1/*
2 * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/assembler.inline.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "code/compiledIC.hpp"
29#include "code/debugInfo.hpp"
30#include "code/debugInfoRec.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/compilerDirectives.hpp"
33#include "compiler/oopMap.hpp"
34#include "memory/allocation.inline.hpp"
35#include "opto/ad.hpp"
36#include "opto/callnode.hpp"
37#include "opto/cfgnode.hpp"
38#include "opto/locknode.hpp"
39#include "opto/machnode.hpp"
40#include "opto/optoreg.hpp"
41#include "opto/output.hpp"
42#include "opto/regalloc.hpp"
43#include "opto/runtime.hpp"
44#include "opto/subnode.hpp"
45#include "opto/type.hpp"
46#include "runtime/handles.inline.hpp"
47#include "utilities/xmlstream.hpp"
48
49#ifndef PRODUCT
50#define DEBUG_ARG(x) , x
51#else
52#define DEBUG_ARG(x)
53#endif
54
55// Convert Nodes to instruction bits and pass off to the VM
56void Compile::Output() {
57 // RootNode goes
58 assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
59
60 // The number of new nodes (mostly MachNop) is proportional to
61 // the number of java calls and inner loops which are aligned.
62 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
63 C->inner_loops()*(OptoLoopAlignment-1)),
64 "out of nodes before code generation" ) ) {
65 return;
66 }
67 // Make sure I can find the Start Node
68 Block *entry = _cfg->get_block(1);
69 Block *broot = _cfg->get_root_block();
70
71 const StartNode *start = entry->head()->as_Start();
72
73 // Replace StartNode with prolog
74 MachPrologNode *prolog = new MachPrologNode();
75 entry->map_node(prolog, 0);
76 _cfg->map_node_to_block(prolog, entry);
77 _cfg->unmap_node_from_block(start); // start is no longer in any block
78
79 // Virtual methods need an unverified entry point
80
81 if( is_osr_compilation() ) {
82 if( PoisonOSREntry ) {
83 // TODO: Should use a ShouldNotReachHereNode...
84 _cfg->insert( broot, 0, new MachBreakpointNode() );
85 }
86 } else {
87 if( _method && !_method->flags().is_static() ) {
88 // Insert unvalidated entry point
89 _cfg->insert( broot, 0, new MachUEPNode() );
90 }
91
92 }
93
94 // Break before main entry point
95 if ((_method && C->directive()->BreakAtExecuteOption) ||
96 (OptoBreakpoint && is_method_compilation()) ||
97 (OptoBreakpointOSR && is_osr_compilation()) ||
98 (OptoBreakpointC2R && !_method) ) {
99 // checking for _method means that OptoBreakpoint does not apply to
100 // runtime stubs or frame converters
101 _cfg->insert( entry, 1, new MachBreakpointNode() );
102 }
103
104 // Insert epilogs before every return
105 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
106 Block* block = _cfg->get_block(i);
107 if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
108 Node* m = block->end();
109 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
110 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
111 block->add_inst(epilog);
112 _cfg->map_node_to_block(epilog, block);
113 }
114 }
115 }
116
117 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
118 blk_starts[0] = 0;
119
120 // Initialize code buffer and process short branches.
121 CodeBuffer* cb = init_buffer(blk_starts);
122
123 if (cb == NULL || failing()) {
124 return;
125 }
126
127 ScheduleAndBundle();
128
129#ifndef PRODUCT
130 if (trace_opto_output()) {
131 tty->print("\n---- After ScheduleAndBundle ----\n");
132 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
133 tty->print("\nBB#%03d:\n", i);
134 Block* block = _cfg->get_block(i);
135 for (uint j = 0; j < block->number_of_nodes(); j++) {
136 Node* n = block->get_node(j);
137 OptoReg::Name reg = _regalloc->get_reg_first(n);
138 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
139 n->dump();
140 }
141 }
142 }
143#endif
144
145 if (failing()) {
146 return;
147 }
148
149 BuildOopMaps();
150
151 if (failing()) {
152 return;
153 }
154
155 fill_buffer(cb, blk_starts);
156}
157
158bool Compile::need_stack_bang(int frame_size_in_bytes) const {
159 // Determine if we need to generate a stack overflow check.
160 // Do it if the method is not a stub function and
161 // has java calls or has frame size > vm_page_size/8.
162 // The debug VM checks that deoptimization doesn't trigger an
163 // unexpected stack overflow (compiled method stack banging should
164 // guarantee it doesn't happen) so we always need the stack bang in
165 // a debug VM.
166 return (UseStackBanging && stub_function() == NULL &&
167 (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
168 DEBUG_ONLY(|| true)));
169}
170
171bool Compile::need_register_stack_bang() const {
172 // Determine if we need to generate a register stack overflow check.
173 // This is only used on architectures which have split register
174 // and memory stacks (ie. IA64).
175 // Bang if the method is not a stub function and has java calls
176 return (stub_function() == NULL && has_java_calls());
177}
178
179
180// Compute the size of first NumberOfLoopInstrToAlign instructions at the top
181// of a loop. When aligning a loop we need to provide enough instructions
182// in cpu's fetch buffer to feed decoders. The loop alignment could be
183// avoided if we have enough instructions in fetch buffer at the head of a loop.
184// By default, the size is set to 999999 by Block's constructor so that
185// a loop will be aligned if the size is not reset here.
186//
187// Note: Mach instructions could contain several HW instructions
188// so the size is estimated only.
189//
190void Compile::compute_loop_first_inst_sizes() {
191 // The next condition is used to gate the loop alignment optimization.
192 // Don't aligned a loop if there are enough instructions at the head of a loop
193 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
194 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
195 // equal to 11 bytes which is the largest address NOP instruction.
196 if (MaxLoopPad < OptoLoopAlignment - 1) {
197 uint last_block = _cfg->number_of_blocks() - 1;
198 for (uint i = 1; i <= last_block; i++) {
199 Block* block = _cfg->get_block(i);
200 // Check the first loop's block which requires an alignment.
201 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
202 uint sum_size = 0;
203 uint inst_cnt = NumberOfLoopInstrToAlign;
204 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
205
206 // Check subsequent fallthrough blocks if the loop's first
207 // block(s) does not have enough instructions.
208 Block *nb = block;
209 while(inst_cnt > 0 &&
210 i < last_block &&
211 !_cfg->get_block(i + 1)->has_loop_alignment() &&
212 !nb->has_successor(block)) {
213 i++;
214 nb = _cfg->get_block(i);
215 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
216 } // while( inst_cnt > 0 && i < last_block )
217
218 block->set_first_inst_size(sum_size);
219 } // f( b->head()->is_Loop() )
220 } // for( i <= last_block )
221 } // if( MaxLoopPad < OptoLoopAlignment-1 )
222}
223
224// The architecture description provides short branch variants for some long
225// branch instructions. Replace eligible long branches with short branches.
226void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
227 // Compute size of each block, method size, and relocation information size
228 uint nblocks = _cfg->number_of_blocks();
229
230 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
231 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
232 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks);
233
234 // Collect worst case block paddings
235 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
236 memset(block_worst_case_pad, 0, nblocks * sizeof(int));
237
238 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
239 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
240
241 bool has_short_branch_candidate = false;
242
243 // Initialize the sizes to 0
244 code_size = 0; // Size in bytes of generated code
245 stub_size = 0; // Size in bytes of all stub entries
246 // Size in bytes of all relocation entries, including those in local stubs.
247 // Start with 2-bytes of reloc info for the unvalidated entry point
248 reloc_size = 1; // Number of relocation entries
249
250 // Make three passes. The first computes pessimistic blk_starts,
251 // relative jmp_offset and reloc_size information. The second performs
252 // short branch substitution using the pessimistic sizing. The
253 // third inserts nops where needed.
254
255 // Step one, perform a pessimistic sizing pass.
256 uint last_call_adr = max_juint;
257 uint last_avoid_back_to_back_adr = max_juint;
258 uint nop_size = (new MachNopNode())->size(_regalloc);
259 for (uint i = 0; i < nblocks; i++) { // For all blocks
260 Block* block = _cfg->get_block(i);
261
262 // During short branch replacement, we store the relative (to blk_starts)
263 // offset of jump in jmp_offset, rather than the absolute offset of jump.
264 // This is so that we do not need to recompute sizes of all nodes when
265 // we compute correct blk_starts in our next sizing pass.
266 jmp_offset[i] = 0;
267 jmp_size[i] = 0;
268 jmp_nidx[i] = -1;
269 DEBUG_ONLY( jmp_target[i] = 0; )
270 DEBUG_ONLY( jmp_rule[i] = 0; )
271
272 // Sum all instruction sizes to compute block size
273 uint last_inst = block->number_of_nodes();
274 uint blk_size = 0;
275 for (uint j = 0; j < last_inst; j++) {
276 Node* nj = block->get_node(j);
277 // Handle machine instruction nodes
278 if (nj->is_Mach()) {
279 MachNode *mach = nj->as_Mach();
280 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
281 reloc_size += mach->reloc();
282 if (mach->is_MachCall()) {
283 // add size information for trampoline stub
284 // class CallStubImpl is platform-specific and defined in the *.ad files.
285 stub_size += CallStubImpl::size_call_trampoline();
286 reloc_size += CallStubImpl::reloc_call_trampoline();
287
288 MachCallNode *mcall = mach->as_MachCall();
289 // This destination address is NOT PC-relative
290
291 mcall->method_set((intptr_t)mcall->entry_point());
292
293 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
294 stub_size += CompiledStaticCall::to_interp_stub_size();
295 reloc_size += CompiledStaticCall::reloc_to_interp_stub();
296#if INCLUDE_AOT
297 stub_size += CompiledStaticCall::to_aot_stub_size();
298 reloc_size += CompiledStaticCall::reloc_to_aot_stub();
299#endif
300 }
301 } else if (mach->is_MachSafePoint()) {
302 // If call/safepoint are adjacent, account for possible
303 // nop to disambiguate the two safepoints.
304 // ScheduleAndBundle() can rearrange nodes in a block,
305 // check for all offsets inside this block.
306 if (last_call_adr >= blk_starts[i]) {
307 blk_size += nop_size;
308 }
309 }
310 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
311 // Nop is inserted between "avoid back to back" instructions.
312 // ScheduleAndBundle() can rearrange nodes in a block,
313 // check for all offsets inside this block.
314 if (last_avoid_back_to_back_adr >= blk_starts[i]) {
315 blk_size += nop_size;
316 }
317 }
318 if (mach->may_be_short_branch()) {
319 if (!nj->is_MachBranch()) {
320#ifndef PRODUCT
321 nj->dump(3);
322#endif
323 Unimplemented();
324 }
325 assert(jmp_nidx[i] == -1, "block should have only one branch");
326 jmp_offset[i] = blk_size;
327 jmp_size[i] = nj->size(_regalloc);
328 jmp_nidx[i] = j;
329 has_short_branch_candidate = true;
330 }
331 }
332 blk_size += nj->size(_regalloc);
333 // Remember end of call offset
334 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
335 last_call_adr = blk_starts[i]+blk_size;
336 }
337 // Remember end of avoid_back_to_back offset
338 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
339 last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
340 }
341 }
342
343 // When the next block starts a loop, we may insert pad NOP
344 // instructions. Since we cannot know our future alignment,
345 // assume the worst.
346 if (i < nblocks - 1) {
347 Block* nb = _cfg->get_block(i + 1);
348 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
349 if (max_loop_pad > 0) {
350 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
351 // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
352 // If either is the last instruction in this block, bump by
353 // max_loop_pad in lock-step with blk_size, so sizing
354 // calculations in subsequent blocks still can conservatively
355 // detect that it may the last instruction in this block.
356 if (last_call_adr == blk_starts[i]+blk_size) {
357 last_call_adr += max_loop_pad;
358 }
359 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
360 last_avoid_back_to_back_adr += max_loop_pad;
361 }
362 blk_size += max_loop_pad;
363 block_worst_case_pad[i + 1] = max_loop_pad;
364 }
365 }
366
367 // Save block size; update total method size
368 blk_starts[i+1] = blk_starts[i]+blk_size;
369 }
370
371 // Step two, replace eligible long jumps.
