1 | /* |
2 | * Copyright 2011 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkPoint3.h" |
9 | #include "include/private/SkTemplates.h" |
10 | #include "src/core/SkGeometry.h" |
11 | #include "src/core/SkMatrixPriv.h" |
12 | #include "src/core/SkPointPriv.h" |
13 | #include "src/core/SkRectPriv.h" |
14 | #include "src/core/SkStroke.h" |
15 | #include "src/gpu/GrAuditTrail.h" |
16 | #include "src/gpu/GrBuffer.h" |
17 | #include "src/gpu/GrCaps.h" |
18 | #include "src/gpu/GrClip.h" |
19 | #include "src/gpu/GrDefaultGeoProcFactory.h" |
20 | #include "src/gpu/GrDrawOpTest.h" |
21 | #include "src/gpu/GrOpFlushState.h" |
22 | #include "src/gpu/GrProcessor.h" |
23 | #include "src/gpu/GrProgramInfo.h" |
24 | #include "src/gpu/GrResourceProvider.h" |
25 | #include "src/gpu/GrStyle.h" |
26 | #include "src/gpu/effects/GrBezierEffect.h" |
27 | #include "src/gpu/geometry/GrPathUtils.h" |
28 | #include "src/gpu/geometry/GrShape.h" |
29 | #include "src/gpu/ops/GrAAHairLinePathRenderer.h" |
30 | #include "src/gpu/ops/GrMeshDrawOp.h" |
31 | #include "src/gpu/ops/GrSimpleMeshDrawOpHelperWithStencil.h" |
32 | |
33 | #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> |
34 | |
35 | // quadratics are rendered as 5-sided polys in order to bound the |
36 | // AA stroke around the center-curve. See comments in push_quad_index_buffer and |
37 | // bloat_quad. Quadratics and conics share an index buffer |
38 | |
39 | // lines are rendered as: |
40 | // *______________* |
41 | // |\ -_______ /| |
42 | // | \ \ / | |
43 | // | *--------* | |
44 | // | / ______/ \ | |
45 | // */_-__________\* |
46 | // For: 6 vertices and 18 indices (for 6 triangles) |
47 | |
48 | // Each quadratic is rendered as a five sided polygon. This poly bounds |
49 | // the quadratic's bounding triangle but has been expanded so that the |
50 | // 1-pixel wide area around the curve is inside the poly. |
51 | // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 |
52 | // that is rendered would look like this: |
53 | // b0 |
54 | // b |
55 | // |
56 | // a0 c0 |
57 | // a c |
58 | // a1 c1 |
59 | // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0)) |
60 | // specified by these 9 indices: |
61 | static const uint16_t kQuadIdxBufPattern[] = { |
62 | 0, 1, 2, |
63 | 2, 4, 3, |
64 | 1, 4, 2 |
65 | }; |
66 | |
67 | static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern); |
68 | static const int kQuadNumVertices = 5; |
69 | static const int kQuadsNumInIdxBuffer = 256; |
70 | GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); |
71 | |
72 | static sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) { |
73 | GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); |
74 | return resourceProvider->findOrCreatePatternedIndexBuffer( |
75 | kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices, |
76 | gQuadsIndexBufferKey); |
77 | } |
78 | |
79 | |
80 | // Each line segment is rendered as two quads and two triangles. |
81 | // p0 and p1 have alpha = 1 while all other points have alpha = 0. |
82 | // The four external points are offset 1 pixel perpendicular to the |
83 | // line and half a pixel parallel to the line. |
84 | // |
85 | // p4 p5 |
86 | // p0 p1 |
87 | // p2 p3 |
88 | // |
89 | // Each is drawn as six triangles specified by these 18 indices: |
90 | |
91 | static const uint16_t kLineSegIdxBufPattern[] = { |
92 | 0, 1, 3, |
93 | 0, 3, 2, |
94 | 0, 4, 5, |
95 | 0, 5, 1, |
96 | 0, 2, 4, |
97 | 1, 5, 3 |
98 | }; |
99 | |
100 | static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern); |
101 | static const int kLineSegNumVertices = 6; |
102 | static const int kLineSegsNumInIdxBuffer = 256; |
103 | |
104 | GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); |
105 | |
106 | static sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) { |
107 | GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); |
108 | return resourceProvider->findOrCreatePatternedIndexBuffer( |
109 | kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices, |
110 | gLinesIndexBufferKey); |
111 | } |
112 | |
113 | // Takes 178th time of logf on Z600 / VC2010 |
114 | static int get_float_exp(float x) { |
115 | static_assert(sizeof(int) == sizeof(float)); |
116 | #ifdef SK_DEBUG |
117 | static bool tested; |
118 | if (!tested) { |
119 | tested = true; |
120 | SkASSERT(get_float_exp(0.25f) == -2); |
121 | SkASSERT(get_float_exp(0.3f) == -2); |
