1 | /* |
2 | * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "asm/assembler.inline.hpp" |
27 | #include "asm/macroAssembler.inline.hpp" |
28 | #include "code/compiledIC.hpp" |
29 | #include "code/debugInfo.hpp" |
30 | #include "code/debugInfoRec.hpp" |
31 | #include "compiler/compileBroker.hpp" |
32 | #include "compiler/compilerDirectives.hpp" |
33 | #include "compiler/oopMap.hpp" |
34 | #include "memory/allocation.inline.hpp" |
35 | #include "opto/ad.hpp" |
36 | #include "opto/callnode.hpp" |
37 | #include "opto/cfgnode.hpp" |
38 | #include "opto/locknode.hpp" |
39 | #include "opto/machnode.hpp" |
40 | #include "opto/optoreg.hpp" |
41 | #include "opto/output.hpp" |
42 | #include "opto/regalloc.hpp" |
43 | #include "opto/runtime.hpp" |
44 | #include "opto/subnode.hpp" |
45 | #include "opto/type.hpp" |
46 | #include "runtime/handles.inline.hpp" |
47 | #include "utilities/xmlstream.hpp" |
48 | |
49 | #ifndef PRODUCT |
50 | #define DEBUG_ARG(x) , x |
51 | #else |
52 | #define DEBUG_ARG(x) |
53 | #endif |
54 | |
55 | // Convert Nodes to instruction bits and pass off to the VM |
56 | void Compile::Output() { |
57 | // RootNode goes |
58 | assert( _cfg->get_root_block()->number_of_nodes() == 0, "" ); |
59 | |
60 | // The number of new nodes (mostly MachNop) is proportional to |
61 | // the number of java calls and inner loops which are aligned. |
62 | if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + |
63 | C->inner_loops()*(OptoLoopAlignment-1)), |
64 | "out of nodes before code generation" ) ) { |
65 | return; |
66 | } |
67 | // Make sure I can find the Start Node |
68 | Block *entry = _cfg->get_block(1); |
69 | Block *broot = _cfg->get_root_block(); |
70 | |
71 | const StartNode *start = entry->head()->as_Start(); |
72 | |
73 | // Replace StartNode with prolog |
74 | MachPrologNode *prolog = new MachPrologNode(); |
75 | entry->map_node(prolog, 0); |
76 | _cfg->map_node_to_block(prolog, entry); |
77 | _cfg->unmap_node_from_block(start); // start is no longer in any block |
78 | |
79 | // Virtual methods need an unverified entry point |
80 | |
81 | if( is_osr_compilation() ) { |
82 | if( PoisonOSREntry ) { |
83 | // TODO: Should use a ShouldNotReachHereNode... |
84 | _cfg->insert( broot, 0, new MachBreakpointNode() ); |
85 | } |
86 | } else { |
87 | if( _method && !_method->flags().is_static() ) { |
88 | // Insert unvalidated entry point |
89 | _cfg->insert( broot, 0, new MachUEPNode() ); |
90 | } |
91 | |
92 | } |
93 | |
94 | // Break before main entry point |
95 | if ((_method && C->directive()->BreakAtExecuteOption) || |
96 | (OptoBreakpoint && is_method_compilation()) || |
97 | (OptoBreakpointOSR && is_osr_compilation()) || |
98 | (OptoBreakpointC2R && !_method) ) { |
99 | // checking for _method means that OptoBreakpoint does not apply to |
100 | // runtime stubs or frame converters |
101 | _cfg->insert( entry, 1, new MachBreakpointNode() ); |
102 | } |
103 | |
104 | // Insert epilogs before every return |
105 | for (uint i = 0; i < _cfg->number_of_blocks(); i++) { |
106 | Block* block = _cfg->get_block(i); |
107 | if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point? |
108 | Node* m = block->end(); |
109 | if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { |
110 | MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); |
111 | block->add_inst(epilog); |
112 | _cfg->map_node_to_block(epilog, block); |
113 | } |
114 | } |
115 | } |
116 | |
117 | uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1); |
118 | blk_starts[0] = 0; |
119 | |
120 | // Initialize code buffer and process short branches. |
121 | CodeBuffer* cb = init_buffer(blk_starts); |
122 | |
123 | if (cb == NULL || failing()) { |
124 | return; |
125 | } |
126 | |
127 | ScheduleAndBundle(); |
128 | |
129 | #ifndef PRODUCT |
130 | if (trace_opto_output()) { |
131 | tty->print("\n---- After ScheduleAndBundle ----\n" ); |
132 | for (uint i = 0; i < _cfg->number_of_blocks(); i++) { |
133 | tty->print("\nBB#%03d:\n" , i); |
134 | Block* block = _cfg->get_block(i); |
135 | for (uint j = 0; j < block->number_of_nodes(); j++) { |
136 | Node* n = block->get_node(j); |
137 | OptoReg::Name reg = _regalloc->get_reg_first(n); |
138 | tty->print(" %-6s " , reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "" ); |
139 | n->dump(); |
140 | } |
141 | } |
142 | } |
143 | #endif |
144 | |
145 | if (failing()) { |
146 | return; |
147 | } |
148 | |
149 | BuildOopMaps(); |
150 | |
151 | if (failing()) { |
152 | return; |
153 | } |
154 | |
155 | fill_buffer(cb, blk_starts); |
156 | } |
157 | |
158 | bool Compile::need_stack_bang(int frame_size_in_bytes) const { |
159 | // Determine if we need to generate a stack overflow check. |
160 | // Do it if the method is not a stub function and |
161 | // has java calls or has frame size > vm_page_size/8. |
162 | // The debug VM checks that deoptimization doesn't trigger an |
163 | // unexpected stack overflow (compiled method stack banging should |
164 | // guarantee it doesn't happen) so we always need the stack bang in |
165 | // a debug VM. |
166 | return (UseStackBanging && stub_function() == NULL && |
167 | (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3 |
168 | DEBUG_ONLY(|| true))); |
169 | } |
170 | |
171 | bool Compile::need_register_stack_bang() const { |
172 | // Determine if we need to generate a register stack overflow check. |
173 | // This is only used on architectures which have split register |
174 | // and memory stacks (ie. IA64). |
175 | // Bang if the method is not a stub function and has java calls |
176 | return (stub_function() == NULL && has_java_calls()); |
177 | } |
178 | |
179 | |
180 | // Compute the size of first NumberOfLoopInstrToAlign instructions at the top |
181 | // of a loop. When aligning a loop we need to provide enough instructions |
182 | // in cpu's fetch buffer to feed decoders. The loop alignment could be |
183 | // avoided if we have enough instructions in fetch buffer at the head of a loop. |
184 | // By default, the size is set to 999999 by Block's constructor so that |
185 | // a loop will be aligned if the size is not reset here. |
186 | // |
187 | // Note: Mach instructions could contain several HW instructions |
188 | // so the size is estimated only. |
189 | // |
190 | void Compile::compute_loop_first_inst_sizes() { |
191 | // The next condition is used to gate the loop alignment optimization. |
192 | // Don't aligned a loop if there are enough instructions at the head of a loop |
193 | // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad |
194 | // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is |
195 | // equal to 11 bytes which is the largest address NOP instruction. |
196 | if (MaxLoopPad < OptoLoopAlignment - 1) { |
197 | uint last_block = _cfg->number_of_blocks() - 1; |
198 | for (uint i = 1; i <= last_block; i++) { |
199 | Block* block = _cfg->get_block(i); |
200 | // Check the first loop's block which requires an alignment. |
201 | if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { |
202 | uint sum_size = 0; |
203 | uint inst_cnt = NumberOfLoopInstrToAlign; |
204 | inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc); |
205 | |
206 | // Check subsequent fallthrough blocks if the loop's first |
207 | // block(s) does not have enough instructions. |
208 | Block *nb = block; |
209 | while(inst_cnt > 0 && |
210 | i < last_block && |
211 | !_cfg->get_block(i + 1)->has_loop_alignment() && |
212 | !nb->has_successor(block)) { |
213 | i++; |
214 | nb = _cfg->get_block(i); |
215 | inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc); |
216 | } // while( inst_cnt > 0 && i < last_block ) |
217 | |
218 | block->set_first_inst_size(sum_size); |
219 | } // f( b->head()->is_Loop() ) |
220 | } // for( i <= last_block ) |
221 | } // if( MaxLoopPad < OptoLoopAlignment-1 ) |
222 | } |
223 | |
224 | // The architecture description provides short branch variants for some long |
225 | // branch instructions. Replace eligible long branches with short branches. |
226 | void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) { |
227 | // Compute size of each block, method size, and relocation information size |
228 | uint nblocks = _cfg->number_of_blocks(); |
229 | |
230 | uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); |
231 | uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); |
232 | int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); |
233 | |
234 | // Collect worst case block paddings |
235 | int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); |
236 | memset(block_worst_case_pad, 0, nblocks * sizeof(int)); |
237 | |
238 | DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) |
239 | DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) |
240 | |
241 | bool has_short_branch_candidate = false; |
242 | |
243 | // Initialize the sizes to 0 |
244 | code_size = 0; // Size in bytes of generated code |
245 | stub_size = 0; // Size in bytes of all stub entries |
246 | // Size in bytes of all relocation entries, including those in local stubs. |
247 | // Start with 2-bytes of reloc info for the unvalidated entry point |
248 | reloc_size = 1; // Number of relocation entries |
249 | |
250 | // Make three passes. The first computes pessimistic blk_starts, |
251 | // relative jmp_offset and reloc_size information. The second performs |
252 | // short branch substitution using the pessimistic sizing. The |
253 | // third inserts nops where needed. |
254 | |
255 | // Step one, perform a pessimistic sizing pass. |
256 | uint last_call_adr = max_juint; |
257 | uint last_avoid_back_to_back_adr = max_juint; |
258 | uint nop_size = (new MachNopNode())->size(_regalloc); |
259 | for (uint i = 0; i < nblocks; i++) { // For all blocks |
260 | Block* block = _cfg->get_block(i); |
261 | |
262 | // During short branch replacement, we store the relative (to blk_starts) |
263 | // offset of jump in jmp_offset, rather than the absolute offset of jump. |
264 | // This is so that we do not need to recompute sizes of all nodes when |
265 | // we compute correct blk_starts in our next sizing pass. |
266 | jmp_offset[i] = 0; |
267 | jmp_size[i] = 0; |
268 | jmp_nidx[i] = -1; |
269 | DEBUG_ONLY( jmp_target[i] = 0; ) |
270 | DEBUG_ONLY( jmp_rule[i] = 0; ) |
271 | |
272 | // Sum all instruction sizes to compute block size |
273 | uint last_inst = block->number_of_nodes(); |
274 | uint blk_size = 0; |
275 | for (uint j = 0; j < last_inst; j++) { |
276 | Node* nj = block->get_node(j); |
277 | // Handle machine instruction nodes |
278 | if (nj->is_Mach()) { |
279 | MachNode *mach = nj->as_Mach(); |
280 | blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding |
281 | reloc_size += mach->reloc(); |
282 | if (mach->is_MachCall()) { |
283 | // add size information for trampoline stub |
284 | // class CallStubImpl is platform-specific and defined in the *.ad files. |
285 | stub_size += CallStubImpl::size_call_trampoline(); |
286 | reloc_size += CallStubImpl::reloc_call_trampoline(); |
287 | |
288 | MachCallNode *mcall = mach->as_MachCall(); |
289 | // This destination address is NOT PC-relative |
290 | |
291 | mcall->method_set((intptr_t)mcall->entry_point()); |
292 | |
293 | if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { |
294 | stub_size += CompiledStaticCall::to_interp_stub_size(); |
295 | reloc_size += CompiledStaticCall::reloc_to_interp_stub(); |
296 | #if INCLUDE_AOT |
297 | stub_size += CompiledStaticCall::to_aot_stub_size(); |
298 | reloc_size += CompiledStaticCall::reloc_to_aot_stub(); |
299 | #endif |
300 | } |
301 | } else if (mach->is_MachSafePoint()) { |
302 | // If call/safepoint are adjacent, account for possible |
303 | // nop to disambiguate the two safepoints. |
304 | // ScheduleAndBundle() can rearrange nodes in a block, |
305 | // check for all offsets inside this block. |
306 | if (last_call_adr >= blk_starts[i]) { |
307 | blk_size += nop_size; |
308 | } |
309 | } |
310 | if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { |
311 | // Nop is inserted between "avoid back to back" instructions. |
312 | // ScheduleAndBundle() can rearrange nodes in a block, |
313 | // check for all offsets inside this block. |
314 | if (last_avoid_back_to_back_adr >= blk_starts[i]) { |
315 | blk_size += nop_size; |
316 | } |
317 | } |
318 | if (mach->may_be_short_branch()) { |
319 | if (!nj->is_MachBranch()) { |
320 | #ifndef PRODUCT |
321 | nj->dump(3); |
322 | #endif |
323 | Unimplemented(); |
324 | } |
325 | assert(jmp_nidx[i] == -1, "block should have only one branch" ); |
326 | jmp_offset[i] = blk_size; |
327 | jmp_size[i] = nj->size(_regalloc); |
328 | jmp_nidx[i] = j; |
329 | has_short_branch_candidate = true; |
330 | } |
331 | } |
332 | blk_size += nj->size(_regalloc); |
333 | // Remember end of call offset |
334 | if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { |
335 | last_call_adr = blk_starts[i]+blk_size; |
336 | } |
337 | // Remember end of avoid_back_to_back offset |
338 | if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { |
339 | last_avoid_back_to_back_adr = blk_starts[i]+blk_size; |
340 | } |
341 | } |
342 | |
343 | // When the next block starts a loop, we may insert pad NOP |
344 | // instructions. Since we cannot know our future alignment, |
345 | // assume the worst. |
346 | if (i < nblocks - 1) { |
347 | Block* nb = _cfg->get_block(i + 1); |
348 | int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); |
349 | if (max_loop_pad > 0) { |
350 | assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "" ); |
351 | // Adjust last_call_adr and/or last_avoid_back_to_back_adr. |
352 | // If either is the last instruction in this block, bump by |
353 | // max_loop_pad in lock-step with blk_size, so sizing |
354 | // calculations in subsequent blocks still can conservatively |
355 | // detect that it may the last instruction in this block. |
356 | if (last_call_adr == blk_starts[i]+blk_size) { |
357 | last_call_adr += max_loop_pad; |
358 | } |
359 | if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { |
360 | last_avoid_back_to_back_adr += max_loop_pad; |
361 | } |
362 | blk_size += max_loop_pad; |
363 | block_worst_case_pad[i + 1] = max_loop_pad; |
364 | } |
365 | } |
366 | |
367 | // Save block size; update total method size |
368 | blk_starts[i+1] = blk_starts[i]+blk_size; |
369 | } |
370 | |
371 | // Step two, replace eligible long jumps. |
372 | bool progress = true; |
373 | uint last_may_be_short_branch_adr = max_juint; |
374 | while (has_short_branch_candidate && progress) { |