372 bool progress = true;
373 uint last_may_be_short_branch_adr = max_juint;
374 while (has_short_branch_candidate && progress) {
375 progress = false;
376 has_short_branch_candidate = false;
377 int adjust_block_start = 0;
378 for (uint i = 0; i < nblocks; i++) {
379 Block* block = _cfg->get_block(i);
380 int idx = jmp_nidx[i];
381 MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
382 if (mach != NULL && mach->may_be_short_branch()) {
383#ifdef ASSERT
384 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
385 int j;
386 // Find the branch; ignore trailing NOPs.
387 for (j = block->number_of_nodes()-1; j>=0; j--) {
388 Node* n = block->get_node(j);
389 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
390 break;
391 }
392 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
393#endif
394 int br_size = jmp_size[i];
395 int br_offs = blk_starts[i] + jmp_offset[i];
396
397 // This requires the TRUE branch target be in succs[0]
398 uint bnum = block->non_connector_successor(0)->_pre_order;
399 int offset = blk_starts[bnum] - br_offs;
400 if (bnum > i) { // adjust following block's offset
401 offset -= adjust_block_start;
402 }
403
404 // This block can be a loop header, account for the padding
405 // in the previous block.
406 int block_padding = block_worst_case_pad[i];
407 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
408 // In the following code a nop could be inserted before
409 // the branch which will increase the backward distance.
410 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
411 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
412
413 if (needs_padding && offset <= 0)
414 offset -= nop_size;
415
416 if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
417 // We've got a winner. Replace this branch.
418 MachNode* replacement = mach->as_MachBranch()->short_branch_version();
419
420 // Update the jmp_size.
421 int new_size = replacement->size(_regalloc);
422 int diff = br_size - new_size;
423 assert(diff >= (int)nop_size, "short_branch size should be smaller");
424 // Conservatively take into account padding between
425 // avoid_back_to_back branches. Previous branch could be
426 // converted into avoid_back_to_back branch during next
427 // rounds.
428 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
429 jmp_offset[i] += nop_size;
430 diff -= nop_size;
431 }
432 adjust_block_start += diff;
433 block->map_node(replacement, idx);
434 mach->subsume_by(replacement, C);
435 mach = replacement;
436 progress = true;
437
438 jmp_size[i] = new_size;
439 DEBUG_ONLY( jmp_target[i] = bnum; );
440 DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
441 } else {
442 // The jump distance is not short, try again during next iteration.
443 has_short_branch_candidate = true;
444 }
445 } // (mach->may_be_short_branch())
446 if (mach != NULL && (mach->may_be_short_branch() ||
447 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
448 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
449 }
450 blk_starts[i+1] -= adjust_block_start;
451 }
452 }
453
454#ifdef ASSERT
455 for (uint i = 0; i < nblocks; i++) { // For all blocks
456 if (jmp_target[i] != 0) {
457 int br_size = jmp_size[i];
458 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
459 if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
460 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
461 }
462 assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
463 }
464 }
465#endif
466
467 // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
468 // after ScheduleAndBundle().
469
470 // ------------------
471 // Compute size for code buffer
472 code_size = blk_starts[nblocks];
473
474 // Relocation records
475 reloc_size += 1; // Relo entry for exception handler
476
477 // Adjust reloc_size to number of record of relocation info
478 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
479 // a relocation index.
480 // The CodeBuffer will expand the locs array if this estimate is too low.
481 reloc_size *= 10 / sizeof(relocInfo);
482}
483
484//------------------------------FillLocArray-----------------------------------
485// Create a bit of debug info and append it to the array. The mapping is from
486// Java local or expression stack to constant, register or stack-slot. For
487// doubles, insert 2 mappings and return 1 (to tell the caller that the next
488// entry has been taken care of and caller should skip it).
489static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
490 // This should never have accepted Bad before
491 assert(OptoReg::is_valid(regnum), "location must be valid");
492 return (OptoReg::is_reg(regnum))
493 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
494 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
495}
496
497
498ObjectValue*
499Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
500 for (int i = 0; i < objs->length(); i++) {
501 assert(objs->at(i)->is_object(), "corrupt object cache");
502 ObjectValue* sv = (ObjectValue*) objs->at(i);
503 if (sv->id() == id) {
504 return sv;
505 }
506 }
507 // Otherwise..
508 return NULL;
509}
510
511void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
512 ObjectValue* sv ) {
513 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
514 objs->append(sv);
515}
516
517
518void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
519 GrowableArray<ScopeValue*> *array,
520 GrowableArray<ScopeValue*> *objs ) {
521 assert( local, "use _top instead of null" );
522 if (array->length() != idx) {
523 assert(array->length() == idx + 1, "Unexpected array count");
524 // Old functionality:
525 // return
526 // New functionality:
527 // Assert if the local is not top. In product mode let the new node
528 // override the old entry.
529 assert(local == top(), "LocArray collision");
530 if (local == top()) {
531 return;
532 }
533 array->pop();
534 }
535 const Type *t = local->bottom_type();
536
537 // Is it a safepoint scalar object node?
538 if (local->is_SafePointScalarObject()) {
539 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
540
541 ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
542 if (sv == NULL) {
543 ciKlass* cik = t->is_oopptr()->klass();
544 assert(cik->is_instance_klass() ||
545 cik->is_array_klass(), "Not supported allocation.");
546 sv = new ObjectValue(spobj->_idx,
547 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
548 Compile::set_sv_for_object_node(objs, sv);
549
550 uint first_ind = spobj->first_index(sfpt->jvms());
551 for (uint i = 0; i < spobj->n_fields(); i++) {
552 Node* fld_node = sfpt->in(first_ind+i);
553 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
554 }
555 }
556 array->append(sv);
557 return;
558 }
559
560 // Grab the register number for the local
561 OptoReg::Name regnum = _regalloc->get_reg_first(local);
562 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
563 // Record the double as two float registers.
564 // The register mask for such a value always specifies two adjacent
565 // float registers, with the lower register number even.
566 // Normally, the allocation of high and low words to these registers
567 // is irrelevant, because nearly all operations on register pairs
568 // (e.g., StoreD) treat them as a single unit.
569 // Here, we assume in addition that the words in these two registers
570 // stored "naturally" (by operations like StoreD and double stores
571 // within the interpreter) such that the lower-numbered register
572 // is written to the lower memory address. This may seem like
573 // a machine dependency, but it is not--it is a requirement on
574 // the author of the <arch>.ad file to ensure that, for every
575 // even/odd double-register pair to which a double may be allocated,
576 // the word in the even single-register is stored to the first
577 // memory word. (Note that register numbers are completely
578 // arbitrary, and are not tied to any machine-level encodings.)
579#ifdef _LP64
580 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
581 array->append(new ConstantIntValue((jint)0));
582 array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
583 } else if ( t->base() == Type::Long ) {
584 array->append(new ConstantIntValue((jint)0));
585 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
586 } else if ( t->base() == Type::RawPtr ) {
587 // jsr/ret return address which must be restored into a the full
588 // width 64-bit stack slot.
589 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
590 }
591#else //_LP64
592#ifdef SPARC
593 if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
594 // For SPARC we have to swap high and low words for
595 // long values stored in a single-register (g0-g7).
596 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
597 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
598 } else
599#endif //SPARC
600 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
601 // Repack the double/long as two jints.
602 // The convention the interpreter uses is that the second local
603 // holds the first raw word of the native double representation.
604 // This is actually reasonable, since locals and stack arrays
605 // grow downwards in all implementations.
606 // (If, on some machine, the interpreter's Java locals or stack
607 // were to grow upwards, the embedded doubles would be word-swapped.)
608 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
609 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
610 }
611#endif //_LP64
612 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
613 OptoReg::is_reg(regnum) ) {
614 array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
615 ? Location::float_in_dbl : Location::normal ));
616 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
617 array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
618 ? Location::int_in_long : Location::normal ));
619 } else if( t->base() == Type::NarrowOop ) {
620 array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
621 } else {
622 array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
623 }
624 return;
625 }
626
627 // No register. It must be constant data.
628 switch (t->base()) {
629 case Type::Half: // Second half of a double
630 ShouldNotReachHere(); // Caller should skip 2nd halves
631 break;
632 case Type::AnyPtr:
633 array->append(new ConstantOopWriteValue(NULL));
634 break;
635 case Type::AryPtr:
636 case Type::InstPtr: // fall through
637 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
638 break;
639 case Type::NarrowOop:
640 if (t == TypeNarrowOop::NULL_PTR) {
641 array->append(new ConstantOopWriteValue(NULL));
642 } else {
643 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
644 }
645 break;
646 case Type::Int:
647 array->append(new ConstantIntValue(t->is_int()->get_con()));
648 break;
649 case Type::RawPtr:
650 // A return address (T_ADDRESS).
651 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
652#ifdef _LP64
653 // Must be restored to the full-width 64-bit stack slot.
654 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
655#else
656 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
657#endif
658 break;
659 case Type::FloatCon: {
660 float f = t->is_float_constant()->getf();
661 array->append(new ConstantIntValue(jint_cast(f)));
662 break;
663 }
664 case Type::DoubleCon: {
665 jdouble d = t->is_double_constant()->getd();
666#ifdef _LP64
667 array->append(new ConstantIntValue((jint)0));
668 array->append(new ConstantDoubleValue(d));
669#else
670 // Repack the double as two jints.
671 // The convention the interpreter uses is that the second local
672 // holds the first raw word of the native double representation.
673 // This is actually reasonable, since locals and stack arrays
674 // grow downwards in all implementations.
675 // (If, on some machine, the interpreter's Java locals or stack
676 // were to grow upwards, the embedded doubles would be word-swapped.)
677 jlong_accessor acc;
678 acc.long_value = jlong_cast(d);
679 array->append(new ConstantIntValue(acc.words[1]));
680 array->append(new ConstantIntValue(acc.words[0]));
681#endif
682 break;
683 }
684 case Type::Long: {
685 jlong d = t->is_long()->get_con();
686#ifdef _LP64
687 array->append(new ConstantIntValue((jint)0));
688 array->append(new ConstantLongValue(d));
689#else
690 // Repack the long as two jints.
691 // The convention the interpreter uses is that the second local
692 // holds the first raw word of the native double representation.
693 // This is actually reasonable, since locals and stack arrays
694 // grow downwards in all implementations.
695 // (If, on some machine, the interpreter's Java locals or stack
696 // were to grow upwards, the embedded doubles would be word-swapped.)
697 jlong_accessor acc;
698 acc.long_value = d;
699 array->append(new ConstantIntValue(acc.words[1]));
700 array->append(new ConstantIntValue(acc.words[0]));
701#endif
702 break;
703 }
704 case Type::Top: // Add an illegal value here
705 array->append(new LocationValue(Location()));
706 break;
707 default:
708 ShouldNotReachHere();
709 break;
710 }
711}
712
713// Determine if this node starts a bundle
714bool Compile::starts_bundle(const Node *n) const {
715 return (_node_bundling_limit > n->_idx &&
716 _node_bundling_base[n->_idx].starts_bundle());
717}
718
719//--------------------------Process_OopMap_Node--------------------------------
720void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
721
722 // Handle special safepoint nodes for synchronization
723 MachSafePointNode *sfn = mach->as_MachSafePoint();
724 MachCallNode *mcall;
725
726 int safepoint_pc_offset = current_offset;
727 bool is_method_handle_invoke = false;
728 bool return_oop = false;
729
730 // Add the safepoint in the DebugInfoRecorder
731 if( !mach->is_MachCall() ) {
732 mcall = NULL;
733 debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
734 } else {
735 mcall = mach->as_MachCall();
736
737 // Is the call a MethodHandle call?
738 if (mcall->is_MachCallJava()) {
739 if (mcall->as_MachCallJava()->_method_handle_invoke) {
740 assert(has_method_handle_invokes(), "must have been set during call generation");
741 is_method_handle_invoke = true;
742 }
743 }
744
745 // Check if a call returns an object.