122 | SkASSERT(get_float_exp(0.5f) == -1); |
123 | SkASSERT(get_float_exp(1.f) == 0); |
124 | SkASSERT(get_float_exp(2.f) == 1); |
125 | SkASSERT(get_float_exp(2.5f) == 1); |
126 | SkASSERT(get_float_exp(8.f) == 3); |
127 | SkASSERT(get_float_exp(100.f) == 6); |
128 | SkASSERT(get_float_exp(1000.f) == 9); |
129 | SkASSERT(get_float_exp(1024.f) == 10); |
130 | SkASSERT(get_float_exp(3000000.f) == 21); |
131 | } |
132 | #endif |
133 | const int* iptr = (const int*)&x; |
134 | return (((*iptr) & 0x7f800000) >> 23) - 127; |
135 | } |
136 | |
137 | // Uses the max curvature function for quads to estimate |
138 | // where to chop the conic. If the max curvature is not |
139 | // found along the curve segment it will return 1 and |
140 | // dst[0] is the original conic. If it returns 2 the dst[0] |
141 | // and dst[1] are the two new conics. |
142 | static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
143 | SkScalar t = SkFindQuadMaxCurvature(src); |
144 | if (t == 0 || t == 1) { |
145 | if (dst) { |
146 | dst[0].set(src, weight); |
147 | } |
148 | return 1; |
149 | } else { |
150 | if (dst) { |
151 | SkConic conic; |
152 | conic.set(src, weight); |
153 | if (!conic.chopAt(t, dst)) { |
154 | dst[0].set(src, weight); |
155 | return 1; |
156 | } |
157 | } |
158 | return 2; |
159 | } |
160 | } |
161 | |
162 | // Calls split_conic on the entire conic and then once more on each subsection. |
163 | // Most cases will result in either 1 conic (chop point is not within t range) |
164 | // or 3 points (split once and then one subsection is split again). |
165 | static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { |
166 | SkConic dstTemp[2]; |
167 | int conicCnt = split_conic(src, dstTemp, weight); |
168 | if (2 == conicCnt) { |
169 | int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); |
170 | conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); |
171 | } else { |
172 | dst[0] = dstTemp[0]; |
173 | } |
174 | return conicCnt; |
175 | } |
176 | |
177 | // returns 0 if quad/conic is degen or close to it |
178 | // in this case approx the path with lines |
179 | // otherwise returns 1 |
180 | static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) { |
181 | static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance; |
182 | static const SkScalar gDegenerateToLineTolSqd = |
183 | gDegenerateToLineTol * gDegenerateToLineTol; |
184 | |
185 | if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd || |
186 | SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) { |
187 | return 1; |
188 | } |
189 | |
190 | *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]); |
191 | if (*dsqd < gDegenerateToLineTolSqd) { |
192 | return 1; |
193 | } |
194 | |
195 | if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) { |
196 | return 1; |
197 | } |
198 | return 0; |
199 | } |
200 | |
201 | static int is_degen_quad_or_conic(const SkPoint p[3]) { |
202 | SkScalar dsqd; |
203 | return is_degen_quad_or_conic(p, &dsqd); |
204 | } |
205 | |
206 | // we subdivide the quads to avoid huge overfill |
207 | // if it returns -1 then should be drawn as lines |
208 | static int num_quad_subdivs(const SkPoint p[3]) { |
209 | SkScalar dsqd; |
210 | if (is_degen_quad_or_conic(p, &dsqd)) { |
211 | return -1; |
212 | } |
213 | |
214 | // tolerance of triangle height in pixels |
215 | // tuned on windows Quadro FX 380 / Z600 |
216 | // trade off of fill vs cpu time on verts |
217 | // maybe different when do this using gpu (geo or tess shaders) |
218 | static const SkScalar gSubdivTol = 175 * SK_Scalar1; |
219 | |
220 | if (dsqd <= gSubdivTol * gSubdivTol) { |
221 | return 0; |
222 | } else { |
223 | static const int kMaxSub = 4; |
224 | // subdividing the quad reduces d by 4. so we want x = log4(d/tol) |
225 | // = log4(d*d/tol*tol)/2 |
226 | // = log2(d*d/tol*tol) |
227 | |
228 | // +1 since we're ignoring the mantissa contribution. |
229 | int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; |
230 | log = std::min(std::max(0, log), kMaxSub); |
231 | return log; |
232 | } |
233 | } |
234 | |
235 | /** |
236 | * Generates the lines and quads to be rendered. Lines are always recorded in |
237 | * device space. We will do a device space bloat to account for the 1pixel |
238 | * thickness. |
239 | * Quads are recorded in device space unless m contains |
240 | * perspective, then in they are in src space. We do this because we will |
