| 1 | /* |
| 2 | * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "asm/assembler.inline.hpp" |
| 27 | #include "asm/macroAssembler.inline.hpp" |
| 28 | #include "code/compiledIC.hpp" |
| 29 | #include "code/debugInfo.hpp" |
| 30 | #include "code/debugInfoRec.hpp" |
| 31 | #include "compiler/compileBroker.hpp" |
| 32 | #include "compiler/compilerDirectives.hpp" |
| 33 | #include "compiler/oopMap.hpp" |
| 34 | #include "memory/allocation.inline.hpp" |
| 35 | #include "opto/ad.hpp" |
| 36 | #include "opto/callnode.hpp" |
| 37 | #include "opto/cfgnode.hpp" |
| 38 | #include "opto/locknode.hpp" |
| 39 | #include "opto/machnode.hpp" |
| 40 | #include "opto/optoreg.hpp" |
| 41 | #include "opto/output.hpp" |
| 42 | #include "opto/regalloc.hpp" |
| 43 | #include "opto/runtime.hpp" |
| 44 | #include "opto/subnode.hpp" |
| 45 | #include "opto/type.hpp" |
| 46 | #include "runtime/handles.inline.hpp" |
| 47 | #include "utilities/xmlstream.hpp" |
| 48 | |
| 49 | #ifndef PRODUCT |
| 50 | #define DEBUG_ARG(x) , x |
| 51 | #else |
| 52 | #define DEBUG_ARG(x) |
| 53 | #endif |
| 54 | |
| 55 | // Convert Nodes to instruction bits and pass off to the VM |
| 56 | void Compile::Output() { |
| 57 | // RootNode goes |
| 58 | assert( _cfg->get_root_block()->number_of_nodes() == 0, "" ); |
| 59 | |
| 60 | // The number of new nodes (mostly MachNop) is proportional to |
| 61 | // the number of java calls and inner loops which are aligned. |
| 62 | if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + |
| 63 | C->inner_loops()*(OptoLoopAlignment-1)), |
| 64 | "out of nodes before code generation" ) ) { |
| 65 | return; |
| 66 | } |
| 67 | // Make sure I can find the Start Node |
| 68 | Block *entry = _cfg->get_block(1); |
| 69 | Block *broot = _cfg->get_root_block(); |
| 70 | |
| 71 | const StartNode *start = entry->head()->as_Start(); |
| 72 | |
| 73 | // Replace StartNode with prolog |
| 74 | MachPrologNode *prolog = new MachPrologNode(); |
| 75 | entry->map_node(prolog, 0); |
| 76 | _cfg->map_node_to_block(prolog, entry); |
| 77 | _cfg->unmap_node_from_block(start); // start is no longer in any block |
| 78 | |
| 79 | // Virtual methods need an unverified entry point |
| 80 | |
| 81 | if( is_osr_compilation() ) { |
| 82 | if( PoisonOSREntry ) { |
| 83 | // TODO: Should use a ShouldNotReachHereNode... |
| 84 | _cfg->insert( broot, 0, new MachBreakpointNode() ); |
| 85 | } |
| 86 | } else { |
| 87 | if( _method && !_method->flags().is_static() ) { |
| 88 | // Insert unvalidated entry point |
| 89 | _cfg->insert( broot, 0, new MachUEPNode() ); |
| 90 | } |
| 91 | |
| 92 | } |
| 93 | |
| 94 | // Break before main entry point |
| 95 | if ((_method && C->directive()->BreakAtExecuteOption) || |
| 96 | (OptoBreakpoint && is_method_compilation()) || |
| 97 | (OptoBreakpointOSR && is_osr_compilation()) || |
| 98 | (OptoBreakpointC2R && !_method) ) { |
| 99 | // checking for _method means that OptoBreakpoint does not apply to |
| 100 | // runtime stubs or frame converters |
| 101 | _cfg->insert( entry, 1, new MachBreakpointNode() ); |
| 102 | } |
| 103 | |
| 104 | // Insert epilogs before every return |
| 105 | for (uint i = 0; i < _cfg->number_of_blocks(); i++) { |
| 106 | Block* block = _cfg->get_block(i); |
| 107 | if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point? |
| 108 | Node* m = block->end(); |
| 109 | if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { |
| 110 | MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); |
| 111 | block->add_inst(epilog); |
| 112 | _cfg->map_node_to_block(epilog, block); |
| 113 | } |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1); |
| 118 | blk_starts[0] = 0; |
| 119 | |
| 120 | // Initialize code buffer and process short branches. |
| 121 | CodeBuffer* cb = init_buffer(blk_starts); |
| 122 | |
| 123 | if (cb == NULL || failing()) { |
| 124 | return; |
| 125 | } |
| 126 | |
| 127 | ScheduleAndBundle(); |
| 128 | |
| 129 | #ifndef PRODUCT |
| 130 | if (trace_opto_output()) { |
| 131 | tty->print("\n---- After ScheduleAndBundle ----\n" ); |
| 132 | for (uint i = 0; i < _cfg->number_of_blocks(); i++) { |
| 133 | tty->print("\nBB#%03d:\n" , i); |
| 134 | Block* block = _cfg->get_block(i); |
| 135 | for (uint j = 0; j < block->number_of_nodes(); j++) { |
| 136 | Node* n = block->get_node(j); |
| 137 | OptoReg::Name reg = _regalloc->get_reg_first(n); |
| 138 | tty->print(" %-6s " , reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "" ); |
| 139 | n->dump(); |
| 140 | } |
| 141 | } |
| 142 | } |
| 143 | #endif |
| 144 | |
| 145 | if (failing()) { |
| 146 | return; |
| 147 | } |
| 148 | |
| 149 | BuildOopMaps(); |
| 150 | |
| 151 | if (failing()) { |
| 152 | return; |
| 153 | } |
| 154 | |
| 155 | fill_buffer(cb, blk_starts); |
| 156 | } |
| 157 | |
| 158 | bool Compile::need_stack_bang(int frame_size_in_bytes) const { |
| 159 | // Determine if we need to generate a stack overflow check. |
| 160 | // Do it if the method is not a stub function and |
| 161 | // has java calls or has frame size > vm_page_size/8. |
| 162 | // The debug VM checks that deoptimization doesn't trigger an |
| 163 | // unexpected stack overflow (compiled method stack banging should |
| 164 | // guarantee it doesn't happen) so we always need the stack bang in |
| 165 | // a debug VM. |
| 166 | return (UseStackBanging && stub_function() == NULL && |
| 167 | (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3 |
| 168 | DEBUG_ONLY(|| true))); |
| 169 | } |
| 170 | |
| 171 | bool Compile::need_register_stack_bang() const { |
| 172 | // Determine if we need to generate a register stack overflow check. |
| 173 | // This is only used on architectures which have split register |
| 174 | // and memory stacks (ie. IA64). |
| 175 | // Bang if the method is not a stub function and has java calls |
| 176 | return (stub_function() == NULL && has_java_calls()); |
| 177 | } |
| 178 | |
| 179 | |
| 180 | // Compute the size of first NumberOfLoopInstrToAlign instructions at the top |
| 181 | // of a loop. When aligning a loop we need to provide enough instructions |
| 182 | // in cpu's fetch buffer to feed decoders. The loop alignment could be |
| 183 | // avoided if we have enough instructions in fetch buffer at the head of a loop. |
| 184 | // By default, the size is set to 999999 by Block's constructor so that |
| 185 | // a loop will be aligned if the size is not reset here. |
| 186 | // |
| 187 | // Note: Mach instructions could contain several HW instructions |
| 188 | // so the size is estimated only. |
| 189 | // |
| 190 | void Compile::compute_loop_first_inst_sizes() { |
| 191 | // The next condition is used to gate the loop alignment optimization. |
| 192 | // Don't aligned a loop if there are enough instructions at the head of a loop |
| 193 | // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad |
| 194 | // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is |
| 195 | // equal to 11 bytes which is the largest address NOP instruction. |
| 196 | if (MaxLoopPad < OptoLoopAlignment - 1) { |
| 197 | uint last_block = _cfg->number_of_blocks() - 1; |
| 198 | for (uint i = 1; i <= last_block; i++) { |
| 199 | Block* block = _cfg->get_block(i); |
| 200 | // Check the first loop's block which requires an alignment. |
| 201 | if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { |
| 202 | uint sum_size = 0; |
| 203 | uint inst_cnt = NumberOfLoopInstrToAlign; |
| 204 | inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc); |
| 205 | |
| 206 | // Check subsequent fallthrough blocks if the loop's first |
| 207 | // block(s) does not have enough instructions. |
| 208 | Block *nb = block; |
| 209 | while(inst_cnt > 0 && |
| 210 | i < last_block && |
| 211 | !_cfg->get_block(i + 1)->has_loop_alignment() && |
| 212 | !nb->has_successor(block)) { |
| 213 | i++; |
| 214 | nb = _cfg->get_block(i); |
| 215 | inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc); |
| 216 | } // while( inst_cnt > 0 && i < last_block ) |
| 217 | |
| 218 | block->set_first_inst_size(sum_size); |
| 219 | } // f( b->head()->is_Loop() ) |
| 220 | } // for( i <= last_block ) |
| 221 | } // if( MaxLoopPad < OptoLoopAlignment-1 ) |
| 222 | } |
| 223 | |
| 224 | // The architecture description provides short branch variants for some long |
| 225 | // branch instructions. Replace eligible long branches with short branches. |
| 226 | void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) { |
| 227 | // Compute size of each block, method size, and relocation information size |
| 228 | uint nblocks = _cfg->number_of_blocks(); |
| 229 | |
| 230 | uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); |
| 231 | uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); |
| 232 | int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); |
| 233 | |
| 234 | // Collect worst case block paddings |
| 235 | int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); |
| 236 | memset(block_worst_case_pad, 0, nblocks * sizeof(int)); |
| 237 | |
| 238 | DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) |
| 239 | DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) |
| 240 | |
| 241 | bool has_short_branch_candidate = false; |
| 242 | |
| 243 | // Initialize the sizes to 0 |
| 244 | code_size = 0; // Size in bytes of generated code |
| 245 | stub_size = 0; // Size in bytes of all stub entries |
| 246 | // Size in bytes of all relocation entries, including those in local stubs. |
| 247 | // Start with 2-bytes of reloc info for the unvalidated entry point |
| 248 | reloc_size = 1; // Number of relocation entries |
| 249 | |
| 250 | // Make three passes. The first computes pessimistic blk_starts, |
| 251 | // relative jmp_offset and reloc_size information. The second performs |
| 252 | // short branch substitution using the pessimistic sizing. The |
| 253 | // third inserts nops where needed. |
| 254 | |
| 255 | // Step one, perform a pessimistic sizing pass. |
| 256 | uint last_call_adr = max_juint; |
| 257 | uint last_avoid_back_to_back_adr = max_juint; |
| 258 | uint nop_size = (new MachNopNode())->size(_regalloc); |
| 259 | for (uint i = 0; i < nblocks; i++) { // For all blocks |
| 260 | Block* block = _cfg->get_block(i); |
| 261 | |
| 262 | // During short branch replacement, we store the relative (to blk_starts) |
| 263 | // offset of jump in jmp_offset, rather than the absolute offset of jump. |
| 264 | // This is so that we do not need to recompute sizes of all nodes when |
| 265 | // we compute correct blk_starts in our next sizing pass. |
| 266 | jmp_offset[i] = 0; |
| 267 | jmp_size[i] = 0; |
| 268 | jmp_nidx[i] = -1; |
| 269 | DEBUG_ONLY( jmp_target[i] = 0; ) |
| 270 | DEBUG_ONLY( jmp_rule[i] = 0; ) |
| 271 | |
| 272 | // Sum all instruction sizes to compute block size |
| 273 | uint last_inst = block->number_of_nodes(); |
| 274 | uint blk_size = 0; |
| 275 | for (uint j = 0; j < last_inst; j++) { |
| 276 | Node* nj = block->get_node(j); |
| 277 | // Handle machine instruction nodes |
| 278 | if (nj->is_Mach()) { |
| 279 | MachNode *mach = nj->as_Mach(); |
| 280 | blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding |
| 281 | reloc_size += mach->reloc(); |
| 282 | if (mach->is_MachCall()) { |
| 283 | // add size information for trampoline stub |
| 284 | // class CallStubImpl is platform-specific and defined in the *.ad files. |
| 285 | stub_size += CallStubImpl::size_call_trampoline(); |
| 286 | reloc_size += CallStubImpl::reloc_call_trampoline(); |
| 287 | |
| 288 | MachCallNode *mcall = mach->as_MachCall(); |
| 289 | // This destination address is NOT PC-relative |
| 290 | |
| 291 | mcall->method_set((intptr_t)mcall->entry_point()); |
| 292 | |
| 293 | if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { |
| 294 | stub_size += CompiledStaticCall::to_interp_stub_size(); |
| 295 | reloc_size += CompiledStaticCall::reloc_to_interp_stub(); |
| 296 | #if INCLUDE_AOT |
| 297 | stub_size += CompiledStaticCall::to_aot_stub_size(); |
| 298 | reloc_size += CompiledStaticCall::reloc_to_aot_stub(); |
| 299 | #endif |
| 300 | } |
| 301 | } else if (mach->is_MachSafePoint()) { |
| 302 | // If call/safepoint are adjacent, account for possible |
| 303 | // nop to disambiguate the two safepoints. |
| 304 | // ScheduleAndBundle() can rearrange nodes in a block, |
| 305 | // check for all offsets inside this block. |
| 306 | if (last_call_adr >= blk_starts[i]) { |
| 307 | blk_size += nop_size; |
| 308 | } |
| 309 | } |
| 310 | if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { |
| 311 | // Nop is inserted between "avoid back to back" instructions. |
| 312 | // ScheduleAndBundle() can rearrange nodes in a block, |
| 313 | // check for all offsets inside this block. |
| 314 | if (last_avoid_back_to_back_adr >= blk_starts[i]) { |
| 315 | blk_size += nop_size; |
| 316 | } |
| 317 | } |
| 318 | if (mach->may_be_short_branch()) { |
| 319 | if (!nj->is_MachBranch()) { |
| 320 | #ifndef PRODUCT |
| 321 | nj->dump(3); |
| 322 | #endif |
| 323 | Unimplemented(); |
| 324 | } |
| 325 | assert(jmp_nidx[i] == -1, "block should have only one branch" ); |
| 326 | jmp_offset[i] = blk_size; |
| 327 | jmp_size[i] = nj->size(_regalloc); |
| 328 | jmp_nidx[i] = j; |
| 329 | has_short_branch_candidate = true; |
| 330 | } |
| 331 | } |
| 332 | blk_size += nj->size(_regalloc); |
| 333 | // Remember end of call offset |
| 334 | if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { |
| 335 | last_call_adr = blk_starts[i]+blk_size; |
| 336 | } |
| 337 | // Remember end of avoid_back_to_back offset |
| 338 | if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { |
| 339 | last_avoid_back_to_back_adr = blk_starts[i]+blk_size; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | // When the next block starts a loop, we may insert pad NOP |
| 344 | // instructions. Since we cannot know our future alignment, |
| 345 | // assume the worst. |
| 346 | if (i < nblocks - 1) { |
| 347 | Block* nb = _cfg->get_block(i + 1); |
| 348 | int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); |
| 349 | if (max_loop_pad > 0) { |
| 350 | assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "" ); |
| 351 | // Adjust last_call_adr and/or last_avoid_back_to_back_adr. |
| 352 | // If either is the last instruction in this block, bump by |
| 353 | // max_loop_pad in lock-step with blk_size, so sizing |
| 354 | // calculations in subsequent blocks still can conservatively |
| 355 | // detect that it may the last instruction in this block. |
| 356 | if (last_call_adr == blk_starts[i]+blk_size) { |
| 357 | last_call_adr += max_loop_pad; |
| 358 | } |
| 359 | if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { |
| 360 | last_avoid_back_to_back_adr += max_loop_pad; |
| 361 | } |
| 362 | blk_size += max_loop_pad; |
| 363 | block_worst_case_pad[i + 1] = max_loop_pad; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // Save block size; update total method size |
| 368 | blk_starts[i+1] = blk_starts[i]+blk_size; |
| 369 | } |
| 370 | |
| 371 | // Step two, replace eligible long jumps. |
| 372 | bool progress = true; |
| 373 | uint last_may_be_short_branch_adr = max_juint; |
| 374 | while (has_short_branch_candidate && progress) { |
| 375 | progress = false; |
| 376 | has_short_branch_candidate = false; |