746 if (mcall->returns_pointer()) {
747 return_oop = true;
748 }
749 safepoint_pc_offset += mcall->ret_addr_offset();
750 debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
751 }
752
753 // Loop over the JVMState list to add scope information
754 // Do not skip safepoints with a NULL method, they need monitor info
755 JVMState* youngest_jvms = sfn->jvms();
756 int max_depth = youngest_jvms->depth();
757
758 // Allocate the object pool for scalar-replaced objects -- the map from
759 // small-integer keys (which can be recorded in the local and ostack
760 // arrays) to descriptions of the object state.
761 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
762
763 // Visit scopes from oldest to youngest.
764 for (int depth = 1; depth <= max_depth; depth++) {
765 JVMState* jvms = youngest_jvms->of_depth(depth);
766 int idx;
767 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
768 // Safepoints that do not have method() set only provide oop-map and monitor info
769 // to support GC; these do not support deoptimization.
770 int num_locs = (method == NULL) ? 0 : jvms->loc_size();
771 int num_exps = (method == NULL) ? 0 : jvms->stk_size();
772 int num_mon = jvms->nof_monitors();
773 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
774 "JVMS local count must match that of the method");
775
776 // Add Local and Expression Stack Information
777
778 // Insert locals into the locarray
779 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
780 for( idx = 0; idx < num_locs; idx++ ) {
781 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
782 }
783
784 // Insert expression stack entries into the exparray
785 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
786 for( idx = 0; idx < num_exps; idx++ ) {
787 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs );
788 }
789
790 // Add in mappings of the monitors
791 assert( !method ||
792 !method->is_synchronized() ||
793 method->is_native() ||
794 num_mon > 0 ||
795 !GenerateSynchronizationCode,
796 "monitors must always exist for synchronized methods");
797
798 // Build the growable array of ScopeValues for exp stack
799 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
800
801 // Loop over monitors and insert into array
802 for (idx = 0; idx < num_mon; idx++) {
803 // Grab the node that defines this monitor
804 Node* box_node = sfn->monitor_box(jvms, idx);
805 Node* obj_node = sfn->monitor_obj(jvms, idx);
806
807 // Create ScopeValue for object
808 ScopeValue *scval = NULL;
809
810 if (obj_node->is_SafePointScalarObject()) {
811 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
812 scval = Compile::sv_for_node_id(objs, spobj->_idx);
813 if (scval == NULL) {
814 const Type *t = spobj->bottom_type();
815 ciKlass* cik = t->is_oopptr()->klass();
816 assert(cik->is_instance_klass() ||
817 cik->is_array_klass(), "Not supported allocation.");
818 ObjectValue* sv = new ObjectValue(spobj->_idx,
819 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
820 Compile::set_sv_for_object_node(objs, sv);
821
822 uint first_ind = spobj->first_index(youngest_jvms);
823 for (uint i = 0; i < spobj->n_fields(); i++) {
824 Node* fld_node = sfn->in(first_ind+i);
825 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
826 }
827 scval = sv;
828 }
829 } else if (!obj_node->is_Con()) {
830 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
831 if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
832 scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
833 } else {
834 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
835 }
836 } else {
837 const TypePtr *tp = obj_node->get_ptr_type();
838 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
839 }
840
841 OptoReg::Name box_reg = BoxLockNode::reg(box_node);
842 Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
843 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
844 monarray->append(new MonitorValue(scval, basic_lock, eliminated));
845 }
846
847 // We dump the object pool first, since deoptimization reads it in first.
848 debug_info()->dump_object_pool(objs);
849
850 // Build first class objects to pass to scope
851 DebugToken *locvals = debug_info()->create_scope_values(locarray);
852 DebugToken *expvals = debug_info()->create_scope_values(exparray);
853 DebugToken *monvals = debug_info()->create_monitor_values(monarray);
854
855 // Make method available for all Safepoints
856 ciMethod* scope_method = method ? method : _method;
857 // Describe the scope here
858 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
859 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
860 // Now we can describe the scope.
861 methodHandle null_mh;
862 bool rethrow_exception = false;
863 debug_info()->describe_scope(safepoint_pc_offset, null_mh, scope_method, jvms->bci(), jvms->should_reexecute(), rethrow_exception, is_method_handle_invoke, return_oop, locvals, expvals, monvals);
864 } // End jvms loop
865
866 // Mark the end of the scope set.
867 debug_info()->end_safepoint(safepoint_pc_offset);
868}
869
870
871
872// A simplified version of Process_OopMap_Node, to handle non-safepoints.
873class NonSafepointEmitter {
874 Compile* C;
875 JVMState* _pending_jvms;
876 int _pending_offset;
877
878 void emit_non_safepoint();
879
880 public:
881 NonSafepointEmitter(Compile* compile) {
882 this->C = compile;
883 _pending_jvms = NULL;
884 _pending_offset = 0;
885 }
886
887 void observe_instruction(Node* n, int pc_offset) {
888 if (!C->debug_info()->recording_non_safepoints()) return;
889
890 Node_Notes* nn = C->node_notes_at(n->_idx);
891 if (nn == NULL || nn->jvms() == NULL) return;
892 if (_pending_jvms != NULL &&
893 _pending_jvms->same_calls_as(nn->jvms())) {
894 // Repeated JVMS? Stretch it up here.
895 _pending_offset = pc_offset;
896 } else {
897 if (_pending_jvms != NULL &&
898 _pending_offset < pc_offset) {
899 emit_non_safepoint();
900 }
901 _pending_jvms = NULL;
902 if (pc_offset > C->debug_info()->last_pc_offset()) {
903 // This is the only way _pending_jvms can become non-NULL:
904 _pending_jvms = nn->jvms();
905 _pending_offset = pc_offset;
906 }
907 }
908 }
909
910 // Stay out of the way of real safepoints:
911 void observe_safepoint(JVMState* jvms, int pc_offset) {
912 if (_pending_jvms != NULL &&
913 !_pending_jvms->same_calls_as(jvms) &&
914 _pending_offset < pc_offset) {
915 emit_non_safepoint();
916 }
917 _pending_jvms = NULL;
918 }
919
920 void flush_at_end() {
921 if (_pending_jvms != NULL) {
922 emit_non_safepoint();
923 }
924 _pending_jvms = NULL;
925 }
926};
927
928void NonSafepointEmitter::emit_non_safepoint() {
929 JVMState* youngest_jvms = _pending_jvms;
930 int pc_offset = _pending_offset;
931
932 // Clear it now:
933 _pending_jvms = NULL;
934
935 DebugInformationRecorder* debug_info = C->debug_info();
936 assert(debug_info->recording_non_safepoints(), "sanity");
937
938 debug_info->add_non_safepoint(pc_offset);
939 int max_depth = youngest_jvms->depth();
940
941 // Visit scopes from oldest to youngest.
942 for (int depth = 1; depth <= max_depth; depth++) {
943 JVMState* jvms = youngest_jvms->of_depth(depth);
944 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
945 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
946 methodHandle null_mh;
947 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
948 }
949
950 // Mark the end of the scope set.
951 debug_info->end_non_safepoint(pc_offset);
952}
953
954//------------------------------init_buffer------------------------------------
955CodeBuffer* Compile::init_buffer(uint* blk_starts) {
956
957 // Set the initially allocated size
958 int code_req = initial_code_capacity;
959 int locs_req = initial_locs_capacity;
960 int stub_req = initial_stub_capacity;
961 int const_req = initial_const_capacity;
962
963 int pad_req = NativeCall::instruction_size;
964 // The extra spacing after the code is necessary on some platforms.
965 // Sometimes we need to patch in a jump after the last instruction,
966 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
967
968 // Compute the byte offset where we can store the deopt pc.
969 if (fixed_slots() != 0) {
970 _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
971 }
972
973 // Compute prolog code size
974 _method_size = 0;
975 _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
976#if defined(IA64) && !defined(AIX)
977 if (save_argument_registers()) {
978 // 4815101: this is a stub with implicit and unknown precision fp args.
979 // The usual spill mechanism can only generate stfd's in this case, which
980 // doesn't work if the fp reg to spill contains a single-precision denorm.
981 // Instead, we hack around the normal spill mechanism using stfspill's and
982 // ldffill's in the MachProlog and MachEpilog emit methods. We allocate
983 // space here for the fp arg regs (f8-f15) we're going to thusly spill.
984 //
985 // If we ever implement 16-byte 'registers' == stack slots, we can
986 // get rid of this hack and have SpillCopy generate stfspill/ldffill
987 // instead of stfd/stfs/ldfd/ldfs.
988 _frame_slots += 8*(16/BytesPerInt);
989 }
990#endif
991 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
992
993 if (has_mach_constant_base_node()) {
994 uint add_size = 0;
995 // Fill the constant table.
996 // Note: This must happen before shorten_branches.
997 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
998 Block* b = _cfg->get_block(i);
999
1000 for (uint j = 0; j < b->number_of_nodes(); j++) {
1001 Node* n = b->get_node(j);
1002
1003 // If the node is a MachConstantNode evaluate the constant
1004 // value section.
1005 if (n->is_MachConstant()) {
1006 MachConstantNode* machcon = n->as_MachConstant();
1007 machcon->eval_constant(C);
1008 } else if (n->is_Mach()) {
1009 // On Power there are more nodes that issue constants.
1010 add_size += (n->as_Mach()->ins_num_consts() * 8);
1011 }
1012 }
1013 }
1014
1015 // Calculate the offsets of the constants and the size of the
1016 // constant table (including the padding to the next section).
1017 constant_table().calculate_offsets_and_size();
1018 const_req = constant_table().size() + add_size;
1019 }
1020
1021 // Initialize the space for the BufferBlob used to find and verify
1022 // instruction size in MachNode::emit_size()
1023 init_scratch_buffer_blob(const_req);
1024 if (failing()) return NULL; // Out of memory
1025
1026 // Pre-compute the length of blocks and replace
1027 // long branches with short if machine supports it.
1028 shorten_branches(blk_starts, code_req, locs_req, stub_req);
1029
1030 // nmethod and CodeBuffer count stubs & constants as part of method's code.
1031 // class HandlerImpl is platform-specific and defined in the *.ad files.
1032 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1033 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler
1034 stub_req += MAX_stubs_size; // ensure per-stub margin
1035 code_req += MAX_inst_size; // ensure per-instruction margin
1036
1037 if (StressCodeBuffers)
1038 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
1039
1040 int total_req =
1041 const_req +
1042 code_req +
1043 pad_req +
1044 stub_req +
1045 exception_handler_req +
1046 deopt_handler_req; // deopt handler
1047
1048 if (has_method_handle_invokes())
1049 total_req += deopt_handler_req; // deopt MH handler
1050
1051 CodeBuffer* cb = code_buffer();
1052 cb->initialize(total_req, locs_req);
1053
1054 // Have we run out of code space?
1055 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1056 C->record_failure("CodeCache is full");
1057 return NULL;
1058 }
1059 // Configure the code buffer.
1060 cb->initialize_consts_size(const_req);
1061 cb->initialize_stubs_size(stub_req);
1062 cb->initialize_oop_recorder(env()->oop_recorder());
1063
1064 // fill in the nop array for bundling computations
1065 MachNode *_nop_list[Bundle::_nop_count];
1066 Bundle::initialize_nops(_nop_list);
1067
1068 return cb;
1069}
1070
1071//------------------------------fill_buffer------------------------------------
1072void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1073 // blk_starts[] contains offsets calculated during short branches processing,
1074 // offsets should not be increased during following steps.
1075
1076 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1077 // of a loop. It is used to determine the padding for loop alignment.
1078 compute_loop_first_inst_sizes();
1079
1080 // Create oopmap set.
1081 _oop_map_set = new OopMapSet();
1082
1083 // !!!!! This preserves old handling of oopmaps for now
1084 debug_info()->set_oopmaps(_oop_map_set);
1085
1086 uint nblocks = _cfg->number_of_blocks();
1087 // Count and start of implicit null check instructions
1088 uint inct_cnt = 0;
1089 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1090
1091 // Count and start of calls
1092 uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1093
1094 uint return_offset = 0;
1095 int nop_size = (new MachNopNode())->size(_regalloc);
1096
1097 int previous_offset = 0;
1098 int current_offset = 0;
1099 int last_call_offset = -1;
1100 int last_avoid_back_to_back_offset = -1;
1101#ifdef ASSERT
1102 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1103 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1104 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
1105 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks);
1106#endif
1107
1108 // Create an array of unused labels, one for each basic block, if printing is enabled
1109#if defined(SUPPORT_OPTO_ASSEMBLY)
1110 int *node_offsets = NULL;
1111 uint node_offset_limit = unique();
1112
1113 if (print_assembly()) {
1114 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1115 }
1116 if (node_offsets != NULL) {
1117 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1118 memset(node_offsets, 0, node_offset_limit*sizeof(int));
1119 }
1120#endif
1121
1122 NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily
1123
1124 // Emit the constant table.
