfar, N); |
| 415 | |
| 416 | StackItemT<NodeRef> stack[stackSizeSingle]; // stack of nodes |
| 417 | StackItemT<NodeRef>* stackPtr = stack + 1; // current stack pointer |
| 418 | stack[0].ptr = bvh->root; |
| 419 | stack[0].dist = neg_inf; |
| 420 | |
| 421 | while (1) pop: |
| 422 | { |
| 423 | /* pop next node from stack */ |
| 424 | if (unlikely(stackPtr == stack)) break; |
| 425 | |
| 426 | stackPtr--; |
| 427 | NodeRef cur = NodeRef(stackPtr->ptr); |
| 428 | |
| 429 | /* cull node if behind closest hit point */ |
| 430 | vfloat<K> curDist = *(float*)&stackPtr->dist; |
| 431 | const vbool<K> active = curDist < tray.tfar; |
| 432 | if (unlikely(none(active))) continue; |
| 433 | |
| 434 | while (likely(!cur.isLeaf())) |
| 435 | { |
| 436 | /* process nodes */ |
| 437 | //STAT3(normal.trav_nodes, 1, popcnt(valid_node), K); |
| 438 | const NodeRef nodeRef = cur; |
| 439 | const AABBNode* __restrict__ const node = nodeRef.getAABBNode(); |
| 440 | |
| 441 | vfloat<N> fmin; |
| 442 | size_t m_frustum_node = intersectNodeFrustum<N>(node, frustum, fmin); |
| 443 | |
| 444 | if (unlikely(!m_frustum_node)) goto pop; |
| 445 | cur = BVH::emptyNode; |
| 446 | curDist = pos_inf; |
| 447 | |
| 448 | #if defined(__AVX__) |
| 449 | //STAT3(normal.trav_hit_boxes[popcnt(m_frustum_node)], 1, 1, 1); |
| 450 | #endif |
| 451 | size_t num_child_hits = 0; |
| 452 | do { |
| 453 | const size_t i = bscf(m_frustum_node); |
| 454 | vfloat<K> lnearP; |
| 455 | vbool<K> lhit = false; // motion blur is not supported, so the initial value will be ignored |
| 456 | STAT3(normal.trav_nodes, 1, 1, 1); |
| 457 | BVHNNodeIntersectorK<N, K, types, robust>::intersect(nodeRef, i, tray, ray.time(), lnearP, lhit); |
| 458 | |
| 459 | if (likely(any(lhit))) |
| 460 | { |
| 461 | const vfloat<K> childDist = fmin[i]; |
| 462 | const NodeRef child = node->child(i); |
| 463 | BVHN<N>::prefetch(child); |
| 464 | if (any(childDist < curDist)) |
| 465 | { |
| 466 | if (likely(cur != BVH::emptyNode)) { |
| 467 | num_child_hits++; |
| 468 | stackPtr->ptr = cur; |
| 469 | *(float*)&stackPtr->dist = toScalar(curDist); |
| 470 | stackPtr++; |
| 471 | } |
| 472 | curDist = childDist; |
| 473 | cur = child; |
| 474 | } |
| 475 | /* push hit child onto stack */ |
| 476 | else { |
| 477 | num_child_hits++; |
| 478 | stackPtr->ptr = child; |
| 479 | *(float*)&stackPtr->dist = toScalar(childDist); |
| 480 | stackPtr++; |
| 481 | } |
| 482 | } |
| 483 | } while(m_frustum_node); |
| 484 | |
| 485 | if (unlikely(cur == BVH::emptyNode)) goto pop; |
| 486 | |
| 487 | /* improved distance sorting for 3 or more hits */ |
| 488 | if (unlikely(num_child_hits >= 2)) |
| 489 | { |
| 490 | if (stackPtr[-2].dist < stackPtr[-1].dist) |
| 491 | std::swap(stackPtr[-2],stackPtr[-1]); |
| 492 | if (unlikely(num_child_hits >= 3)) |
| 493 | { |
| 494 | if (stackPtr[-3].dist < stackPtr[-1].dist) |
| 495 | std::swap(stackPtr[-3],stackPtr[-1]); |
| 496 | if (stackPtr[-3].dist < stackPtr[-2].dist) |
| 497 | std::swap(stackPtr[-3],stackPtr[-2]); |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | /* intersect leaf */ |
| 503 | assert(cur != BVH::invalidNode); |
| 504 | assert(cur != BVH::emptyNode); |
| 505 | const vbool<K> valid_leaf = tray.tfar > curDist; |