| 377 | int adjust_block_start = 0; |
| 378 | for (uint i = 0; i < nblocks; i++) { |
| 379 | Block* block = _cfg->get_block(i); |
| 380 | int idx = jmp_nidx[i]; |
| 381 | MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach(); |
| 382 | if (mach != NULL && mach->may_be_short_branch()) { |
| 383 | #ifdef ASSERT |
| 384 | assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity" ); |
| 385 | int j; |
| 386 | // Find the branch; ignore trailing NOPs. |
| 387 | for (j = block->number_of_nodes()-1; j>=0; j--) { |
| 388 | Node* n = block->get_node(j); |
| 389 | if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) |
| 390 | break; |
| 391 | } |
| 392 | assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity" ); |
| 393 | #endif |
| 394 | int br_size = jmp_size[i]; |
| 395 | int br_offs = blk_starts[i] + jmp_offset[i]; |
| 396 | |
| 397 | // This requires the TRUE branch target be in succs[0] |
| 398 | uint bnum = block->non_connector_successor(0)->_pre_order; |
| 399 | int offset = blk_starts[bnum] - br_offs; |
| 400 | if (bnum > i) { // adjust following block's offset |
| 401 | offset -= adjust_block_start; |
| 402 | } |
| 403 | |
| 404 | // This block can be a loop header, account for the padding |
| 405 | // in the previous block. |
| 406 | int block_padding = block_worst_case_pad[i]; |
| 407 | assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top" ); |
| 408 | // In the following code a nop could be inserted before |
| 409 | // the branch which will increase the backward distance. |
| 410 | bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); |
| 411 | assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block" ); |
| 412 | |
| 413 | if (needs_padding && offset <= 0) |
| 414 | offset -= nop_size; |
| 415 | |
| 416 | if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) { |
| 417 | // We've got a winner. Replace this branch. |
| 418 | MachNode* replacement = mach->as_MachBranch()->short_branch_version(); |
| 419 | |
| 420 | // Update the jmp_size. |
| 421 | int new_size = replacement->size(_regalloc); |
| 422 | int diff = br_size - new_size; |
| 423 | assert(diff >= (int)nop_size, "short_branch size should be smaller" ); |
| 424 | // Conservatively take into account padding between |
| 425 | // avoid_back_to_back branches. Previous branch could be |
| 426 | // converted into avoid_back_to_back branch during next |
| 427 | // rounds. |
| 428 | if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { |
| 429 | jmp_offset[i] += nop_size; |
| 430 | diff -= nop_size; |
| 431 | } |
| 432 | adjust_block_start += diff; |
| 433 | block->map_node(replacement, idx); |
| 434 | mach->subsume_by(replacement, C); |
| 435 | mach = replacement; |
| 436 | progress = true; |
| 437 | |
| 438 | jmp_size[i] = new_size; |
| 439 | DEBUG_ONLY( jmp_target[i] = bnum; ); |
| 440 | DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); |
| 441 | } else { |
| 442 | // The jump distance is not short, try again during next iteration. |
| 443 | has_short_branch_candidate = true; |
| 444 | } |
| 445 | } // (mach->may_be_short_branch()) |
| 446 | if (mach != NULL && (mach->may_be_short_branch() || |
| 447 | mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { |
| 448 | last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; |
| 449 | } |
| 450 | blk_starts[i+1] -= adjust_block_start; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | #ifdef ASSERT |
| 455 | for (uint i = 0; i < nblocks; i++) { // For all blocks |
| 456 | if (jmp_target[i] != 0) { |
| 457 | int br_size = jmp_size[i]; |
| 458 | int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); |
| 459 | if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) { |
| 460 | tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d" , blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); |
| 461 | } |
| 462 | assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp" ); |
| 463 | } |
| 464 | } |
| 465 | #endif |
| 466 | |
| 467 | // Step 3, compute the offsets of all blocks, will be done in fill_buffer() |
| 468 | // after ScheduleAndBundle(). |
| 469 | |
| 470 | // ------------------ |
| 471 | // Compute size for code buffer |
| 472 | code_size = blk_starts[nblocks]; |
| 473 | |
| 474 | // Relocation records |
| 475 | reloc_size += 1; // Relo entry for exception handler |
| 476 | |
| 477 | // Adjust reloc_size to number of record of relocation info |
| 478 | // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for |
| 479 | // a relocation index. |
| 480 | // The CodeBuffer will expand the locs array if this estimate is too low. |
| 481 | reloc_size *= 10 / sizeof(relocInfo); |
| 482 | } |
| 483 | |
| 484 | //------------------------------FillLocArray----------------------------------- |
| 485 | // Create a bit of debug info and append it to the array. The mapping is from |
| 486 | // Java local or expression stack to constant, register or stack-slot. For |
| 487 | // doubles, insert 2 mappings and return 1 (to tell the caller that the next |
| 488 | // entry has been taken care of and caller should skip it). |
| 489 | static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { |
| 490 | // This should never have accepted Bad before |
| 491 | assert(OptoReg::is_valid(regnum), "location must be valid" ); |
| 492 | return (OptoReg::is_reg(regnum)) |
| 493 | ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) |
| 494 | : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); |
| 495 | } |
| 496 | |
| 497 | |
| 498 | ObjectValue* |
| 499 | Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { |
| 500 | for (int i = 0; i < objs->length(); i++) { |
| 501 | assert(objs->at(i)->is_object(), "corrupt object cache" ); |
| 502 | ObjectValue* sv = (ObjectValue*) objs->at(i); |
| 503 | if (sv->id() == id) { |
| 504 | return sv; |
| 505 | } |
| 506 | } |
| 507 | // Otherwise.. |
| 508 | return NULL; |
| 509 | } |
| 510 | |
| 511 | void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, |
| 512 | ObjectValue* sv ) { |
| 513 | assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition" ); |
| 514 | objs->append(sv); |
| 515 | } |
| 516 | |
| 517 | |
| 518 | void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, |
| 519 | GrowableArray<ScopeValue*> *array, |
| 520 | GrowableArray<ScopeValue*> *objs ) { |
| 521 | assert( local, "use _top instead of null" ); |
| 522 | if (array->length() != idx) { |
| 523 | assert(array->length() == idx + 1, "Unexpected array count" ); |
| 524 | // Old functionality: |
| 525 | // return |
| 526 | // New functionality: |
| 527 | // Assert if the local is not top. In product mode let the new node |
| 528 | // override the old entry. |
| 529 | assert(local == top(), "LocArray collision" ); |
| 530 | if (local == top()) { |
| 531 | return; |
| 532 | } |
| 533 | array->pop(); |
| 534 | } |
| 535 | const Type *t = local->bottom_type(); |
| 536 | |
| 537 | // Is it a safepoint scalar object node? |
| 538 | if (local->is_SafePointScalarObject()) { |
| 539 | SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); |
| 540 | |
| 541 | ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx); |
| 542 | if (sv == NULL) { |
| 543 | ciKlass* cik = t->is_oopptr()->klass(); |
| 544 | assert(cik->is_instance_klass() || |
| 545 | cik->is_array_klass(), "Not supported allocation." ); |
| 546 | sv = new ObjectValue(spobj->_idx, |
| 547 | new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); |
| 548 | Compile::set_sv_for_object_node(objs, sv); |
| 549 | |
| 550 | uint first_ind = spobj->first_index(sfpt->jvms()); |
| 551 | for (uint i = 0; i < spobj->n_fields(); i++) { |
| 552 | Node* fld_node = sfpt->in(first_ind+i); |
| 553 | (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); |
| 554 | } |
| 555 | } |
| 556 | array->append(sv); |
| 557 | return; |
| 558 | } |
| 559 | |
| 560 | // Grab the register number for the local |
| 561 | OptoReg::Name regnum = _regalloc->get_reg_first(local); |
| 562 | if( OptoReg::is_valid(regnum) ) {// Got a register/stack? |
| 563 | // Record the double as two float registers. |
| 564 | // The register mask for such a value always specifies two adjacent |
| 565 | // float registers, with the lower register number even. |
| 566 | // Normally, the allocation of high and low words to these registers |
| 567 | // is irrelevant, because nearly all operations on register pairs |
| 568 | // (e.g., StoreD) treat them as a single unit. |
| 569 | // Here, we assume in addition that the words in these two registers |
| 570 | // stored "naturally" (by operations like StoreD and double stores |
| 571 | // within the interpreter) such that the lower-numbered register |
| 572 | // is written to the lower memory address. This may seem like |
| 573 | // a machine dependency, but it is not--it is a requirement on |
| 574 | // the author of the <arch>.ad file to ensure that, for every |
| 575 | // even/odd double-register pair to which a double may be allocated, |
| 576 | // the word in the even single-register is stored to the first |
| 577 | // memory word. (Note that register numbers are completely |
| 578 | // arbitrary, and are not tied to any machine-level encodings.) |
| 579 | #ifdef _LP64 |
| 580 | if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { |
| 581 | array->append(new ConstantIntValue((jint)0)); |
| 582 | array->append(new_loc_value( _regalloc, regnum, Location::dbl )); |
| 583 | } else if ( t->base() == Type::Long ) { |
| 584 | array->append(new ConstantIntValue((jint)0)); |
| 585 | array->append(new_loc_value( _regalloc, regnum, Location::lng )); |
| 586 | } else if ( t->base() == Type::RawPtr ) { |
| 587 | // jsr/ret return address which must be restored into a the full |
| 588 | // width 64-bit stack slot. |
| 589 | array->append(new_loc_value( _regalloc, regnum, Location::lng )); |
| 590 | } |
| 591 | #else //_LP64 |
| 592 | #ifdef SPARC |
| 593 | if (t->base() == Type::Long && OptoReg::is_reg(regnum)) { |
| 594 | // For SPARC we have to swap high and low words for |
| 595 | // long values stored in a single-register (g0-g7). |
| 596 | array->append(new_loc_value( _regalloc, regnum , Location::normal )); |
| 597 | array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal )); |
| 598 | } else |
| 599 | #endif //SPARC |
| 600 | if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { |
| 601 | // Repack the double/long as two jints. |
| 602 | // The convention the interpreter uses is that the second local |
| 603 | // holds the first raw word of the native double representation. |
| 604 | // This is actually reasonable, since locals and stack arrays |
| 605 | // grow downwards in all implementations. |
| 606 | // (If, on some machine, the interpreter's Java locals or stack |
| 607 | // were to grow upwards, the embedded doubles would be word-swapped.) |
| 608 | array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal )); |
| 609 | array->append(new_loc_value( _regalloc, regnum , Location::normal )); |
| 610 | } |
| 611 | #endif //_LP64 |
| 612 | else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && |
| 613 | OptoReg::is_reg(regnum) ) { |
| 614 | array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double() |
| 615 | ? Location::float_in_dbl : Location::normal )); |
| 616 | } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { |
| 617 | array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long |
| 618 | ? Location::int_in_long : Location::normal )); |
| 619 | } else if( t->base() == Type::NarrowOop ) { |
| 620 | array->append(new_loc_value( _regalloc, regnum, Location::narrowoop )); |
| 621 | } else { |
| 622 | array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal )); |
| 623 | } |
| 624 | return; |
| 625 | } |
| 626 | |
| 627 | // No register. It must be constant data. |
| 628 | switch (t->base()) { |
| 629 | case Type::Half: // Second half of a double |
| 630 | ShouldNotReachHere(); // Caller should skip 2nd halves |
| 631 | break; |
| 632 | case Type::AnyPtr: |
| 633 | array->append(new ConstantOopWriteValue(NULL)); |
| 634 | break; |
| 635 | case Type::AryPtr: |
| 636 | case Type::InstPtr: // fall through |
| 637 | array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); |
| 638 | break; |
| 639 | case Type::NarrowOop: |
| 640 | if (t == TypeNarrowOop::NULL_PTR) { |
| 641 | array->append(new ConstantOopWriteValue(NULL)); |
| 642 | } else { |
| 643 | array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); |
| 644 | } |
| 645 | break; |
| 646 | case Type::Int: |
| 647 | array->append(new ConstantIntValue(t->is_int()->get_con())); |
| 648 | break; |
| 649 | case Type::RawPtr: |
| 650 | // A return address (T_ADDRESS). |
| 651 | assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI" ); |
| 652 | #ifdef _LP64 |
| 653 | // Must be restored to the full-width 64-bit stack slot. |
| 654 | array->append(new ConstantLongValue(t->is_ptr()->get_con())); |
| 655 | #else |
| 656 | array->append(new ConstantIntValue(t->is_ptr()->get_con())); |
| 657 | #endif |
| 658 | break; |
| 659 | case Type::FloatCon: { |
| 660 | float f = t->is_float_constant()->getf(); |
| 661 | array->append(new ConstantIntValue(jint_cast(f))); |
| 662 | break; |
| 663 | } |
| 664 | case Type::DoubleCon: { |
| 665 | jdouble d = t->is_double_constant()->getd(); |
| 666 | #ifdef _LP64 |
| 667 | array->append(new ConstantIntValue((jint)0)); |
| 668 | array->append(new ConstantDoubleValue(d)); |
| 669 | #else |
| 670 | // Repack the double as two jints. |
| 671 | // The convention the interpreter uses is that the second local |
| 672 | // holds the first raw word of the native double representation. |
| 673 | // This is actually reasonable, since locals and stack arrays |
| 674 | // grow downwards in all implementations. |
| 675 | // (If, on some machine, the interpreter's Java locals or stack |
| 676 | // were to grow upwards, the embedded doubles would be word-swapped.) |
| 677 | jlong_accessor acc; |
| 678 | acc.long_value = jlong_cast(d); |
| 679 | array->append(new ConstantIntValue(acc.words[1])); |
| 680 | array->append(new ConstantIntValue(acc.words[0])); |
| 681 | #endif |
| 682 | break; |
| 683 | } |
| 684 | case Type::Long: { |
| 685 | jlong d = t->is_long()->get_con(); |
| 686 | #ifdef _LP64 |
| 687 | array->append(new ConstantIntValue((jint)0)); |
| 688 | array->append(new ConstantLongValue(d)); |
| 689 | #else |
| 690 | // Repack the long as two jints. |
| 691 | // The convention the interpreter uses is that the second local |
| 692 | // holds the first raw word of the native double representation. |
| 693 | // This is actually reasonable, since locals and stack arrays |
| 694 | // grow downwards in all implementations. |
| 695 | // (If, on some machine, the interpreter's Java locals or stack |
| 696 | // were to grow upwards, the embedded doubles would be word-swapped.) |
| 697 | jlong_accessor acc; |
| 698 | acc.long_value = d; |
| 699 | array->append(new ConstantIntValue(acc.words[1])); |
| 700 | array->append(new ConstantIntValue(acc.words[0])); |
| 701 | #endif |
| 702 | break; |
| 703 | } |
| 704 | case Type::Top: // Add an illegal value here |
| 705 | array->append(new LocationValue(Location())); |
| 706 | break; |
| 707 | default: |
| 708 | ShouldNotReachHere(); |