241 | * subdivide large quads to reduce over-fill. This subdivision has to be |
242 | * performed before applying the perspective matrix. |
243 | */ |
244 | static int gather_lines_and_quads(const SkPath& path, |
245 | const SkMatrix& m, |
246 | const SkIRect& devClipBounds, |
247 | SkScalar capLength, |
248 | bool convertConicsToQuads, |
249 | GrAAHairLinePathRenderer::PtArray* lines, |
250 | GrAAHairLinePathRenderer::PtArray* quads, |
251 | GrAAHairLinePathRenderer::PtArray* conics, |
252 | GrAAHairLinePathRenderer::IntArray* quadSubdivCnts, |
253 | GrAAHairLinePathRenderer::FloatArray* conicWeights) { |
254 | SkPath::Iter iter(path, false); |
255 | |
256 | int totalQuadCount = 0; |
257 | SkRect bounds; |
258 | SkIRect ibounds; |
259 | |
260 | bool persp = m.hasPerspective(); |
261 | |
262 | // Whenever a degenerate, zero-length contour is encountered, this code will insert a |
263 | // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will |
264 | // suffice for AA square & circle capping. |
265 | int verbsInContour = 0; // Does not count moves |
266 | bool seenZeroLengthVerb = false; |
267 | SkPoint zeroVerbPt; |
268 | |
269 | // Adds a quad that has already been chopped to the list and checks for quads that are close to |
270 | // lines. Also does a bounding box check. It takes points that are in src space and device |
271 | // space. The src points are only required if the view matrix has perspective. |
272 | auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4], |
273 | bool isContourStart) { |
274 | SkRect bounds; |
275 | SkIRect ibounds; |
276 | bounds.setBounds(devPts, 3); |
277 | bounds.outset(SK_Scalar1, SK_Scalar1); |
278 | bounds.roundOut(&ibounds); |
279 | // We only need the src space space pts when not in perspective. |
280 | SkASSERT(srcPts || !persp); |
281 | if (SkIRect::Intersects(devClipBounds, ibounds)) { |
282 | int subdiv = num_quad_subdivs(devPts); |
283 | SkASSERT(subdiv >= -1); |
284 | if (-1 == subdiv) { |
285 | SkPoint* pts = lines->push_back_n(4); |
286 | pts[0] = devPts[0]; |
287 | pts[1] = devPts[1]; |
288 | pts[2] = devPts[1]; |
289 | pts[3] = devPts[2]; |
290 | if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) { |
291 | seenZeroLengthVerb = true; |
292 | zeroVerbPt = pts[0]; |
293 | } |
294 | } else { |
295 | // when in perspective keep quads in src space |
296 | const SkPoint* qPts = persp ? srcPts : devPts; |
297 | SkPoint* pts = quads->push_back_n(3); |
298 | pts[0] = qPts[0]; |
299 | pts[1] = qPts[1]; |
300 | pts[2] = qPts[2]; |
301 | quadSubdivCnts->push_back() = subdiv; |
302 | totalQuadCount += 1 << subdiv; |
303 | } |
304 | } |
305 | }; |
306 | |
307 | // Applies the view matrix to quad src points and calls the above helper. |
308 | auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) { |
309 | SkPoint devPts[3]; |
310 | m.mapPoints(devPts, srcSpaceQuadPts, 3); |
311 | addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart); |
312 | }; |
313 | |
314 | for (;;) { |
315 | SkPoint pathPts[4]; |
316 | SkPath::Verb verb = iter.next(pathPts); |
317 | switch (verb) { |
318 | case SkPath::kConic_Verb: |
319 | if (convertConicsToQuads) { |
320 | SkScalar weight = iter.conicWeight(); |
321 | SkAutoConicToQuads converter; |
322 | const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.25f); |
323 | for (int i = 0; i < converter.countQuads(); ++i) { |
324 | addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i); |
325 | } |
326 | } else { |
327 | SkConic dst[4]; |
328 | // We chop the conics to create tighter clipping to hide error |
329 | // that appears near max curvature of very thin conics. Thin |
330 | // hyperbolas with high weight still show error. |
331 | int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); |
332 | for (int i = 0; i < conicCnt; ++i) { |
333 | SkPoint devPts[4]; |
334 | SkPoint* chopPnts = dst[i].fPts; |
335 | m.mapPoints(devPts, chopPnts, 3); |
336 | bounds.setBounds(devPts, 3); |
337 | bounds.outset(SK_Scalar1, SK_Scalar1); |
338 | bounds.roundOut(&ibounds); |
339 | if (SkIRect::Intersects(devClipBounds, ibounds)) { |
340 | if (is_degen_quad_or_conic(devPts)) { |
341 | SkPoint* pts = lines->push_back_n(4); |
342 | pts[0] = devPts[0]; |
343 | pts[1] = devPts[1]; |
344 | pts[2] = devPts[1]; |
345 | pts[3] = devPts[2]; |
346 | if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] && |
347 | pts[2] == pts[3]) { |
348 | seenZeroLengthVerb = true; |