375 | progress = false; |
376 | has_short_branch_candidate = false; |
377 | int adjust_block_start = 0; |
378 | for (uint i = 0; i < nblocks; i++) { |
379 | Block* block = _cfg->get_block(i); |
380 | int idx = jmp_nidx[i]; |
381 | MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach(); |
382 | if (mach != NULL && mach->may_be_short_branch()) { |
383 | #ifdef ASSERT |
384 | assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity" ); |
385 | int j; |
386 | // Find the branch; ignore trailing NOPs. |
387 | for (j = block->number_of_nodes()-1; j>=0; j--) { |
388 | Node* n = block->get_node(j); |
389 | if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) |
390 | break; |
391 | } |
392 | assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity" ); |
393 | #endif |
394 | int br_size = jmp_size[i]; |
395 | int br_offs = blk_starts[i] + jmp_offset[i]; |
396 | |
397 | // This requires the TRUE branch target be in succs[0] |
398 | uint bnum = block->non_connector_successor(0)->_pre_order; |
399 | int offset = blk_starts[bnum] - br_offs; |
400 | if (bnum > i) { // adjust following block's offset |
401 | offset -= adjust_block_start; |
402 | } |
403 | |
404 | // This block can be a loop header, account for the padding |
405 | // in the previous block. |
406 | int block_padding = block_worst_case_pad[i]; |
407 | assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top" ); |
408 | // In the following code a nop could be inserted before |
409 | // the branch which will increase the backward distance. |
410 | bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); |
411 | assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block" ); |
412 | |
413 | if (needs_padding && offset <= 0) |
414 | offset -= nop_size; |
415 | |
416 | if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) { |
417 | // We've got a winner. Replace this branch. |
418 | MachNode* replacement = mach->as_MachBranch()->short_branch_version(); |
419 | |
420 | // Update the jmp_size. |
421 | int new_size = replacement->size(_regalloc); |
422 | int diff = br_size - new_size; |
423 | assert(diff >= (int)nop_size, "short_branch size should be smaller" ); |
424 | // Conservatively take into account padding between |
425 | // avoid_back_to_back branches. Previous branch could be |
426 | // converted into avoid_back_to_back branch during next |
427 | // rounds. |
428 | if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { |
429 | jmp_offset[i] += nop_size; |
430 | diff -= nop_size; |
431 | } |
432 | adjust_block_start += diff; |
433 | block->map_node(replacement, idx); |
434 | mach->subsume_by(replacement, C); |
435 | mach = replacement; |
436 | progress = true; |
437 | |
438 | jmp_size[i] = new_size; |
439 | DEBUG_ONLY( jmp_target[i] = bnum; ); |
440 | DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); |
441 | } else { |
442 | // The jump distance is not short, try again during next iteration. |
443 | has_short_branch_candidate = true; |
444 | } |
445 | } // (mach->may_be_short_branch()) |
446 | if (mach != NULL && (mach->may_be_short_branch() || |
447 | mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { |
448 | last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; |
449 | } |
450 | blk_starts[i+1] -= adjust_block_start; |
451 | } |
452 | } |
453 | |
454 | #ifdef ASSERT |
455 | for (uint i = 0; i < nblocks; i++) { // For all blocks |
456 | if (jmp_target[i] != 0) { |
457 | int br_size = jmp_size[i]; |
458 | int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); |
459 | if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) { |
460 | tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d" , blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); |
461 | } |
462 | assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp" ); |
463 | } |
464 | } |
465 | #endif |
466 | |
467 | // Step 3, compute the offsets of all blocks, will be done in fill_buffer() |
468 | // after ScheduleAndBundle(). |
469 | |
470 | // ------------------ |
471 | // Compute size for code buffer |
472 | code_size = blk_starts[nblocks]; |
473 | |
474 | // Relocation records |
475 | reloc_size += 1; // Relo entry for exception handler |
476 | |
477 | // Adjust reloc_size to number of record of relocation info |
478 | // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for |
479 | // a relocation index. |
480 | // The CodeBuffer will expand the locs array if this estimate is too low. |
481 | reloc_size *= 10 / sizeof(relocInfo); |
482 | } |
483 | |
484 | //------------------------------FillLocArray----------------------------------- |
485 | // Create a bit of debug info and append it to the array. The mapping is from |
486 | // Java local or expression stack to constant, register or stack-slot. For |
487 | // doubles, insert 2 mappings and return 1 (to tell the caller that the next |
488 | // entry has been taken care of and caller should skip it). |
489 | static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { |
490 | // This should never have accepted Bad before |
491 | assert(OptoReg::is_valid(regnum), "location must be valid" ); |
492 | return (OptoReg::is_reg(regnum)) |
493 | ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) |
494 | : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); |
495 | } |
496 | |
497 | |
498 | ObjectValue* |
499 | Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { |
500 | for (int i = 0; i < objs->length(); i++) { |
501 | assert(objs->at(i)->is_object(), "corrupt object cache" ); |
502 | ObjectValue* sv = (ObjectValue*) objs->at(i); |
503 | if (sv->id() == id) { |
504 | return sv; |
505 | } |
506 | } |
507 | // Otherwise.. |
508 | return NULL; |
509 | } |
510 | |
511 | void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, |
512 | ObjectValue* sv ) { |
513 | assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition" ); |
514 | objs->append(sv); |
515 | } |
516 | |
517 | |
518 | void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, |
519 | GrowableArray<ScopeValue*> *array, |
520 | GrowableArray<ScopeValue*> *objs ) { |
521 | assert( local, "use _top instead of null" ); |
522 | if (array->length() != idx) { |
523 | assert(array->length() == idx + 1, "Unexpected array count" ); |
524 | // Old functionality: |
525 | // return |
526 | // New functionality: |
527 | // Assert if the local is not top. In product mode let the new node |
528 | // override the old entry. |
529 | assert(local == top(), "LocArray collision" ); |
530 | if (local == top()) { |
531 | return; |
532 | } |
533 | array->pop(); |
534 | } |
535 | const Type *t = local->bottom_type(); |
536 | |
537 | // Is it a safepoint scalar object node? |
538 | if (local->is_SafePointScalarObject()) { |
539 | SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); |
540 | |
541 | ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx); |
542 | if (sv == NULL) { |
543 | ciKlass* cik = t->is_oopptr()->klass(); |
544 | assert(cik->is_instance_klass() || |
545 | cik->is_array_klass(), "Not supported allocation." ); |
546 | sv = new ObjectValue(spobj->_idx, |
547 | new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); |
548 | Compile::set_sv_for_object_node(objs, sv); |
549 | |
550 | uint first_ind = spobj->first_index(sfpt->jvms()); |
551 | for (uint i = 0; i < spobj->n_fields(); i++) { |
552 | Node* fld_node = sfpt->in(first_ind+i); |
553 | (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); |
554 | } |
555 | } |
556 | array->append(sv); |
557 | return; |
558 | } |
559 | |
560 | // Grab the register number for the local |
561 | OptoReg::Name regnum = _regalloc->get_reg_first(local); |
562 | if( OptoReg::is_valid(regnum) ) {// Got a register/stack? |
563 | // Record the double as two float registers. |
564 | // The register mask for such a value always specifies two adjacent |
565 | // float registers, with the lower register number even. |
566 | // Normally, the allocation of high and low words to these registers |
567 | // is irrelevant, because nearly all operations on register pairs |
568 | // (e.g., StoreD) treat them as a single unit. |
569 | // Here, we assume in addition that the words in these two registers |
570 | // stored "naturally" (by operations like StoreD and double stores |
571 | // within the interpreter) such that the lower-numbered register |
572 | // is written to the lower memory address. This may seem like |
573 | // a machine dependency, but it is not--it is a requirement on |
574 | // the author of the <arch>.ad file to ensure that, for every |
575 | // even/odd double-register pair to which a double may be allocated, |
576 | // the word in the even single-register is stored to the first |
577 | // memory word. (Note that register numbers are completely |
578 | // arbitrary, and are not tied to any machine-level encodings.) |
579 | #ifdef _LP64 |
580 | if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { |
581 | array->append(new ConstantIntValue((jint)0)); |
582 | array->append(new_loc_value( _regalloc, regnum, Location::dbl )); |
583 | } else if ( t->base() == Type::Long ) { |
584 | array->append(new ConstantIntValue((jint)0)); |
585 | array->append(new_loc_value( _regalloc, regnum, Location::lng )); |
586 | } else if ( t->base() == Type::RawPtr ) { |
587 | // jsr/ret return address which must be restored into a the full |
588 | // width 64-bit stack slot. |
589 | array->append(new_loc_value( _regalloc, regnum, Location::lng )); |
590 | } |
591 | #else //_LP64 |
592 | #ifdef SPARC |
593 | if (t->base() == Type::Long && OptoReg::is_reg(regnum)) { |
594 | // For SPARC we have to swap high and low words for |
595 | // long values stored in a single-register (g0-g7). |
596 | array->append(new_loc_value( _regalloc, regnum , Location::normal )); |
597 | array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal )); |
598 | } else |
599 | #endif //SPARC |
600 | if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { |
601 | // Repack the double/long as two jints. |
602 | // The convention the interpreter uses is that the second local |
603 | // holds the first raw word of the native double representation. |
604 | // This is actually reasonable, since locals and stack arrays |
605 | // grow downwards in all implementations. |
606 | // (If, on some machine, the interpreter's Java locals or stack |
607 | // were to grow upwards, the embedded doubles would be word-swapped.) |
608 | array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal )); |
609 | array->append(new_loc_value( _regalloc, regnum , Location::normal )); |
610 | } |
611 | #endif //_LP64 |
612 | else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && |
613 | OptoReg::is_reg(regnum) ) { |
614 | array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double() |
615 | ? Location::float_in_dbl : Location::normal )); |
616 | } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { |
617 | array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long |
618 | ? Location::int_in_long : Location::normal )); |
619 | } else if( t->base() == Type::NarrowOop ) { |
620 | array->append(new_loc_value( _regalloc, regnum, Location::narrowoop )); |
621 | } else { |
622 | array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal )); |
623 | } |
624 | return; |
625 | } |
626 | |
627 | // No register. It must be constant data. |
628 | switch (t->base()) { |
629 | case Type::Half: // Second half of a double |
630 | ShouldNotReachHere(); // Caller should skip 2nd halves |
631 | break; |
632 | case Type::AnyPtr: |
633 | array->append(new ConstantOopWriteValue(NULL)); |
634 | break; |
635 | case Type::AryPtr: |
636 | case Type::InstPtr: // fall through |
637 | array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); |
638 | break; |
639 | case Type::NarrowOop: |
640 | if (t == TypeNarrowOop::NULL_PTR) { |
641 | array->append(new ConstantOopWriteValue(NULL)); |
642 | } else { |
643 | array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); |
644 | } |
645 | break; |
646 | case Type::Int: |
647 | array->append(new ConstantIntValue(t->is_int()->get_con())); |
648 | break; |
649 | case Type::RawPtr: |
650 | // A return address (T_ADDRESS). |
651 | assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI" ); |
652 | #ifdef _LP64 |
653 | // Must be restored to the full-width 64-bit stack slot. |
654 | array->append(new ConstantLongValue(t->is_ptr()->get_con())); |
655 | #else |
656 | array->append(new ConstantIntValue(t->is_ptr()->get_con())); |
657 | #endif |
658 | break; |
659 | case Type::FloatCon: { |
660 | float f = t->is_float_constant()->getf(); |
661 | array->append(new ConstantIntValue(jint_cast(f))); |
662 | break; |
663 | } |
664 | case Type::DoubleCon: { |
665 | jdouble d = t->is_double_constant()->getd(); |
666 | #ifdef _LP64 |
667 | array->append(new ConstantIntValue((jint)0)); |
668 | array->append(new ConstantDoubleValue(d)); |
669 | #else |
670 | // Repack the double as two jints. |
671 | // The convention the interpreter uses is that the second local |
672 | // holds the first raw word of the native double representation. |
673 | // This is actually reasonable, since locals and stack arrays |
674 | // grow downwards in all implementations. |
675 | // (If, on some machine, the interpreter's Java locals or stack |
676 | // were to grow upwards, the embedded doubles would be word-swapped.) |
677 | jlong_accessor acc; |
678 | acc.long_value = jlong_cast(d); |
679 | array->append(new ConstantIntValue(acc.words[1])); |
680 | array->append(new ConstantIntValue(acc.words[0])); |
681 | #endif |
682 | break; |
683 | } |
684 | case Type::Long: { |
685 | jlong d = t->is_long()->get_con(); |
686 | #ifdef _LP64 |
687 | array->append(new ConstantIntValue((jint)0)); |
688 | array->append(new ConstantLongValue(d)); |
689 | #else |
690 | // Repack the long as two jints. |
691 | // The convention the interpreter uses is that the second local |
692 | // holds the first raw word of the native double representation. |
693 | // This is actually reasonable, since locals and stack arrays |
694 | // grow downwards in all implementations. |
695 | // (If, on some machine, the interpreter's Java locals or stack |
696 | // were to grow upwards, the embedded doubles would be word-swapped.) |
697 | jlong_accessor acc; |
698 | acc.long_value = d; |
699 | array->append(new ConstantIntValue(acc.words[1])); |
700 | array->append(new ConstantIntValue(acc.words[0])); |
701 | #endif |
702 | break; |
703 | } |
704 | case Type::Top: // Add an illegal value here |
705 | array->append(new LocationValue(Location())); |