1125 if (has_mach_constant_base_node()) {
1126 constant_table().emit(*cb);
1127 }
1128
1129 // Create an array of labels, one for each basic block
1130 Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1131 for (uint i=0; i <= nblocks; i++) {
1132 blk_labels[i].init();
1133 }
1134
1135 // ------------------
1136 // Now fill in the code buffer
1137 Node *delay_slot = NULL;
1138
1139 for (uint i = 0; i < nblocks; i++) {
1140 Block* block = _cfg->get_block(i);
1141 Node* head = block->head();
1142
1143 // If this block needs to start aligned (i.e, can be reached other
1144 // than by falling-thru from the previous block), then force the
1145 // start of a new bundle.
1146 if (Pipeline::requires_bundling() && starts_bundle(head)) {
1147 cb->flush_bundle(true);
1148 }
1149
1150#ifdef ASSERT
1151 if (!block->is_connector()) {
1152 stringStream st;
1153 block->dump_head(_cfg, &st);
1154 MacroAssembler(cb).block_comment(st.as_string());
1155 }
1156 jmp_target[i] = 0;
1157 jmp_offset[i] = 0;
1158 jmp_size[i] = 0;
1159 jmp_rule[i] = 0;
1160#endif
1161 int blk_offset = current_offset;
1162
1163 // Define the label at the beginning of the basic block
1164 MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1165
1166 uint last_inst = block->number_of_nodes();
1167
1168 // Emit block normally, except for last instruction.
1169 // Emit means "dump code bits into code buffer".
1170 for (uint j = 0; j<last_inst; j++) {
1171
1172 // Get the node
1173 Node* n = block->get_node(j);
1174
1175 // See if delay slots are supported
1176 if (valid_bundle_info(n) &&
1177 node_bundling(n)->used_in_unconditional_delay()) {
1178 assert(delay_slot == NULL, "no use of delay slot node");
1179 assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1180
1181 delay_slot = n;
1182 continue;
1183 }
1184
1185 // If this starts a new instruction group, then flush the current one
1186 // (but allow split bundles)
1187 if (Pipeline::requires_bundling() && starts_bundle(n))
1188 cb->flush_bundle(false);
1189
1190 // Special handling for SafePoint/Call Nodes
1191 bool is_mcall = false;
1192 if (n->is_Mach()) {
1193 MachNode *mach = n->as_Mach();
1194 is_mcall = n->is_MachCall();
1195 bool is_sfn = n->is_MachSafePoint();
1196
1197 // If this requires all previous instructions be flushed, then do so
1198 if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1199 cb->flush_bundle(true);
1200 current_offset = cb->insts_size();
1201 }
1202
1203 // A padding may be needed again since a previous instruction
1204 // could be moved to delay slot.
1205
1206 // align the instruction if necessary
1207 int padding = mach->compute_padding(current_offset);
1208 // Make sure safepoint node for polling is distinct from a call's
1209 // return by adding a nop if needed.
1210 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1211 padding = nop_size;
1212 }
1213 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1214 current_offset == last_avoid_back_to_back_offset) {
1215 // Avoid back to back some instructions.
1216 padding = nop_size;
1217 }
1218
1219 if (padding > 0) {
1220 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1221 int nops_cnt = padding / nop_size;
1222 MachNode *nop = new MachNopNode(nops_cnt);
1223 block->insert_node(nop, j++);
1224 last_inst++;
1225 _cfg->map_node_to_block(nop, block);
1226 // Ensure enough space.
1227 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1228 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1229 C->record_failure("CodeCache is full");
1230 return;
1231 }
1232 nop->emit(*cb, _regalloc);
1233 cb->flush_bundle(true);
1234 current_offset = cb->insts_size();
1235 }
1236
1237 // Remember the start of the last call in a basic block
1238 if (is_mcall) {
1239 MachCallNode *mcall = mach->as_MachCall();
1240
1241 // This destination address is NOT PC-relative
1242 mcall->method_set((intptr_t)mcall->entry_point());
1243
1244 // Save the return address
1245 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1246
1247 if (mcall->is_MachCallLeaf()) {
1248 is_mcall = false;
1249 is_sfn = false;
1250 }
1251 }
1252
1253 // sfn will be valid whenever mcall is valid now because of inheritance
1254 if (is_sfn || is_mcall) {
1255
1256 // Handle special safepoint nodes for synchronization
1257 if (!is_mcall) {
1258 MachSafePointNode *sfn = mach->as_MachSafePoint();
1259 // !!!!! Stubs only need an oopmap right now, so bail out
1260 if (sfn->jvms()->method() == NULL) {
1261 // Write the oopmap directly to the code blob??!!
1262 continue;
1263 }
1264 } // End synchronization
1265
1266 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1267 current_offset);
1268 Process_OopMap_Node(mach, current_offset);
1269 } // End if safepoint
1270
1271 // If this is a null check, then add the start of the previous instruction to the list
1272 else if( mach->is_MachNullCheck() ) {
1273 inct_starts[inct_cnt++] = previous_offset;
1274 }
1275
1276 // If this is a branch, then fill in the label with the target BB's label
1277 else if (mach->is_MachBranch()) {
1278 // This requires the TRUE branch target be in succs[0]
1279 uint block_num = block->non_connector_successor(0)->_pre_order;
1280
1281 // Try to replace long branch if delay slot is not used,
1282 // it is mostly for back branches since forward branch's
1283 // distance is not updated yet.
1284 bool delay_slot_is_used = valid_bundle_info(n) &&
1285 node_bundling(n)->use_unconditional_delay();
1286 if (!delay_slot_is_used && mach->may_be_short_branch()) {
1287 assert(delay_slot == NULL, "not expecting delay slot node");
1288 int br_size = n->size(_regalloc);
1289 int offset = blk_starts[block_num] - current_offset;
1290 if (block_num >= i) {
1291 // Current and following block's offset are not
1292 // finalized yet, adjust distance by the difference
1293 // between calculated and final offsets of current block.
1294 offset -= (blk_starts[i] - blk_offset);
1295 }
1296 // In the following code a nop could be inserted before
1297 // the branch which will increase the backward distance.
1298 bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1299 if (needs_padding && offset <= 0)
1300 offset -= nop_size;
1301
1302 if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1303 // We've got a winner. Replace this branch.
1304 MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1305
1306 // Update the jmp_size.
1307 int new_size = replacement->size(_regalloc);
1308 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1309 // Insert padding between avoid_back_to_back branches.
1310 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1311 MachNode *nop = new MachNopNode();
1312 block->insert_node(nop, j++);
1313 _cfg->map_node_to_block(nop, block);
1314 last_inst++;
1315 nop->emit(*cb, _regalloc);
1316 cb->flush_bundle(true);
1317 current_offset = cb->insts_size();
1318 }
1319#ifdef ASSERT
1320 jmp_target[i] = block_num;
1321 jmp_offset[i] = current_offset - blk_offset;
1322 jmp_size[i] = new_size;
1323 jmp_rule[i] = mach->rule();
1324#endif
1325 block->map_node(replacement, j);
1326 mach->subsume_by(replacement, C);
1327 n = replacement;
1328 mach = replacement;
1329 }
1330 }
1331 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1332 } else if (mach->ideal_Opcode() == Op_Jump) {
1333 for (uint h = 0; h < block->_num_succs; h++) {
1334 Block* succs_block = block->_succs[h];
1335 for (uint j = 1; j < succs_block->num_preds(); j++) {
1336 Node* jpn = succs_block->pred(j);
1337 if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1338 uint block_num = succs_block->non_connector()->_pre_order;
1339 Label *blkLabel = &blk_labels[block_num];
1340 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1341 }
1342 }
1343 }
1344 }
1345#ifdef ASSERT
1346 // Check that oop-store precedes the card-mark
1347 else if (mach->ideal_Opcode() == Op_StoreCM) {
1348 uint storeCM_idx = j;
1349 int count = 0;
1350 for (uint prec = mach->req(); prec < mach->len(); prec++) {
1351 Node *oop_store = mach->in(prec); // Precedence edge
1352 if (oop_store == NULL) continue;
1353 count++;
1354 uint i4;
1355 for (i4 = 0; i4 < last_inst; ++i4) {
1356 if (block->get_node(i4) == oop_store) {
1357 break;
1358 }
1359 }
1360 // Note: This test can provide a false failure if other precedence
1361 // edges have been added to the storeCMNode.
1362 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1363 }
1364 assert(count > 0, "storeCM expects at least one precedence edge");
1365 }
1366#endif
1367 else if (!n->is_Proj()) {
1368 // Remember the beginning of the previous instruction, in case
1369 // it's followed by a flag-kill and a null-check. Happens on
1370 // Intel all the time, with add-to-memory kind of opcodes.
1371 previous_offset = current_offset;
1372 }
1373
1374 // Not an else-if!
1375 // If this is a trap based cmp then add its offset to the list.
1376 if (mach->is_TrapBasedCheckNode()) {
1377 inct_starts[inct_cnt++] = current_offset;
1378 }
1379 }
1380
1381 // Verify that there is sufficient space remaining
1382 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1383 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1384 C->record_failure("CodeCache is full");
1385 return;
1386 }
1387
1388 // Save the offset for the listing
1389#if defined(SUPPORT_OPTO_ASSEMBLY)
1390 if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) {
1391 node_offsets[n->_idx] = cb->insts_size();
1392 }
1393#endif
1394
1395 // "Normal" instruction case
1396 DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1397 n->emit(*cb, _regalloc);
1398 current_offset = cb->insts_size();
1399
1400 // Above we only verified that there is enough space in the instruction section.
1401 // However, the instruction may emit stubs that cause code buffer expansion.
1402 // Bail out here if expansion failed due to a lack of code cache space.
1403 if (failing()) {
1404 return;
1405 }
1406
1407#ifdef ASSERT
1408 if (n->size(_regalloc) < (current_offset-instr_offset)) {
1409 n->dump();
1410 assert(false, "wrong size of mach node");
1411 }
1412#endif
1413 non_safepoints.observe_instruction(n, current_offset);
1414
1415 // mcall is last "call" that can be a safepoint
1416 // record it so we can see if a poll will directly follow it
1417 // in which case we'll need a pad to make the PcDesc sites unique
1418 // see 5010568. This can be slightly inaccurate but conservative
1419 // in the case that return address is not actually at current_offset.
1420 // This is a small price to pay.
1421
1422 if (is_mcall) {
1423 last_call_offset = current_offset;
1424 }
1425
1426 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1427 // Avoid back to back some instructions.
1428 last_avoid_back_to_back_offset = current_offset;
1429 }
1430
1431 // See if this instruction has a delay slot
1432 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1433 guarantee(delay_slot != NULL, "expecting delay slot node");
1434
1435 // Back up 1 instruction
1436 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1437
1438 // Save the offset for the listing
1439#if defined(SUPPORT_OPTO_ASSEMBLY)
1440 if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) {
1441 node_offsets[delay_slot->_idx] = cb->insts_size();
1442 }
1443#endif
1444
1445 // Support a SafePoint in the delay slot
1446 if (delay_slot->is_MachSafePoint()) {
1447 MachNode *mach = delay_slot->as_Mach();
1448 // !!!!! Stubs only need an oopmap right now, so bail out
1449 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1450 // Write the oopmap directly to the code blob??!!
1451 delay_slot = NULL;
1452 continue;
1453 }
1454
1455 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1456 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1457 adjusted_offset);
1458 // Generate an OopMap entry
1459 Process_OopMap_Node(mach, adjusted_offset);
1460 }
1461
1462 // Insert the delay slot instruction
1463 delay_slot->emit(*cb, _regalloc);
1464
1465 // Don't reuse it
1466 delay_slot = NULL;
1467 }
1468
1469 } // End for all instructions in block
1470
1471 // If the next block is the top of a loop, pad this block out to align
1472 // the loop top a little. Helps prevent pipe stalls at loop back branches.