349 | zeroVerbPt = pts[0]; |
350 | } |
351 | } else { |
352 | // when in perspective keep conics in src space |
353 | SkPoint* cPts = persp ? chopPnts : devPts; |
354 | SkPoint* pts = conics->push_back_n(3); |
355 | pts[0] = cPts[0]; |
356 | pts[1] = cPts[1]; |
357 | pts[2] = cPts[2]; |
358 | conicWeights->push_back() = dst[i].fW; |
359 | } |
360 | } |
361 | } |
362 | } |
363 | verbsInContour++; |
364 | break; |
365 | case SkPath::kMove_Verb: |
366 | // New contour (and last one was unclosed). If it was just a zero length drawing |
367 | // operation, and we're supposed to draw caps, then add a tiny line. |
368 | if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) { |
369 | SkPoint* pts = lines->push_back_n(2); |
370 | pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY); |
371 | pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY); |
372 | } |
373 | verbsInContour = 0; |
374 | seenZeroLengthVerb = false; |
375 | break; |
376 | case SkPath::kLine_Verb: { |
377 | SkPoint devPts[2]; |
378 | m.mapPoints(devPts, pathPts, 2); |
379 | bounds.setBounds(devPts, 2); |
380 | bounds.outset(SK_Scalar1, SK_Scalar1); |
381 | bounds.roundOut(&ibounds); |
382 | if (SkIRect::Intersects(devClipBounds, ibounds)) { |
383 | SkPoint* pts = lines->push_back_n(2); |
384 | pts[0] = devPts[0]; |
385 | pts[1] = devPts[1]; |
386 | if (verbsInContour == 0 && pts[0] == pts[1]) { |
387 | seenZeroLengthVerb = true; |
388 | zeroVerbPt = pts[0]; |
389 | } |
390 | } |
391 | verbsInContour++; |
392 | break; |
393 | } |
394 | case SkPath::kQuad_Verb: { |
395 | SkPoint choppedPts[5]; |
396 | // Chopping the quad helps when the quad is either degenerate or nearly degenerate. |
397 | // When it is degenerate it allows the approximation with lines to work since the |
398 | // chop point (if there is one) will be at the parabola's vertex. In the nearly |
399 | // degenerate the QuadUVMatrix computed for the points is almost singular which |
400 | // can cause rendering artifacts. |
401 | int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); |
402 | for (int i = 0; i < n; ++i) { |
403 | addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i); |
404 | } |
405 | verbsInContour++; |
406 | break; |
407 | } |
408 | case SkPath::kCubic_Verb: { |
409 | SkPoint devPts[4]; |
410 | m.mapPoints(devPts, pathPts, 4); |
411 | bounds.setBounds(devPts, 4); |
412 | bounds.outset(SK_Scalar1, SK_Scalar1); |
413 | bounds.roundOut(&ibounds); |
414 | if (SkIRect::Intersects(devClipBounds, ibounds)) { |
415 | PREALLOC_PTARRAY(32) q; |
416 | // We convert cubics to quadratics (for now). |
417 | // In perspective have to do conversion in src space. |
418 | if (persp) { |
419 | SkScalar tolScale = |
420 | GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds()); |
421 | GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q); |
422 | } else { |
423 | GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q); |
424 | } |
425 | for (int i = 0; i < q.count(); i += 3) { |
426 | if (persp) { |
427 | addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i); |
428 | } else { |
429 | addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i); |
430 | } |
431 | } |
432 | } |
433 | verbsInContour++; |
434 | break; |
435 | } |
436 | case SkPath::kClose_Verb: |
437 | // Contour is closed, so we don't need to grow the starting line, unless it's |
438 | // *just* a zero length subpath. (SVG Spec 11.4, 'stroke'). |
439 | if (capLength > 0) { |
440 | if (seenZeroLengthVerb && verbsInContour == 1) { |
441 | SkPoint* pts = lines->push_back_n(2); |
442 | pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY); |
443 | pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY); |
444 | } else if (verbsInContour == 0) { |
445 | // Contour was (moveTo, close). Add a line. |
446 | SkPoint devPts[2]; |
447 | m.mapPoints(devPts, pathPts, 1); |
448 | devPts[1] = devPts[0]; |
449 | bounds.setBounds(devPts, 2); |
450 | bounds.outset(SK_Scalar1, SK_Scalar1); |
451 | bounds.roundOut(&ibounds); |
452 | if (SkIRect::Intersects(devClipBounds, ibounds)) { |
453 | SkPoint* pts = lines->push_back_n(2); |
454 | pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY); |
455 | pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY); |
456 | } |
457 | } |
458 | } |
459 | break; |
460 | case SkPath::kDone_Verb: |
461 | if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) { |