706 | break; |
707 | default: |
708 | ShouldNotReachHere(); |
709 | break; |
710 | } |
711 | } |
712 | |
713 | // Determine if this node starts a bundle |
714 | bool Compile::starts_bundle(const Node *n) const { |
715 | return (_node_bundling_limit > n->_idx && |
716 | _node_bundling_base[n->_idx].starts_bundle()); |
717 | } |
718 | |
719 | //--------------------------Process_OopMap_Node-------------------------------- |
720 | void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) { |
721 | |
722 | // Handle special safepoint nodes for synchronization |
723 | MachSafePointNode *sfn = mach->as_MachSafePoint(); |
724 | MachCallNode *mcall; |
725 | |
726 | int safepoint_pc_offset = current_offset; |
727 | bool is_method_handle_invoke = false; |
728 | bool return_oop = false; |
729 | |
730 | // Add the safepoint in the DebugInfoRecorder |
731 | if( !mach->is_MachCall() ) { |
732 | mcall = NULL; |
733 | debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); |
734 | } else { |
735 | mcall = mach->as_MachCall(); |
736 | |
737 | // Is the call a MethodHandle call? |
738 | if (mcall->is_MachCallJava()) { |
739 | if (mcall->as_MachCallJava()->_method_handle_invoke) { |
740 | assert(has_method_handle_invokes(), "must have been set during call generation" ); |
741 | is_method_handle_invoke = true; |
742 | } |
743 | } |
744 | |
745 | // Check if a call returns an object. |
746 | if (mcall->returns_pointer()) { |
747 | return_oop = true; |
748 | } |
749 | safepoint_pc_offset += mcall->ret_addr_offset(); |
750 | debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); |
751 | } |
752 | |
753 | // Loop over the JVMState list to add scope information |
754 | // Do not skip safepoints with a NULL method, they need monitor info |
755 | JVMState* youngest_jvms = sfn->jvms(); |
756 | int max_depth = youngest_jvms->depth(); |
757 | |
758 | // Allocate the object pool for scalar-replaced objects -- the map from |
759 | // small-integer keys (which can be recorded in the local and ostack |
760 | // arrays) to descriptions of the object state. |
761 | GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); |
762 | |
763 | // Visit scopes from oldest to youngest. |
764 | for (int depth = 1; depth <= max_depth; depth++) { |
765 | JVMState* jvms = youngest_jvms->of_depth(depth); |
766 | int idx; |
767 | ciMethod* method = jvms->has_method() ? jvms->method() : NULL; |
768 | // Safepoints that do not have method() set only provide oop-map and monitor info |
769 | // to support GC; these do not support deoptimization. |
770 | int num_locs = (method == NULL) ? 0 : jvms->loc_size(); |
771 | int num_exps = (method == NULL) ? 0 : jvms->stk_size(); |
772 | int num_mon = jvms->nof_monitors(); |
773 | assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(), |
774 | "JVMS local count must match that of the method" ); |
775 | |
776 | // Add Local and Expression Stack Information |
777 | |
778 | // Insert locals into the locarray |
779 | GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); |
780 | for( idx = 0; idx < num_locs; idx++ ) { |
781 | FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); |
782 | } |
783 | |
784 | // Insert expression stack entries into the exparray |
785 | GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); |
786 | for( idx = 0; idx < num_exps; idx++ ) { |
787 | FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); |
788 | } |
789 | |
790 | // Add in mappings of the monitors |
791 | assert( !method || |
792 | !method->is_synchronized() || |
793 | method->is_native() || |
794 | num_mon > 0 || |
795 | !GenerateSynchronizationCode, |
796 | "monitors must always exist for synchronized methods" ); |
797 | |
798 | // Build the growable array of ScopeValues for exp stack |
799 | GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); |
800 | |
801 | // Loop over monitors and insert into array |
802 | for (idx = 0; idx < num_mon; idx++) { |
803 | // Grab the node that defines this monitor |
804 | Node* box_node = sfn->monitor_box(jvms, idx); |
805 | Node* obj_node = sfn->monitor_obj(jvms, idx); |
806 | |
807 | // Create ScopeValue for object |
808 | ScopeValue *scval = NULL; |
809 | |
810 | if (obj_node->is_SafePointScalarObject()) { |
811 | SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); |
812 | scval = Compile::sv_for_node_id(objs, spobj->_idx); |
813 | if (scval == NULL) { |
814 | const Type *t = spobj->bottom_type(); |
815 | ciKlass* cik = t->is_oopptr()->klass(); |
816 | assert(cik->is_instance_klass() || |
817 | cik->is_array_klass(), "Not supported allocation." ); |
818 | ObjectValue* sv = new ObjectValue(spobj->_idx, |
819 | new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); |
820 | Compile::set_sv_for_object_node(objs, sv); |
821 | |
822 | uint first_ind = spobj->first_index(youngest_jvms); |
823 | for (uint i = 0; i < spobj->n_fields(); i++) { |
824 | Node* fld_node = sfn->in(first_ind+i); |
825 | (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); |
826 | } |
827 | scval = sv; |
828 | } |
829 | } else if (!obj_node->is_Con()) { |
830 | OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node); |
831 | if( obj_node->bottom_type()->base() == Type::NarrowOop ) { |
832 | scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop ); |
833 | } else { |
834 | scval = new_loc_value( _regalloc, obj_reg, Location::oop ); |
835 | } |
836 | } else { |
837 | const TypePtr *tp = obj_node->get_ptr_type(); |
838 | scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); |
839 | } |
840 | |
841 | OptoReg::Name box_reg = BoxLockNode::reg(box_node); |
842 | Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg)); |
843 | bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); |
844 | monarray->append(new MonitorValue(scval, basic_lock, eliminated)); |
845 | } |
846 | |
847 | // We dump the object pool first, since deoptimization reads it in first. |
848 | debug_info()->dump_object_pool(objs); |
849 | |
850 | // Build first class objects to pass to scope |
851 | DebugToken *locvals = debug_info()->create_scope_values(locarray); |
852 | DebugToken *expvals = debug_info()->create_scope_values(exparray); |
853 | DebugToken *monvals = debug_info()->create_monitor_values(monarray); |
854 | |
855 | // Make method available for all Safepoints |
856 | ciMethod* scope_method = method ? method : _method; |
857 | // Describe the scope here |
858 | assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI" ); |
859 | assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest" ); |
860 | // Now we can describe the scope. |
861 | methodHandle null_mh; |
862 | bool rethrow_exception = false; |
863 | debug_info()->describe_scope(safepoint_pc_offset, null_mh, scope_method, jvms->bci(), jvms->should_reexecute(), rethrow_exception, is_method_handle_invoke, return_oop, locvals, expvals, monvals); |
864 | } // End jvms loop |
865 | |
866 | // Mark the end of the scope set. |
867 | debug_info()->end_safepoint(safepoint_pc_offset); |
868 | } |
869 | |
870 | |
871 | |
872 | // A simplified version of Process_OopMap_Node, to handle non-safepoints. |
873 | class NonSafepointEmitter { |
874 | Compile* C; |
875 | JVMState* _pending_jvms; |
876 | int _pending_offset; |
877 | |
878 | void emit_non_safepoint(); |
879 | |
880 | public: |
881 | NonSafepointEmitter(Compile* compile) { |
882 | this->C = compile; |
883 | _pending_jvms = NULL; |
884 | _pending_offset = 0; |
885 | } |
886 | |
887 | void observe_instruction(Node* n, int pc_offset) { |
888 | if (!C->debug_info()->recording_non_safepoints()) return; |
889 | |
890 | Node_Notes* nn = C->node_notes_at(n->_idx); |
891 | if (nn == NULL || nn->jvms() == NULL) return; |
892 | if (_pending_jvms != NULL && |
893 | _pending_jvms->same_calls_as(nn->jvms())) { |
894 | // Repeated JVMS? Stretch it up here. |
895 | _pending_offset = pc_offset; |
896 | } else { |
897 | if (_pending_jvms != NULL && |
898 | _pending_offset < pc_offset) { |
899 | emit_non_safepoint(); |
900 | } |
901 | _pending_jvms = NULL; |
902 | if (pc_offset > C->debug_info()->last_pc_offset()) { |
903 | // This is the only way _pending_jvms can become non-NULL: |
904 | _pending_jvms = nn->jvms(); |
905 | _pending_offset = pc_offset; |
906 | } |
907 | } |
908 | } |
909 | |
910 | // Stay out of the way of real safepoints: |
911 | void observe_safepoint(JVMState* jvms, int pc_offset) { |
912 | if (_pending_jvms != NULL && |
913 | !_pending_jvms->same_calls_as(jvms) && |
914 | _pending_offset < pc_offset) { |
915 | emit_non_safepoint(); |
916 | } |
917 | _pending_jvms = NULL; |
918 | } |
919 | |
920 | void flush_at_end() { |
921 | if (_pending_jvms != NULL) { |
922 | emit_non_safepoint(); |
923 | } |
924 | _pending_jvms = NULL; |
925 | } |
926 | }; |
927 | |
928 | void NonSafepointEmitter::emit_non_safepoint() { |
929 | JVMState* youngest_jvms = _pending_jvms; |
930 | int pc_offset = _pending_offset; |
931 | |
932 | // Clear it now: |
933 | _pending_jvms = NULL; |
934 | |
935 | DebugInformationRecorder* debug_info = C->debug_info(); |
936 | assert(debug_info->recording_non_safepoints(), "sanity" ); |
937 | |
938 | debug_info->add_non_safepoint(pc_offset); |
939 | int max_depth = youngest_jvms->depth(); |
940 | |
941 | // Visit scopes from oldest to youngest. |
942 | for (int depth = 1; depth <= max_depth; depth++) { |
943 | JVMState* jvms = youngest_jvms->of_depth(depth); |
944 | ciMethod* method = jvms->has_method() ? jvms->method() : NULL; |
945 | assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest" ); |
946 | methodHandle null_mh; |
947 | debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); |
948 | } |
949 | |
950 | // Mark the end of the scope set. |
951 | debug_info->end_non_safepoint(pc_offset); |
952 | } |
953 | |
954 | //------------------------------init_buffer------------------------------------ |
955 | CodeBuffer* Compile::init_buffer(uint* blk_starts) { |
956 | |
957 | // Set the initially allocated size |
958 | int code_req = initial_code_capacity; |
959 | int locs_req = initial_locs_capacity; |
960 | int stub_req = initial_stub_capacity; |
961 | int const_req = initial_const_capacity; |
962 | |
963 | int pad_req = NativeCall::instruction_size; |
964 | // The extra spacing after the code is necessary on some platforms. |
965 | // Sometimes we need to patch in a jump after the last instruction, |
966 | // if the nmethod has been deoptimized. (See 4932387, 4894843.) |
967 | |
968 | // Compute the byte offset where we can store the deopt pc. |
969 | if (fixed_slots() != 0) { |
970 | _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); |
971 | } |
972 | |
973 | // Compute prolog code size |
974 | _method_size = 0; |
975 | _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize; |
976 | #if defined(IA64) && !defined(AIX) |
977 | if (save_argument_registers()) { |
978 | // 4815101: this is a stub with implicit and unknown precision fp args. |
979 | // The usual spill mechanism can only generate stfd's in this case, which |
980 | // doesn't work if the fp reg to spill contains a single-precision denorm. |
981 | // Instead, we hack around the normal spill mechanism using stfspill's and |
982 | // ldffill's in the MachProlog and MachEpilog emit methods. We allocate |
983 | // space here for the fp arg regs (f8-f15) we're going to thusly spill. |
984 | // |
985 | // If we ever implement 16-byte 'registers' == stack slots, we can |
986 | // get rid of this hack and have SpillCopy generate stfspill/ldffill |
987 | // instead of stfd/stfs/ldfd/ldfs. |
988 | _frame_slots += 8*(16/BytesPerInt); |
989 | } |
990 | #endif |
991 | assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check" ); |
992 | |
993 | if (has_mach_constant_base_node()) { |
994 | uint add_size = 0; |
995 | // Fill the constant table. |
996 | // Note: This must happen before shorten_branches. |
997 | for (uint i = 0; i < _cfg->number_of_blocks(); i++) { |
998 | Block* b = _cfg->get_block(i); |
999 | |
1000 | for (uint j = 0; j < b->number_of_nodes(); j++) { |
1001 | Node* n = b->get_node(j); |
1002 | |
1003 | // If the node is a MachConstantNode evaluate the constant |
1004 | // value section. |
1005 | if (n->is_MachConstant()) { |
1006 | MachConstantNode* machcon = n->as_MachConstant(); |
1007 | machcon->eval_constant(C); |
1008 | } else if (n->is_Mach()) { |
1009 | // On Power there are more nodes that issue constants. |
1010 | add_size += (n->as_Mach()->ins_num_consts() * 8); |
1011 | } |
1012 | } |
1013 | } |
1014 | |
1015 | // Calculate the offsets of the constants and the size of the |
1016 | // constant table (including the padding to the next section). |
1017 | constant_table().calculate_offsets_and_size(); |
1018 | const_req = constant_table().size() + add_size; |
1019 | } |
1020 | |
1021 | // Initialize the space for the BufferBlob used to find and verify |
1022 | // instruction size in MachNode::emit_size() |
1023 | init_scratch_buffer_blob(const_req); |
1024 | if (failing()) return NULL; // Out of memory |
1025 | |
1026 | // Pre-compute the length of blocks and replace |
1027 | // long branches with short if machine supports it. |
1028 | shorten_branches(blk_starts, code_req, locs_req, stub_req); |
1029 | |
1030 | // nmethod and CodeBuffer count stubs & constants as part of method's code. |
1031 | // class HandlerImpl is platform-specific and defined in the *.ad files. |
1032 | int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler |
1033 | int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler |
1034 | stub_req += MAX_stubs_size; // ensure per-stub margin |
1035 | code_req += MAX_inst_size; // ensure per-instruction margin |
1036 | |
1037 | if (StressCodeBuffers) |
1038 | code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion |
1039 | |
1040 | int total_req = |
1041 | const_req + |
1042 | code_req + |
1043 | pad_req + |
1044 | stub_req + |
1045 | exception_handler_req + |
1046 | deopt_handler_req; // deopt handler |
1047 | |
1048 | if (has_method_handle_invokes()) |
1049 | total_req += deopt_handler_req; // deopt MH handler |
1050 | |
1051 | CodeBuffer* cb = code_buffer(); |
1052 | cb->initialize(total_req, locs_req); |
1053 | |
1054 | // Have we run out of code space? |
1055 | if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { |
1056 | C->record_failure("CodeCache is full" ); |
1057 | return NULL; |
1058 | } |
1059 | // Configure the code buffer. |
1060 | cb->initialize_consts_size(const_req); |
1061 | cb->initialize_stubs_size(stub_req); |
1062 | cb->initialize_oop_recorder(env()->oop_recorder()); |