| 506 | STAT3(normal.trav_leaves, 1, popcnt(valid_leaf), K); |
| 507 | if (unlikely(none(valid_leaf))) continue; |
| 508 | size_t items; const Primitive* prim = (Primitive*)cur.leaf(items); |
| 509 | |
| 510 | size_t lazy_node = 0; |
| 511 | PrimitiveIntersectorK::intersect(valid_leaf, This, pre, ray, context, prim, items, tray, lazy_node); |
| 512 | |
| 513 | /* reduce max distance interval on successful intersection */ |
| 514 | if (likely(any((ray.tfar < tray.tfar) & valid_leaf))) |
| 515 | { |
| 516 | tray.tfar = select(valid_leaf, ray.tfar, tray.tfar); |
| 517 | frustum.template updateMaxDist<K>(tray.tfar); |
| 518 | } |
| 519 | |
| 520 | if (unlikely(lazy_node)) { |
| 521 | stackPtr->ptr = lazy_node; |
| 522 | stackPtr->dist = neg_inf; |
| 523 | stackPtr++; |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | } while(valid_bits); |
| 528 | } |
| 529 | |
| 530 | // =================================================================================================================================================================== |
| 531 | // =================================================================================================================================================================== |
| 532 | // =================================================================================================================================================================== |
| 533 | |
| 534 | template<int N, int K, int types, bool robust, typename PrimitiveIntersectorK, bool single> |
| 535 | bool BVHNIntersectorKHybrid<N, K, types, robust, PrimitiveIntersectorK, single>::occluded1(Accel::Intersectors* This, |
| 536 | const BVH* bvh, |
| 537 | NodeRef root, |
| 538 | size_t k, |
| 539 | Precalculations& pre, |
| 540 | RayK<K>& ray, |
| 541 | const TravRayK<K, robust>& tray, |
| 542 | IntersectContext* context) |
| 543 | { |
| 544 | /* stack state */ |
| 545 | NodeRef stack[stackSizeSingle]; // stack of nodes that still need to get traversed |
| 546 | NodeRef* stackPtr = stack+1; // current stack pointer |
| 547 | NodeRef* stackEnd = stack+stackSizeSingle; |
| 548 | stack[0] = root; |
| 549 | |
| 550 | /* load the ray into SIMD registers */ |
| 551 | TravRay<N,robust> tray1; |
| 552 | tray1.template init<K>(k, tray.org, tray.dir, tray.rdir, tray.nearXYZ, tray.tnear[k], tray.tfar[k]); |
| 553 | |
| 554 | /* pop loop */ |
| 555 | while (true) pop: |
| 556 | { |
| 557 | /* pop next node */ |
| 558 | if (unlikely(stackPtr == stack)) break; |
| 559 | stackPtr--; |
| 560 | NodeRef cur = (NodeRef)*stackPtr; |
| 561 | |
| 562 | /* downtraversal loop */ |
| 563 | while (true) |
| 564 | { |
| 565 | /* intersect node */ |
| 566 | size_t mask; vfloat<N> tNear; |
| 567 | STAT3(shadow.trav_nodes, 1, 1, 1); |
| 568 | bool nodeIntersected = BVHNNodeIntersector1<N, types, robust>::intersect(cur, tray1, ray.time()[k], tNear, mask); |
| 569 | if (unlikely(!nodeIntersected)) { STAT3(shadow.trav_nodes,-1,-1,-1); break; } |
| 570 | |
| 571 | /* if no child is hit, pop next node */ |
| 572 | if (unlikely(mask == 0)) |
| 573 | goto pop; |
| 574 | |
| 575 | /* select next child and push other children */ |
| 576 | BVHNNodeTraverser1Hit<N, types>::traverseAnyHit(cur, mask, tNear, stackPtr, stackEnd); |