| 709 | break; |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | // Determine if this node starts a bundle |
| 714 | bool Compile::starts_bundle(const Node *n) const { |
| 715 | return (_node_bundling_limit > n->_idx && |
| 716 | _node_bundling_base[n->_idx].starts_bundle()); |
| 717 | } |
| 718 | |
| 719 | //--------------------------Process_OopMap_Node-------------------------------- |
| 720 | void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) { |
| 721 | |
| 722 | // Handle special safepoint nodes for synchronization |
| 723 | MachSafePointNode *sfn = mach->as_MachSafePoint(); |
| 724 | MachCallNode *mcall; |
| 725 | |
| 726 | int safepoint_pc_offset = current_offset; |
| 727 | bool is_method_handle_invoke = false; |
| 728 | bool return_oop = false; |
| 729 | |
| 730 | // Add the safepoint in the DebugInfoRecorder |
| 731 | if( !mach->is_MachCall() ) { |
| 732 | mcall = NULL; |
| 733 | debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); |
| 734 | } else { |
| 735 | mcall = mach->as_MachCall(); |
| 736 | |
| 737 | // Is the call a MethodHandle call? |
| 738 | if (mcall->is_MachCallJava()) { |
| 739 | if (mcall->as_MachCallJava()->_method_handle_invoke) { |
| 740 | assert(has_method_handle_invokes(), "must have been set during call generation" ); |
| 741 | is_method_handle_invoke = true; |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | // Check if a call returns an object. |
| 746 | if (mcall->returns_pointer()) { |
| 747 | return_oop = true; |
| 748 | } |
| 749 | safepoint_pc_offset += mcall->ret_addr_offset(); |
| 750 | debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); |
| 751 | } |
| 752 | |
| 753 | // Loop over the JVMState list to add scope information |
| 754 | // Do not skip safepoints with a NULL method, they need monitor info |
| 755 | JVMState* youngest_jvms = sfn->jvms(); |
| 756 | int max_depth = youngest_jvms->depth(); |
| 757 | |
| 758 | // Allocate the object pool for scalar-replaced objects -- the map from |
| 759 | // small-integer keys (which can be recorded in the local and ostack |
| 760 | // arrays) to descriptions of the object state. |
| 761 | GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); |
| 762 | |
| 763 | // Visit scopes from oldest to youngest. |
| 764 | for (int depth = 1; depth <= max_depth; depth++) { |
| 765 | JVMState* jvms = youngest_jvms->of_depth(depth); |
| 766 | int idx; |
| 767 | ciMethod* method = jvms->has_method() ? jvms->method() : NULL; |
| 768 | // Safepoints that do not have method() set only provide oop-map and monitor info |
| 769 | // to support GC; these do not support deoptimization. |
| 770 | int num_locs = (method == NULL) ? 0 : jvms->loc_size(); |
| 771 | int num_exps = (method == NULL) ? 0 : jvms->stk_size(); |
| 772 | int num_mon = jvms->nof_monitors(); |
| 773 | assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(), |
| 774 | "JVMS local count must match that of the method" ); |
| 775 | |
| 776 | // Add Local and Expression Stack Information |
| 777 | |
| 778 | // Insert locals into the locarray |
| 779 | GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); |
| 780 | for( idx = 0; idx < num_locs; idx++ ) { |
| 781 | FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); |
| 782 | } |
| 783 | |
| 784 | // Insert expression stack entries into the exparray |
| 785 | GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); |
| 786 | for( idx = 0; idx < num_exps; idx++ ) { |
| 787 | FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); |
| 788 | } |
| 789 | |
| 790 | // Add in mappings of the monitors |
| 791 | assert( !method || |
| 792 | !method->is_synchronized() || |
| 793 | method->is_native() || |
| 794 | num_mon > 0 || |
| 795 | !GenerateSynchronizationCode, |
| 796 | "monitors must always exist for synchronized methods" ); |
| 797 | |
| 798 | // Build the growable array of ScopeValues for exp stack |
| 799 | GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); |
| 800 | |
| 801 | // Loop over monitors and insert into array |
| 802 | for (idx = 0; idx < num_mon; idx++) { |
| 803 | // Grab the node that defines this monitor |
| 804 | Node* box_node = sfn->monitor_box(jvms, idx); |
| 805 | Node* obj_node = sfn->monitor_obj(jvms, idx); |
| 806 | |
| 807 | // Create ScopeValue for object |
| 808 | ScopeValue *scval = NULL; |
| 809 | |
| 810 | if (obj_node->is_SafePointScalarObject()) { |
| 811 | SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); |
| 812 | scval = Compile::sv_for_node_id(objs, spobj->_idx); |
| 813 | if (scval == NULL) { |
| 814 | const Type *t = spobj->bottom_type(); |
| 815 | ciKlass* cik = t->is_oopptr()->klass(); |
| 816 | assert(cik->is_instance_klass() || |
| 817 | cik->is_array_klass(), "Not supported allocation." ); |
| 818 | ObjectValue* sv = new ObjectValue(spobj->_idx, |
| 819 | new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); |
| 820 | Compile::set_sv_for_object_node(objs, sv); |
| 821 | |
| 822 | uint first_ind = spobj->first_index(youngest_jvms); |
| 823 | for (uint i = 0; i < spobj->n_fields(); i++) { |
| 824 | Node* fld_node = sfn->in(first_ind+i); |
| 825 | (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); |
| 826 | } |
| 827 | scval = sv; |
| 828 | } |
| 829 | } else if (!obj_node->is_Con()) { |
| 830 | OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node); |
| 831 | if( obj_node->bottom_type()->base() == Type::NarrowOop ) { |
| 832 | scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop ); |
| 833 | } else { |
| 834 | scval = new_loc_value( _regalloc, obj_reg, Location::oop ); |
| 835 | } |
| 836 | } else { |
| 837 | const TypePtr *tp = obj_node->get_ptr_type(); |
| 838 | scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); |
| 839 | } |
| 840 | |
| 841 | OptoReg::Name box_reg = BoxLockNode::reg(box_node); |
| 842 | Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg)); |
| 843 | bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); |
| 844 | monarray->append(new MonitorValue(scval, basic_lock, eliminated)); |
| 845 | } |
| 846 | |
| 847 | // We dump the object pool first, since deoptimization reads it in first. |
| 848 | debug_info()->dump_object_pool(objs); |
| 849 | |
| 850 | // Build first class objects to pass to scope |
| 851 | DebugToken *locvals = debug_info()->create_scope_values(locarray); |
| 852 | DebugToken *expvals = debug_info()->create_scope_values(exparray); |
| 853 | DebugToken *monvals = debug_info()->create_monitor_values(monarray); |
| 854 | |
| 855 | // Make method available for all Safepoints |
| 856 | ciMethod* scope_method = method ? method : _method; |
| 857 | // Describe the scope here |
| 858 | assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI" ); |
| 859 | assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest" ); |
| 860 | // Now we can describe the scope. |
| 861 | methodHandle null_mh; |
| 862 | bool rethrow_exception = false; |
| 863 | debug_info()->describe_scope(safepoint_pc_offset, null_mh, scope_method, jvms->bci(), jvms->should_reexecute(), rethrow_exception, is_method_handle_invoke, return_oop, locvals, expvals, monvals); |
| 864 | } // End jvms loop |
| 865 | |
| 866 | // Mark the end of the scope set. |
| 867 | debug_info()->end_safepoint(safepoint_pc_offset); |
| 868 | } |
| 869 | |
| 870 | |
| 871 | |
| 872 | // A simplified version of Process_OopMap_Node, to handle non-safepoints. |
| 873 | class NonSafepointEmitter { |
| 874 | Compile* C; |
| 875 | JVMState* _pending_jvms; |
| 876 | int _pending_offset; |
| 877 | |
| 878 | void emit_non_safepoint(); |
| 879 | |
| 880 | public: |
| 881 | NonSafepointEmitter(Compile* compile) { |
| 882 | this->C = compile; |
| 883 | _pending_jvms = NULL; |
| 884 | _pending_offset = 0; |
| 885 | } |
| 886 | |
| 887 | void observe_instruction(Node* n, int pc_offset) { |
| 888 | if (!C->debug_info()->recording_non_safepoints()) return; |
| 889 | |
| 890 | Node_Notes* nn = C->node_notes_at(n->_idx); |
| 891 | if (nn == NULL || nn->jvms() == NULL) return; |
| 892 | if (_pending_jvms != NULL && |
| 893 | _pending_jvms->same_calls_as(nn->jvms())) { |
| 894 | // Repeated JVMS? Stretch it up here. |
| 895 | _pending_offset = pc_offset; |
| 896 | } else { |
| 897 | if (_pending_jvms != NULL && |
| 898 | _pending_offset < pc_offset) { |
| 899 | emit_non_safepoint(); |
| 900 | } |
| 901 | _pending_jvms = NULL; |
| 902 | if (pc_offset > C->debug_info()->last_pc_offset()) { |
| 903 | // This is the only way _pending_jvms can become non-NULL: |
| 904 | _pending_jvms = nn->jvms(); |
| 905 | _pending_offset = pc_offset; |
| 906 | } |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | // Stay out of the way of real safepoints: |
| 911 | void observe_safepoint(JVMState* jvms, int pc_offset) { |
| 912 | if (_pending_jvms != NULL && |
| 913 | !_pending_jvms->same_calls_as(jvms) && |
| 914 | _pending_offset < pc_offset) { |
| 915 | emit_non_safepoint(); |
| 916 | } |
| 917 | _pending_jvms = NULL; |
| 918 | } |
| 919 | |
| 920 | void flush_at_end() { |
| 921 | if (_pending_jvms != NULL) { |
| 922 | emit_non_safepoint(); |
| 923 | } |
| 924 | _pending_jvms = NULL; |
| 925 | } |
| 926 | }; |
| 927 | |
| 928 | void NonSafepointEmitter::emit_non_safepoint() { |
| 929 | JVMState* youngest_jvms = _pending_jvms; |
| 930 | int pc_offset = _pending_offset; |
| 931 | |
| 932 | // Clear it now: |
| 933 | _pending_jvms = NULL; |
| 934 | |
| 935 | DebugInformationRecorder* debug_info = C->debug_info(); |
| 936 | assert(debug_info->recording_non_safepoints(), "sanity" ); |
| 937 | |
| 938 | debug_info->add_non_safepoint(pc_offset); |
| 939 | int max_depth = youngest_jvms->depth(); |
| 940 | |
| 941 | // Visit scopes from oldest to youngest. |
| 942 | for (int depth = 1; depth <= max_depth; depth++) { |
| 943 | JVMState* jvms = youngest_jvms->of_depth(depth); |
| 944 | ciMethod* method = jvms->has_method() ? jvms->method() : NULL; |
| 945 | assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest" ); |
| 946 | methodHandle null_mh; |
| 947 | debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); |
| 948 | } |
| 949 | |
| 950 | // Mark the end of the scope set. |
| 951 | debug_info->end_non_safepoint(pc_offset); |
| 952 | } |
| 953 | |
| 954 | //------------------------------init_buffer------------------------------------ |
| 955 | CodeBuffer* Compile::init_buffer(uint* blk_starts) { |
| 956 | |
| 957 | // Set the initially allocated size |
| 958 | int code_req = initial_code_capacity; |
| 959 | int locs_req = initial_locs_capacity; |
| 960 | int stub_req = initial_stub_capacity; |
| 961 | int const_req = initial_const_capacity; |
| 962 | |
| 963 | int pad_req = NativeCall::instruction_size; |
| 964 | // The extra spacing after the code is necessary on some platforms. |
| 965 | // Sometimes we need to patch in a jump after the last instruction, |
| 966 | // if the nmethod has been deoptimized. (See 4932387, 4894843.) |
| 967 | |
| 968 | // Compute the byte offset where we can store the deopt pc. |
| 969 | if (fixed_slots() != 0) { |
| 970 | _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); |
| 971 | } |
| 972 | |
| 973 | // Compute prolog code size |
| 974 | _method_size = 0; |
| 975 | _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize; |
| 976 | #if defined(IA64) && !defined(AIX) |
| 977 | if (save_argument_registers()) { |
| 978 | // 4815101: this is a stub with implicit and unknown precision fp args. |
| 979 | // The usual spill mechanism can only generate stfd's in this case, which |
| 980 | // doesn't work if the fp reg to spill contains a single-precision denorm. |
| 981 | // Instead, we hack around the normal spill mechanism using stfspill's and |
| 982 | // ldffill's in the MachProlog and MachEpilog emit methods. We allocate |
| 983 | // space here for the fp arg regs (f8-f15) we're going to thusly spill. |
| 984 | // |
| 985 | // If we ever implement 16-byte 'registers' == stack slots, we can |
| 986 | // get rid of this hack and have SpillCopy generate stfspill/ldffill |
| 987 | // instead of stfd/stfs/ldfd/ldfs. |
| 988 | _frame_slots += 8*(16/BytesPerInt); |
| 989 | } |
| 990 | #endif |
| 991 | assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check" ); |
| 992 | |
| 993 | if (has_mach_constant_base_node()) { |
| 994 | uint add_size = 0; |
| 995 | // Fill the constant table. |
| 996 | // Note: This must happen before shorten_branches. |
| 997 | for (uint i = 0; i < _cfg->number_of_blocks(); i++) { |
| 998 | Block* b = _cfg->get_block(i); |
| 999 | |
| 1000 | for (uint j = 0; j < b->number_of_nodes(); j++) { |
| 1001 | Node* n = b->get_node(j); |
| 1002 | |
| 1003 | // If the node is a MachConstantNode evaluate the constant |
| 1004 | // value section. |
| 1005 | if (n->is_MachConstant()) { |
| 1006 | MachConstantNode* machcon = n->as_MachConstant(); |
| 1007 | machcon->eval_constant(C); |
| 1008 | } else if (n->is_Mach()) { |
| 1009 | // On Power there are more nodes that issue constants. |
| 1010 | add_size += (n->as_Mach()->ins_num_consts() * 8); |
| 1011 | } |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | // Calculate the offsets of the constants and the size of the |
| 1016 | // constant table (including the padding to the next section). |
| 1017 | constant_table().calculate_offsets_and_size(); |
| 1018 | const_req = constant_table().size() + add_size; |
| 1019 | } |
| 1020 | |
| 1021 | // Initialize the space for the BufferBlob used to find and verify |
| 1022 | // instruction size in MachNode::emit_size() |
| 1023 | init_scratch_buffer_blob(const_req); |
| 1024 | if (failing()) return NULL; // Out of memory |
| 1025 | |
| 1026 | // Pre-compute the length of blocks and replace |
| 1027 | // long branches with short if machine supports it. |
| 1028 | shorten_branches(blk_starts, code_req, locs_req, stub_req); |
| 1029 | |
| 1030 | // nmethod and CodeBuffer count stubs & constants as part of method's code. |
| 1031 | // class HandlerImpl is platform-specific and defined in the *.ad files. |
| 1032 | int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler |
| 1033 | int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler |
| 1034 | stub_req += MAX_stubs_size; // ensure per-stub margin |
| 1035 | code_req += MAX_inst_size; // ensure per-instruction margin |
| 1036 | |
| 1037 | if (StressCodeBuffers) |
| 1038 | code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion |
| 1039 | |
| 1040 | int total_req = |
| 1041 | const_req + |
| 1042 | code_req + |
| 1043 | pad_req + |
| 1044 | stub_req + |
| 1045 | exception_handler_req + |
| 1046 | deopt_handler_req; // deopt handler |
| 1047 | |
| 1048 | if (has_method_handle_invokes()) |
| 1049 | total_req += deopt_handler_req; // deopt MH handler |
| 1050 | |
| 1051 | CodeBuffer* cb = code_buffer(); |
| 1052 | cb->initialize(total_req, locs_req); |
| 1053 | |
| 1054 | // Have we run out of code space? |
| 1055 | if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { |
| 1056 | C->record_failure("CodeCache is full" ); |
| 1057 | return NULL; |
| 1058 | } |
| 1059 | // Configure the code buffer. |
| 1060 | cb->initialize_consts_size(const_req); |
| 1061 | cb->initialize_stubs_size(stub_req); |
| 1062 | cb->initialize_oop_recorder(env()->oop_recorder()); |
| 1063 | |
| 1064 | // fill in the nop array for bundling computations |