1063 | |
1064 | // fill in the nop array for bundling computations |
1065 | MachNode *_nop_list[Bundle::_nop_count]; |
1066 | Bundle::initialize_nops(_nop_list); |
1067 | |
1068 | return cb; |
1069 | } |
1070 | |
1071 | //------------------------------fill_buffer------------------------------------ |
1072 | void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) { |
1073 | // blk_starts[] contains offsets calculated during short branches processing, |
1074 | // offsets should not be increased during following steps. |
1075 | |
1076 | // Compute the size of first NumberOfLoopInstrToAlign instructions at head |
1077 | // of a loop. It is used to determine the padding for loop alignment. |
1078 | compute_loop_first_inst_sizes(); |
1079 | |
1080 | // Create oopmap set. |
1081 | _oop_map_set = new OopMapSet(); |
1082 | |
1083 | // !!!!! This preserves old handling of oopmaps for now |
1084 | debug_info()->set_oopmaps(_oop_map_set); |
1085 | |
1086 | uint nblocks = _cfg->number_of_blocks(); |
1087 | // Count and start of implicit null check instructions |
1088 | uint inct_cnt = 0; |
1089 | uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); |
1090 | |
1091 | // Count and start of calls |
1092 | uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); |
1093 | |
1094 | uint return_offset = 0; |
1095 | int nop_size = (new MachNopNode())->size(_regalloc); |
1096 | |
1097 | int previous_offset = 0; |
1098 | int current_offset = 0; |
1099 | int last_call_offset = -1; |
1100 | int last_avoid_back_to_back_offset = -1; |
1101 | #ifdef ASSERT |
1102 | uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); |
1103 | uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); |
1104 | uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); |
1105 | uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); |
1106 | #endif |
1107 | |
1108 | // Create an array of unused labels, one for each basic block, if printing is enabled |
1109 | #if defined(SUPPORT_OPTO_ASSEMBLY) |
1110 | int *node_offsets = NULL; |
1111 | uint node_offset_limit = unique(); |
1112 | |
1113 | if (print_assembly()) { |
1114 | node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); |
1115 | } |
1116 | if (node_offsets != NULL) { |
1117 | // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. |
1118 | memset(node_offsets, 0, node_offset_limit*sizeof(int)); |
1119 | } |
1120 | #endif |
1121 | |
1122 | NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily |
1123 | |
1124 | // Emit the constant table. |
1125 | if (has_mach_constant_base_node()) { |
1126 | constant_table().emit(*cb); |
1127 | } |
1128 | |
1129 | // Create an array of labels, one for each basic block |
1130 | Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); |
1131 | for (uint i=0; i <= nblocks; i++) { |
1132 | blk_labels[i].init(); |
1133 | } |
1134 | |
1135 | // ------------------ |
1136 | // Now fill in the code buffer |
1137 | Node *delay_slot = NULL; |
1138 | |
1139 | for (uint i = 0; i < nblocks; i++) { |
1140 | Block* block = _cfg->get_block(i); |
1141 | Node* head = block->head(); |
1142 | |
1143 | // If this block needs to start aligned (i.e, can be reached other |
1144 | // than by falling-thru from the previous block), then force the |
1145 | // start of a new bundle. |
1146 | if (Pipeline::requires_bundling() && starts_bundle(head)) { |
1147 | cb->flush_bundle(true); |
1148 | } |
1149 | |
1150 | #ifdef ASSERT |
1151 | if (!block->is_connector()) { |
1152 | stringStream st; |
1153 | block->dump_head(_cfg, &st); |
1154 | MacroAssembler(cb).block_comment(st.as_string()); |
1155 | } |
1156 | jmp_target[i] = 0; |
1157 | jmp_offset[i] = 0; |
1158 | jmp_size[i] = 0; |
1159 | jmp_rule[i] = 0; |
1160 | #endif |
1161 | int blk_offset = current_offset; |
1162 | |
1163 | // Define the label at the beginning of the basic block |
1164 | MacroAssembler(cb).bind(blk_labels[block->_pre_order]); |
1165 | |
1166 | uint last_inst = block->number_of_nodes(); |
1167 | |
1168 | // Emit block normally, except for last instruction. |
1169 | // Emit means "dump code bits into code buffer". |
1170 | for (uint j = 0; j<last_inst; j++) { |
1171 | |
1172 | // Get the node |
1173 | Node* n = block->get_node(j); |
1174 | |
1175 | // See if delay slots are supported |
1176 | if (valid_bundle_info(n) && |
1177 | node_bundling(n)->used_in_unconditional_delay()) { |
1178 | assert(delay_slot == NULL, "no use of delay slot node" ); |
1179 | assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size" ); |
1180 | |
1181 | delay_slot = n; |
1182 | continue; |
1183 | } |
1184 | |
1185 | // If this starts a new instruction group, then flush the current one |
1186 | // (but allow split bundles) |
1187 | if (Pipeline::requires_bundling() && starts_bundle(n)) |
1188 | cb->flush_bundle(false); |
1189 | |
1190 | // Special handling for SafePoint/Call Nodes |
1191 | bool is_mcall = false; |
1192 | if (n->is_Mach()) { |
1193 | MachNode *mach = n->as_Mach(); |
1194 | is_mcall = n->is_MachCall(); |
1195 | bool is_sfn = n->is_MachSafePoint(); |
1196 | |
1197 | // If this requires all previous instructions be flushed, then do so |
1198 | if (is_sfn || is_mcall || mach->alignment_required() != 1) { |
1199 | cb->flush_bundle(true); |
1200 | current_offset = cb->insts_size(); |
1201 | } |
1202 | |
1203 | // A padding may be needed again since a previous instruction |
1204 | // could be moved to delay slot. |
1205 | |
1206 | // align the instruction if necessary |
1207 | int padding = mach->compute_padding(current_offset); |
1208 | // Make sure safepoint node for polling is distinct from a call's |
1209 | // return by adding a nop if needed. |
1210 | if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { |
1211 | padding = nop_size; |
1212 | } |
1213 | if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && |
1214 | current_offset == last_avoid_back_to_back_offset) { |
1215 | // Avoid back to back some instructions. |
1216 | padding = nop_size; |
1217 | } |
1218 | |
1219 | if (padding > 0) { |
1220 | assert((padding % nop_size) == 0, "padding is not a multiple of NOP size" ); |
1221 | int nops_cnt = padding / nop_size; |
1222 | MachNode *nop = new MachNopNode(nops_cnt); |
1223 | block->insert_node(nop, j++); |
1224 | last_inst++; |
1225 | _cfg->map_node_to_block(nop, block); |
1226 | // Ensure enough space. |
1227 | cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); |
1228 | if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { |
1229 | C->record_failure("CodeCache is full" ); |
1230 | return; |
1231 | } |
1232 | nop->emit(*cb, _regalloc); |
1233 | cb->flush_bundle(true); |
1234 | current_offset = cb->insts_size(); |
1235 | } |
1236 | |
1237 | // Remember the start of the last call in a basic block |
1238 | if (is_mcall) { |
1239 | MachCallNode *mcall = mach->as_MachCall(); |
1240 | |
1241 | // This destination address is NOT PC-relative |
1242 | mcall->method_set((intptr_t)mcall->entry_point()); |
1243 | |
1244 | // Save the return address |
1245 | call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); |
1246 | |
1247 | if (mcall->is_MachCallLeaf()) { |
1248 | is_mcall = false; |
1249 | is_sfn = false; |
1250 | } |
1251 | } |
1252 | |
1253 | // sfn will be valid whenever mcall is valid now because of inheritance |
1254 | if (is_sfn || is_mcall) { |
1255 | |
1256 | // Handle special safepoint nodes for synchronization |
1257 | if (!is_mcall) { |
1258 | MachSafePointNode *sfn = mach->as_MachSafePoint(); |
1259 | // !!!!! Stubs only need an oopmap right now, so bail out |
1260 | if (sfn->jvms()->method() == NULL) { |
1261 | // Write the oopmap directly to the code blob??!! |
1262 | continue; |
1263 | } |
1264 | } // End synchronization |
1265 | |
1266 | non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), |
1267 | current_offset); |
1268 | Process_OopMap_Node(mach, current_offset); |
1269 | } // End if safepoint |
1270 | |
1271 | // If this is a null check, then add the start of the previous instruction to the list |
1272 | else if( mach->is_MachNullCheck() ) { |
1273 | inct_starts[inct_cnt++] = previous_offset; |
1274 | } |
1275 | |
1276 | // If this is a branch, then fill in the label with the target BB's label |
1277 | else if (mach->is_MachBranch()) { |
1278 | // This requires the TRUE branch target be in succs[0] |
1279 | uint block_num = block->non_connector_successor(0)->_pre_order; |
1280 | |
1281 | // Try to replace long branch if delay slot is not used, |
1282 | // it is mostly for back branches since forward branch's |
1283 | // distance is not updated yet. |
1284 | bool delay_slot_is_used = valid_bundle_info(n) && |
1285 | node_bundling(n)->use_unconditional_delay(); |
1286 | if (!delay_slot_is_used && mach->may_be_short_branch()) { |
1287 | assert(delay_slot == NULL, "not expecting delay slot node" ); |
1288 | int br_size = n->size(_regalloc); |
1289 | int offset = blk_starts[block_num] - current_offset; |
1290 | if (block_num >= i) { |
1291 | // Current and following block's offset are not |
1292 | // finalized yet, adjust distance by the difference |
1293 | // between calculated and final offsets of current block. |
1294 | offset -= (blk_starts[i] - blk_offset); |
1295 | } |
1296 | // In the following code a nop could be inserted before |
1297 | // the branch which will increase the backward distance. |
1298 | bool needs_padding = (current_offset == last_avoid_back_to_back_offset); |
1299 | if (needs_padding && offset <= 0) |
1300 | offset -= nop_size; |
1301 | |
1302 | if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) { |
1303 | // We've got a winner. Replace this branch. |
1304 | MachNode* replacement = mach->as_MachBranch()->short_branch_version(); |
1305 | |
1306 | // Update the jmp_size. |
1307 | int new_size = replacement->size(_regalloc); |
1308 | assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller" ); |
1309 | // Insert padding between avoid_back_to_back branches. |
1310 | if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { |
1311 | MachNode *nop = new MachNopNode(); |
1312 | block->insert_node(nop, j++); |
1313 | _cfg->map_node_to_block(nop, block); |
1314 | last_inst++; |
1315 | nop->emit(*cb, _regalloc); |
1316 | cb->flush_bundle(true); |
1317 | current_offset = cb->insts_size(); |
1318 | } |
1319 | #ifdef ASSERT |
1320 | jmp_target[i] = block_num; |
1321 | jmp_offset[i] = current_offset - blk_offset; |
1322 | jmp_size[i] = new_size; |
1323 | jmp_rule[i] = mach->rule(); |
1324 | #endif |
1325 | block->map_node(replacement, j); |
1326 | mach->subsume_by(replacement, C); |
1327 | n = replacement; |
1328 | mach = replacement; |
1329 | } |
1330 | } |
1331 | mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); |
1332 | } else if (mach->ideal_Opcode() == Op_Jump) { |
1333 | for (uint h = 0; h < block->_num_succs; h++) { |
1334 | Block* succs_block = block->_succs[h]; |
1335 | for (uint j = 1; j < succs_block->num_preds(); j++) { |
1336 | Node* jpn = succs_block->pred(j); |
1337 | if (jpn->is_JumpProj() && jpn->in(0) == mach) { |
1338 | uint block_num = succs_block->non_connector()->_pre_order; |
1339 | Label *blkLabel = &blk_labels[block_num]; |
1340 | mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); |
1341 | } |
1342 | } |
1343 | } |
1344 | } |
1345 | #ifdef ASSERT |
1346 | // Check that oop-store precedes the card-mark |
1347 | else if (mach->ideal_Opcode() == Op_StoreCM) { |
1348 | uint storeCM_idx = j; |
1349 | int count = 0; |
1350 | for (uint prec = mach->req(); prec < mach->len(); prec++) { |
1351 | Node *oop_store = mach->in(prec); // Precedence edge |
1352 | if (oop_store == NULL) continue; |
1353 | count++; |
1354 | uint i4; |
1355 | for (i4 = 0; i4 < last_inst; ++i4) { |
1356 | if (block->get_node(i4) == oop_store) { |
1357 | break; |
1358 | } |
1359 | } |
1360 | // Note: This test can provide a false failure if other precedence |
1361 | // edges have been added to the storeCMNode. |
1362 | assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store" ); |
1363 | } |
1364 | assert(count > 0, "storeCM expects at least one precedence edge" ); |
1365 | } |
1366 | #endif |
1367 | else if (!n->is_Proj()) { |
1368 | // Remember the beginning of the previous instruction, in case |
1369 | // it's followed by a flag-kill and a null-check. Happens on |
1370 | // Intel all the time, with add-to-memory kind of opcodes. |
1371 | previous_offset = current_offset; |
1372 | } |
1373 | |
1374 | // Not an else-if! |
1375 | // If this is a trap based cmp then add its offset to the list. |
1376 | if (mach->is_TrapBasedCheckNode()) { |
1377 | inct_starts[inct_cnt++] = current_offset; |
1378 | } |
1379 | } |
1380 | |
1381 | // Verify that there is sufficient space remaining |
1382 | cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); |
1383 | if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { |
1384 | C->record_failure("CodeCache is full" ); |
1385 | return; |
1386 | } |
1387 | |
1388 | // Save the offset for the listing |
1389 | #if defined(SUPPORT_OPTO_ASSEMBLY) |
1390 | if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) { |
1391 | node_offsets[n->_idx] = cb->insts_size(); |
1392 | } |
1393 | #endif |
1394 | |
1395 | // "Normal" instruction case |
1396 | DEBUG_ONLY( uint instr_offset = cb->insts_size(); ) |
1397 | n->emit(*cb, _regalloc); |
1398 | current_offset = cb->insts_size(); |
1399 | |
1400 | // Above we only verified that there is enough space in the instruction section. |
1401 | // However, the instruction may emit stubs that cause code buffer expansion. |
1402 | // Bail out here if expansion failed due to a lack of code cache space. |
1403 | if (failing()) { |
1404 | return; |
1405 | } |
1406 | |
1407 | #ifdef ASSERT |
1408 | if (n->size(_regalloc) < (current_offset-instr_offset)) { |
1409 | n->dump(); |
1410 | assert(false, "wrong size of mach node" ); |
1411 | } |
1412 | #endif |
1413 | non_safepoints.observe_instruction(n, current_offset); |
1414 | |
1415 | // mcall is last "call" that can be a safepoint |
1416 | // record it so we can see if a poll will directly follow it |
1417 | // in which case we'll need a pad to make the PcDesc sites unique |
1418 | // see 5010568. This can be slightly inaccurate but conservative |
1419 | // in the case that return address is not actually at current_offset. |
1420 | // This is a small price to pay. |
1421 | |
1422 | if (is_mcall) { |
1423 | last_call_offset = current_offset; |
1424 | } |
1425 | |
1426 | if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { |
1427 | // Avoid back to back some instructions. |