462 | // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is |
463 | // degenerate, we need to draw a line. |
464 | SkPoint* pts = lines->push_back_n(2); |
465 | pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY); |
466 | pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY); |
467 | } |
468 | return totalQuadCount; |
469 | } |
470 | } |
471 | } |
472 | |
473 | struct LineVertex { |
474 | SkPoint fPos; |
475 | float fCoverage; |
476 | }; |
477 | |
478 | struct BezierVertex { |
479 | SkPoint fPos; |
480 | union { |
481 | struct { |
482 | SkScalar fKLM[3]; |
483 | } fConic; |
484 | SkVector fQuadCoord; |
485 | struct { |
486 | SkScalar fBogus[4]; |
487 | }; |
488 | }; |
489 | }; |
490 | |
491 | static_assert(sizeof(BezierVertex) == 3 * sizeof(SkPoint)); |
492 | |
493 | static void intersect_lines(const SkPoint& ptA, const SkVector& normA, |
494 | const SkPoint& ptB, const SkVector& normB, |
495 | SkPoint* result) { |
496 | |
497 | SkScalar lineAW = -normA.dot(ptA); |
498 | SkScalar lineBW = -normB.dot(ptB); |
499 | |
500 | SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX; |
501 | wInv = SkScalarInvert(wInv); |
502 | if (!SkScalarIsFinite(wInv)) { |
503 | // lines are parallel, pick the point in between |
504 | *result = (ptA + ptB)*SK_ScalarHalf; |
505 | *result += normA; |
506 | } else { |
507 | result->fX = normA.fY * lineBW - lineAW * normB.fY; |
508 | result->fX *= wInv; |
509 | |
510 | result->fY = lineAW * normB.fX - normA.fX * lineBW; |
511 | result->fY *= wInv; |
512 | } |
513 | } |
514 | |
515 | static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) { |
516 | // this should be in the src space, not dev coords, when we have perspective |
517 | GrPathUtils::QuadUVMatrix DevToUV(qpts); |
518 | DevToUV.apply(verts, kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)); |
519 | } |
520 | |
521 | static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, |
522 | const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) { |
523 | SkASSERT(!toDevice == !toSrc); |
524 | // original quad is specified by tri a,b,c |
525 | SkPoint a = qpts[0]; |
526 | SkPoint b = qpts[1]; |
527 | SkPoint c = qpts[2]; |
528 | |
529 | if (toDevice) { |
530 | toDevice->mapPoints(&a, 1); |
531 | toDevice->mapPoints(&b, 1); |
532 | toDevice->mapPoints(&c, 1); |
533 | } |
534 | // make a new poly where we replace a and c by a 1-pixel wide edges orthog |
535 | // to edges ab and bc: |
536 | // |
537 | // before | after |
538 | // | b0 |
539 | // b | |
540 | // | |
541 | // | a0 c0 |
542 | // a c | a1 c1 |
543 | // |
544 | // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, |
545 | // respectively. |
546 | BezierVertex& a0 = verts[0]; |
547 | BezierVertex& a1 = verts[1]; |
548 | BezierVertex& b0 = verts[2]; |
549 | BezierVertex& c0 = verts[3]; |
550 | BezierVertex& c1 = verts[4]; |
551 | |
552 | SkVector ab = b; |
553 | ab -= a; |
554 | SkVector ac = c; |
555 | ac -= a; |
556 | SkVector cb = b; |
557 | cb -= c; |
558 | |
559 | // After the transform we might have a line, try to do something reasonable |
560 | if (toDevice && SkPointPriv::LengthSqd(ab) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
561 | ab = cb; |
562 | } |
563 | if (toDevice && SkPointPriv::LengthSqd(cb) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
564 | cb = ab; |
565 | } |
566 | |
567 | // We should have already handled degenerates |
568 | SkASSERT(toDevice || (ab.length() > 0 && cb.length() > 0)); |
569 | |
570 | ab.normalize(); |
571 | SkVector abN = SkPointPriv::MakeOrthog(ab, SkPointPriv::kLeft_Side); |
572 | if (abN.dot(ac) > 0) { |
573 | abN.negate(); |
574 | } |
575 | |
576 | cb.normalize(); |
577 | SkVector cbN = SkPointPriv::MakeOrthog(cb, SkPointPriv::kLeft_Side); |
578 | if (cbN.dot(ac) < 0) { |
579 | cbN.negate(); |
580 | } |
581 | |
582 | a0.fPos = a; |
583 | a0.fPos += abN; |
584 | a1.fPos = a; |
585 | a1.fPos -= abN; |
586 | |
587 | if (toDevice && SkPointPriv::LengthSqd(ac) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) { |
588 | c = b; |
589 | } |
590 | c0.fPos = c; |
591 | c0.fPos += cbN; |
592 | c1.fPos = c; |
593 | c1.fPos -= cbN; |
594 | |
595 | intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); |
596 | |
597 | if (toSrc) { |
598 | SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex), |
599 | kQuadNumVertices); |
600 | } |
601 | } |
602 | |
603 | // Equations based off of Loop-Blinn Quadratic GPU Rendering |