| 1065 | MachNode *_nop_list[Bundle::_nop_count]; |
| 1066 | Bundle::initialize_nops(_nop_list); |
| 1067 | |
| 1068 | return cb; |
| 1069 | } |
| 1070 | |
| 1071 | //------------------------------fill_buffer------------------------------------ |
| 1072 | void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) { |
| 1073 | // blk_starts[] contains offsets calculated during short branches processing, |
| 1074 | // offsets should not be increased during following steps. |
| 1075 | |
| 1076 | // Compute the size of first NumberOfLoopInstrToAlign instructions at head |
| 1077 | // of a loop. It is used to determine the padding for loop alignment. |
| 1078 | compute_loop_first_inst_sizes(); |
| 1079 | |
| 1080 | // Create oopmap set. |
| 1081 | _oop_map_set = new OopMapSet(); |
| 1082 | |
| 1083 | // !!!!! This preserves old handling of oopmaps for now |
| 1084 | debug_info()->set_oopmaps(_oop_map_set); |
| 1085 | |
| 1086 | uint nblocks = _cfg->number_of_blocks(); |
| 1087 | // Count and start of implicit null check instructions |
| 1088 | uint inct_cnt = 0; |
| 1089 | uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); |
| 1090 | |
| 1091 | // Count and start of calls |
| 1092 | uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); |
| 1093 | |
| 1094 | uint return_offset = 0; |
| 1095 | int nop_size = (new MachNopNode())->size(_regalloc); |
| 1096 | |
| 1097 | int previous_offset = 0; |
| 1098 | int current_offset = 0; |
| 1099 | int last_call_offset = -1; |
| 1100 | int last_avoid_back_to_back_offset = -1; |
| 1101 | #ifdef ASSERT |
| 1102 | uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); |
| 1103 | uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); |
| 1104 | uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); |
| 1105 | uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); |
| 1106 | #endif |
| 1107 | |
| 1108 | // Create an array of unused labels, one for each basic block, if printing is enabled |
| 1109 | #if defined(SUPPORT_OPTO_ASSEMBLY) |
| 1110 | int *node_offsets = NULL; |
| 1111 | uint node_offset_limit = unique(); |
| 1112 | |
| 1113 | if (print_assembly()) { |
| 1114 | node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); |
| 1115 | } |
| 1116 | if (node_offsets != NULL) { |
| 1117 | // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. |
| 1118 | memset(node_offsets, 0, node_offset_limit*sizeof(int)); |
| 1119 | } |
| 1120 | #endif |
| 1121 | |
| 1122 | NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily |
| 1123 | |
| 1124 | // Emit the constant table. |
| 1125 | if (has_mach_constant_base_node()) { |
| 1126 | constant_table().emit(*cb); |
| 1127 | } |
| 1128 | |
| 1129 | // Create an array of labels, one for each basic block |
| 1130 | Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); |
| 1131 | for (uint i=0; i <= nblocks; i++) { |
| 1132 | blk_labels[i].init(); |
| 1133 | } |
| 1134 | |
| 1135 | // ------------------ |
| 1136 | // Now fill in the code buffer |
| 1137 | Node *delay_slot = NULL; |
| 1138 | |
| 1139 | for (uint i = 0; i < nblocks; i++) { |
| 1140 | Block* block = _cfg->get_block(i); |
| 1141 | Node* head = block->head(); |
| 1142 | |
| 1143 | // If this block needs to start aligned (i.e, can be reached other |
| 1144 | // than by falling-thru from the previous block), then force the |
| 1145 | // start of a new bundle. |
| 1146 | if (Pipeline::requires_bundling() && starts_bundle(head)) { |
| 1147 | cb->flush_bundle(true); |
| 1148 | } |
| 1149 | |
| 1150 | #ifdef ASSERT |
| 1151 | if (!block->is_connector()) { |
| 1152 | stringStream st; |
| 1153 | block->dump_head(_cfg, &st); |
| 1154 | MacroAssembler(cb).block_comment(st.as_string()); |
| 1155 | } |
| 1156 | jmp_target[i] = 0; |
| 1157 | jmp_offset[i] = 0; |
| 1158 | jmp_size[i] = 0; |
| 1159 | jmp_rule[i] = 0; |
| 1160 | #endif |
| 1161 | int blk_offset = current_offset; |
| 1162 | |
| 1163 | // Define the label at the beginning of the basic block |
| 1164 | MacroAssembler(cb).bind(blk_labels[block->_pre_order]); |
| 1165 | |
| 1166 | uint last_inst = block->number_of_nodes(); |
| 1167 | |
| 1168 | // Emit block normally, except for last instruction. |
| 1169 | // Emit means "dump code bits into code buffer". |
| 1170 | for (uint j = 0; j<last_inst; j++) { |
| 1171 | |
| 1172 | // Get the node |
| 1173 | Node* n = block->get_node(j); |
| 1174 | |
| 1175 | // See if delay slots are supported |
| 1176 | if (valid_bundle_info(n) && |
| 1177 | node_bundling(n)->used_in_unconditional_delay()) { |
| 1178 | assert(delay_slot == NULL, "no use of delay slot node" ); |
| 1179 | assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size" ); |
| 1180 | |
| 1181 | delay_slot = n; |
| 1182 | continue; |
| 1183 | } |
| 1184 | |
| 1185 | // If this starts a new instruction group, then flush the current one |
| 1186 | // (but allow split bundles) |
| 1187 | if (Pipeline::requires_bundling() && starts_bundle(n)) |
| 1188 | cb->flush_bundle(false); |
| 1189 | |
| 1190 | // Special handling for SafePoint/Call Nodes |
| 1191 | bool is_mcall = false; |
| 1192 | if (n->is_Mach()) { |
| 1193 | MachNode *mach = n->as_Mach(); |
| 1194 | is_mcall = n->is_MachCall(); |
| 1195 | bool is_sfn = n->is_MachSafePoint(); |
| 1196 | |
| 1197 | // If this requires all previous instructions be flushed, then do so |
| 1198 | if (is_sfn || is_mcall || mach->alignment_required() != 1) { |
| 1199 | cb->flush_bundle(true); |
| 1200 | current_offset = cb->insts_size(); |
| 1201 | } |
| 1202 | |
| 1203 | // A padding may be needed again since a previous instruction |
| 1204 | // could be moved to delay slot. |
| 1205 | |
| 1206 | // align the instruction if necessary |
| 1207 | int padding = mach->compute_padding(current_offset); |
| 1208 | // Make sure safepoint node for polling is distinct from a call's |
| 1209 | // return by adding a nop if needed. |
| 1210 | if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { |
| 1211 | padding = nop_size; |
| 1212 | } |
| 1213 | if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && |
| 1214 | current_offset == last_avoid_back_to_back_offset) { |
| 1215 | // Avoid back to back some instructions. |
| 1216 | padding = nop_size; |
| 1217 | } |
| 1218 | |
| 1219 | if (padding > 0) { |
| 1220 | assert((padding % nop_size) == 0, "padding is not a multiple of NOP size" ); |
| 1221 | int nops_cnt = padding / nop_size; |
| 1222 | MachNode *nop = new MachNopNode(nops_cnt); |
| 1223 | block->insert_node(nop, j++); |
| 1224 | last_inst++; |
| 1225 | _cfg->map_node_to_block(nop, block); |
| 1226 | // Ensure enough space. |
| 1227 | cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); |
| 1228 | if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { |
| 1229 | C->record_failure("CodeCache is full" ); |
| 1230 | return; |
| 1231 | } |
| 1232 | nop->emit(*cb, _regalloc); |
| 1233 | cb->flush_bundle(true); |
| 1234 | current_offset = cb->insts_size(); |
| 1235 | } |
| 1236 | |
| 1237 | // Remember the start of the last call in a basic block |
| 1238 | if (is_mcall) { |
| 1239 | MachCallNode *mcall = mach->as_MachCall(); |
| 1240 | |
| 1241 | // This destination address is NOT PC-relative |
| 1242 | mcall->method_set((intptr_t)mcall->entry_point()); |
| 1243 | |
| 1244 | // Save the return address |
| 1245 | call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); |
| 1246 | |
| 1247 | if (mcall->is_MachCallLeaf()) { |
| 1248 | is_mcall = false; |
| 1249 | is_sfn = false; |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | // sfn will be valid whenever mcall is valid now because of inheritance |
| 1254 | if (is_sfn || is_mcall) { |
| 1255 | |
| 1256 | // Handle special safepoint nodes for synchronization |
| 1257 | if (!is_mcall) { |
| 1258 | MachSafePointNode *sfn = mach->as_MachSafePoint(); |
| 1259 | // !!!!! Stubs only need an oopmap right now, so bail out |
| 1260 | if (sfn->jvms()->method() == NULL) { |
| 1261 | // Write the oopmap directly to the code blob??!! |
| 1262 | continue; |
| 1263 | } |
| 1264 | } // End synchronization |
| 1265 | |
| 1266 | non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), |
| 1267 | current_offset); |
| 1268 | Process_OopMap_Node(mach, current_offset); |
| 1269 | } // End if safepoint |
| 1270 | |
| 1271 | // If this is a null check, then add the start of the previous instruction to the list |
| 1272 | else if( mach->is_MachNullCheck() ) { |
| 1273 | inct_starts[inct_cnt++] = previous_offset; |
| 1274 | } |
| 1275 | |
| 1276 | // If this is a branch, then fill in the label with the target BB's label |
| 1277 | else if (mach->is_MachBranch()) { |
| 1278 | // This requires the TRUE branch target be in succs[0] |
| 1279 | uint block_num = block->non_connector_successor(0)->_pre_order; |
| 1280 | |
| 1281 | // Try to replace long branch if delay slot is not used, |
| 1282 | // it is mostly for back branches since forward branch's |
| 1283 | // distance is not updated yet. |
| 1284 | bool delay_slot_is_used = valid_bundle_info(n) && |
| 1285 | node_bundling(n)->use_unconditional_delay(); |
| 1286 | if (!delay_slot_is_used && mach->may_be_short_branch()) { |
| 1287 | assert(delay_slot == NULL, "not expecting delay slot node" ); |
| 1288 | int br_size = n->size(_regalloc); |
| 1289 | int offset = blk_starts[block_num] - current_offset; |
| 1290 | if (block_num >= i) { |
| 1291 | // Current and following block's offset are not |
| 1292 | // finalized yet, adjust distance by the difference |
| 1293 | // between calculated and final offsets of current block. |
| 1294 | offset -= (blk_starts[i] - blk_offset); |
| 1295 | } |
| 1296 | // In the following code a nop could be inserted before |
| 1297 | // the branch which will increase the backward distance. |
| 1298 | bool needs_padding = (current_offset == last_avoid_back_to_back_offset); |
| 1299 | if (needs_padding && offset <= 0) |
| 1300 | offset -= nop_size; |
| 1301 | |
| 1302 | if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) { |
| 1303 | // We've got a winner. Replace this branch. |
| 1304 | MachNode* replacement = mach->as_MachBranch()->short_branch_version(); |
| 1305 | |
| 1306 | // Update the jmp_size. |
| 1307 | int new_size = replacement->size(_regalloc); |
| 1308 | assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller" ); |
| 1309 | // Insert padding between avoid_back_to_back branches. |
| 1310 | if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { |
| 1311 | MachNode *nop = new MachNopNode(); |
| 1312 | block->insert_node(nop, j++); |
| 1313 | _cfg->map_node_to_block(nop, block); |
| 1314 | last_inst++; |
| 1315 | nop->emit(*cb, _regalloc); |
| 1316 | cb->flush_bundle(true); |
| 1317 | current_offset = cb->insts_size(); |
| 1318 | } |
| 1319 | #ifdef ASSERT |
| 1320 | jmp_target[i] = block_num; |
| 1321 | jmp_offset[i] = current_offset - blk_offset; |
| 1322 | jmp_size[i] = new_size; |
| 1323 | jmp_rule[i] = mach->rule(); |
| 1324 | #endif |
| 1325 | block->map_node(replacement, j); |
| 1326 | mach->subsume_by(replacement, C); |
| 1327 | n = replacement; |
| 1328 | mach = replacement; |
| 1329 | } |
| 1330 | } |
| 1331 | mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); |
| 1332 | } else if (mach->ideal_Opcode() == Op_Jump) { |
| 1333 | for (uint h = 0; h < block->_num_succs; h++) { |
| 1334 | Block* succs_block = block->_succs[h]; |
| 1335 | for (uint j = 1; j < succs_block->num_preds(); j++) { |
| 1336 | Node* jpn = succs_block->pred(j); |
| 1337 | if (jpn->is_JumpProj() && jpn->in(0) == mach) { |
| 1338 | uint block_num = succs_block->non_connector()->_pre_order; |
| 1339 | Label *blkLabel = &blk_labels[block_num]; |
| 1340 | mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); |
| 1341 | } |
| 1342 | } |
| 1343 | } |
| 1344 | } |
| 1345 | #ifdef ASSERT |
| 1346 | // Check that oop-store precedes the card-mark |
| 1347 | else if (mach->ideal_Opcode() == Op_StoreCM) { |
| 1348 | uint storeCM_idx = j; |
| 1349 | int count = 0; |
| 1350 | for (uint prec = mach->req(); prec < mach->len(); prec++) { |
| 1351 | Node *oop_store = mach->in(prec); // Precedence edge |
| 1352 | if (oop_store == NULL) continue; |
| 1353 | count++; |
| 1354 | uint i4; |
| 1355 | for (i4 = 0; i4 < last_inst; ++i4) { |
| 1356 | if (block->get_node(i4) == oop_store) { |
| 1357 | break; |
| 1358 | } |
| 1359 | } |
| 1360 | // Note: This test can provide a false failure if other precedence |
| 1361 | // edges have been added to the storeCMNode. |
| 1362 | assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store" ); |
| 1363 | } |
| 1364 | assert(count > 0, "storeCM expects at least one precedence edge" ); |
| 1365 | } |
| 1366 | #endif |
| 1367 | else if (!n->is_Proj()) { |
| 1368 | // Remember the beginning of the previous instruction, in case |
| 1369 | // it's followed by a flag-kill and a null-check. Happens on |
| 1370 | // Intel all the time, with add-to-memory kind of opcodes. |
| 1371 | previous_offset = current_offset; |
| 1372 | } |
| 1373 | |
| 1374 | // Not an else-if! |
| 1375 | // If this is a trap based cmp then add its offset to the list. |
| 1376 | if (mach->is_TrapBasedCheckNode()) { |
| 1377 | inct_starts[inct_cnt++] = current_offset; |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | // Verify that there is sufficient space remaining |
| 1382 | cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); |
| 1383 | if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { |
| 1384 | C->record_failure("CodeCache is full" ); |
| 1385 | return; |
| 1386 | } |
| 1387 | |
| 1388 | // Save the offset for the listing |
| 1389 | #if defined(SUPPORT_OPTO_ASSEMBLY) |
| 1390 | if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) { |
| 1391 | node_offsets[n->_idx] = cb->insts_size(); |
| 1392 | } |
| 1393 | #endif |
| 1394 | |
| 1395 | // "Normal" instruction case |
| 1396 | DEBUG_ONLY( uint instr_offset = cb->insts_size(); ) |
| 1397 | n->emit(*cb, _regalloc); |
| 1398 | current_offset = cb->insts_size(); |
| 1399 | |
| 1400 | // Above we only verified that there is enough space in the instruction section. |
| 1401 | // However, the instruction may emit stubs that cause code buffer expansion. |
| 1402 | // Bail out here if expansion failed due to a lack of code cache space. |
| 1403 | if (failing()) { |
| 1404 | return; |
| 1405 | } |
| 1406 | |
| 1407 | #ifdef ASSERT |
| 1408 | if (n->size(_regalloc) < (current_offset-instr_offset)) { |
| 1409 | n->dump(); |
| 1410 | assert(false, "wrong size of mach node" ); |
| 1411 | } |
| 1412 | #endif |
| 1413 | non_safepoints.observe_instruction(n, current_offset); |
| 1414 | |
| 1415 | // mcall is last "call" that can be a safepoint |
| 1416 | // record it so we can see if a poll will directly follow it |
| 1417 | // in which case we'll need a pad to make the PcDesc sites unique |
| 1418 | // see 5010568. This can be slightly inaccurate but conservative |
| 1419 | // in the case that return address is not actually at current_offset. |
| 1420 | // This is a small price to pay. |
| 1421 | |
| 1422 | if (is_mcall) { |
| 1423 | last_call_offset = current_offset; |
| 1424 | } |
| 1425 | |
| 1426 | if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { |
| 1427 | // Avoid back to back some instructions. |