1428 | last_avoid_back_to_back_offset = current_offset; |
1429 | } |
1430 | |
1431 | // See if this instruction has a delay slot |
1432 | if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { |
1433 | guarantee(delay_slot != NULL, "expecting delay slot node" ); |
1434 | |
1435 | // Back up 1 instruction |
1436 | cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size()); |
1437 | |
1438 | // Save the offset for the listing |
1439 | #if defined(SUPPORT_OPTO_ASSEMBLY) |
1440 | if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) { |
1441 | node_offsets[delay_slot->_idx] = cb->insts_size(); |
1442 | } |
1443 | #endif |
1444 | |
1445 | // Support a SafePoint in the delay slot |
1446 | if (delay_slot->is_MachSafePoint()) { |
1447 | MachNode *mach = delay_slot->as_Mach(); |
1448 | // !!!!! Stubs only need an oopmap right now, so bail out |
1449 | if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) { |
1450 | // Write the oopmap directly to the code blob??!! |
1451 | delay_slot = NULL; |
1452 | continue; |
1453 | } |
1454 | |
1455 | int adjusted_offset = current_offset - Pipeline::instr_unit_size(); |
1456 | non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), |
1457 | adjusted_offset); |
1458 | // Generate an OopMap entry |
1459 | Process_OopMap_Node(mach, adjusted_offset); |
1460 | } |
1461 | |
1462 | // Insert the delay slot instruction |
1463 | delay_slot->emit(*cb, _regalloc); |
1464 | |
1465 | // Don't reuse it |
1466 | delay_slot = NULL; |
1467 | } |
1468 | |
1469 | } // End for all instructions in block |
1470 | |
1471 | // If the next block is the top of a loop, pad this block out to align |
1472 | // the loop top a little. Helps prevent pipe stalls at loop back branches. |
1473 | if (i < nblocks-1) { |
1474 | Block *nb = _cfg->get_block(i + 1); |
1475 | int padding = nb->alignment_padding(current_offset); |
1476 | if( padding > 0 ) { |
1477 | MachNode *nop = new MachNopNode(padding / nop_size); |
1478 | block->insert_node(nop, block->number_of_nodes()); |
1479 | _cfg->map_node_to_block(nop, block); |
1480 | nop->emit(*cb, _regalloc); |
1481 | current_offset = cb->insts_size(); |
1482 | } |
1483 | } |
1484 | // Verify that the distance for generated before forward |
1485 | // short branches is still valid. |
1486 | guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size" ); |
1487 | |
1488 | // Save new block start offset |
1489 | blk_starts[i] = blk_offset; |
1490 | } // End of for all blocks |
1491 | blk_starts[nblocks] = current_offset; |
1492 | |
1493 | non_safepoints.flush_at_end(); |
1494 | |
1495 | // Offset too large? |
1496 | if (failing()) return; |
1497 | |
1498 | // Define a pseudo-label at the end of the code |
1499 | MacroAssembler(cb).bind( blk_labels[nblocks] ); |
1500 | |
1501 | // Compute the size of the first block |
1502 | _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); |
1503 | |
1504 | #ifdef ASSERT |
1505 | for (uint i = 0; i < nblocks; i++) { // For all blocks |
1506 | if (jmp_target[i] != 0) { |
1507 | int br_size = jmp_size[i]; |
1508 | int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); |
1509 | if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) { |
1510 | tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d" , blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); |
1511 | assert(false, "Displacement too large for short jmp" ); |
1512 | } |
1513 | } |
1514 | } |
1515 | #endif |
1516 | |
1517 | #ifndef PRODUCT |
1518 | // Information on the size of the method, without the extraneous code |
1519 | Scheduling::increment_method_size(cb->insts_size()); |
1520 | #endif |
1521 | |
1522 | // ------------------ |
1523 | // Fill in exception table entries. |
1524 | FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); |
1525 | |
1526 | // Only java methods have exception handlers and deopt handlers |
1527 | // class HandlerImpl is platform-specific and defined in the *.ad files. |
1528 | if (_method) { |
1529 | // Emit the exception handler code. |
1530 | _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb)); |
1531 | if (failing()) { |
1532 | return; // CodeBuffer::expand failed |
1533 | } |
1534 | // Emit the deopt handler code. |
1535 | _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb)); |
1536 | |
1537 | // Emit the MethodHandle deopt handler code (if required). |
1538 | if (has_method_handle_invokes() && !failing()) { |
1539 | // We can use the same code as for the normal deopt handler, we |
1540 | // just need a different entry point address. |
1541 | _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb)); |
1542 | } |
1543 | } |
1544 | |
1545 | // One last check for failed CodeBuffer::expand: |
1546 | if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { |
1547 | C->record_failure("CodeCache is full" ); |
1548 | return; |
1549 | } |
1550 | |
1551 | #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) |
1552 | if (print_assembly()) { |
1553 | tty->cr(); |
1554 | tty->print_cr("============================= C2-compiled nmethod ==============================" ); |
1555 | } |
1556 | #endif |
1557 | |
1558 | #if defined(SUPPORT_OPTO_ASSEMBLY) |
1559 | // Dump the assembly code, including basic-block numbers |
1560 | if (print_assembly()) { |
1561 | ttyLocker ttyl; // keep the following output all in one block |
1562 | if (!VMThread::should_terminate()) { // test this under the tty lock |
1563 | // This output goes directly to the tty, not the compiler log. |
1564 | // To enable tools to match it up with the compilation activity, |
1565 | // be sure to tag this tty output with the compile ID. |
1566 | if (xtty != NULL) { |
1567 | xtty->head("opto_assembly compile_id='%d'%s" , compile_id(), |
1568 | is_osr_compilation() ? " compile_kind='osr'" : |
1569 | "" ); |
1570 | } |
1571 | if (method() != NULL) { |
1572 | tty->print_cr("----------------------------------- MetaData -----------------------------------" ); |
1573 | method()->print_metadata(); |
1574 | } else if (stub_name() != NULL) { |
1575 | tty->print_cr("----------------------------- RuntimeStub %s -------------------------------" , stub_name()); |
1576 | } |
1577 | tty->cr(); |
1578 | tty->print_cr("--------------------------------- OptoAssembly ---------------------------------" ); |
1579 | dump_asm(node_offsets, node_offset_limit); |
1580 | tty->print_cr("--------------------------------------------------------------------------------" ); |
1581 | if (xtty != NULL) { |
1582 | // print_metadata and dump_asm above may safepoint which makes us loose the ttylock. |
1583 | // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done |
1584 | // thread safe |
1585 | ttyLocker ttyl2; |
1586 | xtty->tail("opto_assembly" ); |
1587 | } |
1588 | } |
1589 | } |
1590 | #endif |
1591 | } |
1592 | |
1593 | void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { |
1594 | _inc_table.set_size(cnt); |
1595 | |
1596 | uint inct_cnt = 0; |
1597 | for (uint i = 0; i < _cfg->number_of_blocks(); i++) { |
1598 | Block* block = _cfg->get_block(i); |
1599 | Node *n = NULL; |
1600 | int j; |
1601 | |
1602 | // Find the branch; ignore trailing NOPs. |
1603 | for (j = block->number_of_nodes() - 1; j >= 0; j--) { |
1604 | n = block->get_node(j); |
1605 | if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { |
1606 | break; |
1607 | } |
1608 | } |
1609 | |
1610 | // If we didn't find anything, continue |
1611 | if (j < 0) { |
1612 | continue; |
1613 | } |
1614 | |
1615 | // Compute ExceptionHandlerTable subtable entry and add it |
1616 | // (skip empty blocks) |
1617 | if (n->is_Catch()) { |
1618 | |
1619 | // Get the offset of the return from the call |
1620 | uint call_return = call_returns[block->_pre_order]; |
1621 | #ifdef ASSERT |
1622 | assert( call_return > 0, "no call seen for this basic block" ); |
1623 | while (block->get_node(--j)->is_MachProj()) ; |
1624 | assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call" ); |
1625 | #endif |
1626 | // last instruction is a CatchNode, find it's CatchProjNodes |
1627 | int nof_succs = block->_num_succs; |
1628 | // allocate space |
1629 | GrowableArray<intptr_t> handler_bcis(nof_succs); |
1630 | GrowableArray<intptr_t> handler_pcos(nof_succs); |
1631 | // iterate through all successors |
1632 | for (int j = 0; j < nof_succs; j++) { |
1633 | Block* s = block->_succs[j]; |
1634 | bool found_p = false; |
1635 | for (uint k = 1; k < s->num_preds(); k++) { |
1636 | Node* pk = s->pred(k); |
1637 | if (pk->is_CatchProj() && pk->in(0) == n) { |
1638 | const CatchProjNode* p = pk->as_CatchProj(); |
1639 | found_p = true; |
1640 | // add the corresponding handler bci & pco information |
1641 | if (p->_con != CatchProjNode::fall_through_index) { |
1642 | // p leads to an exception handler (and is not fall through) |
1643 | assert(s == _cfg->get_block(s->_pre_order), "bad numbering" ); |
1644 | // no duplicates, please |
1645 | if (!handler_bcis.contains(p->handler_bci())) { |
1646 | uint block_num = s->non_connector()->_pre_order; |
1647 | handler_bcis.append(p->handler_bci()); |
1648 | handler_pcos.append(blk_labels[block_num].loc_pos()); |
1649 | } |
1650 | } |
1651 | } |
1652 | } |
1653 | assert(found_p, "no matching predecessor found" ); |
1654 | // Note: Due to empty block removal, one block may have |
1655 | // several CatchProj inputs, from the same Catch. |
1656 | } |
1657 | |
1658 | // Set the offset of the return from the call |
1659 | assert(handler_bcis.find(-1) != -1, "must have default handler" ); |
1660 | _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos); |
1661 | continue; |
1662 | } |
1663 | |
1664 | // Handle implicit null exception table updates |
1665 | if (n->is_MachNullCheck()) { |
1666 | uint block_num = block->non_connector_successor(0)->_pre_order; |
1667 | _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); |
1668 | continue; |
1669 | } |
1670 | // Handle implicit exception table updates: trap instructions. |
1671 | if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { |
1672 | uint block_num = block->non_connector_successor(0)->_pre_order; |
1673 | _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); |
1674 | continue; |
1675 | } |
1676 | } // End of for all blocks fill in exception table entries |
1677 | } |
1678 | |
1679 | // Static Variables |
1680 | #ifndef PRODUCT |
1681 | uint Scheduling::_total_nop_size = 0; |
1682 | uint Scheduling::_total_method_size = 0; |
1683 | uint Scheduling::_total_branches = 0; |
1684 | uint Scheduling::_total_unconditional_delays = 0; |
1685 | uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; |
1686 | #endif |
1687 | |
1688 | // Initializer for class Scheduling |
1689 | |
1690 | Scheduling::Scheduling(Arena *arena, Compile &compile) |
1691 | : _arena(arena), |
1692 | _cfg(compile.cfg()), |
1693 | _regalloc(compile.regalloc()), |
1694 | _scheduled(arena), |
1695 | _available(arena), |
1696 | _reg_node(arena), |
1697 | _pinch_free_list(arena), |
1698 | _next_node(NULL), |
1699 | _bundle_instr_count(0), |
1700 | _bundle_cycle_number(0), |
1701 | _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) |
1702 | #ifndef PRODUCT |
1703 | , _branches(0) |
1704 | , _unconditional_delays(0) |
1705 | #endif |
1706 | { |
1707 | // Create a MachNopNode |
1708 | _nop = new MachNopNode(); |
1709 | |
1710 | // Now that the nops are in the array, save the count |
1711 | // (but allow entries for the nops) |
1712 | _node_bundling_limit = compile.unique(); |
1713 | uint node_max = _regalloc->node_regs_max_index(); |
1714 | |
1715 | compile.set_node_bundling_limit(_node_bundling_limit); |
1716 | |
1717 | // This one is persistent within the Compile class |
1718 | _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); |
1719 | |
1720 | // Allocate space for fixed-size arrays |
1721 | _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); |
1722 | _uses = NEW_ARENA_ARRAY(arena, short, node_max); |
1723 | _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); |
1724 | |
1725 | // Clear the arrays |
1726 | for (uint i = 0; i < node_max; i++) { |
1727 | ::new (&_node_bundling_base[i]) Bundle(); |
1728 | } |
1729 | memset(_node_latency, 0, node_max * sizeof(unsigned short)); |
1730 | memset(_uses, 0, node_max * sizeof(short)); |
1731 | memset(_current_latency, 0, node_max * sizeof(unsigned short)); |
1732 | |
1733 | // Clear the bundling information |
1734 | memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); |
1735 | |
1736 | // Get the last node |
1737 | Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); |
1738 | |
1739 | _next_node = block->get_node(block->number_of_nodes() - 1); |
1740 | } |
1741 | |
1742 | #ifndef PRODUCT |
1743 | // Scheduling destructor |
1744 | Scheduling::~Scheduling() { |
1745 | _total_branches += _branches; |
1746 | _total_unconditional_delays += _unconditional_delays; |
1747 | } |
1748 | #endif |
1749 | |
1750 | // Step ahead "i" cycles |
1751 | void Scheduling::step(uint i) { |
1752 | |
1753 | Bundle *bundle = node_bundling(_next_node); |
1754 | bundle->set_starts_bundle(); |
1755 | |
1756 | // Update the bundle record, but leave the flags information alone |
1757 | if (_bundle_instr_count > 0) { |
1758 | bundle->set_instr_count(_bundle_instr_count); |
1759 | bundle->set_resources_used(_bundle_use.resourcesUsed()); |
1760 | } |
1761 | |
1762 | // Update the state information |
1763 | _bundle_instr_count = 0; |
1764 | _bundle_cycle_number += i; |
1765 | _bundle_use.step(i); |
1766 | } |
1767 | |
1768 | void Scheduling::step_and_clear() { |
1769 | Bundle *bundle = node_bundling(_next_node); |
1770 | bundle->set_starts_bundle(); |
1771 | |
1772 | // Update the bundle record |
1773 | if (_bundle_instr_count > 0) { |
1774 | bundle->set_instr_count(_bundle_instr_count); |
1775 | bundle->set_resources_used(_bundle_use.resourcesUsed()); |
1776 | |
1777 | _bundle_cycle_number += 1; |
1778 | } |
1779 | |
1780 | // Clear the bundling information |
1781 | _bundle_instr_count = 0; |
1782 | _bundle_use.reset(); |
1783 | |
1784 | memcpy(_bundle_use_elements, |
1785 | Pipeline_Use::elaborated_elements, |
1786 | sizeof(Pipeline_Use::elaborated_elements)); |
1787 | } |
1788 | |
1789 | // Perform instruction scheduling and bundling over the sequence of |
1790 | // instructions in backwards order. |
1791 | void Compile::ScheduleAndBundle() { |
1792 | |
1793 | // Don't optimize this if it isn't a method |
1794 | if (!_method) |
1795 | return; |
1796 | |
1797 | // Don't optimize this if scheduling is disabled |
1798 | if (!do_scheduling()) |