604 | // Input Parametric: |
605 | // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) |
606 | // Output Implicit: |
607 | // f(x, y, w) = f(P) = K^2 - LM |
608 | // K = dot(k, P), L = dot(l, P), M = dot(m, P) |
609 | // k, l, m are calculated in function GrPathUtils::getConicKLM |
610 | static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices], |
611 | const SkScalar weight) { |
612 | SkMatrix klm; |
613 | |
614 | GrPathUtils::getConicKLM(p, weight, &klm); |
615 | |
616 | for (int i = 0; i < kQuadNumVertices; ++i) { |
617 | const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f}; |
618 | klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1); |
619 | } |
620 | } |
621 | |
622 | static void add_conics(const SkPoint p[3], |
623 | const SkScalar weight, |
624 | const SkMatrix* toDevice, |
625 | const SkMatrix* toSrc, |
626 | BezierVertex** vert) { |
627 | bloat_quad(p, toDevice, toSrc, *vert); |
628 | set_conic_coeffs(p, *vert, weight); |
629 | *vert += kQuadNumVertices; |
630 | } |
631 | |
632 | static void add_quads(const SkPoint p[3], |
633 | int subdiv, |
634 | const SkMatrix* toDevice, |
635 | const SkMatrix* toSrc, |
636 | BezierVertex** vert) { |
637 | SkASSERT(subdiv >= 0); |
638 | if (subdiv) { |
639 | SkPoint newP[5]; |
640 | SkChopQuadAtHalf(p, newP); |
641 | add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert); |
642 | add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert); |
643 | } else { |
644 | bloat_quad(p, toDevice, toSrc, *vert); |
645 | set_uv_quad(p, *vert); |
646 | *vert += kQuadNumVertices; |
647 | } |
648 | } |
649 | |
650 | static void add_line(const SkPoint p[2], |
651 | const SkMatrix* toSrc, |
652 | uint8_t coverage, |
653 | LineVertex** vert) { |
654 | const SkPoint& a = p[0]; |
655 | const SkPoint& b = p[1]; |
656 | |
657 | SkVector ortho, vec = b; |
658 | vec -= a; |
659 | |
660 | SkScalar lengthSqd = SkPointPriv::LengthSqd(vec); |
661 | |
662 | if (vec.setLength(SK_ScalarHalf)) { |
663 | // Create a vector orthogonal to 'vec' and of unit length |
664 | ortho.fX = 2.0f * vec.fY; |
665 | ortho.fY = -2.0f * vec.fX; |
666 | |
667 | float floatCoverage = GrNormalizeByteToFloat(coverage); |
668 | |
669 | if (lengthSqd >= 1.0f) { |
670 | // Relative to points a and b: |
671 | // The inner vertices are inset half a pixel along the line a,b |
672 | (*vert)[0].fPos = a + vec; |
673 | (*vert)[0].fCoverage = floatCoverage; |
674 | (*vert)[1].fPos = b - vec; |
675 | (*vert)[1].fCoverage = floatCoverage; |
676 | } else { |
677 | // The inner vertices are inset a distance of length(a,b) from the outer edge of |
678 | // geometry. For the "a" inset this is the same as insetting from b by half a pixel. |
679 | // The coverage is then modulated by the length. This gives us the correct |
680 | // coverage for rects shorter than a pixel as they get translated subpixel amounts |
681 | // inside of a pixel. |
682 | SkScalar length = SkScalarSqrt(lengthSqd); |
683 | (*vert)[0].fPos = b - vec; |
684 | (*vert)[0].fCoverage = floatCoverage * length; |
685 | (*vert)[1].fPos = a + vec; |
686 | (*vert)[1].fCoverage = floatCoverage * length; |
687 | } |
688 | // Relative to points a and b: |
689 | // The outer vertices are outset half a pixel along the line a,b and then a whole pixel |
690 | // orthogonally. |
691 | (*vert)[2].fPos = a - vec + ortho; |
692 | (*vert)[2].fCoverage = 0; |
693 | (*vert)[3].fPos = b + vec + ortho; |
694 | (*vert)[3].fCoverage = 0; |
695 | (*vert)[4].fPos = a - vec - ortho; |
696 | (*vert)[4].fCoverage = 0; |
697 | (*vert)[5].fPos = b + vec - ortho; |
698 | (*vert)[5].fCoverage = 0; |
699 | |
700 | if (toSrc) { |
701 | SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex), |
702 | kLineSegNumVertices); |
703 | } |
704 | } else { |
705 | // just make it degenerate and likely offscreen |
706 | for (int i = 0; i < kLineSegNumVertices; ++i) { |
707 | (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); |
708 | } |
709 | } |
710 | |
711 | *vert += kLineSegNumVertices; |
712 | } |
713 | |
714 | /////////////////////////////////////////////////////////////////////////////// |
715 | |
716 | GrPathRenderer::CanDrawPath |
717 | GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { |
718 | if (GrAAType::kCoverage != args.fAAType) { |
719 | return CanDrawPath::kNo; |
720 | } |
721 | |
722 | if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) { |