1473 if (i < nblocks-1) {
1474 Block *nb = _cfg->get_block(i + 1);
1475 int padding = nb->alignment_padding(current_offset);
1476 if( padding > 0 ) {
1477 MachNode *nop = new MachNopNode(padding / nop_size);
1478 block->insert_node(nop, block->number_of_nodes());
1479 _cfg->map_node_to_block(nop, block);
1480 nop->emit(*cb, _regalloc);
1481 current_offset = cb->insts_size();
1482 }
1483 }
1484 // Verify that the distance for generated before forward
1485 // short branches is still valid.
1486 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1487
1488 // Save new block start offset
1489 blk_starts[i] = blk_offset;
1490 } // End of for all blocks
1491 blk_starts[nblocks] = current_offset;
1492
1493 non_safepoints.flush_at_end();
1494
1495 // Offset too large?
1496 if (failing()) return;
1497
1498 // Define a pseudo-label at the end of the code
1499 MacroAssembler(cb).bind( blk_labels[nblocks] );
1500
1501 // Compute the size of the first block
1502 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1503
1504#ifdef ASSERT
1505 for (uint i = 0; i < nblocks; i++) { // For all blocks
1506 if (jmp_target[i] != 0) {
1507 int br_size = jmp_size[i];
1508 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1509 if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1510 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1511 assert(false, "Displacement too large for short jmp");
1512 }
1513 }
1514 }
1515#endif
1516
1517#ifndef PRODUCT
1518 // Information on the size of the method, without the extraneous code
1519 Scheduling::increment_method_size(cb->insts_size());
1520#endif
1521
1522 // ------------------
1523 // Fill in exception table entries.
1524 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1525
1526 // Only java methods have exception handlers and deopt handlers
1527 // class HandlerImpl is platform-specific and defined in the *.ad files.
1528 if (_method) {
1529 // Emit the exception handler code.
1530 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1531 if (failing()) {
1532 return; // CodeBuffer::expand failed
1533 }
1534 // Emit the deopt handler code.
1535 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1536
1537 // Emit the MethodHandle deopt handler code (if required).
1538 if (has_method_handle_invokes() && !failing()) {
1539 // We can use the same code as for the normal deopt handler, we
1540 // just need a different entry point address.
1541 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1542 }
1543 }
1544
1545 // One last check for failed CodeBuffer::expand:
1546 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1547 C->record_failure("CodeCache is full");
1548 return;
1549 }
1550
1551#if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1552 if (print_assembly()) {
1553 tty->cr();
1554 tty->print_cr("============================= C2-compiled nmethod ==============================");
1555 }
1556#endif
1557
1558#if defined(SUPPORT_OPTO_ASSEMBLY)
1559 // Dump the assembly code, including basic-block numbers
1560 if (print_assembly()) {
1561 ttyLocker ttyl; // keep the following output all in one block
1562 if (!VMThread::should_terminate()) { // test this under the tty lock
1563 // This output goes directly to the tty, not the compiler log.
1564 // To enable tools to match it up with the compilation activity,
1565 // be sure to tag this tty output with the compile ID.
1566 if (xtty != NULL) {
1567 xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1568 is_osr_compilation() ? " compile_kind='osr'" :
1569 "");
1570 }
1571 if (method() != NULL) {
1572 tty->print_cr("----------------------------------- MetaData -----------------------------------");
1573 method()->print_metadata();
1574 } else if (stub_name() != NULL) {
1575 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", stub_name());
1576 }
1577 tty->cr();
1578 tty->print_cr("--------------------------------- OptoAssembly ---------------------------------");
1579 dump_asm(node_offsets, node_offset_limit);
1580 tty->print_cr("--------------------------------------------------------------------------------");
1581 if (xtty != NULL) {
1582 // print_metadata and dump_asm above may safepoint which makes us loose the ttylock.
1583 // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done
1584 // thread safe
1585 ttyLocker ttyl2;
1586 xtty->tail("opto_assembly");
1587 }
1588 }
1589 }
1590#endif
1591}
1592
1593void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1594 _inc_table.set_size(cnt);
1595
1596 uint inct_cnt = 0;
1597 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1598 Block* block = _cfg->get_block(i);
1599 Node *n = NULL;
1600 int j;
1601
1602 // Find the branch; ignore trailing NOPs.
1603 for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1604 n = block->get_node(j);
1605 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1606 break;
1607 }
1608 }
1609
1610 // If we didn't find anything, continue
1611 if (j < 0) {
1612 continue;
1613 }
1614
1615 // Compute ExceptionHandlerTable subtable entry and add it
1616 // (skip empty blocks)
1617 if (n->is_Catch()) {
1618
1619 // Get the offset of the return from the call
1620 uint call_return = call_returns[block->_pre_order];
1621#ifdef ASSERT
1622 assert( call_return > 0, "no call seen for this basic block" );
1623 while (block->get_node(--j)->is_MachProj()) ;
1624 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1625#endif
1626 // last instruction is a CatchNode, find it's CatchProjNodes
1627 int nof_succs = block->_num_succs;
1628 // allocate space
1629 GrowableArray<intptr_t> handler_bcis(nof_succs);
1630 GrowableArray<intptr_t> handler_pcos(nof_succs);
1631 // iterate through all successors
1632 for (int j = 0; j < nof_succs; j++) {
1633 Block* s = block->_succs[j];
1634 bool found_p = false;
1635 for (uint k = 1; k < s->num_preds(); k++) {
1636 Node* pk = s->pred(k);
1637 if (pk->is_CatchProj() && pk->in(0) == n) {
1638 const CatchProjNode* p = pk->as_CatchProj();
1639 found_p = true;
1640 // add the corresponding handler bci & pco information
1641 if (p->_con != CatchProjNode::fall_through_index) {
1642 // p leads to an exception handler (and is not fall through)
1643 assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1644 // no duplicates, please
1645 if (!handler_bcis.contains(p->handler_bci())) {
1646 uint block_num = s->non_connector()->_pre_order;
1647 handler_bcis.append(p->handler_bci());
1648 handler_pcos.append(blk_labels[block_num].loc_pos());
1649 }
1650 }
1651 }
1652 }
1653 assert(found_p, "no matching predecessor found");
1654 // Note: Due to empty block removal, one block may have
1655 // several CatchProj inputs, from the same Catch.
1656 }
1657
1658 // Set the offset of the return from the call
1659 assert(handler_bcis.find(-1) != -1, "must have default handler");
1660 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1661 continue;
1662 }
1663
1664 // Handle implicit null exception table updates
1665 if (n->is_MachNullCheck()) {
1666 uint block_num = block->non_connector_successor(0)->_pre_order;
1667 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1668 continue;
1669 }
1670 // Handle implicit exception table updates: trap instructions.
1671 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1672 uint block_num = block->non_connector_successor(0)->_pre_order;
1673 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1674 continue;
1675 }
1676 } // End of for all blocks fill in exception table entries
1677}
1678
1679// Static Variables
1680#ifndef PRODUCT
1681uint Scheduling::_total_nop_size = 0;
1682uint Scheduling::_total_method_size = 0;
1683uint Scheduling::_total_branches = 0;
1684uint Scheduling::_total_unconditional_delays = 0;
1685uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1686#endif
1687
1688// Initializer for class Scheduling
1689
1690Scheduling::Scheduling(Arena *arena, Compile &compile)
1691 : _arena(arena),
1692 _cfg(compile.cfg()),
1693 _regalloc(compile.regalloc()),
1694 _scheduled(arena),
1695 _available(arena),
1696 _reg_node(arena),
1697 _pinch_free_list(arena),
1698 _next_node(NULL),
1699 _bundle_instr_count(0),
1700 _bundle_cycle_number(0),
1701 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
1702#ifndef PRODUCT
1703 , _branches(0)
1704 , _unconditional_delays(0)
1705#endif
1706{
1707 // Create a MachNopNode
1708 _nop = new MachNopNode();
1709
1710 // Now that the nops are in the array, save the count
1711 // (but allow entries for the nops)
1712 _node_bundling_limit = compile.unique();
1713 uint node_max = _regalloc->node_regs_max_index();
1714
1715 compile.set_node_bundling_limit(_node_bundling_limit);
1716
1717 // This one is persistent within the Compile class
1718 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1719
1720 // Allocate space for fixed-size arrays
1721 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1722 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
1723 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1724
1725 // Clear the arrays
1726 for (uint i = 0; i < node_max; i++) {
1727 ::new (&_node_bundling_base[i]) Bundle();
1728 }
1729 memset(_node_latency, 0, node_max * sizeof(unsigned short));
1730 memset(_uses, 0, node_max * sizeof(short));
1731 memset(_current_latency, 0, node_max * sizeof(unsigned short));
1732
1733 // Clear the bundling information
1734 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1735
1736 // Get the last node
1737 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1738
1739 _next_node = block->get_node(block->number_of_nodes() - 1);
1740}
1741
1742#ifndef PRODUCT
1743// Scheduling destructor
1744Scheduling::~Scheduling() {
1745 _total_branches += _branches;
1746 _total_unconditional_delays += _unconditional_delays;
1747}
1748#endif
1749
1750// Step ahead "i" cycles
1751void Scheduling::step(uint i) {
1752
1753 Bundle *bundle = node_bundling(_next_node);
1754 bundle->set_starts_bundle();
1755
1756 // Update the bundle record, but leave the flags information alone
1757 if (_bundle_instr_count > 0) {
1758 bundle->set_instr_count(_bundle_instr_count);
1759 bundle->set_resources_used(_bundle_use.resourcesUsed());
1760 }
1761
1762 // Update the state information
1763 _bundle_instr_count = 0;
1764 _bundle_cycle_number += i;
1765 _bundle_use.step(i);
1766}
1767
1768void Scheduling::step_and_clear() {
1769 Bundle *bundle = node_bundling(_next_node);
1770 bundle->set_starts_bundle();
1771
1772 // Update the bundle record
1773 if (_bundle_instr_count > 0) {
1774 bundle->set_instr_count(_bundle_instr_count);
1775 bundle->set_resources_used(_bundle_use.resourcesUsed());
1776
1777 _bundle_cycle_number += 1;
1778 }
1779
1780 // Clear the bundling information
1781 _bundle_instr_count = 0;
1782 _bundle_use.reset();
1783
1784 memcpy(_bundle_use_elements,
1785 Pipeline_Use::elaborated_elements,
1786 sizeof(Pipeline_Use::elaborated_elements));
1787}
1788
1789// Perform instruction scheduling and bundling over the sequence of
1790// instructions in backwards order.
1791void Compile::ScheduleAndBundle() {
1792
1793 // Don't optimize this if it isn't a method
1794 if (!_method)
1795 return;
1796
1797 // Don't optimize this if scheduling is disabled
1798 if (!do_scheduling())
1799 return;
1800
1801 // Scheduling code works only with pairs (16 bytes) maximum.
1802 if (max_vector_size() > 16)
1803 return;
1804
1805 TracePhase tp("isched", &timers[_t_instrSched]);
1806
1807 // Create a data structure for all the scheduling information
1808 Scheduling scheduling(Thread::current()->resource_area(), *this);
1809
1810 // Walk backwards over each basic block, computing the needed alignment
1811 // Walk over all the basic blocks
1812 scheduling.DoScheduling();
1813}
1814
1815// Compute the latency of all the instructions. This is fairly simple,
1816// because we already have a legal ordering. Walk over the instructions
1817// from first to last, and compute the latency of the instruction based
1818// on the latency of the preceding instruction(s).
1819void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1820#ifndef PRODUCT
1821 if (_cfg->C->trace_opto_output())
1822 tty->print("# -> ComputeLocalLatenciesForward\n");
1823#endif
1824
1825 // Walk over all the schedulable instructions
1826 for( uint j=_bb_start; j < _bb_end; j++ ) {
1827
1828 // This is a kludge, forcing all latency calculations to start at 1.