1799 | return; |
1800 | |
1801 | // Scheduling code works only with pairs (16 bytes) maximum. |
1802 | if (max_vector_size() > 16) |
1803 | return; |
1804 | |
1805 | TracePhase tp("isched" , &timers[_t_instrSched]); |
1806 | |
1807 | // Create a data structure for all the scheduling information |
1808 | Scheduling scheduling(Thread::current()->resource_area(), *this); |
1809 | |
1810 | // Walk backwards over each basic block, computing the needed alignment |
1811 | // Walk over all the basic blocks |
1812 | scheduling.DoScheduling(); |
1813 | } |
1814 | |
1815 | // Compute the latency of all the instructions. This is fairly simple, |
1816 | // because we already have a legal ordering. Walk over the instructions |
1817 | // from first to last, and compute the latency of the instruction based |
1818 | // on the latency of the preceding instruction(s). |
1819 | void Scheduling::ComputeLocalLatenciesForward(const Block *bb) { |
1820 | #ifndef PRODUCT |
1821 | if (_cfg->C->trace_opto_output()) |
1822 | tty->print("# -> ComputeLocalLatenciesForward\n" ); |
1823 | #endif |
1824 | |
1825 | // Walk over all the schedulable instructions |
1826 | for( uint j=_bb_start; j < _bb_end; j++ ) { |
1827 | |
1828 | // This is a kludge, forcing all latency calculations to start at 1. |
1829 | // Used to allow latency 0 to force an instruction to the beginning |
1830 | // of the bb |
1831 | uint latency = 1; |
1832 | Node *use = bb->get_node(j); |
1833 | uint nlen = use->len(); |
1834 | |
1835 | // Walk over all the inputs |
1836 | for ( uint k=0; k < nlen; k++ ) { |
1837 | Node *def = use->in(k); |
1838 | if (!def) |
1839 | continue; |
1840 | |
1841 | uint l = _node_latency[def->_idx] + use->latency(k); |
1842 | if (latency < l) |
1843 | latency = l; |
1844 | } |
1845 | |
1846 | _node_latency[use->_idx] = latency; |
1847 | |
1848 | #ifndef PRODUCT |
1849 | if (_cfg->C->trace_opto_output()) { |
1850 | tty->print("# latency %4d: " , latency); |
1851 | use->dump(); |
1852 | } |
1853 | #endif |
1854 | } |
1855 | |
1856 | #ifndef PRODUCT |
1857 | if (_cfg->C->trace_opto_output()) |
1858 | tty->print("# <- ComputeLocalLatenciesForward\n" ); |
1859 | #endif |
1860 | |
1861 | } // end ComputeLocalLatenciesForward |
1862 | |
1863 | // See if this node fits into the present instruction bundle |
1864 | bool Scheduling::NodeFitsInBundle(Node *n) { |
1865 | uint n_idx = n->_idx; |
1866 | |
1867 | // If this is the unconditional delay instruction, then it fits |
1868 | if (n == _unconditional_delay_slot) { |
1869 | #ifndef PRODUCT |
1870 | if (_cfg->C->trace_opto_output()) |
1871 | tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n" , n->_idx); |
1872 | #endif |
1873 | return (true); |
1874 | } |
1875 | |
1876 | // If the node cannot be scheduled this cycle, skip it |
1877 | if (_current_latency[n_idx] > _bundle_cycle_number) { |
1878 | #ifndef PRODUCT |
1879 | if (_cfg->C->trace_opto_output()) |
1880 | tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n" , |
1881 | n->_idx, _current_latency[n_idx], _bundle_cycle_number); |
1882 | #endif |
1883 | return (false); |
1884 | } |
1885 | |
1886 | const Pipeline *node_pipeline = n->pipeline(); |
1887 | |
1888 | uint instruction_count = node_pipeline->instructionCount(); |
1889 | if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) |
1890 | instruction_count = 0; |
1891 | else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) |
1892 | instruction_count++; |
1893 | |
1894 | if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { |
1895 | #ifndef PRODUCT |
1896 | if (_cfg->C->trace_opto_output()) |
1897 | tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n" , |
1898 | n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); |
1899 | #endif |
1900 | return (false); |
1901 | } |
1902 | |
1903 | // Don't allow non-machine nodes to be handled this way |
1904 | if (!n->is_Mach() && instruction_count == 0) |
1905 | return (false); |
1906 | |
1907 | // See if there is any overlap |
1908 | uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); |
1909 | |
1910 | if (delay > 0) { |
1911 | #ifndef PRODUCT |
1912 | if (_cfg->C->trace_opto_output()) |
1913 | tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n" , n_idx); |
1914 | #endif |
1915 | return false; |
1916 | } |
1917 | |
1918 | #ifndef PRODUCT |
1919 | if (_cfg->C->trace_opto_output()) |
1920 | tty->print("# NodeFitsInBundle [%4d]: TRUE\n" , n_idx); |
1921 | #endif |
1922 | |
1923 | return true; |
1924 | } |
1925 | |
1926 | Node * Scheduling::ChooseNodeToBundle() { |
1927 | uint siz = _available.size(); |
1928 | |
1929 | if (siz == 0) { |
1930 | |
1931 | #ifndef PRODUCT |
1932 | if (_cfg->C->trace_opto_output()) |
1933 | tty->print("# ChooseNodeToBundle: NULL\n" ); |
1934 | #endif |
1935 | return (NULL); |
1936 | } |
1937 | |
1938 | // Fast path, if only 1 instruction in the bundle |
1939 | if (siz == 1) { |
1940 | #ifndef PRODUCT |
1941 | if (_cfg->C->trace_opto_output()) { |
1942 | tty->print("# ChooseNodeToBundle (only 1): " ); |
1943 | _available[0]->dump(); |
1944 | } |
1945 | #endif |
1946 | return (_available[0]); |
1947 | } |
1948 | |
1949 | // Don't bother, if the bundle is already full |
1950 | if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { |
1951 | for ( uint i = 0; i < siz; i++ ) { |
1952 | Node *n = _available[i]; |
1953 | |
1954 | // Skip projections, we'll handle them another way |
1955 | if (n->is_Proj()) |
1956 | continue; |
1957 | |
1958 | // This presupposed that instructions are inserted into the |
1959 | // available list in a legality order; i.e. instructions that |
1960 | // must be inserted first are at the head of the list |
1961 | if (NodeFitsInBundle(n)) { |
1962 | #ifndef PRODUCT |
1963 | if (_cfg->C->trace_opto_output()) { |
1964 | tty->print("# ChooseNodeToBundle: " ); |
1965 | n->dump(); |
1966 | } |
1967 | #endif |
1968 | return (n); |
1969 | } |
1970 | } |
1971 | } |
1972 | |
1973 | // Nothing fits in this bundle, choose the highest priority |
1974 | #ifndef PRODUCT |
1975 | if (_cfg->C->trace_opto_output()) { |
1976 | tty->print("# ChooseNodeToBundle: " ); |
1977 | _available[0]->dump(); |
1978 | } |
1979 | #endif |
1980 | |
1981 | return _available[0]; |
1982 | } |
1983 | |
1984 | void Scheduling::AddNodeToAvailableList(Node *n) { |
1985 | assert( !n->is_Proj(), "projections never directly made available" ); |
1986 | #ifndef PRODUCT |
1987 | if (_cfg->C->trace_opto_output()) { |
1988 | tty->print("# AddNodeToAvailableList: " ); |
1989 | n->dump(); |
1990 | } |
1991 | #endif |
1992 | |
1993 | int latency = _current_latency[n->_idx]; |
1994 | |
1995 | // Insert in latency order (insertion sort) |
1996 | uint i; |
1997 | for ( i=0; i < _available.size(); i++ ) |
1998 | if (_current_latency[_available[i]->_idx] > latency) |
1999 | break; |
2000 | |
2001 | // Special Check for compares following branches |
2002 | if( n->is_Mach() && _scheduled.size() > 0 ) { |
2003 | int op = n->as_Mach()->ideal_Opcode(); |
2004 | Node *last = _scheduled[0]; |
2005 | if( last->is_MachIf() && last->in(1) == n && |
2006 | ( op == Op_CmpI || |
2007 | op == Op_CmpU || |
2008 | op == Op_CmpUL || |
2009 | op == Op_CmpP || |
2010 | op == Op_CmpF || |
2011 | op == Op_CmpD || |
2012 | op == Op_CmpL ) ) { |
2013 | |
2014 | // Recalculate position, moving to front of same latency |
2015 | for ( i=0 ; i < _available.size(); i++ ) |
2016 | if (_current_latency[_available[i]->_idx] >= latency) |
2017 | break; |
2018 | } |
2019 | } |
2020 | |
2021 | // Insert the node in the available list |
2022 | _available.insert(i, n); |
2023 | |
2024 | #ifndef PRODUCT |
2025 | if (_cfg->C->trace_opto_output()) |
2026 | dump_available(); |
2027 | #endif |
2028 | } |
2029 | |
2030 | void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { |
2031 | for ( uint i=0; i < n->len(); i++ ) { |
2032 | Node *def = n->in(i); |
2033 | if (!def) continue; |
2034 | if( def->is_Proj() ) // If this is a machine projection, then |
2035 | def = def->in(0); // propagate usage thru to the base instruction |
2036 | |
2037 | if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local |
2038 | continue; |
2039 | } |
2040 | |
2041 | // Compute the latency |
2042 | uint l = _bundle_cycle_number + n->latency(i); |
2043 | if (_current_latency[def->_idx] < l) |
2044 | _current_latency[def->_idx] = l; |
2045 | |
2046 | // If this does not have uses then schedule it |
2047 | if ((--_uses[def->_idx]) == 0) |
2048 | AddNodeToAvailableList(def); |
2049 | } |
2050 | } |
2051 | |
2052 | void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { |
2053 | #ifndef PRODUCT |
2054 | if (_cfg->C->trace_opto_output()) { |
2055 | tty->print("# AddNodeToBundle: " ); |
2056 | n->dump(); |
2057 | } |
2058 | #endif |
2059 | |
2060 | // Remove this from the available list |
2061 | uint i; |
2062 | for (i = 0; i < _available.size(); i++) |
2063 | if (_available[i] == n) |
2064 | break; |
2065 | assert(i < _available.size(), "entry in _available list not found" ); |
2066 | _available.remove(i); |
2067 | |
2068 | // See if this fits in the current bundle |
2069 | const Pipeline *node_pipeline = n->pipeline(); |
2070 | const Pipeline_Use& node_usage = node_pipeline->resourceUse(); |
2071 | |
2072 | // Check for instructions to be placed in the delay slot. We |
2073 | // do this before we actually schedule the current instruction, |
2074 | // because the delay slot follows the current instruction. |
2075 | if (Pipeline::_branch_has_delay_slot && |
2076 | node_pipeline->hasBranchDelay() && |
2077 | !_unconditional_delay_slot) { |
2078 | |
2079 | uint siz = _available.size(); |
2080 | |
2081 | // Conditional branches can support an instruction that |
2082 | // is unconditionally executed and not dependent by the |
2083 | // branch, OR a conditionally executed instruction if |
2084 | // the branch is taken. In practice, this means that |
2085 | // the first instruction at the branch target is |
2086 | // copied to the delay slot, and the branch goes to |
2087 | // the instruction after that at the branch target |
2088 | if ( n->is_MachBranch() ) { |
2089 | |
2090 | assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); |
2091 | assert( !n->is_Catch(), "should not look for delay slot for Catch" ); |
2092 | |
2093 | #ifndef PRODUCT |
2094 | _branches++; |
2095 | #endif |
2096 | |
2097 | // At least 1 instruction is on the available list |
2098 | // that is not dependent on the branch |
2099 | for (uint i = 0; i < siz; i++) { |
2100 | Node *d = _available[i]; |
2101 | const Pipeline *avail_pipeline = d->pipeline(); |
2102 | |
2103 | // Don't allow safepoints in the branch shadow, that will |
2104 | // cause a number of difficulties |
2105 | if ( avail_pipeline->instructionCount() == 1 && |
2106 | !avail_pipeline->hasMultipleBundles() && |
2107 | !avail_pipeline->hasBranchDelay() && |
2108 | Pipeline::instr_has_unit_size() && |
2109 | d->size(_regalloc) == Pipeline::instr_unit_size() && |
2110 | NodeFitsInBundle(d) && |
2111 | !node_bundling(d)->used_in_delay()) { |
2112 | |
2113 | if (d->is_Mach() && !d->is_MachSafePoint()) { |
2114 | // A node that fits in the delay slot was found, so we need to |
2115 | // set the appropriate bits in the bundle pipeline information so |
2116 | // that it correctly indicates resource usage. Later, when we |
2117 | // attempt to add this instruction to the bundle, we will skip |
2118 | // setting the resource usage. |
2119 | _unconditional_delay_slot = d; |
2120 | node_bundling(n)->set_use_unconditional_delay(); |
2121 | node_bundling(d)->set_used_in_unconditional_delay(); |
2122 | _bundle_use.add_usage(avail_pipeline->resourceUse()); |
2123 | _current_latency[d->_idx] = _bundle_cycle_number; |
2124 | _next_node = d; |
2125 | ++_bundle_instr_count; |
2126 | #ifndef PRODUCT |
2127 | _unconditional_delays++; |
2128 | #endif |
2129 | break; |
2130 | } |
2131 | } |
2132 | } |
2133 | } |
2134 | |
2135 | // No delay slot, add a nop to the usage |
2136 | if (!_unconditional_delay_slot) { |
2137 | // See if adding an instruction in the delay slot will overflow |
2138 | // the bundle. |
2139 | if (!NodeFitsInBundle(_nop)) { |
2140 | #ifndef PRODUCT |
2141 | if (_cfg->C->trace_opto_output()) |
2142 | tty->print("# *** STEP(1 instruction for delay slot) ***\n" ); |
2143 | #endif |
2144 | step(1); |
2145 | } |
2146 | |
2147 | _bundle_use.add_usage(_nop->pipeline()->resourceUse()); |
2148 | _next_node = _nop; |
2149 | ++_bundle_instr_count; |
2150 | } |
2151 | |
2152 | // See if the instruction in the delay slot requires a |
2153 | // step of the bundles |
2154 | if (!NodeFitsInBundle(n)) { |
2155 | #ifndef PRODUCT |
2156 | if (_cfg->C->trace_opto_output()) |
2157 | tty->print("# *** STEP(branch won't fit) ***\n" ); |
2158 | #endif |
2159 | // Update the state information |
2160 | _bundle_instr_count = 0; |
2161 | _bundle_cycle_number += 1; |
2162 | _bundle_use.step(1); |
2163 | } |
2164 | } |
2165 | |
2166 | // Get the number of instructions |
2167 | uint instruction_count = node_pipeline->instructionCount(); |
2168 | if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) |
2169 | instruction_count = 0; |
2170 | |
2171 | // Compute the latency information |
2172 | uint delay = 0; |
2173 | |
2174 | if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { |
2175 | int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; |
2176 | if (relative_latency < 0) |
2177 | relative_latency = 0; |
2178 | |
2179 | delay = _bundle_use.full_latency(relative_latency, node_usage); |
2180 | |
2181 | // Does not fit in this bundle, start a new one |
2182 | if (delay > 0) { |
2183 | step(delay); |
2184 | |
2185 | #ifndef PRODUCT |
2186 | if (_cfg->C->trace_opto_output()) |
2187 | tty->print("# *** STEP(%d) ***\n" , delay); |
2188 | #endif |
2189 | } |
2190 | } |
2191 | |
2192 | // If this was placed in the delay slot, ignore it |
2193 | if (n != _unconditional_delay_slot) { |
2194 | |
2195 | if (delay == 0) { |
2196 | if (node_pipeline->hasMultipleBundles()) { |
2197 | #ifndef PRODUCT |
2198 | if (_cfg->C->trace_opto_output()) |
2199 | tty->print("# *** STEP(multiple instructions) ***\n" ); |
2200 | #endif |
2201 | step(1); |
2202 | } |
2203 | |
2204 | else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { |
2205 | #ifndef PRODUCT |
2206 | if (_cfg->C->trace_opto_output()) |
2207 | tty->print("# *** STEP(%d >= %d instructions) ***\n" , |
2208 | instruction_count + _bundle_instr_count, |
2209 | Pipeline::_max_instrs_per_cycle); |
2210 | #endif |
2211 | step(1); |
2212 | } |
2213 | } |
2214 | |