| 577 | } |
| 578 | |
| 579 | /* this is a leaf node */ |
| 580 | assert(cur != BVH::emptyNode); |
| 581 | STAT3(shadow.trav_leaves, 1, 1, 1); |
| 582 | size_t num; Primitive* prim = (Primitive*)cur.leaf(num); |
| 583 | |
| 584 | size_t lazy_node = 0; |
| 585 | if (PrimitiveIntersectorK::occluded(This, pre, ray, k, context, prim, num, tray1, lazy_node)) { |
| 586 | ray.tfar[k] = neg_inf; |
| 587 | return true; |
| 588 | } |
| 589 | |
| 590 | if (unlikely(lazy_node)) { |
| 591 | *stackPtr = lazy_node; |
| 592 | stackPtr++; |
| 593 | } |
| 594 | } |
| 595 | return false; |
| 596 | } |
| 597 | |
| 598 | template<int N, int K, int types, bool robust, typename PrimitiveIntersectorK, bool single> |
| 599 | void BVHNIntersectorKHybrid<N, K, types, robust, PrimitiveIntersectorK, single>::occluded(vint<K>* __restrict__ valid_i, |
| 600 | Accel::Intersectors* __restrict__ This, |
| 601 | RayK<K>& __restrict__ ray, |
| 602 | IntersectContext* context) |
| 603 | { |
| 604 | BVH* __restrict__ bvh = (BVH*)This->ptr; |
| 605 | |
| 606 | /* we may traverse an empty BVH in case all geometry was invalid */ |
| 607 | if (bvh->root == BVH::emptyNode) |
| 608 | return; |
| 609 | |
| 610 | #if ENABLE_FAST_COHERENT_CODEPATHS == 1 |
| 611 | assert(context); |
| 612 | if (unlikely(types == BVH_AN1 && context->user && context->isCoherent())) |
| 613 | { |
| 614 | occludedCoherent(valid_i, This, ray, context); |
| 615 | return; |
| 616 | } |
| 617 | #endif |
| 618 | |
| 619 | /* filter out already occluded and invalid rays */ |
| 620 | vbool<K> valid = (*valid_i == -1) & (ray.tfar >= 0.0f); |
| 621 | #if defined(EMBREE_IGNORE_INVALID_RAYS) |
| 622 | valid &= ray.valid(); |
| 623 | #endif |
| 624 | |
| 625 | /* return if there are no valid rays */ |
| 626 | const size_t valid_bits = movemask(valid); |
| 627 | if (unlikely(valid_bits == 0)) return; |
| 628 | |
| 629 | /* verify correct input */ |
| 630 | assert(all(valid, ray.valid())); |
| 631 | assert(all(valid, ray.tnear() >= 0.0f)); |
| 632 | assert(!(types & BVH_MB) || all(valid, (ray.time() >= 0.0f) & (ray.time() <= 1.0f))); |
| 633 | Precalculations pre(valid, ray); |
| 634 | |
| 635 | /* load ray */ |
| 636 | TravRayK<K, robust> tray(ray.org, ray.dir, single ? N : 0); |
| 637 | const vfloat<K> org_ray_tnear = max(ray.tnear(), 0.0f); |
| 638 | const vfloat<K> org_ray_tfar = max(ray.tfar , 0.0f); |
| 639 | |
| 640 | tray.tnear = select(valid, org_ray_tnear, vfloat<K>(pos_inf)); |
| 641 | tray.tfar = select(valid, org_ray_tfar , vfloat<K>(neg_inf)); |
| 642 | |
| 643 | vbool<K> terminated = !valid; |
| 644 | const vfloat<K> inf = vfloat<K>(pos_inf); |
| 645 | |
| 646 | /* determine switch threshold based on flags */ |
| 647 | const size_t switchThreshold = (context->user && context->isCoherent()) ? 2 : switchThresholdIncoherent; |
| 648 | |
| 649 | /* allocate stack and push root node */ |
| 650 | vfloat<K> stack_near[stackSizeChunk]; |
| 651 | NodeRef stack_node[stackSizeChunk]; |
| 652 | stack_node[0] = BVH::invalidNode; |
| 653 | stack_near[0] = inf; |
| 654 | stack_node[1] = bvh->root; |
| 655 | stack_near[1] = tray.tnear; |
| 656 | NodeRef* stackEnd MAYBE_UNUSED = stack_node+stackSizeChunk; |
| 657 | NodeRef* __restrict__ sptr_node = stack_node + 2; |