| 1428 | last_avoid_back_to_back_offset = current_offset; |
| 1429 | } |
| 1430 | |
| 1431 | // See if this instruction has a delay slot |
| 1432 | if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { |
| 1433 | guarantee(delay_slot != NULL, "expecting delay slot node" ); |
| 1434 | |
| 1435 | // Back up 1 instruction |
| 1436 | cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size()); |
| 1437 | |
| 1438 | // Save the offset for the listing |
| 1439 | #if defined(SUPPORT_OPTO_ASSEMBLY) |
| 1440 | if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) { |
| 1441 | node_offsets[delay_slot->_idx] = cb->insts_size(); |
| 1442 | } |
| 1443 | #endif |
| 1444 | |
| 1445 | // Support a SafePoint in the delay slot |
| 1446 | if (delay_slot->is_MachSafePoint()) { |
| 1447 | MachNode *mach = delay_slot->as_Mach(); |
| 1448 | // !!!!! Stubs only need an oopmap right now, so bail out |
| 1449 | if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) { |
| 1450 | // Write the oopmap directly to the code blob??!! |
| 1451 | delay_slot = NULL; |
| 1452 | continue; |
| 1453 | } |
| 1454 | |
| 1455 | int adjusted_offset = current_offset - Pipeline::instr_unit_size(); |
| 1456 | non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), |
| 1457 | adjusted_offset); |
| 1458 | // Generate an OopMap entry |
| 1459 | Process_OopMap_Node(mach, adjusted_offset); |
| 1460 | } |
| 1461 | |
| 1462 | // Insert the delay slot instruction |
| 1463 | delay_slot->emit(*cb, _regalloc); |
| 1464 | |
| 1465 | // Don't reuse it |
| 1466 | delay_slot = NULL; |
| 1467 | } |
| 1468 | |
| 1469 | } // End for all instructions in block |
| 1470 | |
| 1471 | // If the next block is the top of a loop, pad this block out to align |
| 1472 | // the loop top a little. Helps prevent pipe stalls at loop back branches. |
| 1473 | if (i < nblocks-1) { |
| 1474 | Block *nb = _cfg->get_block(i + 1); |
| 1475 | int padding = nb->alignment_padding(current_offset); |
| 1476 | if( padding > 0 ) { |
| 1477 | MachNode *nop = new MachNopNode(padding / nop_size); |
| 1478 | block->insert_node(nop, block->number_of_nodes()); |
| 1479 | _cfg->map_node_to_block(nop, block); |
| 1480 | nop->emit(*cb, _regalloc); |
| 1481 | current_offset = cb->insts_size(); |
| 1482 | } |
| 1483 | } |
| 1484 | // Verify that the distance for generated before forward |
| 1485 | // short branches is still valid. |
| 1486 | guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size" ); |
| 1487 | |
| 1488 | // Save new block start offset |
| 1489 | blk_starts[i] = blk_offset; |
| 1490 | } // End of for all blocks |
| 1491 | blk_starts[nblocks] = current_offset; |
| 1492 | |
| 1493 | non_safepoints.flush_at_end(); |
| 1494 | |
| 1495 | // Offset too large? |
| 1496 | if (failing()) return; |
| 1497 | |
| 1498 | // Define a pseudo-label at the end of the code |
| 1499 | MacroAssembler(cb).bind( blk_labels[nblocks] ); |
| 1500 | |
| 1501 | // Compute the size of the first block |
| 1502 | _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); |
| 1503 | |
| 1504 | #ifdef ASSERT |
| 1505 | for (uint i = 0; i < nblocks; i++) { // For all blocks |
| 1506 | if (jmp_target[i] != 0) { |
| 1507 | int br_size = jmp_size[i]; |
| 1508 | int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); |
| 1509 | if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) { |
| 1510 | tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d" , blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); |
| 1511 | assert(false, "Displacement too large for short jmp" ); |
| 1512 | } |
| 1513 | } |
| 1514 | } |
| 1515 | #endif |
| 1516 | |
| 1517 | #ifndef PRODUCT |
| 1518 | // Information on the size of the method, without the extraneous code |
| 1519 | Scheduling::increment_method_size(cb->insts_size()); |
| 1520 | #endif |
| 1521 | |
| 1522 | // ------------------ |
| 1523 | // Fill in exception table entries. |
| 1524 | FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); |
| 1525 | |
| 1526 | // Only java methods have exception handlers and deopt handlers |
| 1527 | // class HandlerImpl is platform-specific and defined in the *.ad files. |
| 1528 | if (_method) { |
| 1529 | // Emit the exception handler code. |
| 1530 | _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb)); |
| 1531 | if (failing()) { |
| 1532 | return; // CodeBuffer::expand failed |
| 1533 | } |
| 1534 | // Emit the deopt handler code. |
| 1535 | _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb)); |
| 1536 | |
| 1537 | // Emit the MethodHandle deopt handler code (if required). |
| 1538 | if (has_method_handle_invokes() && !failing()) { |
| 1539 | // We can use the same code as for the normal deopt handler, we |
| 1540 | // just need a different entry point address. |
| 1541 | _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb)); |
| 1542 | } |
| 1543 | } |
| 1544 | |
| 1545 | // One last check for failed CodeBuffer::expand: |
| 1546 | if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { |
| 1547 | C->record_failure("CodeCache is full" ); |
| 1548 | return; |
| 1549 | } |
| 1550 | |
| 1551 | #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) |
| 1552 | if (print_assembly()) { |
| 1553 | tty->cr(); |
| 1554 | tty->print_cr("============================= C2-compiled nmethod ==============================" ); |
| 1555 | } |
| 1556 | #endif |
| 1557 | |
| 1558 | #if defined(SUPPORT_OPTO_ASSEMBLY) |
| 1559 | // Dump the assembly code, including basic-block numbers |
| 1560 | if (print_assembly()) { |
| 1561 | ttyLocker ttyl; // keep the following output all in one block |
| 1562 | if (!VMThread::should_terminate()) { // test this under the tty lock |
| 1563 | // This output goes directly to the tty, not the compiler log. |
| 1564 | // To enable tools to match it up with the compilation activity, |
| 1565 | // be sure to tag this tty output with the compile ID. |
| 1566 | if (xtty != NULL) { |
| 1567 | xtty->head("opto_assembly compile_id='%d'%s" , compile_id(), |
| 1568 | is_osr_compilation() ? " compile_kind='osr'" : |
| 1569 | "" ); |
| 1570 | } |
| 1571 | if (method() != NULL) { |
| 1572 | tty->print_cr("----------------------------------- MetaData -----------------------------------" ); |
| 1573 | method()->print_metadata(); |
| 1574 | } else if (stub_name() != NULL) { |
| 1575 | tty->print_cr("----------------------------- RuntimeStub %s -------------------------------" , stub_name()); |
| 1576 | } |
| 1577 | tty->cr(); |
| 1578 | tty->print_cr("--------------------------------- OptoAssembly ---------------------------------" ); |
| 1579 | dump_asm(node_offsets, node_offset_limit); |
| 1580 | tty->print_cr("--------------------------------------------------------------------------------" ); |
| 1581 | if (xtty != NULL) { |
| 1582 | // print_metadata and dump_asm above may safepoint which makes us loose the ttylock. |
| 1583 | // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done |
| 1584 | // thread safe |
| 1585 | ttyLocker ttyl2; |
| 1586 | xtty->tail("opto_assembly" ); |
| 1587 | } |
| 1588 | } |
| 1589 | } |
| 1590 | #endif |
| 1591 | } |
| 1592 | |
| 1593 | void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { |
| 1594 | _inc_table.set_size(cnt); |
| 1595 | |
| 1596 | uint inct_cnt = 0; |
| 1597 | for (uint i = 0; i < _cfg->number_of_blocks(); i++) { |
| 1598 | Block* block = _cfg->get_block(i); |
| 1599 | Node *n = NULL; |
| 1600 | int j; |
| 1601 | |
| 1602 | // Find the branch; ignore trailing NOPs. |
| 1603 | for (j = block->number_of_nodes() - 1; j >= 0; j--) { |
| 1604 | n = block->get_node(j); |
| 1605 | if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { |
| 1606 | break; |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | // If we didn't find anything, continue |
| 1611 | if (j < 0) { |
| 1612 | continue; |
| 1613 | } |
| 1614 | |
| 1615 | // Compute ExceptionHandlerTable subtable entry and add it |
| 1616 | // (skip empty blocks) |
| 1617 | if (n->is_Catch()) { |
| 1618 | |
| 1619 | // Get the offset of the return from the call |
| 1620 | uint call_return = call_returns[block->_pre_order]; |
| 1621 | #ifdef ASSERT |
| 1622 | assert( call_return > 0, "no call seen for this basic block" ); |
| 1623 | while (block->get_node(--j)->is_MachProj()) ; |
| 1624 | assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call" ); |
| 1625 | #endif |
| 1626 | // last instruction is a CatchNode, find it's CatchProjNodes |
| 1627 | int nof_succs = block->_num_succs; |
| 1628 | // allocate space |
| 1629 | GrowableArray<intptr_t> handler_bcis(nof_succs); |
| 1630 | GrowableArray<intptr_t> handler_pcos(nof_succs); |
| 1631 | // iterate through all successors |
| 1632 | for (int j = 0; j < nof_succs; j++) { |
| 1633 | Block* s = block->_succs[j]; |
| 1634 | bool found_p = false; |
| 1635 | for (uint k = 1; k < s->num_preds(); k++) { |
| 1636 | Node* pk = s->pred(k); |
| 1637 | if (pk->is_CatchProj() && pk->in(0) == n) { |
| 1638 | const CatchProjNode* p = pk->as_CatchProj(); |
| 1639 | found_p = true; |
| 1640 | // add the corresponding handler bci & pco information |
| 1641 | if (p->_con != CatchProjNode::fall_through_index) { |
| 1642 | // p leads to an exception handler (and is not fall through) |
| 1643 | assert(s == _cfg->get_block(s->_pre_order), "bad numbering" ); |
| 1644 | // no duplicates, please |
| 1645 | if (!handler_bcis.contains(p->handler_bci())) { |
| 1646 | uint block_num = s->non_connector()->_pre_order; |
| 1647 | handler_bcis.append(p->handler_bci()); |
| 1648 | handler_pcos.append(blk_labels[block_num].loc_pos()); |
| 1649 | } |
| 1650 | } |
| 1651 | } |
| 1652 | } |
| 1653 | assert(found_p, "no matching predecessor found" ); |
| 1654 | // Note: Due to empty block removal, one block may have |
| 1655 | // several CatchProj inputs, from the same Catch. |
| 1656 | } |
| 1657 | |
| 1658 | // Set the offset of the return from the call |
| 1659 | assert(handler_bcis.find(-1) != -1, "must have default handler" ); |
| 1660 | _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos); |
| 1661 | continue; |
| 1662 | } |
| 1663 | |
| 1664 | // Handle implicit null exception table updates |
| 1665 | if (n->is_MachNullCheck()) { |
| 1666 | uint block_num = block->non_connector_successor(0)->_pre_order; |
| 1667 | _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); |
| 1668 | continue; |
| 1669 | } |
| 1670 | // Handle implicit exception table updates: trap instructions. |
| 1671 | if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { |
| 1672 | uint block_num = block->non_connector_successor(0)->_pre_order; |
| 1673 | _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); |
| 1674 | continue; |
| 1675 | } |
| 1676 | } // End of for all blocks fill in exception table entries |
| 1677 | } |
| 1678 | |
| 1679 | // Static Variables |
| 1680 | #ifndef PRODUCT |
| 1681 | uint Scheduling::_total_nop_size = 0; |
| 1682 | uint Scheduling::_total_method_size = 0; |
| 1683 | uint Scheduling::_total_branches = 0; |
| 1684 | uint Scheduling::_total_unconditional_delays = 0; |
| 1685 | uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; |
| 1686 | #endif |
| 1687 | |
| 1688 | // Initializer for class Scheduling |
| 1689 | |
| 1690 | Scheduling::Scheduling(Arena *arena, Compile &compile) |
| 1691 | : _arena(arena), |
| 1692 | _cfg(compile.cfg()), |
| 1693 | _regalloc(compile.regalloc()), |
| 1694 | _scheduled(arena), |
| 1695 | _available(arena), |
| 1696 | _reg_node(arena), |
| 1697 | _pinch_free_list(arena), |
| 1698 | _next_node(NULL), |
| 1699 | _bundle_instr_count(0), |
| 1700 | _bundle_cycle_number(0), |
| 1701 | _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) |
| 1702 | #ifndef PRODUCT |
| 1703 | , _branches(0) |
| 1704 | , _unconditional_delays(0) |
| 1705 | #endif |
| 1706 | { |
| 1707 | // Create a MachNopNode |
| 1708 | _nop = new MachNopNode(); |
| 1709 | |
| 1710 | // Now that the nops are in the array, save the count |
| 1711 | // (but allow entries for the nops) |
| 1712 | _node_bundling_limit = compile.unique(); |
| 1713 | uint node_max = _regalloc->node_regs_max_index(); |
| 1714 | |
| 1715 | compile.set_node_bundling_limit(_node_bundling_limit); |
| 1716 | |
| 1717 | // This one is persistent within the Compile class |
| 1718 | _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); |
| 1719 | |
| 1720 | // Allocate space for fixed-size arrays |
| 1721 | _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); |
| 1722 | _uses = NEW_ARENA_ARRAY(arena, short, node_max); |
| 1723 | _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); |
| 1724 | |
| 1725 | // Clear the arrays |
| 1726 | for (uint i = 0; i < node_max; i++) { |
| 1727 | ::new (&_node_bundling_base[i]) Bundle(); |
| 1728 | } |
| 1729 | memset(_node_latency, 0, node_max * sizeof(unsigned short)); |
| 1730 | memset(_uses, 0, node_max * sizeof(short)); |
| 1731 | memset(_current_latency, 0, node_max * sizeof(unsigned short)); |
| 1732 | |
| 1733 | // Clear the bundling information |
| 1734 | memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); |
| 1735 | |
| 1736 | // Get the last node |
| 1737 | Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); |
| 1738 | |
| 1739 | _next_node = block->get_node(block->number_of_nodes() - 1); |
| 1740 | } |
| 1741 | |
| 1742 | #ifndef PRODUCT |
| 1743 | // Scheduling destructor |
| 1744 | Scheduling::~Scheduling() { |
| 1745 | _total_branches += _branches; |
| 1746 | _total_unconditional_delays += _unconditional_delays; |
| 1747 | } |
| 1748 | #endif |
| 1749 | |
| 1750 | // Step ahead "i" cycles |
| 1751 | void Scheduling::step(uint i) { |
| 1752 | |
| 1753 | Bundle *bundle = node_bundling(_next_node); |
| 1754 | bundle->set_starts_bundle(); |
| 1755 | |
| 1756 | // Update the bundle record, but leave the flags information alone |
| 1757 | if (_bundle_instr_count > 0) { |
| 1758 | bundle->set_instr_count(_bundle_instr_count); |
| 1759 | bundle->set_resources_used(_bundle_use.resourcesUsed()); |
| 1760 | } |
| 1761 | |
| 1762 | // Update the state information |
| 1763 | _bundle_instr_count = 0; |
| 1764 | _bundle_cycle_number += i; |
| 1765 | _bundle_use.step(i); |
| 1766 | } |
| 1767 | |
| 1768 | void Scheduling::step_and_clear() { |
| 1769 | Bundle *bundle = node_bundling(_next_node); |
| 1770 | bundle->set_starts_bundle(); |
| 1771 | |
| 1772 | // Update the bundle record |
| 1773 | if (_bundle_instr_count > 0) { |
| 1774 | bundle->set_instr_count(_bundle_instr_count); |
| 1775 | bundle->set_resources_used(_bundle_use.resourcesUsed()); |
| 1776 | |
| 1777 | _bundle_cycle_number += 1; |
| 1778 | } |
| 1779 | |
| 1780 | // Clear the bundling information |
| 1781 | _bundle_instr_count = 0; |
| 1782 | _bundle_use.reset(); |
| 1783 | |
| 1784 | memcpy(_bundle_use_elements, |
| 1785 | Pipeline_Use::elaborated_elements, |
| 1786 | sizeof(Pipeline_Use::elaborated_elements)); |
| 1787 | } |
| 1788 | |
| 1789 | // Perform instruction scheduling and bundling over the sequence of |
| 1790 | // instructions in backwards order. |
| 1791 | void Compile::ScheduleAndBundle() { |
| 1792 | |
| 1793 | // Don't optimize this if it isn't a method |
| 1794 | if (!_method) |
| 1795 | return; |
| 1796 | |
| 1797 | // Don't optimize this if scheduling is disabled |
| 1798 | if (!do_scheduling()) |
| 1799 | return; |
| 1800 | |