723 | return CanDrawPath::kNo; |
724 | } |
725 | |
726 | // We don't currently handle dashing in this class though perhaps we should. |
727 | if (args.fShape->style().pathEffect()) { |
728 | return CanDrawPath::kNo; |
729 | } |
730 | |
731 | if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() || |
732 | args.fCaps->shaderCaps()->shaderDerivativeSupport()) { |
733 | return CanDrawPath::kYes; |
734 | } |
735 | |
736 | return CanDrawPath::kNo; |
737 | } |
738 | |
739 | template <class VertexType> |
740 | bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount) |
741 | { |
742 | SkRect tolDevBounds = devBounds; |
743 | // The bounds ought to be tight, but in perspective the below code runs the verts |
744 | // through the view matrix to get back to dev coords, which can introduce imprecision. |
745 | if (viewMatrix.hasPerspective()) { |
746 | tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000); |
747 | } else { |
748 | // Non-persp matrices cause this path renderer to draw in device space. |
749 | SkASSERT(viewMatrix.isIdentity()); |
750 | } |
751 | SkRect actualBounds; |
752 | |
753 | VertexType* verts = reinterpret_cast<VertexType*>(vertices); |
754 | bool first = true; |
755 | for (int i = 0; i < vCount; ++i) { |
756 | SkPoint pos = verts[i].fPos; |
757 | // This is a hack to workaround the fact that we move some degenerate segments offscreen. |
758 | if (SK_ScalarMax == pos.fX) { |
759 | continue; |
760 | } |
761 | viewMatrix.mapPoints(&pos, 1); |
762 | if (first) { |
763 | actualBounds.setLTRB(pos.fX, pos.fY, pos.fX, pos.fY); |
764 | first = false; |
765 | } else { |
766 | SkRectPriv::GrowToInclude(&actualBounds, pos); |
767 | } |
768 | } |
769 | if (!first) { |
770 | return tolDevBounds.contains(actualBounds); |
771 | } |
772 | |
773 | return true; |
774 | } |
775 | |
776 | class AAHairlineOp final : public GrMeshDrawOp { |
777 | private: |
778 | using Helper = GrSimpleMeshDrawOpHelperWithStencil; |
779 | |
780 | public: |
781 | DEFINE_OP_CLASS_ID |
782 | |
783 | static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
784 | GrPaint&& paint, |
785 | const SkMatrix& viewMatrix, |
786 | const SkPath& path, |
787 | const GrStyle& style, |
788 | const SkIRect& devClipBounds, |
789 | const GrUserStencilSettings* stencilSettings) { |
790 | SkScalar hairlineCoverage; |
791 | uint8_t newCoverage = 0xff; |
792 | if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) { |
793 | newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff); |
794 | } |
795 | |
796 | const SkStrokeRec& stroke = style.strokeRec(); |
797 | SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f; |
798 | |
799 | return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage, |
800 | viewMatrix, path, |
801 | devClipBounds, capLength, stencilSettings); |
802 | } |
803 | |
804 | AAHairlineOp(const Helper::MakeArgs& helperArgs, |
805 | const SkPMColor4f& color, |
806 | uint8_t coverage, |
807 | const SkMatrix& viewMatrix, |
808 | const SkPath& path, |
809 | SkIRect devClipBounds, |
810 | SkScalar capLength, |
811 | const GrUserStencilSettings* stencilSettings) |
812 | : INHERITED(ClassID()) |
813 | , fHelper(helperArgs, GrAAType::kCoverage, stencilSettings) |
814 | , fColor(color) |
815 | , fCoverage(coverage) { |
816 | fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength}); |
817 | |
818 | this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes, |
819 | IsHairline::kYes); |
820 | } |
821 | |
822 | const char* name() const override { return "AAHairlineOp" ; } |
823 | |
824 | void visitProxies(const VisitProxyFunc& func) const override { |
825 | |
826 | bool visited = false; |
827 | for (int i = 0; i < 3; ++i) { |
828 | if (fProgramInfos[i]) { |
829 | fProgramInfos[i]->visitFPProxies(func); |
830 | visited = true; |
831 | } |
832 | } |
833 | |
834 | if (!visited) { |
835 | fHelper.visitProxies(func); |
836 | } |
837 | } |
838 | |
839 | #ifdef SK_DEBUG |
840 | SkString dumpInfo() const override { |
841 | SkString string; |
842 | string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n" , fColor.toBytes_RGBA(), |
843 | fCoverage, fPaths.count()); |
844 | string += INHERITED::dumpInfo(); |
845 | string += fHelper.dumpInfo(); |
846 | return string; |
847 | } |
848 | #endif |
849 | |
850 | FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
851 | |
852 | GrProcessorSet::Analysis finalize( |