| 658 | vfloat<K>* __restrict__ sptr_near = stack_near + 2; |
| 659 | |
| 660 | while (1) pop: |
| 661 | { |
| 662 | /* pop next node from stack */ |
| 663 | assert(sptr_node > stack_node); |
| 664 | sptr_node--; |
| 665 | sptr_near--; |
| 666 | NodeRef cur = *sptr_node; |
| 667 | if (unlikely(cur == BVH::invalidNode)) { |
| 668 | assert(sptr_node == stack_node); |
| 669 | break; |
| 670 | } |
| 671 | |
| 672 | /* cull node if behind closest hit point */ |
| 673 | vfloat<K> curDist = *sptr_near; |
| 674 | const vbool<K> active = curDist < tray.tfar; |
| 675 | if (unlikely(none(active))) |
| 676 | continue; |
| 677 | |
| 678 | /* switch to single ray traversal */ |
| 679 | #if (!defined(__WIN32__) || defined(__X86_64__)) && ((defined(__aarch64__)) || defined(__SSE4_2__)) |
| 680 | #if FORCE_SINGLE_MODE == 0 |
| 681 | if (single) |
| 682 | #endif |
| 683 | { |
| 684 | size_t bits = movemask(active); |
| 685 | #if FORCE_SINGLE_MODE == 0 |
| 686 | if (unlikely(popcnt(bits) <= switchThreshold)) |
| 687 | #endif |
| 688 | { |
| 689 | for (; bits!=0; ) { |
| 690 | const size_t i = bscf(bits); |
| 691 | if (occluded1(This, bvh, cur, i, pre, ray, tray, context)) |
| 692 | set(terminated, i); |
| 693 | } |
| 694 | if (all(terminated)) break; |
| 695 | tray.tfar = select(terminated, vfloat<K>(neg_inf), tray.tfar); |
| 696 | continue; |
| 697 | } |
| 698 | } |
| 699 | #endif |
| 700 | |
| 701 | while (likely(!cur.isLeaf())) |
| 702 | { |
| 703 | /* process nodes */ |
| 704 | const vbool<K> valid_node = tray.tfar > curDist; |
| 705 | STAT3(shadow.trav_nodes, 1, popcnt(valid_node), K); |
| 706 | const NodeRef nodeRef = cur; |
| 707 | const BaseNode* __restrict__ const node = nodeRef.baseNode(); |
| 708 | |
| 709 | /* set cur to invalid */ |
| 710 | cur = BVH::emptyNode; |
| 711 | curDist = pos_inf; |
| 712 | |
| 713 | for (unsigned i = 0; i < N; i++) |
| 714 | { |
| 715 | const NodeRef child = node->children[i]; |
| 716 | if (unlikely(child == BVH::emptyNode)) break; |
| 717 | vfloat<K> lnearP; |
| 718 | vbool<K> lhit = valid_node; |
| 719 | BVHNNodeIntersectorK<N, K, types, robust>::intersect(nodeRef, i, tray, ray.time(), lnearP, lhit); |
| 720 | |
| 721 | /* if we hit the child we push the previously hit node onto the stack, and continue with the currently hit child */ |
| 722 | if (likely(any(lhit))) |
| 723 | { |
| 724 | assert(sptr_node < stackEnd); |
| 725 | assert(child != BVH::emptyNode); |
| 726 | const vfloat<K> childDist = select(lhit, lnearP, inf); |
| 727 | |
| 728 | /* push 'cur' node onto stack and continue with hit child */ |
| 729 | if (likely(cur != BVH::emptyNode)) { |
| 730 | *sptr_node = cur; sptr_node++; |
| 731 | *sptr_near = curDist; sptr_near++; |
| 732 | } |
| 733 | curDist = childDist; |
| 734 | cur = child; |
| 735 | } |
| 736 | } |
| 737 | if (unlikely(cur == BVH::emptyNode)) |
| 738 | goto pop; |
| 739 | |
| 740 | #if SWITCH_DURING_DOWN_TRAVERSAL == 1 |
| 741 | if (single) |
| 742 | { |
| 743 | // seems to be the best place for testing utilization |
| 744 | if (unlikely(popcnt(tray.tfar > curDist) <= switchThreshold)) |
| 745 | { |
| 746 | *sptr_node++ = cur; |
| 747 | *sptr_near++ = curDist; |
| 748 | goto pop; |
| 749 | } |
| 750 | } |