| 1801 | // Scheduling code works only with pairs (16 bytes) maximum. |
| 1802 | if (max_vector_size() > 16) |
| 1803 | return; |
| 1804 | |
| 1805 | TracePhase tp("isched" , &timers[_t_instrSched]); |
| 1806 | |
| 1807 | // Create a data structure for all the scheduling information |
| 1808 | Scheduling scheduling(Thread::current()->resource_area(), *this); |
| 1809 | |
| 1810 | // Walk backwards over each basic block, computing the needed alignment |
| 1811 | // Walk over all the basic blocks |
| 1812 | scheduling.DoScheduling(); |
| 1813 | } |
| 1814 | |
| 1815 | // Compute the latency of all the instructions. This is fairly simple, |
| 1816 | // because we already have a legal ordering. Walk over the instructions |
| 1817 | // from first to last, and compute the latency of the instruction based |
| 1818 | // on the latency of the preceding instruction(s). |
| 1819 | void Scheduling::ComputeLocalLatenciesForward(const Block *bb) { |
| 1820 | #ifndef PRODUCT |
| 1821 | if (_cfg->C->trace_opto_output()) |
| 1822 | tty->print("# -> ComputeLocalLatenciesForward\n" ); |
| 1823 | #endif |
| 1824 | |
| 1825 | // Walk over all the schedulable instructions |
| 1826 | for( uint j=_bb_start; j < _bb_end; j++ ) { |
| 1827 | |
| 1828 | // This is a kludge, forcing all latency calculations to start at 1. |
| 1829 | // Used to allow latency 0 to force an instruction to the beginning |
| 1830 | // of the bb |
| 1831 | uint latency = 1; |
| 1832 | Node *use = bb->get_node(j); |
| 1833 | uint nlen = use->len(); |
| 1834 | |
| 1835 | // Walk over all the inputs |
| 1836 | for ( uint k=0; k < nlen; k++ ) { |
| 1837 | Node *def = use->in(k); |
| 1838 | if (!def) |
| 1839 | continue; |
| 1840 | |
| 1841 | uint l = _node_latency[def->_idx] + use->latency(k); |
| 1842 | if (latency < l) |
| 1843 | latency = l; |
| 1844 | } |
| 1845 | |
| 1846 | _node_latency[use->_idx] = latency; |
| 1847 | |
| 1848 | #ifndef PRODUCT |
| 1849 | if (_cfg->C->trace_opto_output()) { |
| 1850 | tty->print("# latency %4d: " , latency); |
| 1851 | use->dump(); |
| 1852 | } |
| 1853 | #endif |
| 1854 | } |
| 1855 | |
| 1856 | #ifndef PRODUCT |
| 1857 | if (_cfg->C->trace_opto_output()) |
| 1858 | tty->print("# <- ComputeLocalLatenciesForward\n" ); |
| 1859 | #endif |
| 1860 | |
| 1861 | } // end ComputeLocalLatenciesForward |
| 1862 | |
| 1863 | // See if this node fits into the present instruction bundle |
| 1864 | bool Scheduling::NodeFitsInBundle(Node *n) { |
| 1865 | uint n_idx = n->_idx; |
| 1866 | |
| 1867 | // If this is the unconditional delay instruction, then it fits |
| 1868 | if (n == _unconditional_delay_slot) { |
| 1869 | #ifndef PRODUCT |
| 1870 | if (_cfg->C->trace_opto_output()) |
| 1871 | tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n" , n->_idx); |
| 1872 | #endif |
| 1873 | return (true); |
| 1874 | } |
| 1875 | |
| 1876 | // If the node cannot be scheduled this cycle, skip it |
| 1877 | if (_current_latency[n_idx] > _bundle_cycle_number) { |
| 1878 | #ifndef PRODUCT |
| 1879 | if (_cfg->C->trace_opto_output()) |
| 1880 | tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n" , |
| 1881 | n->_idx, _current_latency[n_idx], _bundle_cycle_number); |
| 1882 | #endif |
| 1883 | return (false); |
| 1884 | } |
| 1885 | |
| 1886 | const Pipeline *node_pipeline = n->pipeline(); |
| 1887 | |
| 1888 | uint instruction_count = node_pipeline->instructionCount(); |
| 1889 | if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) |
| 1890 | instruction_count = 0; |
| 1891 | else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) |
| 1892 | instruction_count++; |
| 1893 | |
| 1894 | if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { |
| 1895 | #ifndef PRODUCT |
| 1896 | if (_cfg->C->trace_opto_output()) |
| 1897 | tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n" , |
| 1898 | n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); |
| 1899 | #endif |
| 1900 | return (false); |
| 1901 | } |
| 1902 | |
| 1903 | // Don't allow non-machine nodes to be handled this way |
| 1904 | if (!n->is_Mach() && instruction_count == 0) |
| 1905 | return (false); |
| 1906 | |
| 1907 | // See if there is any overlap |
| 1908 | uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); |
| 1909 | |
| 1910 | if (delay > 0) { |
| 1911 | #ifndef PRODUCT |
| 1912 | if (_cfg->C->trace_opto_output()) |
| 1913 | tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n" , n_idx); |
| 1914 | #endif |
| 1915 | return false; |
| 1916 | } |
| 1917 | |
| 1918 | #ifndef PRODUCT |
| 1919 | if (_cfg->C->trace_opto_output()) |
| 1920 | tty->print("# NodeFitsInBundle [%4d]: TRUE\n" , n_idx); |
| 1921 | #endif |
| 1922 | |
| 1923 | return true; |
| 1924 | } |
| 1925 | |
| 1926 | Node * Scheduling::ChooseNodeToBundle() { |
| 1927 | uint siz = _available.size(); |
| 1928 | |
| 1929 | if (siz == 0) { |
| 1930 | |
| 1931 | #ifndef PRODUCT |
| 1932 | if (_cfg->C->trace_opto_output()) |
| 1933 | tty->print("# ChooseNodeToBundle: NULL\n" ); |
| 1934 | #endif |
| 1935 | return (NULL); |
| 1936 | } |
| 1937 | |
| 1938 | // Fast path, if only 1 instruction in the bundle |
| 1939 | if (siz == 1) { |
| 1940 | #ifndef PRODUCT |
| 1941 | if (_cfg->C->trace_opto_output()) { |
| 1942 | tty->print("# ChooseNodeToBundle (only 1): " ); |
| 1943 | _available[0]->dump(); |
| 1944 | } |
| 1945 | #endif |
| 1946 | return (_available[0]); |
| 1947 | } |
| 1948 | |
| 1949 | // Don't bother, if the bundle is already full |
| 1950 | if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { |
| 1951 | for ( uint i = 0; i < siz; i++ ) { |
| 1952 | Node *n = _available[i]; |
| 1953 | |
| 1954 | // Skip projections, we'll handle them another way |
| 1955 | if (n->is_Proj()) |
| 1956 | continue; |
| 1957 | |
| 1958 | // This presupposed that instructions are inserted into the |
| 1959 | // available list in a legality order; i.e. instructions that |
| 1960 | // must be inserted first are at the head of the list |
| 1961 | if (NodeFitsInBundle(n)) { |
| 1962 | #ifndef PRODUCT |
| 1963 | if (_cfg->C->trace_opto_output()) { |
| 1964 | tty->print("# ChooseNodeToBundle: " ); |
| 1965 | n->dump(); |
| 1966 | } |
| 1967 | #endif |
| 1968 | return (n); |
| 1969 | } |
| 1970 | } |
| 1971 | } |
| 1972 | |
| 1973 | // Nothing fits in this bundle, choose the highest priority |
| 1974 | #ifndef PRODUCT |
| 1975 | if (_cfg->C->trace_opto_output()) { |
| 1976 | tty->print("# ChooseNodeToBundle: " ); |
| 1977 | _available[0]->dump(); |
| 1978 | } |
| 1979 | #endif |
| 1980 | |
| 1981 | return _available[0]; |
| 1982 | } |
| 1983 | |
| 1984 | void Scheduling::AddNodeToAvailableList(Node *n) { |
| 1985 | assert( !n->is_Proj(), "projections never directly made available" ); |
| 1986 | #ifndef PRODUCT |
| 1987 | if (_cfg->C->trace_opto_output()) { |
| 1988 | tty->print("# AddNodeToAvailableList: " ); |
| 1989 | n->dump(); |
| 1990 | } |
| 1991 | #endif |
| 1992 | |
| 1993 | int latency = _current_latency[n->_idx]; |
| 1994 | |
| 1995 | // Insert in latency order (insertion sort) |
| 1996 | uint i; |
| 1997 | for ( i=0; i < _available.size(); i++ ) |
| 1998 | if (_current_latency[_available[i]->_idx] > latency) |
| 1999 | break; |
| 2000 | |
| 2001 | // Special Check for compares following branches |
| 2002 | if( n->is_Mach() && _scheduled.size() > 0 ) { |
| 2003 | int op = n->as_Mach()->ideal_Opcode(); |
| 2004 | Node *last = _scheduled[0]; |
| 2005 | if( last->is_MachIf() && last->in(1) == n && |
| 2006 | ( op == Op_CmpI || |
| 2007 | op == Op_CmpU || |
| 2008 | op == Op_CmpUL || |
| 2009 | op == Op_CmpP || |
| 2010 | op == Op_CmpF || |
| 2011 | op == Op_CmpD || |
| 2012 | op == Op_CmpL ) ) { |
| 2013 | |
| 2014 | // Recalculate position, moving to front of same latency |
| 2015 | for ( i=0 ; i < _available.size(); i++ ) |
| 2016 | if (_current_latency[_available[i]->_idx] >= latency) |
| 2017 | break; |
| 2018 | } |
| 2019 | } |
| 2020 | |
| 2021 | // Insert the node in the available list |
| 2022 | _available.insert(i, n); |
| 2023 | |
| 2024 | #ifndef PRODUCT |
| 2025 | if (_cfg->C->trace_opto_output()) |
| 2026 | dump_available(); |
| 2027 | #endif |
| 2028 | } |
| 2029 | |
| 2030 | void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { |
| 2031 | for ( uint i=0; i < n->len(); i++ ) { |
| 2032 | Node *def = n->in(i); |
| 2033 | if (!def) continue; |
| 2034 | if( def->is_Proj() ) // If this is a machine projection, then |
| 2035 | def = def->in(0); // propagate usage thru to the base instruction |
| 2036 | |
| 2037 | if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local |
| 2038 | continue; |
| 2039 | } |
| 2040 | |
| 2041 | // Compute the latency |
| 2042 | uint l = _bundle_cycle_number + n->latency(i); |
| 2043 | if (_current_latency[def->_idx] < l) |
| 2044 | _current_latency[def->_idx] = l; |
| 2045 | |
| 2046 | // If this does not have uses then schedule it |
| 2047 | if ((--_uses[def->_idx]) == 0) |
| 2048 | AddNodeToAvailableList(def); |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { |
| 2053 | #ifndef PRODUCT |
| 2054 | if (_cfg->C->trace_opto_output()) { |
| 2055 | tty->print("# AddNodeToBundle: " ); |
| 2056 | n->dump(); |
| 2057 | } |
| 2058 | #endif |
| 2059 | |
| 2060 | // Remove this from the available list |
| 2061 | uint i; |
| 2062 | for (i = 0; i < _available.size(); i++) |
| 2063 | if (_available[i] == n) |
| 2064 | break; |
| 2065 | assert(i < _available.size(), "entry in _available list not found" ); |
| 2066 | _available.remove(i); |
| 2067 | |
| 2068 | // See if this fits in the current bundle |
| 2069 | const Pipeline *node_pipeline = n->pipeline(); |
| 2070 | const Pipeline_Use& node_usage = node_pipeline->resourceUse(); |
| 2071 | |
| 2072 | // Check for instructions to be placed in the delay slot. We |
| 2073 | // do this before we actually schedule the current instruction, |
| 2074 | // because the delay slot follows the current instruction. |
| 2075 | if (Pipeline::_branch_has_delay_slot && |
| 2076 | node_pipeline->hasBranchDelay() && |
| 2077 | !_unconditional_delay_slot) { |
| 2078 | |
| 2079 | uint siz = _available.size(); |
| 2080 | |
| 2081 | // Conditional branches can support an instruction that |
| 2082 | // is unconditionally executed and not dependent by the |
| 2083 | // branch, OR a conditionally executed instruction if |
| 2084 | // the branch is taken. In practice, this means that |
| 2085 | // the first instruction at the branch target is |
| 2086 | // copied to the delay slot, and the branch goes to |
| 2087 | // the instruction after that at the branch target |
| 2088 | if ( n->is_MachBranch() ) { |
| 2089 | |
| 2090 | assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); |
| 2091 | assert( !n->is_Catch(), "should not look for delay slot for Catch" ); |
| 2092 | |
| 2093 | #ifndef PRODUCT |
| 2094 | _branches++; |
| 2095 | #endif |
| 2096 | |
| 2097 | // At least 1 instruction is on the available list |
| 2098 | // that is not dependent on the branch |
| 2099 | for (uint i = 0; i < siz; i++) { |
| 2100 | Node *d = _available[i]; |
| 2101 | const Pipeline *avail_pipeline = d->pipeline(); |
| 2102 | |
| 2103 | // Don't allow safepoints in the branch shadow, that will |
| 2104 | // cause a number of difficulties |
| 2105 | if ( avail_pipeline->instructionCount() == 1 && |
| 2106 | !avail_pipeline->hasMultipleBundles() && |
| 2107 | !avail_pipeline->hasBranchDelay() && |
| 2108 | Pipeline::instr_has_unit_size() && |
| 2109 | d->size(_regalloc) == Pipeline::instr_unit_size() && |
| 2110 | NodeFitsInBundle(d) && |
| 2111 | !node_bundling(d)->used_in_delay()) { |
| 2112 | |
| 2113 | if (d->is_Mach() && !d->is_MachSafePoint()) { |
| 2114 | // A node that fits in the delay slot was found, so we need to |
| 2115 | // set the appropriate bits in the bundle pipeline information so |
| 2116 | // that it correctly indicates resource usage. Later, when we |
| 2117 | // attempt to add this instruction to the bundle, we will skip |
| 2118 | // setting the resource usage. |
| 2119 | _unconditional_delay_slot = d; |
| 2120 | node_bundling(n)->set_use_unconditional_delay(); |
| 2121 | node_bundling(d)->set_used_in_unconditional_delay(); |
| 2122 | _bundle_use.add_usage(avail_pipeline->resourceUse()); |
| 2123 | _current_latency[d->_idx] = _bundle_cycle_number; |
| 2124 | _next_node = d; |
| 2125 | ++_bundle_instr_count; |
| 2126 | #ifndef PRODUCT |
| 2127 | _unconditional_delays++; |
| 2128 | #endif |
| 2129 | break; |
| 2130 | } |
| 2131 | } |
| 2132 | } |
| 2133 | } |
| 2134 | |
| 2135 | // No delay slot, add a nop to the usage |
| 2136 | if (!_unconditional_delay_slot) { |
| 2137 | // See if adding an instruction in the delay slot will overflow |
| 2138 | // the bundle. |
| 2139 | if (!NodeFitsInBundle(_nop)) { |
| 2140 | #ifndef PRODUCT |
| 2141 | if (_cfg->C->trace_opto_output()) |
| 2142 | tty->print("# *** STEP(1 instruction for delay slot) ***\n" ); |
| 2143 | #endif |
| 2144 | step(1); |
| 2145 | } |
| 2146 | |
| 2147 | _bundle_use.add_usage(_nop->pipeline()->resourceUse()); |
| 2148 | _next_node = _nop; |
| 2149 | ++_bundle_instr_count; |
| 2150 | } |
| 2151 | |
| 2152 | // See if the instruction in the delay slot requires a |
| 2153 | // step of the bundles |
| 2154 | if (!NodeFitsInBundle(n)) { |
| 2155 | #ifndef PRODUCT |
| 2156 | if (_cfg->C->trace_opto_output()) |
| 2157 | tty->print("# *** STEP(branch won't fit) ***\n" ); |
| 2158 | #endif |
| 2159 | // Update the state information |
| 2160 | _bundle_instr_count = 0; |
| 2161 | _bundle_cycle_number += 1; |
| 2162 | _bundle_use.step(1); |
| 2163 | } |
| 2164 | } |
| 2165 | |
| 2166 | // Get the number of instructions |
| 2167 | uint instruction_count = node_pipeline->instructionCount(); |
| 2168 | if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) |
| 2169 | instruction_count = 0; |
| 2170 | |
| 2171 | // Compute the latency information |
| 2172 | uint delay = 0; |
| 2173 | |
| 2174 | if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { |
| 2175 | int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; |
| 2176 | if (relative_latency < 0) |
| 2177 | relative_latency = 0; |
| 2178 | |
| 2179 | delay = _bundle_use.full_latency(relative_latency, node_usage); |
| 2180 | |
| 2181 | // Does not fit in this bundle, start a new one |
| 2182 | if (delay > 0) { |
| 2183 | step(delay); |
| 2184 | |
| 2185 | #ifndef PRODUCT |
| 2186 | if (_cfg->C->trace_opto_output()) |
| 2187 | tty->print("# *** STEP(%d) ***\n" , delay); |
| 2188 | #endif |
| 2189 | } |
| 2190 | } |
| 2191 | |
| 2192 | // If this was placed in the delay slot, ignore it |
| 2193 | if (n != _unconditional_delay_slot) { |
| 2194 | |
| 2195 | if (delay == 0) { |
| 2196 | if (node_pipeline->hasMultipleBundles()) { |
| 2197 | #ifndef PRODUCT |
| 2198 | if (_cfg->C->trace_opto_output()) |
| 2199 | tty->print("# *** STEP(multiple instructions) ***\n" ); |
| 2200 | #endif |
| 2201 | step(1); |
| 2202 | } |
| 2203 | |
| 2204 | else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { |
| 2205 | #ifndef PRODUCT |
| 2206 | if (_cfg->C->trace_opto_output()) |
| 2207 | tty->print("# *** STEP(%d >= %d instructions) ***\n" , |
| 2208 | instruction_count + _bundle_instr_count, |
| 2209 | Pipeline::_max_instrs_per_cycle); |
| 2210 | #endif |
| 2211 | step(1); |