1829 // Used to allow latency 0 to force an instruction to the beginning
1830 // of the bb
1831 uint latency = 1;
1832 Node *use = bb->get_node(j);
1833 uint nlen = use->len();
1834
1835 // Walk over all the inputs
1836 for ( uint k=0; k < nlen; k++ ) {
1837 Node *def = use->in(k);
1838 if (!def)
1839 continue;
1840
1841 uint l = _node_latency[def->_idx] + use->latency(k);
1842 if (latency < l)
1843 latency = l;
1844 }
1845
1846 _node_latency[use->_idx] = latency;
1847
1848#ifndef PRODUCT
1849 if (_cfg->C->trace_opto_output()) {
1850 tty->print("# latency %4d: ", latency);
1851 use->dump();
1852 }
1853#endif
1854 }
1855
1856#ifndef PRODUCT
1857 if (_cfg->C->trace_opto_output())
1858 tty->print("# <- ComputeLocalLatenciesForward\n");
1859#endif
1860
1861} // end ComputeLocalLatenciesForward
1862
1863// See if this node fits into the present instruction bundle
1864bool Scheduling::NodeFitsInBundle(Node *n) {
1865 uint n_idx = n->_idx;
1866
1867 // If this is the unconditional delay instruction, then it fits
1868 if (n == _unconditional_delay_slot) {
1869#ifndef PRODUCT
1870 if (_cfg->C->trace_opto_output())
1871 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1872#endif
1873 return (true);
1874 }
1875
1876 // If the node cannot be scheduled this cycle, skip it
1877 if (_current_latency[n_idx] > _bundle_cycle_number) {
1878#ifndef PRODUCT
1879 if (_cfg->C->trace_opto_output())
1880 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1881 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1882#endif
1883 return (false);
1884 }
1885
1886 const Pipeline *node_pipeline = n->pipeline();
1887
1888 uint instruction_count = node_pipeline->instructionCount();
1889 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1890 instruction_count = 0;
1891 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1892 instruction_count++;
1893
1894 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1895#ifndef PRODUCT
1896 if (_cfg->C->trace_opto_output())
1897 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1898 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1899#endif
1900 return (false);
1901 }
1902
1903 // Don't allow non-machine nodes to be handled this way
1904 if (!n->is_Mach() && instruction_count == 0)
1905 return (false);
1906
1907 // See if there is any overlap
1908 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1909
1910 if (delay > 0) {
1911#ifndef PRODUCT
1912 if (_cfg->C->trace_opto_output())
1913 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1914#endif
1915 return false;
1916 }
1917
1918#ifndef PRODUCT
1919 if (_cfg->C->trace_opto_output())
1920 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
1921#endif
1922
1923 return true;
1924}
1925
1926Node * Scheduling::ChooseNodeToBundle() {
1927 uint siz = _available.size();
1928
1929 if (siz == 0) {
1930
1931#ifndef PRODUCT
1932 if (_cfg->C->trace_opto_output())
1933 tty->print("# ChooseNodeToBundle: NULL\n");
1934#endif
1935 return (NULL);
1936 }
1937
1938 // Fast path, if only 1 instruction in the bundle
1939 if (siz == 1) {
1940#ifndef PRODUCT
1941 if (_cfg->C->trace_opto_output()) {
1942 tty->print("# ChooseNodeToBundle (only 1): ");
1943 _available[0]->dump();
1944 }
1945#endif
1946 return (_available[0]);
1947 }
1948
1949 // Don't bother, if the bundle is already full
1950 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1951 for ( uint i = 0; i < siz; i++ ) {
1952 Node *n = _available[i];
1953
1954 // Skip projections, we'll handle them another way
1955 if (n->is_Proj())
1956 continue;
1957
1958 // This presupposed that instructions are inserted into the
1959 // available list in a legality order; i.e. instructions that
1960 // must be inserted first are at the head of the list
1961 if (NodeFitsInBundle(n)) {
1962#ifndef PRODUCT
1963 if (_cfg->C->trace_opto_output()) {
1964 tty->print("# ChooseNodeToBundle: ");
1965 n->dump();
1966 }
1967#endif
1968 return (n);
1969 }
1970 }
1971 }
1972
1973 // Nothing fits in this bundle, choose the highest priority
1974#ifndef PRODUCT
1975 if (_cfg->C->trace_opto_output()) {
1976 tty->print("# ChooseNodeToBundle: ");
1977 _available[0]->dump();
1978 }
1979#endif
1980
1981 return _available[0];
1982}
1983
1984void Scheduling::AddNodeToAvailableList(Node *n) {
1985 assert( !n->is_Proj(), "projections never directly made available" );
1986#ifndef PRODUCT
1987 if (_cfg->C->trace_opto_output()) {
1988 tty->print("# AddNodeToAvailableList: ");
1989 n->dump();
1990 }
1991#endif
1992
1993 int latency = _current_latency[n->_idx];
1994
1995 // Insert in latency order (insertion sort)
1996 uint i;
1997 for ( i=0; i < _available.size(); i++ )
1998 if (_current_latency[_available[i]->_idx] > latency)
1999 break;
2000
2001 // Special Check for compares following branches
2002 if( n->is_Mach() && _scheduled.size() > 0 ) {
2003 int op = n->as_Mach()->ideal_Opcode();
2004 Node *last = _scheduled[0];
2005 if( last->is_MachIf() && last->in(1) == n &&
2006 ( op == Op_CmpI ||
2007 op == Op_CmpU ||
2008 op == Op_CmpUL ||
2009 op == Op_CmpP ||
2010 op == Op_CmpF ||
2011 op == Op_CmpD ||
2012 op == Op_CmpL ) ) {
2013
2014 // Recalculate position, moving to front of same latency
2015 for ( i=0 ; i < _available.size(); i++ )
2016 if (_current_latency[_available[i]->_idx] >= latency)
2017 break;
2018 }
2019 }
2020
2021 // Insert the node in the available list
2022 _available.insert(i, n);
2023
2024#ifndef PRODUCT
2025 if (_cfg->C->trace_opto_output())
2026 dump_available();
2027#endif
2028}
2029
2030void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2031 for ( uint i=0; i < n->len(); i++ ) {
2032 Node *def = n->in(i);
2033 if (!def) continue;
2034 if( def->is_Proj() ) // If this is a machine projection, then
2035 def = def->in(0); // propagate usage thru to the base instruction
2036
2037 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2038 continue;
2039 }
2040
2041 // Compute the latency
2042 uint l = _bundle_cycle_number + n->latency(i);
2043 if (_current_latency[def->_idx] < l)
2044 _current_latency[def->_idx] = l;
2045
2046 // If this does not have uses then schedule it
2047 if ((--_uses[def->_idx]) == 0)
2048 AddNodeToAvailableList(def);
2049 }
2050}
2051
2052void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2053#ifndef PRODUCT
2054 if (_cfg->C->trace_opto_output()) {
2055 tty->print("# AddNodeToBundle: ");
2056 n->dump();
2057 }
2058#endif
2059
2060 // Remove this from the available list
2061 uint i;
2062 for (i = 0; i < _available.size(); i++)
2063 if (_available[i] == n)
2064 break;
2065 assert(i < _available.size(), "entry in _available list not found");
2066 _available.remove(i);
2067
2068 // See if this fits in the current bundle
2069 const Pipeline *node_pipeline = n->pipeline();
2070 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2071
2072 // Check for instructions to be placed in the delay slot. We
2073 // do this before we actually schedule the current instruction,
2074 // because the delay slot follows the current instruction.
2075 if (Pipeline::_branch_has_delay_slot &&
2076 node_pipeline->hasBranchDelay() &&
2077 !_unconditional_delay_slot) {
2078
2079 uint siz = _available.size();
2080
2081 // Conditional branches can support an instruction that
2082 // is unconditionally executed and not dependent by the
2083 // branch, OR a conditionally executed instruction if
2084 // the branch is taken. In practice, this means that
2085 // the first instruction at the branch target is
2086 // copied to the delay slot, and the branch goes to
2087 // the instruction after that at the branch target
2088 if ( n->is_MachBranch() ) {
2089
2090 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2091 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
2092
2093#ifndef PRODUCT
2094 _branches++;
2095#endif
2096
2097 // At least 1 instruction is on the available list
2098 // that is not dependent on the branch
2099 for (uint i = 0; i < siz; i++) {
2100 Node *d = _available[i];
2101 const Pipeline *avail_pipeline = d->pipeline();
2102
2103 // Don't allow safepoints in the branch shadow, that will
2104 // cause a number of difficulties
2105 if ( avail_pipeline->instructionCount() == 1 &&
2106 !avail_pipeline->hasMultipleBundles() &&
2107 !avail_pipeline->hasBranchDelay() &&
2108 Pipeline::instr_has_unit_size() &&
2109 d->size(_regalloc) == Pipeline::instr_unit_size() &&
2110 NodeFitsInBundle(d) &&
2111 !node_bundling(d)->used_in_delay()) {
2112
2113 if (d->is_Mach() && !d->is_MachSafePoint()) {
2114 // A node that fits in the delay slot was found, so we need to
2115 // set the appropriate bits in the bundle pipeline information so
2116 // that it correctly indicates resource usage. Later, when we
2117 // attempt to add this instruction to the bundle, we will skip
2118 // setting the resource usage.
2119 _unconditional_delay_slot = d;
2120 node_bundling(n)->set_use_unconditional_delay();
2121 node_bundling(d)->set_used_in_unconditional_delay();
2122 _bundle_use.add_usage(avail_pipeline->resourceUse());
2123 _current_latency[d->_idx] = _bundle_cycle_number;
2124 _next_node = d;
2125 ++_bundle_instr_count;
2126#ifndef PRODUCT
2127 _unconditional_delays++;
2128#endif
2129 break;
2130 }
2131 }
2132 }
2133 }
2134
2135 // No delay slot, add a nop to the usage
2136 if (!_unconditional_delay_slot) {
2137 // See if adding an instruction in the delay slot will overflow
2138 // the bundle.
2139 if (!NodeFitsInBundle(_nop)) {
2140#ifndef PRODUCT
2141 if (_cfg->C->trace_opto_output())
2142 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
2143#endif
2144 step(1);
2145 }
2146
2147 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2148 _next_node = _nop;
2149 ++_bundle_instr_count;
2150 }
2151
2152 // See if the instruction in the delay slot requires a
2153 // step of the bundles
2154 if (!NodeFitsInBundle(n)) {
2155#ifndef PRODUCT
2156 if (_cfg->C->trace_opto_output())
2157 tty->print("# *** STEP(branch won't fit) ***\n");
2158#endif
2159 // Update the state information
2160 _bundle_instr_count = 0;
2161 _bundle_cycle_number += 1;
2162 _bundle_use.step(1);
2163 }
2164 }
2165
2166 // Get the number of instructions
2167 uint instruction_count = node_pipeline->instructionCount();
2168 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2169 instruction_count = 0;
2170
2171 // Compute the latency information
2172 uint delay = 0;
2173
2174 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2175 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2176 if (relative_latency < 0)
2177 relative_latency = 0;
2178
2179 delay = _bundle_use.full_latency(relative_latency, node_usage);
2180
2181 // Does not fit in this bundle, start a new one
2182 if (delay > 0) {
2183 step(delay);
2184
2185#ifndef PRODUCT
2186 if (_cfg->C->trace_opto_output())
2187 tty->print("# *** STEP(%d) ***\n", delay);
2188#endif
2189 }
2190 }
2191
2192 // If this was placed in the delay slot, ignore it
2193 if (n != _unconditional_delay_slot) {
2194
2195 if (delay == 0) {
2196 if (node_pipeline->hasMultipleBundles()) {
2197#ifndef PRODUCT
2198 if (_cfg->C->trace_opto_output())
2199 tty->print("# *** STEP(multiple instructions) ***\n");
2200#endif
2201 step(1);
2202 }
2203
2204 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2205#ifndef PRODUCT
2206 if (_cfg->C->trace_opto_output())
2207 tty->print("# *** STEP(%d >= %d instructions) ***\n",
2208 instruction_count + _bundle_instr_count,
2209 Pipeline::_max_instrs_per_cycle);
2210#endif
2211 step(1);
2212 }
2213 }
2214
2215 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2216 _bundle_instr_count++;
2217
2218 // Set the node's latency
2219 _current_latency[n->_idx] = _bundle_cycle_number;
2220
2221 // Now merge the functional unit information
2222 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2223 _bundle_use.add_usage(node_usage);
2224
2225 // Increment the number of instructions in this bundle
2226 _bundle_instr_count += instruction_count;
2227
2228 // Remember this node for later
2229 if (n->is_Mach())
2230 _next_node = n;
2231 }
2232
2233 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2234 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
2235 // 'Schedule' them (basically ignore in the schedule) but do not insert them
2236 // into the block. All other scheduled nodes get put in the schedule here.