| 751 | #endif |
| 752 | } |
| 753 | |
| 754 | /* return if stack is empty */ |
| 755 | if (unlikely(cur == BVH::invalidNode)) { |
| 756 | assert(sptr_node == stack_node); |
| 757 | break; |
| 758 | } |
| 759 | |
| 760 | |
| 761 | /* intersect leaf */ |
| 762 | assert(cur != BVH::emptyNode); |
| 763 | const vbool<K> valid_leaf = tray.tfar > curDist; |
| 764 | STAT3(shadow.trav_leaves, 1, popcnt(valid_leaf), K); |
| 765 | if (unlikely(none(valid_leaf))) continue; |
| 766 | size_t items; const Primitive* prim = (Primitive*) cur.leaf(items); |
| 767 | |
| 768 | size_t lazy_node = 0; |
| 769 | terminated |= PrimitiveIntersectorK::occluded(!terminated, This, pre, ray, context, prim, items, tray, lazy_node); |
| 770 | if (all(terminated)) break; |
| 771 | tray.tfar = select(terminated, vfloat<K>(neg_inf), tray.tfar); // ignore node intersections for terminated rays |
| 772 | |
| 773 | if (unlikely(lazy_node)) { |
| 774 | *sptr_node = lazy_node; sptr_node++; |
| 775 | *sptr_near = neg_inf; sptr_near++; |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | vfloat<K>::store(valid & terminated, &ray.tfar, neg_inf); |
| 780 | } |
| 781 | |
| 782 | |
| 783 | template<int N, int K, int types, bool robust, typename PrimitiveIntersectorK, bool single> |
| 784 | void BVHNIntersectorKHybrid<N, K, types, robust, PrimitiveIntersectorK, single>::occludedCoherent(vint<K>* __restrict__ valid_i, |
| 785 | Accel::Intersectors* __restrict__ This, |
| 786 | RayK<K>& __restrict__ ray, |
| 787 | IntersectContext* context) |
| 788 | { |
| 789 | BVH* __restrict__ bvh = (BVH*)This->ptr; |
| 790 | |
| 791 | /* filter out invalid rays */ |
| 792 | vbool<K> valid = *valid_i == -1; |
| 793 | #if defined(EMBREE_IGNORE_INVALID_RAYS) |
| 794 | valid &= ray.valid(); |
| 795 | #endif |
| 796 | |
| 797 | /* return if there are no valid rays */ |
| 798 | size_t valid_bits = movemask(valid); |
| 799 | if (unlikely(valid_bits == 0)) return; |
| 800 | |
| 801 | /* verify correct input */ |
| 802 | assert(all(valid, ray.valid())); |
| 803 | assert(all(valid, ray.tnear() >= 0.0f)); |
| 804 | assert(!(types & BVH_MB) || all(valid, (ray.time() >= 0.0f) & (ray.time() <= 1.0f))); |
| 805 | Precalculations pre(valid,ray); |
| 806 | |
| 807 | /* load ray */ |
| 808 | TravRayK<K, robust> tray(ray.org, ray.dir, single ? N : 0); |
| 809 | const vfloat<K> org_ray_tnear = max(ray.tnear(), 0.0f); |
| 810 | const vfloat<K> org_ray_tfar = max(ray.tfar , 0.0f); |
| 811 | |
| 812 | vbool<K> terminated = !valid; |
| 813 | |
| 814 | vint<K> octant = ray.octant(); |
| 815 | octant = select(valid, octant, vint<K>(0xffffffff)); |
| 816 | |
| 817 | do |
| 818 | { |
| 819 | const size_t valid_index = bsf(valid_bits); |
| 820 | vbool<K> octant_valid = octant[valid_index] == octant; |
| 821 | valid_bits &= ~(size_t)movemask(octant_valid); |
| 822 | |
| 823 | tray.tnear = select(octant_valid, org_ray_tnear, vfloat<K>(pos_inf)); |
| 824 | tray.tfar = select(octant_valid, org_ray_tfar, vfloat<K>(neg_inf)); |
| 825 | |
| 826 | Frustum<robust> frustum; |
| 827 | frustum.template init<K>(octant_valid, tray.org, tray.rdir, tray.tnear, tray.tfar, N); |
| 828 | |
| 829 | StackItemMaskT<NodeRef> stack[stackSizeSingle]; // stack of nodes |