| 2212 | } |
| 2213 | } |
| 2214 | |
| 2215 | if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) |
| 2216 | _bundle_instr_count++; |
| 2217 | |
| 2218 | // Set the node's latency |
| 2219 | _current_latency[n->_idx] = _bundle_cycle_number; |
| 2220 | |
| 2221 | // Now merge the functional unit information |
| 2222 | if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) |
| 2223 | _bundle_use.add_usage(node_usage); |
| 2224 | |
| 2225 | // Increment the number of instructions in this bundle |
| 2226 | _bundle_instr_count += instruction_count; |
| 2227 | |
| 2228 | // Remember this node for later |
| 2229 | if (n->is_Mach()) |
| 2230 | _next_node = n; |
| 2231 | } |
| 2232 | |
| 2233 | // It's possible to have a BoxLock in the graph and in the _bbs mapping but |
| 2234 | // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. |
| 2235 | // 'Schedule' them (basically ignore in the schedule) but do not insert them |
| 2236 | // into the block. All other scheduled nodes get put in the schedule here. |
| 2237 | int op = n->Opcode(); |
| 2238 | if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR |
| 2239 | (op != Op_Node && // Not an unused antidepedence node and |
| 2240 | // not an unallocated boxlock |
| 2241 | (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { |
| 2242 | |
| 2243 | // Push any trailing projections |
| 2244 | if( bb->get_node(bb->number_of_nodes()-1) != n ) { |
| 2245 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 2246 | Node *foi = n->fast_out(i); |
| 2247 | if( foi->is_Proj() ) |
| 2248 | _scheduled.push(foi); |
| 2249 | } |
| 2250 | } |
| 2251 | |
| 2252 | // Put the instruction in the schedule list |
| 2253 | _scheduled.push(n); |
| 2254 | } |
| 2255 | |
| 2256 | #ifndef PRODUCT |
| 2257 | if (_cfg->C->trace_opto_output()) |
| 2258 | dump_available(); |
| 2259 | #endif |
| 2260 | |
| 2261 | // Walk all the definitions, decrementing use counts, and |
| 2262 | // if a definition has a 0 use count, place it in the available list. |
| 2263 | DecrementUseCounts(n,bb); |
| 2264 | } |
| 2265 | |
| 2266 | // This method sets the use count within a basic block. We will ignore all |
| 2267 | // uses outside the current basic block. As we are doing a backwards walk, |
| 2268 | // any node we reach that has a use count of 0 may be scheduled. This also |
| 2269 | // avoids the problem of cyclic references from phi nodes, as long as phi |
| 2270 | // nodes are at the front of the basic block. This method also initializes |
| 2271 | // the available list to the set of instructions that have no uses within this |
| 2272 | // basic block. |
| 2273 | void Scheduling::ComputeUseCount(const Block *bb) { |
| 2274 | #ifndef PRODUCT |
| 2275 | if (_cfg->C->trace_opto_output()) |
| 2276 | tty->print("# -> ComputeUseCount\n" ); |
| 2277 | #endif |
| 2278 | |
| 2279 | // Clear the list of available and scheduled instructions, just in case |
| 2280 | _available.clear(); |
| 2281 | _scheduled.clear(); |
| 2282 | |
| 2283 | // No delay slot specified |
| 2284 | _unconditional_delay_slot = NULL; |
| 2285 | |
| 2286 | #ifdef ASSERT |
| 2287 | for( uint i=0; i < bb->number_of_nodes(); i++ ) |
| 2288 | assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); |
| 2289 | #endif |
| 2290 | |
| 2291 | // Force the _uses count to never go to zero for unscheduable pieces |
| 2292 | // of the block |
| 2293 | for( uint k = 0; k < _bb_start; k++ ) |
| 2294 | _uses[bb->get_node(k)->_idx] = 1; |
| 2295 | for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) |
| 2296 | _uses[bb->get_node(l)->_idx] = 1; |
| 2297 | |
| 2298 | // Iterate backwards over the instructions in the block. Don't count the |
| 2299 | // branch projections at end or the block header instructions. |
| 2300 | for( uint j = _bb_end-1; j >= _bb_start; j-- ) { |
| 2301 | Node *n = bb->get_node(j); |
| 2302 | if( n->is_Proj() ) continue; // Projections handled another way |
| 2303 | |
| 2304 | // Account for all uses |
| 2305 | for ( uint k = 0; k < n->len(); k++ ) { |
| 2306 | Node *inp = n->in(k); |
| 2307 | if (!inp) continue; |
| 2308 | assert(inp != n, "no cycles allowed" ); |
| 2309 | if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? |
| 2310 | if (inp->is_Proj()) { // Skip through Proj's |
| 2311 | inp = inp->in(0); |
| 2312 | } |
| 2313 | ++_uses[inp->_idx]; // Count 1 block-local use |
| 2314 | } |
| 2315 | } |
| 2316 | |
| 2317 | // If this instruction has a 0 use count, then it is available |
| 2318 | if (!_uses[n->_idx]) { |
| 2319 | _current_latency[n->_idx] = _bundle_cycle_number; |
| 2320 | AddNodeToAvailableList(n); |
| 2321 | } |
| 2322 | |
| 2323 | #ifndef PRODUCT |
| 2324 | if (_cfg->C->trace_opto_output()) { |
| 2325 | tty->print("# uses: %3d: " , _uses[n->_idx]); |
| 2326 | n->dump(); |
| 2327 | } |
| 2328 | #endif |
| 2329 | } |
| 2330 | |
| 2331 | #ifndef PRODUCT |
| 2332 | if (_cfg->C->trace_opto_output()) |
| 2333 | tty->print("# <- ComputeUseCount\n" ); |
| 2334 | #endif |
| 2335 | } |
| 2336 | |
| 2337 | // This routine performs scheduling on each basic block in reverse order, |
| 2338 | // using instruction latencies and taking into account function unit |
| 2339 | // availability. |
| 2340 | void Scheduling::DoScheduling() { |
| 2341 | #ifndef PRODUCT |
| 2342 | if (_cfg->C->trace_opto_output()) |
| 2343 | tty->print("# -> DoScheduling\n" ); |
| 2344 | #endif |
| 2345 | |
| 2346 | Block *succ_bb = NULL; |
| 2347 | Block *bb; |
| 2348 | |
| 2349 | // Walk over all the basic blocks in reverse order |
| 2350 | for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { |
| 2351 | bb = _cfg->get_block(i); |
| 2352 | |
| 2353 | #ifndef PRODUCT |
| 2354 | if (_cfg->C->trace_opto_output()) { |
| 2355 | tty->print("# Schedule BB#%03d (initial)\n" , i); |
| 2356 | for (uint j = 0; j < bb->number_of_nodes(); j++) { |
| 2357 | bb->get_node(j)->dump(); |
| 2358 | } |
| 2359 | } |
| 2360 | #endif |
| 2361 | |
| 2362 | // On the head node, skip processing |
| 2363 | if (bb == _cfg->get_root_block()) { |
| 2364 | continue; |
| 2365 | } |
| 2366 | |
| 2367 | // Skip empty, connector blocks |
| 2368 | if (bb->is_connector()) |
| 2369 | continue; |
| 2370 | |
| 2371 | // If the following block is not the sole successor of |
| 2372 | // this one, then reset the pipeline information |
| 2373 | if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { |
| 2374 | #ifndef PRODUCT |
| 2375 | if (_cfg->C->trace_opto_output()) { |
| 2376 | tty->print("*** bundle start of next BB, node %d, for %d instructions\n" , |
| 2377 | _next_node->_idx, _bundle_instr_count); |
| 2378 | } |
| 2379 | #endif |
| 2380 | step_and_clear(); |
| 2381 | } |
| 2382 | |
| 2383 | // Leave untouched the starting instruction, any Phis, a CreateEx node |
| 2384 | // or Top. bb->get_node(_bb_start) is the first schedulable instruction. |
| 2385 | _bb_end = bb->number_of_nodes()-1; |
| 2386 | for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { |
| 2387 | Node *n = bb->get_node(_bb_start); |
| 2388 | // Things not matched, like Phinodes and ProjNodes don't get scheduled. |
| 2389 | // Also, MachIdealNodes do not get scheduled |
| 2390 | if( !n->is_Mach() ) continue; // Skip non-machine nodes |
| 2391 | MachNode *mach = n->as_Mach(); |
| 2392 | int iop = mach->ideal_Opcode(); |
| 2393 | if( iop == Op_CreateEx ) continue; // CreateEx is pinned |
| 2394 | if( iop == Op_Con ) continue; // Do not schedule Top |
| 2395 | if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes |
| 2396 | mach->pipeline() == MachNode::pipeline_class() && |
| 2397 | !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc |
| 2398 | continue; |
| 2399 | break; // Funny loop structure to be sure... |
| 2400 | } |
| 2401 | // Compute last "interesting" instruction in block - last instruction we |
| 2402 | // might schedule. _bb_end points just after last schedulable inst. We |
| 2403 | // normally schedule conditional branches (despite them being forced last |
| 2404 | // in the block), because they have delay slots we can fill. Calls all |
| 2405 | // have their delay slots filled in the template expansions, so we don't |
| 2406 | // bother scheduling them. |
| 2407 | Node *last = bb->get_node(_bb_end); |
| 2408 | // Ignore trailing NOPs. |
| 2409 | while (_bb_end > 0 && last->is_Mach() && |
| 2410 | last->as_Mach()->ideal_Opcode() == Op_Con) { |
| 2411 | last = bb->get_node(--_bb_end); |
| 2412 | } |
| 2413 | assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "" ); |
| 2414 | if( last->is_Catch() || |
| 2415 | (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { |
| 2416 | // There might be a prior call. Skip it. |
| 2417 | while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); |
| 2418 | } else if( last->is_MachNullCheck() ) { |
| 2419 | // Backup so the last null-checked memory instruction is |
| 2420 | // outside the schedulable range. Skip over the nullcheck, |
| 2421 | // projection, and the memory nodes. |
| 2422 | Node *mem = last->in(1); |
| 2423 | do { |
| 2424 | _bb_end--; |
| 2425 | } while (mem != bb->get_node(_bb_end)); |
| 2426 | } else { |
| 2427 | // Set _bb_end to point after last schedulable inst. |
| 2428 | _bb_end++; |
| 2429 | } |
| 2430 | |
| 2431 | assert( _bb_start <= _bb_end, "inverted block ends" ); |
| 2432 | |
| 2433 | // Compute the register antidependencies for the basic block |
| 2434 | ComputeRegisterAntidependencies(bb); |
| 2435 | if (_cfg->C->failing()) return; // too many D-U pinch points |
| 2436 | |
| 2437 | // Compute intra-bb latencies for the nodes |
| 2438 | ComputeLocalLatenciesForward(bb); |
| 2439 | |
| 2440 | // Compute the usage within the block, and set the list of all nodes |
| 2441 | // in the block that have no uses within the block. |
| 2442 | ComputeUseCount(bb); |
| 2443 | |
| 2444 | // Schedule the remaining instructions in the block |
| 2445 | while ( _available.size() > 0 ) { |
| 2446 | Node *n = ChooseNodeToBundle(); |
| 2447 | guarantee(n != NULL, "no nodes available" ); |
| 2448 | AddNodeToBundle(n,bb); |
| 2449 | } |
| 2450 | |
| 2451 | assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); |
| 2452 | #ifdef ASSERT |
| 2453 | for( uint l = _bb_start; l < _bb_end; l++ ) { |
| 2454 | Node *n = bb->get_node(l); |
| 2455 | uint m; |
| 2456 | for( m = 0; m < _bb_end-_bb_start; m++ ) |
| 2457 | if( _scheduled[m] == n ) |
| 2458 | break; |
| 2459 | assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); |
| 2460 | } |
| 2461 | #endif |
| 2462 | |
| 2463 | // Now copy the instructions (in reverse order) back to the block |
| 2464 | for ( uint k = _bb_start; k < _bb_end; k++ ) |
| 2465 | bb->map_node(_scheduled[_bb_end-k-1], k); |
| 2466 | |
| 2467 | #ifndef PRODUCT |
| 2468 | if (_cfg->C->trace_opto_output()) { |
| 2469 | tty->print("# Schedule BB#%03d (final)\n" , i); |
| 2470 | uint current = 0; |
| 2471 | for (uint j = 0; j < bb->number_of_nodes(); j++) { |
| 2472 | Node *n = bb->get_node(j); |
| 2473 | if( valid_bundle_info(n) ) { |
| 2474 | Bundle *bundle = node_bundling(n); |
| 2475 | if (bundle->instr_count() > 0 || bundle->flags() > 0) { |
| 2476 | tty->print("*** Bundle: " ); |
| 2477 | bundle->dump(); |
| 2478 | } |
| 2479 | n->dump(); |
| 2480 | } |
| 2481 | } |
| 2482 | } |
| 2483 | #endif |
| 2484 | #ifdef ASSERT |
| 2485 | verify_good_schedule(bb,"after block local scheduling" ); |
| 2486 | #endif |
| 2487 | } |
| 2488 | |
| 2489 | #ifndef PRODUCT |
| 2490 | if (_cfg->C->trace_opto_output()) |
| 2491 | tty->print("# <- DoScheduling\n" ); |
| 2492 | #endif |
| 2493 | |
| 2494 | // Record final node-bundling array location |
| 2495 | _regalloc->C->set_node_bundling_base(_node_bundling_base); |
| 2496 | |
| 2497 | } // end DoScheduling |
| 2498 | |
| 2499 | // Verify that no live-range used in the block is killed in the block by a |
| 2500 | // wrong DEF. This doesn't verify live-ranges that span blocks. |
| 2501 | |
| 2502 | // Check for edge existence. Used to avoid adding redundant precedence edges. |
| 2503 | static bool edge_from_to( Node *from, Node *to ) { |
| 2504 | for( uint i=0; i<from->len(); i++ ) |
| 2505 | if( from->in(i) == to ) |
| 2506 | return true; |
| 2507 | return false; |
| 2508 | } |
| 2509 | |
| 2510 | #ifdef ASSERT |
| 2511 | void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { |
| 2512 | // Check for bad kills |
| 2513 | if( OptoReg::is_valid(def) ) { // Ignore stores & control flow |
| 2514 | Node *prior_use = _reg_node[def]; |
| 2515 | if( prior_use && !edge_from_to(prior_use,n) ) { |
| 2516 | tty->print("%s = " ,OptoReg::as_VMReg(def)->name()); |
| 2517 | n->dump(); |
| 2518 | tty->print_cr("..." ); |
| 2519 | prior_use->dump(); |
| 2520 | assert(edge_from_to(prior_use,n), "%s" , msg); |
| 2521 | } |
| 2522 | _reg_node.map(def,NULL); // Kill live USEs |
| 2523 | } |
| 2524 | } |
| 2525 | |
| 2526 | void Scheduling::verify_good_schedule( Block *b, const char *msg ) { |
| 2527 | |
| 2528 | // Zap to something reasonable for the verify code |
| 2529 | _reg_node.clear(); |
| 2530 | |
| 2531 | // Walk over the block backwards. Check to make sure each DEF doesn't |
| 2532 | // kill a live value (other than the one it's supposed to). Add each |
| 2533 | // USE to the live set. |
| 2534 | for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { |
| 2535 | Node *n = b->get_node(i); |
| 2536 | int n_op = n->Opcode(); |
| 2537 | if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { |
| 2538 | // Fat-proj kills a slew of registers |
| 2539 | RegMask rm = n->out_RegMask();// Make local copy |
| 2540 | while( rm.is_NotEmpty() ) { |
| 2541 | OptoReg::Name kill = rm.find_first_elem(); |
| 2542 | rm.Remove(kill); |
| 2543 | verify_do_def( n, kill, msg ); |
| 2544 | } |
| 2545 | } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes |
| 2546 | // Get DEF'd registers the normal way |
| 2547 | verify_do_def( n, _regalloc->get_reg_first(n), msg ); |
| 2548 | verify_do_def( n, _regalloc->get_reg_second(n), msg ); |
| 2549 | } |
| 2550 | |
| 2551 | // Now make all USEs live |
| 2552 | for( uint i=1; i<n->req(); i++ ) { |
| 2553 | Node *def = n->in(i); |
| 2554 | assert(def != 0, "input edge required" ); |
| 2555 | OptoReg::Name reg_lo = _regalloc->get_reg_first(def); |
| 2556 | OptoReg::Name reg_hi = _regalloc->get_reg_second(def); |
| 2557 | if( OptoReg::is_valid(reg_lo) ) { |
| 2558 | assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s" , msg); |
| 2559 | _reg_node.map(reg_lo,n); |
| 2560 | } |
| 2561 | if( OptoReg::is_valid(reg_hi) ) { |
| 2562 | assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s" , msg); |
| 2563 | _reg_node.map(reg_hi,n); |
| 2564 | } |
| 2565 | } |
| 2566 | |
| 2567 | } |
| 2568 | |
| 2569 | // Zap to something reasonable for the Antidependence code |
| 2570 | _reg_node.clear(); |
| 2571 | } |
| 2572 | #endif |
| 2573 | |
| 2574 | // Conditionally add precedence edges. Avoid putting edges on Projs. |
| 2575 | static void add_prec_edge_from_to( Node *from, Node *to ) { |
| 2576 | if( from->is_Proj() ) { // Put precedence edge on Proj's input |
| 2577 | assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); |
| 2578 | from = from->in(0); |
| 2579 | } |
| 2580 | if( from != to && // No cycles (for things like LD L0,[L0+4] ) |
| 2581 | !edge_from_to( from, to ) ) // Avoid duplicate edge |