2237 int op = n->Opcode();
2238 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2239 (op != Op_Node && // Not an unused antidepedence node and
2240 // not an unallocated boxlock
2241 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2242
2243 // Push any trailing projections
2244 if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2245 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2246 Node *foi = n->fast_out(i);
2247 if( foi->is_Proj() )
2248 _scheduled.push(foi);
2249 }
2250 }
2251
2252 // Put the instruction in the schedule list
2253 _scheduled.push(n);
2254 }
2255
2256#ifndef PRODUCT
2257 if (_cfg->C->trace_opto_output())
2258 dump_available();
2259#endif
2260
2261 // Walk all the definitions, decrementing use counts, and
2262 // if a definition has a 0 use count, place it in the available list.
2263 DecrementUseCounts(n,bb);
2264}
2265
2266// This method sets the use count within a basic block. We will ignore all
2267// uses outside the current basic block. As we are doing a backwards walk,
2268// any node we reach that has a use count of 0 may be scheduled. This also
2269// avoids the problem of cyclic references from phi nodes, as long as phi
2270// nodes are at the front of the basic block. This method also initializes
2271// the available list to the set of instructions that have no uses within this
2272// basic block.
2273void Scheduling::ComputeUseCount(const Block *bb) {
2274#ifndef PRODUCT
2275 if (_cfg->C->trace_opto_output())
2276 tty->print("# -> ComputeUseCount\n");
2277#endif
2278
2279 // Clear the list of available and scheduled instructions, just in case
2280 _available.clear();
2281 _scheduled.clear();
2282
2283 // No delay slot specified
2284 _unconditional_delay_slot = NULL;
2285
2286#ifdef ASSERT
2287 for( uint i=0; i < bb->number_of_nodes(); i++ )
2288 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2289#endif
2290
2291 // Force the _uses count to never go to zero for unscheduable pieces
2292 // of the block
2293 for( uint k = 0; k < _bb_start; k++ )
2294 _uses[bb->get_node(k)->_idx] = 1;
2295 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2296 _uses[bb->get_node(l)->_idx] = 1;
2297
2298 // Iterate backwards over the instructions in the block. Don't count the
2299 // branch projections at end or the block header instructions.
2300 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2301 Node *n = bb->get_node(j);
2302 if( n->is_Proj() ) continue; // Projections handled another way
2303
2304 // Account for all uses
2305 for ( uint k = 0; k < n->len(); k++ ) {
2306 Node *inp = n->in(k);
2307 if (!inp) continue;
2308 assert(inp != n, "no cycles allowed" );
2309 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2310 if (inp->is_Proj()) { // Skip through Proj's
2311 inp = inp->in(0);
2312 }
2313 ++_uses[inp->_idx]; // Count 1 block-local use
2314 }
2315 }
2316
2317 // If this instruction has a 0 use count, then it is available
2318 if (!_uses[n->_idx]) {
2319 _current_latency[n->_idx] = _bundle_cycle_number;
2320 AddNodeToAvailableList(n);
2321 }
2322
2323#ifndef PRODUCT
2324 if (_cfg->C->trace_opto_output()) {
2325 tty->print("# uses: %3d: ", _uses[n->_idx]);
2326 n->dump();
2327 }
2328#endif
2329 }
2330
2331#ifndef PRODUCT
2332 if (_cfg->C->trace_opto_output())
2333 tty->print("# <- ComputeUseCount\n");
2334#endif
2335}
2336
2337// This routine performs scheduling on each basic block in reverse order,
2338// using instruction latencies and taking into account function unit
2339// availability.
2340void Scheduling::DoScheduling() {
2341#ifndef PRODUCT
2342 if (_cfg->C->trace_opto_output())
2343 tty->print("# -> DoScheduling\n");
2344#endif
2345
2346 Block *succ_bb = NULL;
2347 Block *bb;
2348
2349 // Walk over all the basic blocks in reverse order
2350 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2351 bb = _cfg->get_block(i);
2352
2353#ifndef PRODUCT
2354 if (_cfg->C->trace_opto_output()) {
2355 tty->print("# Schedule BB#%03d (initial)\n", i);
2356 for (uint j = 0; j < bb->number_of_nodes(); j++) {
2357 bb->get_node(j)->dump();
2358 }
2359 }
2360#endif
2361
2362 // On the head node, skip processing
2363 if (bb == _cfg->get_root_block()) {
2364 continue;
2365 }
2366
2367 // Skip empty, connector blocks
2368 if (bb->is_connector())
2369 continue;
2370
2371 // If the following block is not the sole successor of
2372 // this one, then reset the pipeline information
2373 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2374#ifndef PRODUCT
2375 if (_cfg->C->trace_opto_output()) {
2376 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2377 _next_node->_idx, _bundle_instr_count);
2378 }
2379#endif
2380 step_and_clear();
2381 }
2382
2383 // Leave untouched the starting instruction, any Phis, a CreateEx node
2384 // or Top. bb->get_node(_bb_start) is the first schedulable instruction.
2385 _bb_end = bb->number_of_nodes()-1;
2386 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2387 Node *n = bb->get_node(_bb_start);
2388 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2389 // Also, MachIdealNodes do not get scheduled
2390 if( !n->is_Mach() ) continue; // Skip non-machine nodes
2391 MachNode *mach = n->as_Mach();
2392 int iop = mach->ideal_Opcode();
2393 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2394 if( iop == Op_Con ) continue; // Do not schedule Top
2395 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
2396 mach->pipeline() == MachNode::pipeline_class() &&
2397 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc
2398 continue;
2399 break; // Funny loop structure to be sure...
2400 }
2401 // Compute last "interesting" instruction in block - last instruction we
2402 // might schedule. _bb_end points just after last schedulable inst. We
2403 // normally schedule conditional branches (despite them being forced last
2404 // in the block), because they have delay slots we can fill. Calls all
2405 // have their delay slots filled in the template expansions, so we don't
2406 // bother scheduling them.
2407 Node *last = bb->get_node(_bb_end);
2408 // Ignore trailing NOPs.
2409 while (_bb_end > 0 && last->is_Mach() &&
2410 last->as_Mach()->ideal_Opcode() == Op_Con) {
2411 last = bb->get_node(--_bb_end);
2412 }
2413 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2414 if( last->is_Catch() ||
2415 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2416 // There might be a prior call. Skip it.
2417 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2418 } else if( last->is_MachNullCheck() ) {
2419 // Backup so the last null-checked memory instruction is
2420 // outside the schedulable range. Skip over the nullcheck,
2421 // projection, and the memory nodes.
2422 Node *mem = last->in(1);
2423 do {
2424 _bb_end--;
2425 } while (mem != bb->get_node(_bb_end));
2426 } else {
2427 // Set _bb_end to point after last schedulable inst.
2428 _bb_end++;
2429 }
2430
2431 assert( _bb_start <= _bb_end, "inverted block ends" );
2432
2433 // Compute the register antidependencies for the basic block
2434 ComputeRegisterAntidependencies(bb);
2435 if (_cfg->C->failing()) return; // too many D-U pinch points
2436
2437 // Compute intra-bb latencies for the nodes
2438 ComputeLocalLatenciesForward(bb);
2439
2440 // Compute the usage within the block, and set the list of all nodes
2441 // in the block that have no uses within the block.
2442 ComputeUseCount(bb);
2443
2444 // Schedule the remaining instructions in the block
2445 while ( _available.size() > 0 ) {
2446 Node *n = ChooseNodeToBundle();
2447 guarantee(n != NULL, "no nodes available");
2448 AddNodeToBundle(n,bb);
2449 }
2450
2451 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2452#ifdef ASSERT
2453 for( uint l = _bb_start; l < _bb_end; l++ ) {
2454 Node *n = bb->get_node(l);
2455 uint m;
2456 for( m = 0; m < _bb_end-_bb_start; m++ )
2457 if( _scheduled[m] == n )
2458 break;
2459 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2460 }
2461#endif
2462
2463 // Now copy the instructions (in reverse order) back to the block
2464 for ( uint k = _bb_start; k < _bb_end; k++ )
2465 bb->map_node(_scheduled[_bb_end-k-1], k);
2466
2467#ifndef PRODUCT
2468 if (_cfg->C->trace_opto_output()) {
2469 tty->print("# Schedule BB#%03d (final)\n", i);
2470 uint current = 0;
2471 for (uint j = 0; j < bb->number_of_nodes(); j++) {
2472 Node *n = bb->get_node(j);
2473 if( valid_bundle_info(n) ) {
2474 Bundle *bundle = node_bundling(n);
2475 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2476 tty->print("*** Bundle: ");
2477 bundle->dump();
2478 }
2479 n->dump();
2480 }
2481 }
2482 }
2483#endif
2484#ifdef ASSERT
2485 verify_good_schedule(bb,"after block local scheduling");
2486#endif
2487 }
2488
2489#ifndef PRODUCT
2490 if (_cfg->C->trace_opto_output())
2491 tty->print("# <- DoScheduling\n");
2492#endif
2493
2494 // Record final node-bundling array location
2495 _regalloc->C->set_node_bundling_base(_node_bundling_base);
2496
2497} // end DoScheduling
2498
2499// Verify that no live-range used in the block is killed in the block by a
2500// wrong DEF. This doesn't verify live-ranges that span blocks.
2501
2502// Check for edge existence. Used to avoid adding redundant precedence edges.
2503static bool edge_from_to( Node *from, Node *to ) {
2504 for( uint i=0; i<from->len(); i++ )
2505 if( from->in(i) == to )
2506 return true;
2507 return false;
2508}
2509
2510#ifdef ASSERT
2511void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2512 // Check for bad kills
2513 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2514 Node *prior_use = _reg_node[def];
2515 if( prior_use && !edge_from_to(prior_use,n) ) {
2516 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2517 n->dump();
2518 tty->print_cr("...");
2519 prior_use->dump();
2520 assert(edge_from_to(prior_use,n), "%s", msg);
2521 }
2522 _reg_node.map(def,NULL); // Kill live USEs
2523 }
2524}
2525
2526void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2527
2528 // Zap to something reasonable for the verify code
2529 _reg_node.clear();
2530
2531 // Walk over the block backwards. Check to make sure each DEF doesn't
2532 // kill a live value (other than the one it's supposed to). Add each
2533 // USE to the live set.
2534 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2535 Node *n = b->get_node(i);
2536 int n_op = n->Opcode();
2537 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2538 // Fat-proj kills a slew of registers
2539 RegMask rm = n->out_RegMask();// Make local copy
2540 while( rm.is_NotEmpty() ) {
2541 OptoReg::Name kill = rm.find_first_elem();
2542 rm.Remove(kill);
2543 verify_do_def( n, kill, msg );
2544 }
2545 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2546 // Get DEF'd registers the normal way
2547 verify_do_def( n, _regalloc->get_reg_first(n), msg );
2548 verify_do_def( n, _regalloc->get_reg_second(n), msg );
2549 }
2550
2551 // Now make all USEs live
2552 for( uint i=1; i<n->req(); i++ ) {
2553 Node *def = n->in(i);
2554 assert(def != 0, "input edge required");
2555 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2556 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2557 if( OptoReg::is_valid(reg_lo) ) {
2558 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2559 _reg_node.map(reg_lo,n);
2560 }
2561 if( OptoReg::is_valid(reg_hi) ) {
2562 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2563 _reg_node.map(reg_hi,n);
2564 }
2565 }
2566
2567 }
2568
2569 // Zap to something reasonable for the Antidependence code
2570 _reg_node.clear();
2571}
2572#endif
2573
2574// Conditionally add precedence edges. Avoid putting edges on Projs.