2215 | if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) |
2216 | _bundle_instr_count++; |
2217 | |
2218 | // Set the node's latency |
2219 | _current_latency[n->_idx] = _bundle_cycle_number; |
2220 | |
2221 | // Now merge the functional unit information |
2222 | if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) |
2223 | _bundle_use.add_usage(node_usage); |
2224 | |
2225 | // Increment the number of instructions in this bundle |
2226 | _bundle_instr_count += instruction_count; |
2227 | |
2228 | // Remember this node for later |
2229 | if (n->is_Mach()) |
2230 | _next_node = n; |
2231 | } |
2232 | |
2233 | // It's possible to have a BoxLock in the graph and in the _bbs mapping but |
2234 | // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. |
2235 | // 'Schedule' them (basically ignore in the schedule) but do not insert them |
2236 | // into the block. All other scheduled nodes get put in the schedule here. |
2237 | int op = n->Opcode(); |
2238 | if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR |
2239 | (op != Op_Node && // Not an unused antidepedence node and |
2240 | // not an unallocated boxlock |
2241 | (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { |
2242 | |
2243 | // Push any trailing projections |
2244 | if( bb->get_node(bb->number_of_nodes()-1) != n ) { |
2245 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
2246 | Node *foi = n->fast_out(i); |
2247 | if( foi->is_Proj() ) |
2248 | _scheduled.push(foi); |
2249 | } |
2250 | } |
2251 | |
2252 | // Put the instruction in the schedule list |
2253 | _scheduled.push(n); |
2254 | } |
2255 | |
2256 | #ifndef PRODUCT |
2257 | if (_cfg->C->trace_opto_output()) |
2258 | dump_available(); |
2259 | #endif |
2260 | |
2261 | // Walk all the definitions, decrementing use counts, and |
2262 | // if a definition has a 0 use count, place it in the available list. |
2263 | DecrementUseCounts(n,bb); |
2264 | } |
2265 | |
2266 | // This method sets the use count within a basic block. We will ignore all |
2267 | // uses outside the current basic block. As we are doing a backwards walk, |
2268 | // any node we reach that has a use count of 0 may be scheduled. This also |
2269 | // avoids the problem of cyclic references from phi nodes, as long as phi |
2270 | // nodes are at the front of the basic block. This method also initializes |
2271 | // the available list to the set of instructions that have no uses within this |
2272 | // basic block. |
2273 | void Scheduling::ComputeUseCount(const Block *bb) { |
2274 | #ifndef PRODUCT |
2275 | if (_cfg->C->trace_opto_output()) |
2276 | tty->print("# -> ComputeUseCount\n" ); |
2277 | #endif |
2278 | |
2279 | // Clear the list of available and scheduled instructions, just in case |
2280 | _available.clear(); |
2281 | _scheduled.clear(); |
2282 | |
2283 | // No delay slot specified |
2284 | _unconditional_delay_slot = NULL; |
2285 | |
2286 | #ifdef ASSERT |
2287 | for( uint i=0; i < bb->number_of_nodes(); i++ ) |
2288 | assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); |
2289 | #endif |
2290 | |
2291 | // Force the _uses count to never go to zero for unscheduable pieces |
2292 | // of the block |
2293 | for( uint k = 0; k < _bb_start; k++ ) |
2294 | _uses[bb->get_node(k)->_idx] = 1; |
2295 | for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) |
2296 | _uses[bb->get_node(l)->_idx] = 1; |
2297 | |
2298 | // Iterate backwards over the instructions in the block. Don't count the |
2299 | // branch projections at end or the block header instructions. |
2300 | for( uint j = _bb_end-1; j >= _bb_start; j-- ) { |
2301 | Node *n = bb->get_node(j); |
2302 | if( n->is_Proj() ) continue; // Projections handled another way |
2303 | |
2304 | // Account for all uses |
2305 | for ( uint k = 0; k < n->len(); k++ ) { |
2306 | Node *inp = n->in(k); |
2307 | if (!inp) continue; |
2308 | assert(inp != n, "no cycles allowed" ); |
2309 | if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? |
2310 | if (inp->is_Proj()) { // Skip through Proj's |
2311 | inp = inp->in(0); |
2312 | } |
2313 | ++_uses[inp->_idx]; // Count 1 block-local use |
2314 | } |
2315 | } |
2316 | |
2317 | // If this instruction has a 0 use count, then it is available |
2318 | if (!_uses[n->_idx]) { |
2319 | _current_latency[n->_idx] = _bundle_cycle_number; |
2320 | AddNodeToAvailableList(n); |
2321 | } |
2322 | |
2323 | #ifndef PRODUCT |
2324 | if (_cfg->C->trace_opto_output()) { |
2325 | tty->print("# uses: %3d: " , _uses[n->_idx]); |
2326 | n->dump(); |
2327 | } |
2328 | #endif |
2329 | } |
2330 | |
2331 | #ifndef PRODUCT |
2332 | if (_cfg->C->trace_opto_output()) |
2333 | tty->print("# <- ComputeUseCount\n" ); |
2334 | #endif |
2335 | } |
2336 | |
2337 | // This routine performs scheduling on each basic block in reverse order, |
2338 | // using instruction latencies and taking into account function unit |
2339 | // availability. |
2340 | void Scheduling::DoScheduling() { |
2341 | #ifndef PRODUCT |
2342 | if (_cfg->C->trace_opto_output()) |
2343 | tty->print("# -> DoScheduling\n" ); |
2344 | #endif |
2345 | |
2346 | Block *succ_bb = NULL; |
2347 | Block *bb; |
2348 | |
2349 | // Walk over all the basic blocks in reverse order |
2350 | for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { |
2351 | bb = _cfg->get_block(i); |
2352 | |
2353 | #ifndef PRODUCT |
2354 | if (_cfg->C->trace_opto_output()) { |
2355 | tty->print("# Schedule BB#%03d (initial)\n" , i); |
2356 | for (uint j = 0; j < bb->number_of_nodes(); j++) { |
2357 | bb->get_node(j)->dump(); |
2358 | } |
2359 | } |
2360 | #endif |
2361 | |
2362 | // On the head node, skip processing |
2363 | if (bb == _cfg->get_root_block()) { |
2364 | continue; |
2365 | } |
2366 | |
2367 | // Skip empty, connector blocks |
2368 | if (bb->is_connector()) |
2369 | continue; |
2370 | |
2371 | // If the following block is not the sole successor of |
2372 | // this one, then reset the pipeline information |
2373 | if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { |
2374 | #ifndef PRODUCT |
2375 | if (_cfg->C->trace_opto_output()) { |
2376 | tty->print("*** bundle start of next BB, node %d, for %d instructions\n" , |
2377 | _next_node->_idx, _bundle_instr_count); |
2378 | } |
2379 | #endif |
2380 | step_and_clear(); |
2381 | } |
2382 | |
2383 | // Leave untouched the starting instruction, any Phis, a CreateEx node |
2384 | // or Top. bb->get_node(_bb_start) is the first schedulable instruction. |
2385 | _bb_end = bb->number_of_nodes()-1; |
2386 | for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { |
2387 | Node *n = bb->get_node(_bb_start); |
2388 | // Things not matched, like Phinodes and ProjNodes don't get scheduled. |
2389 | // Also, MachIdealNodes do not get scheduled |
2390 | if( !n->is_Mach() ) continue; // Skip non-machine nodes |
2391 | MachNode *mach = n->as_Mach(); |
2392 | int iop = mach->ideal_Opcode(); |
2393 | if( iop == Op_CreateEx ) continue; // CreateEx is pinned |
2394 | if( iop == Op_Con ) continue; // Do not schedule Top |
2395 | if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes |
2396 | mach->pipeline() == MachNode::pipeline_class() && |
2397 | !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc |
2398 | continue; |
2399 | break; // Funny loop structure to be sure... |
2400 | } |
2401 | // Compute last "interesting" instruction in block - last instruction we |
2402 | // might schedule. _bb_end points just after last schedulable inst. We |
2403 | // normally schedule conditional branches (despite them being forced last |
2404 | // in the block), because they have delay slots we can fill. Calls all |
2405 | // have their delay slots filled in the template expansions, so we don't |
2406 | // bother scheduling them. |
2407 | Node *last = bb->get_node(_bb_end); |
2408 | // Ignore trailing NOPs. |
2409 | while (_bb_end > 0 && last->is_Mach() && |
2410 | last->as_Mach()->ideal_Opcode() == Op_Con) { |
2411 | last = bb->get_node(--_bb_end); |
2412 | } |
2413 | assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "" ); |
2414 | if( last->is_Catch() || |
2415 | (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { |
2416 | // There might be a prior call. Skip it. |
2417 | while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); |
2418 | } else if( last->is_MachNullCheck() ) { |
2419 | // Backup so the last null-checked memory instruction is |
2420 | // outside the schedulable range. Skip over the nullcheck, |
2421 | // projection, and the memory nodes. |
2422 | Node *mem = last->in(1); |
2423 | do { |
2424 | _bb_end--; |
2425 | } while (mem != bb->get_node(_bb_end)); |
2426 | } else { |
2427 | // Set _bb_end to point after last schedulable inst. |
2428 | _bb_end++; |
2429 | } |
2430 | |
2431 | assert( _bb_start <= _bb_end, "inverted block ends" ); |
2432 | |
2433 | // Compute the register antidependencies for the basic block |
2434 | ComputeRegisterAntidependencies(bb); |
2435 | if (_cfg->C->failing()) return; // too many D-U pinch points |
2436 | |
2437 | // Compute intra-bb latencies for the nodes |
2438 | ComputeLocalLatenciesForward(bb); |
2439 | |
2440 | // Compute the usage within the block, and set the list of all nodes |
2441 | // in the block that have no uses within the block. |
2442 | ComputeUseCount(bb); |
2443 | |
2444 | // Schedule the remaining instructions in the block |
2445 | while ( _available.size() > 0 ) { |
2446 | Node *n = ChooseNodeToBundle(); |
2447 | guarantee(n != NULL, "no nodes available" ); |
2448 | AddNodeToBundle(n,bb); |
2449 | } |
2450 | |
2451 | assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); |
2452 | #ifdef ASSERT |
2453 | for( uint l = _bb_start; l < _bb_end; l++ ) { |
2454 | Node *n = bb->get_node(l); |
2455 | uint m; |
2456 | for( m = 0; m < _bb_end-_bb_start; m++ ) |
2457 | if( _scheduled[m] == n ) |
2458 | break; |
2459 | assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); |
2460 | } |
2461 | #endif |
2462 | |
2463 | // Now copy the instructions (in reverse order) back to the block |
2464 | for ( uint k = _bb_start; k < _bb_end; k++ ) |
2465 | bb->map_node(_scheduled[_bb_end-k-1], k); |
2466 | |
2467 | #ifndef PRODUCT |
2468 | if (_cfg->C->trace_opto_output()) { |
2469 | tty->print("# Schedule BB#%03d (final)\n" , i); |
2470 | uint current = 0; |
2471 | for (uint j = 0; j < bb->number_of_nodes(); j++) { |
2472 | Node *n = bb->get_node(j); |
2473 | if( valid_bundle_info(n) ) { |
2474 | Bundle *bundle = node_bundling(n); |
2475 | if (bundle->instr_count() > 0 || bundle->flags() > 0) { |
2476 | tty->print("*** Bundle: " ); |
2477 | bundle->dump(); |
2478 | } |
2479 | n->dump(); |
2480 | } |
2481 | } |
2482 | } |
2483 | #endif |
2484 | #ifdef ASSERT |
2485 | verify_good_schedule(bb,"after block local scheduling" ); |
2486 | #endif |
2487 | } |
2488 | |
2489 | #ifndef PRODUCT |
2490 | if (_cfg->C->trace_opto_output()) |
2491 | tty->print("# <- DoScheduling\n" ); |
2492 | #endif |
2493 | |
2494 | // Record final node-bundling array location |
2495 | _regalloc->C->set_node_bundling_base(_node_bundling_base); |
2496 | |
2497 | } // end DoScheduling |
2498 | |
2499 | // Verify that no live-range used in the block is killed in the block by a |
2500 | // wrong DEF. This doesn't verify live-ranges that span blocks. |
2501 | |
2502 | // Check for edge existence. Used to avoid adding redundant precedence edges. |
2503 | static bool edge_from_to( Node *from, Node *to ) { |
2504 | for( uint i=0; i<from->len(); i++ ) |
2505 | if( from->in(i) == to ) |
2506 | return true; |
2507 | return false; |
2508 | } |
2509 | |
2510 | #ifdef ASSERT |
2511 | void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { |
2512 | // Check for bad kills |
2513 | if( OptoReg::is_valid(def) ) { // Ignore stores & control flow |
2514 | Node *prior_use = _reg_node[def]; |
2515 | if( prior_use && !edge_from_to(prior_use,n) ) { |
2516 | tty->print("%s = " ,OptoReg::as_VMReg(def)->name()); |
2517 | n->dump(); |
2518 | tty->print_cr("..." ); |
2519 | prior_use->dump(); |
2520 | assert(edge_from_to(prior_use,n), "%s" , msg); |
2521 | } |
2522 | _reg_node.map(def,NULL); // Kill live USEs |
2523 | } |
2524 | } |
2525 | |
2526 | void Scheduling::verify_good_schedule( Block *b, const char *msg ) { |
2527 | |
2528 | // Zap to something reasonable for the verify code |
2529 | _reg_node.clear(); |
2530 | |
2531 | // Walk over the block backwards. Check to make sure each DEF doesn't |
2532 | // kill a live value (other than the one it's supposed to). Add each |
2533 | // USE to the live set. |
2534 | for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { |
2535 | Node *n = b->get_node(i); |
2536 | int n_op = n->Opcode(); |
2537 | if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { |
2538 | // Fat-proj kills a slew of registers |
2539 | RegMask rm = n->out_RegMask();// Make local copy |
2540 | while( rm.is_NotEmpty() ) { |
2541 | OptoReg::Name kill = rm.find_first_elem(); |
2542 | rm.Remove(kill); |
2543 | verify_do_def( n, kill, msg ); |
2544 | } |
2545 | } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes |
2546 | // Get DEF'd registers the normal way |
2547 | verify_do_def( n, _regalloc->get_reg_first(n), msg ); |
2548 | verify_do_def( n, _regalloc->get_reg_second(n), msg ); |
2549 | } |
2550 | |
2551 | // Now make all USEs live |
2552 | for( uint i=1; i<n->req(); i++ ) { |
2553 | Node *def = n->in(i); |
2554 | assert(def != 0, "input edge required" ); |
2555 | OptoReg::Name reg_lo = _regalloc->get_reg_first(def); |
2556 | OptoReg::Name reg_hi = _regalloc->get_reg_second(def); |
2557 | if( OptoReg::is_valid(reg_lo) ) { |
2558 | assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s" , msg); |
2559 | _reg_node.map(reg_lo,n); |
2560 | } |
2561 | if( OptoReg::is_valid(reg_hi) ) { |
2562 | assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s" , msg); |
2563 | _reg_node.map(reg_hi,n); |
2564 | } |
2565 | } |
2566 | |
2567 | } |
2568 | |
2569 | // Zap to something reasonable for the Antidependence code |
2570 | _reg_node.clear(); |
2571 | } |
2572 | #endif |
2573 | |
2574 | // Conditionally add precedence edges. Avoid putting edges on Projs. |
2575 | static void add_prec_edge_from_to( Node *from, Node *to ) { |
2576 | if( from->is_Proj() ) { // Put precedence edge on Proj's input |
2577 | assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); |
2578 | from = from->in(0); |
2579 | } |
2580 | if( from != to && // No cycles (for things like LD L0,[L0+4] ) |
2581 | !edge_from_to( from, to ) ) // Avoid duplicate edge |
2582 | from->add_prec(to); |