| 830 | StackItemMaskT<NodeRef>* stackPtr = stack + 1; // current stack pointer |
| 831 | stack[0].ptr = bvh->root; |
| 832 | stack[0].mask = movemask(octant_valid); |
| 833 | |
| 834 | while (1) pop: |
| 835 | { |
| 836 | /* pop next node from stack */ |
| 837 | if (unlikely(stackPtr == stack)) break; |
| 838 | |
| 839 | stackPtr--; |
| 840 | NodeRef cur = NodeRef(stackPtr->ptr); |
| 841 | |
| 842 | /* cull node of active rays have already been terminated */ |
| 843 | size_t m_active = (size_t)stackPtr->mask & (~(size_t)movemask(terminated)); |
| 844 | |
| 845 | if (unlikely(m_active == 0)) continue; |
| 846 | |
| 847 | while (likely(!cur.isLeaf())) |
| 848 | { |
| 849 | /* process nodes */ |
| 850 | //STAT3(normal.trav_nodes, 1, popcnt(valid_node), K); |
| 851 | const NodeRef nodeRef = cur; |
| 852 | const AABBNode* __restrict__ const node = nodeRef.getAABBNode(); |
| 853 | |
| 854 | vfloat<N> fmin; |
| 855 | size_t m_frustum_node = intersectNodeFrustum<N>(node, frustum, fmin); |
| 856 | |
| 857 | if (unlikely(!m_frustum_node)) goto pop; |
| 858 | cur = BVH::emptyNode; |
| 859 | m_active = 0; |
| 860 | |
| 861 | #if defined(__AVX__) |
| 862 | //STAT3(normal.trav_hit_boxes[popcnt(m_frustum_node)], 1, 1, 1); |
| 863 | #endif |
| 864 | size_t num_child_hits = 0; |
| 865 | do { |
| 866 | const size_t i = bscf(m_frustum_node); |
| 867 | vfloat<K> lnearP; |
| 868 | vbool<K> lhit = false; // motion blur is not supported, so the initial value will be ignored |
| 869 | STAT3(normal.trav_nodes, 1, 1, 1); |
| 870 | BVHNNodeIntersectorK<N, K, types, robust>::intersect(nodeRef, i, tray, ray.time(), lnearP, lhit); |
| 871 | |
| 872 | if (likely(any(lhit))) |
| 873 | { |
| 874 | const NodeRef child = node->child(i); |
| 875 | assert(child != BVH::emptyNode); |
| 876 | BVHN<N>::prefetch(child); |
| 877 | if (likely(cur != BVH::emptyNode)) { |
| 878 | num_child_hits++; |
| 879 | stackPtr->ptr = cur; |
| 880 | stackPtr->mask = m_active; |
| 881 | stackPtr++; |
| 882 | } |
| 883 | cur = child; |
| 884 | m_active = movemask(lhit); |
| 885 | } |
| 886 | } while(m_frustum_node); |
| 887 | |
| 888 | if (unlikely(cur == BVH::emptyNode)) goto pop; |
| 889 | } |
| 890 | |
| 891 | /* intersect leaf */ |
| 892 | assert(cur != BVH::invalidNode); |
| 893 | assert(cur != BVH::emptyNode); |
| 894 | #if defined(__AVX__) |
| 895 | STAT3(normal.trav_leaves, 1, popcnt(m_active), K); |
| 896 | #endif |
| 897 | if (unlikely(!m_active)) continue; |
| 898 | size_t items; const Primitive* prim = (Primitive*)cur.leaf(items); |
| 899 | |
| 900 | size_t lazy_node = 0; |
| 901 | terminated |= PrimitiveIntersectorK::occluded(!terminated, This, pre, ray, context, prim, items, tray, lazy_node); |
| 902 | octant_valid &= !terminated; |
| 903 | if (unlikely(none(octant_valid))) break; |
| 904 | tray.tfar = select(terminated, vfloat<K>(neg_inf), tray.tfar); // ignore node intersections for terminated rays |
| 905 | |
| 906 | if (unlikely(lazy_node)) { |
| 907 | stackPtr->ptr = lazy_node; |
| 908 | stackPtr->mask = movemask(octant_valid); |
| 909 | stackPtr++; |
| 910 | } |
| 911 | } |
| 912 | } while(valid_bits); |
| 913 | |
| 914 | vfloat<K>::store(valid & terminated, &ray.tfar, neg_inf); |
| 915 | } |
| 916 | } |
| 917 | } |
| 918 | |