| 2582 | from->add_prec(to); |
| 2583 | } |
| 2584 | |
| 2585 | void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { |
| 2586 | if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow |
| 2587 | return; |
| 2588 | |
| 2589 | Node *pinch = _reg_node[def_reg]; // Get pinch point |
| 2590 | if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? |
| 2591 | is_def ) { // Check for a true def (not a kill) |
| 2592 | _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point |
| 2593 | return; |
| 2594 | } |
| 2595 | |
| 2596 | Node *kill = def; // Rename 'def' to more descriptive 'kill' |
| 2597 | debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) |
| 2598 | |
| 2599 | // After some number of kills there _may_ be a later def |
| 2600 | Node *later_def = NULL; |
| 2601 | |
| 2602 | // Finding a kill requires a real pinch-point. |
| 2603 | // Check for not already having a pinch-point. |
| 2604 | // Pinch points are Op_Node's. |
| 2605 | if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? |
| 2606 | later_def = pinch; // Must be def/kill as optimistic pinch-point |
| 2607 | if ( _pinch_free_list.size() > 0) { |
| 2608 | pinch = _pinch_free_list.pop(); |
| 2609 | } else { |
| 2610 | pinch = new Node(1); // Pinch point to-be |
| 2611 | } |
| 2612 | if (pinch->_idx >= _regalloc->node_regs_max_index()) { |
| 2613 | _cfg->C->record_method_not_compilable("too many D-U pinch points" ); |
| 2614 | return; |
| 2615 | } |
| 2616 | _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) |
| 2617 | _reg_node.map(def_reg,pinch); // Record pinch-point |
| 2618 | //_regalloc->set_bad(pinch->_idx); // Already initialized this way. |
| 2619 | if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill |
| 2620 | pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call |
| 2621 | add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch |
| 2622 | later_def = NULL; // and no later def |
| 2623 | } |
| 2624 | pinch->set_req(0,later_def); // Hook later def so we can find it |
| 2625 | } else { // Else have valid pinch point |
| 2626 | if( pinch->in(0) ) // If there is a later-def |
| 2627 | later_def = pinch->in(0); // Get it |
| 2628 | } |
| 2629 | |
| 2630 | // Add output-dependence edge from later def to kill |
| 2631 | if( later_def ) // If there is some original def |
| 2632 | add_prec_edge_from_to(later_def,kill); // Add edge from def to kill |
| 2633 | |
| 2634 | // See if current kill is also a use, and so is forced to be the pinch-point. |
| 2635 | if( pinch->Opcode() == Op_Node ) { |
| 2636 | Node *uses = kill->is_Proj() ? kill->in(0) : kill; |
| 2637 | for( uint i=1; i<uses->req(); i++ ) { |
| 2638 | if( _regalloc->get_reg_first(uses->in(i)) == def_reg || |
| 2639 | _regalloc->get_reg_second(uses->in(i)) == def_reg ) { |
| 2640 | // Yes, found a use/kill pinch-point |
| 2641 | pinch->set_req(0,NULL); // |
| 2642 | pinch->replace_by(kill); // Move anti-dep edges up |
| 2643 | pinch = kill; |
| 2644 | _reg_node.map(def_reg,pinch); |
| 2645 | return; |
| 2646 | } |
| 2647 | } |
| 2648 | } |
| 2649 | |
| 2650 | // Add edge from kill to pinch-point |
| 2651 | add_prec_edge_from_to(kill,pinch); |
| 2652 | } |
| 2653 | |
| 2654 | void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { |
| 2655 | if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow |
| 2656 | return; |
| 2657 | Node *pinch = _reg_node[use_reg]; // Get pinch point |
| 2658 | // Check for no later def_reg/kill in block |
| 2659 | if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b && |
| 2660 | // Use has to be block-local as well |
| 2661 | _cfg->get_block_for_node(use) == b) { |
| 2662 | if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) |
| 2663 | pinch->req() == 1 ) { // pinch not yet in block? |
| 2664 | pinch->del_req(0); // yank pointer to later-def, also set flag |
| 2665 | // Insert the pinch-point in the block just after the last use |
| 2666 | b->insert_node(pinch, b->find_node(use) + 1); |
| 2667 | _bb_end++; // Increase size scheduled region in block |
| 2668 | } |
| 2669 | |
| 2670 | add_prec_edge_from_to(pinch,use); |
| 2671 | } |
| 2672 | } |
| 2673 | |
| 2674 | // We insert antidependences between the reads and following write of |
| 2675 | // allocated registers to prevent illegal code motion. Hopefully, the |
| 2676 | // number of added references should be fairly small, especially as we |
| 2677 | // are only adding references within the current basic block. |
| 2678 | void Scheduling::ComputeRegisterAntidependencies(Block *b) { |
| 2679 | |
| 2680 | #ifdef ASSERT |
| 2681 | verify_good_schedule(b,"before block local scheduling" ); |
| 2682 | #endif |
| 2683 | |
| 2684 | // A valid schedule, for each register independently, is an endless cycle |
| 2685 | // of: a def, then some uses (connected to the def by true dependencies), |
| 2686 | // then some kills (defs with no uses), finally the cycle repeats with a new |
| 2687 | // def. The uses are allowed to float relative to each other, as are the |
| 2688 | // kills. No use is allowed to slide past a kill (or def). This requires |
| 2689 | // antidependencies between all uses of a single def and all kills that |
| 2690 | // follow, up to the next def. More edges are redundant, because later defs |
| 2691 | // & kills are already serialized with true or antidependencies. To keep |
| 2692 | // the edge count down, we add a 'pinch point' node if there's more than |
| 2693 | // one use or more than one kill/def. |
| 2694 | |
| 2695 | // We add dependencies in one bottom-up pass. |
| 2696 | |
| 2697 | // For each instruction we handle it's DEFs/KILLs, then it's USEs. |
| 2698 | |
| 2699 | // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this |
| 2700 | // register. If not, we record the DEF/KILL in _reg_node, the |
| 2701 | // register-to-def mapping. If there is a prior DEF/KILL, we insert a |
| 2702 | // "pinch point", a new Node that's in the graph but not in the block. |
| 2703 | // We put edges from the prior and current DEF/KILLs to the pinch point. |
| 2704 | // We put the pinch point in _reg_node. If there's already a pinch point |
| 2705 | // we merely add an edge from the current DEF/KILL to the pinch point. |
| 2706 | |
| 2707 | // After doing the DEF/KILLs, we handle USEs. For each used register, we |
| 2708 | // put an edge from the pinch point to the USE. |
| 2709 | |
| 2710 | // To be expedient, the _reg_node array is pre-allocated for the whole |
| 2711 | // compilation. _reg_node is lazily initialized; it either contains a NULL, |
| 2712 | // or a valid def/kill/pinch-point, or a leftover node from some prior |
| 2713 | // block. Leftover node from some prior block is treated like a NULL (no |
| 2714 | // prior def, so no anti-dependence needed). Valid def is distinguished by |
| 2715 | // it being in the current block. |
| 2716 | bool fat_proj_seen = false; |
| 2717 | uint last_safept = _bb_end-1; |
| 2718 | Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL; |
| 2719 | Node* last_safept_node = end_node; |
| 2720 | for( uint i = _bb_end-1; i >= _bb_start; i-- ) { |
| 2721 | Node *n = b->get_node(i); |
| 2722 | int is_def = n->outcnt(); // def if some uses prior to adding precedence edges |
| 2723 | if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { |
| 2724 | // Fat-proj kills a slew of registers |
| 2725 | // This can add edges to 'n' and obscure whether or not it was a def, |
| 2726 | // hence the is_def flag. |
| 2727 | fat_proj_seen = true; |
| 2728 | RegMask rm = n->out_RegMask();// Make local copy |
| 2729 | while( rm.is_NotEmpty() ) { |
| 2730 | OptoReg::Name kill = rm.find_first_elem(); |
| 2731 | rm.Remove(kill); |
| 2732 | anti_do_def( b, n, kill, is_def ); |
| 2733 | } |
| 2734 | } else { |
| 2735 | // Get DEF'd registers the normal way |
| 2736 | anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); |
| 2737 | anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); |
| 2738 | } |
| 2739 | |
| 2740 | // Kill projections on a branch should appear to occur on the |
| 2741 | // branch, not afterwards, so grab the masks from the projections |
| 2742 | // and process them. |
| 2743 | if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { |
| 2744 | for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
| 2745 | Node* use = n->fast_out(i); |
| 2746 | if (use->is_Proj()) { |
| 2747 | RegMask rm = use->out_RegMask();// Make local copy |
| 2748 | while( rm.is_NotEmpty() ) { |
| 2749 | OptoReg::Name kill = rm.find_first_elem(); |
| 2750 | rm.Remove(kill); |
| 2751 | anti_do_def( b, n, kill, false ); |
| 2752 | } |
| 2753 | } |
| 2754 | } |
| 2755 | } |
| 2756 | |
| 2757 | // Check each register used by this instruction for a following DEF/KILL |
| 2758 | // that must occur afterward and requires an anti-dependence edge. |
| 2759 | for( uint j=0; j<n->req(); j++ ) { |
| 2760 | Node *def = n->in(j); |
| 2761 | if( def ) { |
| 2762 | assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); |
| 2763 | anti_do_use( b, n, _regalloc->get_reg_first(def) ); |
| 2764 | anti_do_use( b, n, _regalloc->get_reg_second(def) ); |
| 2765 | } |
| 2766 | } |
| 2767 | // Do not allow defs of new derived values to float above GC |
| 2768 | // points unless the base is definitely available at the GC point. |
| 2769 | |
| 2770 | Node *m = b->get_node(i); |
| 2771 | |
| 2772 | // Add precedence edge from following safepoint to use of derived pointer |
| 2773 | if( last_safept_node != end_node && |
| 2774 | m != last_safept_node) { |
| 2775 | for (uint k = 1; k < m->req(); k++) { |
| 2776 | const Type *t = m->in(k)->bottom_type(); |
| 2777 | if( t->isa_oop_ptr() && |
| 2778 | t->is_ptr()->offset() != 0 ) { |
| 2779 | last_safept_node->add_prec( m ); |
| 2780 | break; |
| 2781 | } |
| 2782 | } |
| 2783 | } |
| 2784 | |
| 2785 | if( n->jvms() ) { // Precedence edge from derived to safept |
| 2786 | // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() |
| 2787 | if( b->get_node(last_safept) != last_safept_node ) { |
| 2788 | last_safept = b->find_node(last_safept_node); |
| 2789 | } |
| 2790 | for( uint j=last_safept; j > i; j-- ) { |
| 2791 | Node *mach = b->get_node(j); |
| 2792 | if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) |
| 2793 | mach->add_prec( n ); |
| 2794 | } |
| 2795 | last_safept = i; |
| 2796 | last_safept_node = m; |
| 2797 | } |
| 2798 | } |
| 2799 | |
| 2800 | if (fat_proj_seen) { |
| 2801 | // Garbage collect pinch nodes that were not consumed. |
| 2802 | // They are usually created by a fat kill MachProj for a call. |
| 2803 | garbage_collect_pinch_nodes(); |
| 2804 | } |
| 2805 | } |
| 2806 | |
| 2807 | // Garbage collect pinch nodes for reuse by other blocks. |
| 2808 | // |
| 2809 | // The block scheduler's insertion of anti-dependence |
| 2810 | // edges creates many pinch nodes when the block contains |
| 2811 | // 2 or more Calls. A pinch node is used to prevent a |
| 2812 | // combinatorial explosion of edges. If a set of kills for a |
| 2813 | // register is anti-dependent on a set of uses (or defs), rather |
| 2814 | // than adding an edge in the graph between each pair of kill |
| 2815 | // and use (or def), a pinch is inserted between them: |
| 2816 | // |
| 2817 | // use1 use2 use3 |
| 2818 | // \ | / |
| 2819 | // \ | / |
| 2820 | // pinch |
| 2821 | // / | \ |
| 2822 | // / | \ |
| 2823 | // kill1 kill2 kill3 |
| 2824 | // |
| 2825 | // One pinch node is created per register killed when |
| 2826 | // the second call is encountered during a backwards pass |
| 2827 | // over the block. Most of these pinch nodes are never |
| 2828 | // wired into the graph because the register is never |
| 2829 | // used or def'ed in the block. |
| 2830 | // |
| 2831 | void Scheduling::garbage_collect_pinch_nodes() { |
| 2832 | #ifndef PRODUCT |
| 2833 | if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:" ); |
| 2834 | #endif |
| 2835 | int trace_cnt = 0; |
| 2836 | for (uint k = 0; k < _reg_node.Size(); k++) { |
| 2837 | Node* pinch = _reg_node[k]; |
| 2838 | if ((pinch != NULL) && pinch->Opcode() == Op_Node && |
| 2839 | // no predecence input edges |
| 2840 | (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) { |
| 2841 | cleanup_pinch(pinch); |
| 2842 | _pinch_free_list.push(pinch); |
| 2843 | _reg_node.map(k, NULL); |
| 2844 | #ifndef PRODUCT |
| 2845 | if (_cfg->C->trace_opto_output()) { |
| 2846 | trace_cnt++; |
| 2847 | if (trace_cnt > 40) { |
| 2848 | tty->print("\n" ); |
| 2849 | trace_cnt = 0; |
| 2850 | } |
| 2851 | tty->print(" %d" , pinch->_idx); |
| 2852 | } |
| 2853 | #endif |
| 2854 | } |
| 2855 | } |
| 2856 | #ifndef PRODUCT |
| 2857 | if (_cfg->C->trace_opto_output()) tty->print("\n" ); |
| 2858 | #endif |
| 2859 | } |
| 2860 | |
| 2861 | // Clean up a pinch node for reuse. |
| 2862 | void Scheduling::cleanup_pinch( Node *pinch ) { |
| 2863 | assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking" ); |
| 2864 | |
| 2865 | for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { |
| 2866 | Node* use = pinch->last_out(i); |
| 2867 | uint uses_found = 0; |
| 2868 | for (uint j = use->req(); j < use->len(); j++) { |
| 2869 | if (use->in(j) == pinch) { |
| 2870 | use->rm_prec(j); |
| 2871 | uses_found++; |
| 2872 | } |
| 2873 | } |
| 2874 | assert(uses_found > 0, "must be a precedence edge" ); |
| 2875 | i -= uses_found; // we deleted 1 or more copies of this edge |
| 2876 | } |
| 2877 | // May have a later_def entry |
| 2878 | pinch->set_req(0, NULL); |
| 2879 | } |
| 2880 | |
| 2881 | #ifndef PRODUCT |
| 2882 | |
| 2883 | void Scheduling::dump_available() const { |
| 2884 | tty->print("#Availist " ); |
| 2885 | for (uint i = 0; i < _available.size(); i++) |
| 2886 | tty->print(" N%d/l%d" , _available[i]->_idx,_current_latency[_available[i]->_idx]); |
| 2887 | tty->cr(); |
| 2888 | } |
| 2889 | |
| 2890 | // Print Scheduling Statistics |
| 2891 | void Scheduling::print_statistics() { |
| 2892 | // Print the size added by nops for bundling |
| 2893 | tty->print("Nops added %d bytes to total of %d bytes" , |
| 2894 | _total_nop_size, _total_method_size); |
| 2895 | if (_total_method_size > 0) |
| 2896 | tty->print(", for %.2f%%" , |
| 2897 | ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); |
| 2898 | tty->print("\n" ); |
| 2899 | |
| 2900 | // Print the number of branch shadows filled |
| 2901 | if (Pipeline::_branch_has_delay_slot) { |
| 2902 | tty->print("Of %d branches, %d had unconditional delay slots filled" , |
| 2903 | _total_branches, _total_unconditional_delays); |
| 2904 | if (_total_branches > 0) |
| 2905 | tty->print(", for %.2f%%" , |
| 2906 | ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); |
| 2907 | tty->print("\n" ); |
| 2908 | } |
| 2909 | |
| 2910 | uint total_instructions = 0, total_bundles = 0; |
| 2911 | |
| 2912 | for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { |
| 2913 | uint bundle_count = _total_instructions_per_bundle[i]; |
| 2914 | total_instructions += bundle_count * i; |
| 2915 | total_bundles += bundle_count; |
| 2916 | } |
| 2917 | |
| 2918 | if (total_bundles > 0) |
| 2919 | tty->print("Average ILP (excluding nops) is %.2f\n" , |
| 2920 | ((double)total_instructions) / ((double)total_bundles)); |
| 2921 | } |
| 2922 | #endif |
| 2923 | |