2575static void add_prec_edge_from_to( Node *from, Node *to ) {
2576 if( from->is_Proj() ) { // Put precedence edge on Proj's input
2577 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2578 from = from->in(0);
2579 }
2580 if( from != to && // No cycles (for things like LD L0,[L0+4] )
2581 !edge_from_to( from, to ) ) // Avoid duplicate edge
2582 from->add_prec(to);
2583}
2584
2585void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2586 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2587 return;
2588
2589 Node *pinch = _reg_node[def_reg]; // Get pinch point
2590 if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2591 is_def ) { // Check for a true def (not a kill)
2592 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2593 return;
2594 }
2595
2596 Node *kill = def; // Rename 'def' to more descriptive 'kill'
2597 debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
2598
2599 // After some number of kills there _may_ be a later def
2600 Node *later_def = NULL;
2601
2602 // Finding a kill requires a real pinch-point.
2603 // Check for not already having a pinch-point.
2604 // Pinch points are Op_Node's.
2605 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2606 later_def = pinch; // Must be def/kill as optimistic pinch-point
2607 if ( _pinch_free_list.size() > 0) {
2608 pinch = _pinch_free_list.pop();
2609 } else {
2610 pinch = new Node(1); // Pinch point to-be
2611 }
2612 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2613 _cfg->C->record_method_not_compilable("too many D-U pinch points");
2614 return;
2615 }
2616 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init)
2617 _reg_node.map(def_reg,pinch); // Record pinch-point
2618 //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2619 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2620 pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call
2621 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2622 later_def = NULL; // and no later def
2623 }
2624 pinch->set_req(0,later_def); // Hook later def so we can find it
2625 } else { // Else have valid pinch point
2626 if( pinch->in(0) ) // If there is a later-def
2627 later_def = pinch->in(0); // Get it
2628 }
2629
2630 // Add output-dependence edge from later def to kill
2631 if( later_def ) // If there is some original def
2632 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2633
2634 // See if current kill is also a use, and so is forced to be the pinch-point.
2635 if( pinch->Opcode() == Op_Node ) {
2636 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2637 for( uint i=1; i<uses->req(); i++ ) {
2638 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2639 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2640 // Yes, found a use/kill pinch-point
2641 pinch->set_req(0,NULL); //
2642 pinch->replace_by(kill); // Move anti-dep edges up
2643 pinch = kill;
2644 _reg_node.map(def_reg,pinch);
2645 return;
2646 }
2647 }
2648 }
2649
2650 // Add edge from kill to pinch-point
2651 add_prec_edge_from_to(kill,pinch);
2652}
2653
2654void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2655 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2656 return;
2657 Node *pinch = _reg_node[use_reg]; // Get pinch point
2658 // Check for no later def_reg/kill in block
2659 if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2660 // Use has to be block-local as well
2661 _cfg->get_block_for_node(use) == b) {
2662 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2663 pinch->req() == 1 ) { // pinch not yet in block?
2664 pinch->del_req(0); // yank pointer to later-def, also set flag
2665 // Insert the pinch-point in the block just after the last use
2666 b->insert_node(pinch, b->find_node(use) + 1);
2667 _bb_end++; // Increase size scheduled region in block
2668 }
2669
2670 add_prec_edge_from_to(pinch,use);
2671 }
2672}
2673
2674// We insert antidependences between the reads and following write of
2675// allocated registers to prevent illegal code motion. Hopefully, the
2676// number of added references should be fairly small, especially as we
2677// are only adding references within the current basic block.
2678void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2679
2680#ifdef ASSERT
2681 verify_good_schedule(b,"before block local scheduling");
2682#endif
2683
2684 // A valid schedule, for each register independently, is an endless cycle
2685 // of: a def, then some uses (connected to the def by true dependencies),
2686 // then some kills (defs with no uses), finally the cycle repeats with a new
2687 // def. The uses are allowed to float relative to each other, as are the
2688 // kills. No use is allowed to slide past a kill (or def). This requires
2689 // antidependencies between all uses of a single def and all kills that
2690 // follow, up to the next def. More edges are redundant, because later defs
2691 // & kills are already serialized with true or antidependencies. To keep
2692 // the edge count down, we add a 'pinch point' node if there's more than
2693 // one use or more than one kill/def.
2694
2695 // We add dependencies in one bottom-up pass.
2696
2697 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2698
2699 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2700 // register. If not, we record the DEF/KILL in _reg_node, the
2701 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
2702 // "pinch point", a new Node that's in the graph but not in the block.
2703 // We put edges from the prior and current DEF/KILLs to the pinch point.
2704 // We put the pinch point in _reg_node. If there's already a pinch point
2705 // we merely add an edge from the current DEF/KILL to the pinch point.
2706
2707 // After doing the DEF/KILLs, we handle USEs. For each used register, we
2708 // put an edge from the pinch point to the USE.
2709
2710 // To be expedient, the _reg_node array is pre-allocated for the whole
2711 // compilation. _reg_node is lazily initialized; it either contains a NULL,
2712 // or a valid def/kill/pinch-point, or a leftover node from some prior
2713 // block. Leftover node from some prior block is treated like a NULL (no
2714 // prior def, so no anti-dependence needed). Valid def is distinguished by
2715 // it being in the current block.
2716 bool fat_proj_seen = false;
2717 uint last_safept = _bb_end-1;
2718 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2719 Node* last_safept_node = end_node;
2720 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2721 Node *n = b->get_node(i);
2722 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
2723 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2724 // Fat-proj kills a slew of registers
2725 // This can add edges to 'n' and obscure whether or not it was a def,
2726 // hence the is_def flag.
2727 fat_proj_seen = true;
2728 RegMask rm = n->out_RegMask();// Make local copy
2729 while( rm.is_NotEmpty() ) {
2730 OptoReg::Name kill = rm.find_first_elem();
2731 rm.Remove(kill);
2732 anti_do_def( b, n, kill, is_def );
2733 }
2734 } else {
2735 // Get DEF'd registers the normal way
2736 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2737 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2738 }
2739
2740 // Kill projections on a branch should appear to occur on the
2741 // branch, not afterwards, so grab the masks from the projections
2742 // and process them.
2743 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
2744 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2745 Node* use = n->fast_out(i);
2746 if (use->is_Proj()) {
2747 RegMask rm = use->out_RegMask();// Make local copy
2748 while( rm.is_NotEmpty() ) {
2749 OptoReg::Name kill = rm.find_first_elem();
2750 rm.Remove(kill);
2751 anti_do_def( b, n, kill, false );
2752 }
2753 }
2754 }
2755 }
2756
2757 // Check each register used by this instruction for a following DEF/KILL
2758 // that must occur afterward and requires an anti-dependence edge.
2759 for( uint j=0; j<n->req(); j++ ) {
2760 Node *def = n->in(j);
2761 if( def ) {
2762 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2763 anti_do_use( b, n, _regalloc->get_reg_first(def) );
2764 anti_do_use( b, n, _regalloc->get_reg_second(def) );
2765 }
2766 }
2767 // Do not allow defs of new derived values to float above GC
2768 // points unless the base is definitely available at the GC point.
2769
2770 Node *m = b->get_node(i);
2771
2772 // Add precedence edge from following safepoint to use of derived pointer
2773 if( last_safept_node != end_node &&
2774 m != last_safept_node) {
2775 for (uint k = 1; k < m->req(); k++) {
2776 const Type *t = m->in(k)->bottom_type();
2777 if( t->isa_oop_ptr() &&
2778 t->is_ptr()->offset() != 0 ) {
2779 last_safept_node->add_prec( m );
2780 break;
2781 }
2782 }
2783 }
2784
2785 if( n->jvms() ) { // Precedence edge from derived to safept
2786 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2787 if( b->get_node(last_safept) != last_safept_node ) {
2788 last_safept = b->find_node(last_safept_node);
2789 }
2790 for( uint j=last_safept; j > i; j-- ) {
2791 Node *mach = b->get_node(j);
2792 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2793 mach->add_prec( n );
2794 }
2795 last_safept = i;
2796 last_safept_node = m;
2797 }
2798 }
2799
2800 if (fat_proj_seen) {
2801 // Garbage collect pinch nodes that were not consumed.
2802 // They are usually created by a fat kill MachProj for a call.
2803 garbage_collect_pinch_nodes();
2804 }
2805}
2806
2807// Garbage collect pinch nodes for reuse by other blocks.
2808//
2809// The block scheduler's insertion of anti-dependence
2810// edges creates many pinch nodes when the block contains
2811// 2 or more Calls. A pinch node is used to prevent a
2812// combinatorial explosion of edges. If a set of kills for a
2813// register is anti-dependent on a set of uses (or defs), rather
2814// than adding an edge in the graph between each pair of kill
2815// and use (or def), a pinch is inserted between them:
2816//
2817// use1 use2 use3
2818// \ | /
2819// \ | /
2820// pinch
2821// / | \
2822// / | \
2823// kill1 kill2 kill3
2824//
2825// One pinch node is created per register killed when
2826// the second call is encountered during a backwards pass
2827// over the block. Most of these pinch nodes are never
2828// wired into the graph because the register is never
2829// used or def'ed in the block.
2830//
2831void Scheduling::garbage_collect_pinch_nodes() {
2832#ifndef PRODUCT
2833 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2834#endif
2835 int trace_cnt = 0;
2836 for (uint k = 0; k < _reg_node.Size(); k++) {
2837 Node* pinch = _reg_node[k];
2838 if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2839 // no predecence input edges
2840 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2841 cleanup_pinch(pinch);
2842 _pinch_free_list.push(pinch);
2843 _reg_node.map(k, NULL);
2844#ifndef PRODUCT
2845 if (_cfg->C->trace_opto_output()) {
2846 trace_cnt++;
2847 if (trace_cnt > 40) {
2848 tty->print("\n");
2849 trace_cnt = 0;
2850 }
2851 tty->print(" %d", pinch->_idx);
2852 }
2853#endif
2854 }
2855 }
2856#ifndef PRODUCT
2857 if (_cfg->C->trace_opto_output()) tty->print("\n");
2858#endif
2859}
2860
2861// Clean up a pinch node for reuse.
2862void Scheduling::cleanup_pinch( Node *pinch ) {
2863 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2864
2865 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2866 Node* use = pinch->last_out(i);
2867 uint uses_found = 0;
2868 for (uint j = use->req(); j < use->len(); j++) {
2869 if (use->in(j) == pinch) {
2870 use->rm_prec(j);
2871 uses_found++;
2872 }
2873 }
2874 assert(uses_found > 0, "must be a precedence edge");
2875 i -= uses_found; // we deleted 1 or more copies of this edge
2876 }
2877 // May have a later_def entry
2878 pinch->set_req(0, NULL);
2879}
2880
2881#ifndef PRODUCT
2882
2883void Scheduling::dump_available() const {
2884 tty->print("#Availist ");
2885 for (uint i = 0; i < _available.size(); i++)
2886 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2887 tty->cr();
2888}
2889
2890// Print Scheduling Statistics
2891void Scheduling::print_statistics() {
2892 // Print the size added by nops for bundling
2893 tty->print("Nops added %d bytes to total of %d bytes",
2894 _total_nop_size, _total_method_size);
2895 if (_total_method_size > 0)
2896 tty->print(", for %.2f%%",
2897 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2898 tty->print("\n");
2899
2900 // Print the number of branch shadows filled
2901 if (Pipeline::_branch_has_delay_slot) {
2902 tty->print("Of %d branches, %d had unconditional delay slots filled",
2903 _total_branches, _total_unconditional_delays);
2904 if (_total_branches > 0)
2905 tty->print(", for %.2f%%",
2906 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2907 tty->print("\n");
2908 }
2909
2910 uint total_instructions = 0, total_bundles = 0;
2911
2912 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2913 uint bundle_count = _total_instructions_per_bundle[i];
2914 total_instructions += bundle_count * i;
2915 total_bundles += bundle_count;
2916 }
2917
2918 if (total_bundles > 0)
2919 tty->print("Average ILP (excluding nops) is %.2f\n",
2920 ((double)total_instructions) / ((double)total_bundles));
2921}
2922#endif
2923