2583 | } |
2584 | |
2585 | void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { |
2586 | if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow |
2587 | return; |
2588 | |
2589 | Node *pinch = _reg_node[def_reg]; // Get pinch point |
2590 | if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? |
2591 | is_def ) { // Check for a true def (not a kill) |
2592 | _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point |
2593 | return; |
2594 | } |
2595 | |
2596 | Node *kill = def; // Rename 'def' to more descriptive 'kill' |
2597 | debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) |
2598 | |
2599 | // After some number of kills there _may_ be a later def |
2600 | Node *later_def = NULL; |
2601 | |
2602 | // Finding a kill requires a real pinch-point. |
2603 | // Check for not already having a pinch-point. |
2604 | // Pinch points are Op_Node's. |
2605 | if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? |
2606 | later_def = pinch; // Must be def/kill as optimistic pinch-point |
2607 | if ( _pinch_free_list.size() > 0) { |
2608 | pinch = _pinch_free_list.pop(); |
2609 | } else { |
2610 | pinch = new Node(1); // Pinch point to-be |
2611 | } |
2612 | if (pinch->_idx >= _regalloc->node_regs_max_index()) { |
2613 | _cfg->C->record_method_not_compilable("too many D-U pinch points" ); |
2614 | return; |
2615 | } |
2616 | _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) |
2617 | _reg_node.map(def_reg,pinch); // Record pinch-point |
2618 | //_regalloc->set_bad(pinch->_idx); // Already initialized this way. |
2619 | if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill |
2620 | pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call |
2621 | add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch |
2622 | later_def = NULL; // and no later def |
2623 | } |
2624 | pinch->set_req(0,later_def); // Hook later def so we can find it |
2625 | } else { // Else have valid pinch point |
2626 | if( pinch->in(0) ) // If there is a later-def |
2627 | later_def = pinch->in(0); // Get it |
2628 | } |
2629 | |
2630 | // Add output-dependence edge from later def to kill |
2631 | if( later_def ) // If there is some original def |
2632 | add_prec_edge_from_to(later_def,kill); // Add edge from def to kill |
2633 | |
2634 | // See if current kill is also a use, and so is forced to be the pinch-point. |
2635 | if( pinch->Opcode() == Op_Node ) { |
2636 | Node *uses = kill->is_Proj() ? kill->in(0) : kill; |
2637 | for( uint i=1; i<uses->req(); i++ ) { |
2638 | if( _regalloc->get_reg_first(uses->in(i)) == def_reg || |
2639 | _regalloc->get_reg_second(uses->in(i)) == def_reg ) { |
2640 | // Yes, found a use/kill pinch-point |
2641 | pinch->set_req(0,NULL); // |
2642 | pinch->replace_by(kill); // Move anti-dep edges up |
2643 | pinch = kill; |
2644 | _reg_node.map(def_reg,pinch); |
2645 | return; |
2646 | } |
2647 | } |
2648 | } |
2649 | |
2650 | // Add edge from kill to pinch-point |
2651 | add_prec_edge_from_to(kill,pinch); |
2652 | } |
2653 | |
2654 | void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { |
2655 | if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow |
2656 | return; |
2657 | Node *pinch = _reg_node[use_reg]; // Get pinch point |
2658 | // Check for no later def_reg/kill in block |
2659 | if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b && |
2660 | // Use has to be block-local as well |
2661 | _cfg->get_block_for_node(use) == b) { |
2662 | if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) |
2663 | pinch->req() == 1 ) { // pinch not yet in block? |
2664 | pinch->del_req(0); // yank pointer to later-def, also set flag |
2665 | // Insert the pinch-point in the block just after the last use |
2666 | b->insert_node(pinch, b->find_node(use) + 1); |
2667 | _bb_end++; // Increase size scheduled region in block |
2668 | } |
2669 | |
2670 | add_prec_edge_from_to(pinch,use); |
2671 | } |
2672 | } |
2673 | |
2674 | // We insert antidependences between the reads and following write of |
2675 | // allocated registers to prevent illegal code motion. Hopefully, the |
2676 | // number of added references should be fairly small, especially as we |
2677 | // are only adding references within the current basic block. |
2678 | void Scheduling::ComputeRegisterAntidependencies(Block *b) { |
2679 | |
2680 | #ifdef ASSERT |
2681 | verify_good_schedule(b,"before block local scheduling" ); |
2682 | #endif |
2683 | |
2684 | // A valid schedule, for each register independently, is an endless cycle |
2685 | // of: a def, then some uses (connected to the def by true dependencies), |
2686 | // then some kills (defs with no uses), finally the cycle repeats with a new |
2687 | // def. The uses are allowed to float relative to each other, as are the |
2688 | // kills. No use is allowed to slide past a kill (or def). This requires |
2689 | // antidependencies between all uses of a single def and all kills that |
2690 | // follow, up to the next def. More edges are redundant, because later defs |
2691 | // & kills are already serialized with true or antidependencies. To keep |
2692 | // the edge count down, we add a 'pinch point' node if there's more than |
2693 | // one use or more than one kill/def. |
2694 | |
2695 | // We add dependencies in one bottom-up pass. |
2696 | |
2697 | // For each instruction we handle it's DEFs/KILLs, then it's USEs. |
2698 | |
2699 | // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this |
2700 | // register. If not, we record the DEF/KILL in _reg_node, the |
2701 | // register-to-def mapping. If there is a prior DEF/KILL, we insert a |
2702 | // "pinch point", a new Node that's in the graph but not in the block. |
2703 | // We put edges from the prior and current DEF/KILLs to the pinch point. |
2704 | // We put the pinch point in _reg_node. If there's already a pinch point |
2705 | // we merely add an edge from the current DEF/KILL to the pinch point. |
2706 | |
2707 | // After doing the DEF/KILLs, we handle USEs. For each used register, we |
2708 | // put an edge from the pinch point to the USE. |
2709 | |
2710 | // To be expedient, the _reg_node array is pre-allocated for the whole |
2711 | // compilation. _reg_node is lazily initialized; it either contains a NULL, |
2712 | // or a valid def/kill/pinch-point, or a leftover node from some prior |
2713 | // block. Leftover node from some prior block is treated like a NULL (no |
2714 | // prior def, so no anti-dependence needed). Valid def is distinguished by |
2715 | // it being in the current block. |
2716 | bool fat_proj_seen = false; |
2717 | uint last_safept = _bb_end-1; |
2718 | Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL; |
2719 | Node* last_safept_node = end_node; |
2720 | for( uint i = _bb_end-1; i >= _bb_start; i-- ) { |
2721 | Node *n = b->get_node(i); |
2722 | int is_def = n->outcnt(); // def if some uses prior to adding precedence edges |
2723 | if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { |
2724 | // Fat-proj kills a slew of registers |
2725 | // This can add edges to 'n' and obscure whether or not it was a def, |
2726 | // hence the is_def flag. |
2727 | fat_proj_seen = true; |
2728 | RegMask rm = n->out_RegMask();// Make local copy |
2729 | while( rm.is_NotEmpty() ) { |
2730 | OptoReg::Name kill = rm.find_first_elem(); |
2731 | rm.Remove(kill); |
2732 | anti_do_def( b, n, kill, is_def ); |
2733 | } |
2734 | } else { |
2735 | // Get DEF'd registers the normal way |
2736 | anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); |
2737 | anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); |
2738 | } |
2739 | |
2740 | // Kill projections on a branch should appear to occur on the |
2741 | // branch, not afterwards, so grab the masks from the projections |
2742 | // and process them. |
2743 | if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { |
2744 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
2745 | Node* use = n->fast_out(i); |
2746 | if (use->is_Proj()) { |
2747 | RegMask rm = use->out_RegMask();// Make local copy |
2748 | while( rm.is_NotEmpty() ) { |
2749 | OptoReg::Name kill = rm.find_first_elem(); |
2750 | rm.Remove(kill); |
2751 | anti_do_def( b, n, kill, false ); |
2752 | } |
2753 | } |
2754 | } |
2755 | } |
2756 | |
2757 | // Check each register used by this instruction for a following DEF/KILL |
2758 | // that must occur afterward and requires an anti-dependence edge. |
2759 | for( uint j=0; j<n->req(); j++ ) { |
2760 | Node *def = n->in(j); |
2761 | if( def ) { |
2762 | assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); |
2763 | anti_do_use( b, n, _regalloc->get_reg_first(def) ); |
2764 | anti_do_use( b, n, _regalloc->get_reg_second(def) ); |
2765 | } |
2766 | } |
2767 | // Do not allow defs of new derived values to float above GC |
2768 | // points unless the base is definitely available at the GC point. |
2769 | |
2770 | Node *m = b->get_node(i); |
2771 | |
2772 | // Add precedence edge from following safepoint to use of derived pointer |
2773 | if( last_safept_node != end_node && |
2774 | m != last_safept_node) { |
2775 | for (uint k = 1; k < m->req(); k++) { |
2776 | const Type *t = m->in(k)->bottom_type(); |
2777 | if( t->isa_oop_ptr() && |
2778 | t->is_ptr()->offset() != 0 ) { |
2779 | last_safept_node->add_prec( m ); |
2780 | break; |
2781 | } |
2782 | } |
2783 | } |
2784 | |
2785 | if( n->jvms() ) { // Precedence edge from derived to safept |
2786 | // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() |
2787 | if( b->get_node(last_safept) != last_safept_node ) { |
2788 | last_safept = b->find_node(last_safept_node); |
2789 | } |
2790 | for( uint j=last_safept; j > i; j-- ) { |
2791 | Node *mach = b->get_node(j); |
2792 | if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) |
2793 | mach->add_prec( n ); |
2794 | } |
2795 | last_safept = i; |
2796 | last_safept_node = m; |
2797 | } |
2798 | } |
2799 | |
2800 | if (fat_proj_seen) { |
2801 | // Garbage collect pinch nodes that were not consumed. |
2802 | // They are usually created by a fat kill MachProj for a call. |
2803 | garbage_collect_pinch_nodes(); |
2804 | } |
2805 | } |
2806 | |
2807 | // Garbage collect pinch nodes for reuse by other blocks. |
2808 | // |
2809 | // The block scheduler's insertion of anti-dependence |
2810 | // edges creates many pinch nodes when the block contains |
2811 | // 2 or more Calls. A pinch node is used to prevent a |
2812 | // combinatorial explosion of edges. If a set of kills for a |
2813 | // register is anti-dependent on a set of uses (or defs), rather |
2814 | // than adding an edge in the graph between each pair of kill |
2815 | // and use (or def), a pinch is inserted between them: |
2816 | // |
2817 | // use1 use2 use3 |
2818 | // \ | / |
2819 | // \ | / |
2820 | // pinch |
2821 | // / | \ |
2822 | // / | \ |
2823 | // kill1 kill2 kill3 |
2824 | // |
2825 | // One pinch node is created per register killed when |
2826 | // the second call is encountered during a backwards pass |
2827 | // over the block. Most of these pinch nodes are never |
2828 | // wired into the graph because the register is never |
2829 | // used or def'ed in the block. |
2830 | // |
2831 | void Scheduling::garbage_collect_pinch_nodes() { |
2832 | #ifndef PRODUCT |
2833 | if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:" ); |
2834 | #endif |
2835 | int trace_cnt = 0; |
2836 | for (uint k = 0; k < _reg_node.Size(); k++) { |
2837 | Node* pinch = _reg_node[k]; |
2838 | if ((pinch != NULL) && pinch->Opcode() == Op_Node && |
2839 | // no predecence input edges |
2840 | (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) { |
2841 | cleanup_pinch(pinch); |
2842 | _pinch_free_list.push(pinch); |
2843 | _reg_node.map(k, NULL); |
2844 | #ifndef PRODUCT |
2845 | if (_cfg->C->trace_opto_output()) { |
2846 | trace_cnt++; |
2847 | if (trace_cnt > 40) { |
2848 | tty->print("\n" ); |
2849 | trace_cnt = 0; |
2850 | } |
2851 | tty->print(" %d" , pinch->_idx); |
2852 | } |
2853 | #endif |
2854 | } |
2855 | } |
2856 | #ifndef PRODUCT |
2857 | if (_cfg->C->trace_opto_output()) tty->print("\n" ); |
2858 | #endif |
2859 | } |
2860 | |
2861 | // Clean up a pinch node for reuse. |
2862 | void Scheduling::cleanup_pinch( Node *pinch ) { |
2863 | assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking" ); |
2864 | |
2865 | for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { |
2866 | Node* use = pinch->last_out(i); |
2867 | uint uses_found = 0; |
2868 | for (uint j = use->req(); j < use->len(); j++) { |
2869 | if (use->in(j) == pinch) { |
2870 | use->rm_prec(j); |
2871 | uses_found++; |
2872 | } |
2873 | } |
2874 | assert(uses_found > 0, "must be a precedence edge" ); |
2875 | i -= uses_found; // we deleted 1 or more copies of this edge |
2876 | } |
2877 | // May have a later_def entry |
2878 | pinch->set_req(0, NULL); |
2879 | } |
2880 | |
2881 | #ifndef PRODUCT |
2882 | |
2883 | void Scheduling::dump_available() const { |
2884 | tty->print("#Availist " ); |
2885 | for (uint i = 0; i < _available.size(); i++) |
2886 | tty->print(" N%d/l%d" , _available[i]->_idx,_current_latency[_available[i]->_idx]); |
2887 | tty->cr(); |
2888 | } |
2889 | |
2890 | // Print Scheduling Statistics |
2891 | void Scheduling::print_statistics() { |
2892 | // Print the size added by nops for bundling |
2893 | tty->print("Nops added %d bytes to total of %d bytes" , |
2894 | _total_nop_size, _total_method_size); |
2895 | if (_total_method_size > 0) |
2896 | tty->print(", for %.2f%%" , |
2897 | ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); |
2898 | tty->print("\n" ); |
2899 | |
2900 | // Print the number of branch shadows filled |
2901 | if (Pipeline::_branch_has_delay_slot) { |
2902 | tty->print("Of %d branches, %d had unconditional delay slots filled" , |
2903 | _total_branches, _total_unconditional_delays); |
2904 | if (_total_branches > 0) |
2905 | tty->print(", for %.2f%%" , |
2906 | ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); |
2907 | tty->print("\n" ); |
2908 | } |
2909 | |
2910 | uint total_instructions = 0, total_bundles = 0; |
2911 | |
2912 | for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { |
2913 | uint bundle_count = _total_instructions_per_bundle[i]; |
2914 | total_instructions += bundle_count * i; |
2915 | total_bundles += bundle_count; |
2916 | } |
2917 | |
2918 | if (total_bundles > 0) |
2919 | tty->print("Average ILP (excluding nops) is %.2f\n" , |
2920 | ((double)total_instructions) / ((double)total_bundles)); |
2921 | } |
2922 | #endif |
2923 | |