853 | const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
854 | GrClampType clampType) override { |
855 | // This Op uses uniform (not vertex) color, so doesn't need to track wide color. |
856 | return fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType, |
857 | GrProcessorAnalysisCoverage::kSingleChannel, &fColor, |
858 | nullptr); |
859 | } |
860 | |
861 | enum Program : uint8_t { |
862 | kNone_Program = 0x0, |
863 | kLine_Program = 0x1, |
864 | kQuad_Program = 0x2, |
865 | kConic_Program = 0x4, |
866 | }; |
867 | |
868 | private: |
869 | void makeLineProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*, |
870 | const GrSurfaceProxyView* writeView, |
871 | const SkMatrix* geometryProcessorViewM, |
872 | const SkMatrix* geometryProcessorLocalM); |
873 | void makeQuadProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*, |
874 | const GrSurfaceProxyView* writeView, |
875 | const SkMatrix* geometryProcessorViewM, |
876 | const SkMatrix* geometryProcessorLocalM); |
877 | void makeConicProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*, |
878 | const GrSurfaceProxyView* writeView, |
879 | const SkMatrix* geometryProcessorViewM, |
880 | const SkMatrix* geometryProcessorLocalM); |
881 | |
882 | GrProgramInfo* programInfo() override { |
883 | // This Op has 3 programInfos and implements its own onPrePrepareDraws so this entry point |
884 | // should really never be called. |
885 | SkASSERT(0); |
886 | return nullptr; |
887 | } |
888 | |
889 | Program predictPrograms(const GrCaps*) const; |
890 | |
891 | void onCreateProgramInfo(const GrCaps*, |
892 | SkArenaAlloc*, |
893 | const GrSurfaceProxyView* writeView, |
894 | GrAppliedClip&&, |
895 | const GrXferProcessor::DstProxyView&) override; |
896 | |
897 | void onPrePrepareDraws(GrRecordingContext*, |
898 | const GrSurfaceProxyView* writeView, |
899 | GrAppliedClip*, |
900 | const GrXferProcessor::DstProxyView&) override; |
901 | |
902 | void onPrepareDraws(Target*) override; |
903 | void onExecute(GrOpFlushState*, const SkRect& chainBounds) override; |
904 | |
905 | typedef SkTArray<SkPoint, true> PtArray; |
906 | typedef SkTArray<int, true> IntArray; |
907 | typedef SkTArray<float, true> FloatArray; |
908 | |
909 | CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*, |
910 | const GrCaps& caps) override { |
911 | AAHairlineOp* that = t->cast<AAHairlineOp>(); |
912 | |
913 | if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
914 | return CombineResult::kCannotCombine; |
915 | } |
916 | |
917 | if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) { |
918 | return CombineResult::kCannotCombine; |
919 | } |
920 | |
921 | // We go to identity if we don't have perspective |
922 | if (this->viewMatrix().hasPerspective() && |
923 | !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) { |
924 | return CombineResult::kCannotCombine; |
925 | } |
926 | |
927 | // TODO we can actually combine hairlines if they are the same color in a kind of bulk |
928 | // method but we haven't implemented this yet |
929 | // TODO investigate going to vertex color and coverage? |
930 | if (this->coverage() != that->coverage()) { |
931 | return CombineResult::kCannotCombine; |
932 | } |
933 | |
934 | if (this->color() != that->color()) { |
935 | return CombineResult::kCannotCombine; |
936 | } |
937 | |
938 | if (fHelper.usesLocalCoords() && !SkMatrixPriv::CheapEqual(this->viewMatrix(), |
939 | that->viewMatrix())) { |
940 | return CombineResult::kCannotCombine; |
941 | } |
942 | |
943 | fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin()); |
944 | return CombineResult::kMerged; |
945 | } |
946 | |
947 | const SkPMColor4f& color() const { return fColor; } |
948 | uint8_t coverage() const { return fCoverage; } |
949 | const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; } |
950 | |
951 | struct PathData { |
952 | SkMatrix fViewMatrix; |
953 | SkPath fPath; |
954 | SkIRect fDevClipBounds; |
955 | SkScalar fCapLength; |
956 | }; |
957 | |
958 | SkSTArray<1, PathData, true> fPaths; |
959 | Helper fHelper; |
960 | SkPMColor4f fColor; |
961 | uint8_t fCoverage; |
962 | |
963 | Program fCharacterization = kNone_Program; // holds a mask of required programs |
964 | GrSimpleMesh* fMeshes[3] = { nullptr }; |
965 | GrProgramInfo* fProgramInfos[3] = { nullptr }; |
966 | |
967 | typedef GrMeshDrawOp INHERITED; |
968 | }; |
969 | |
970 | GR_MAKE_BITFIELD_OPS(AAHairlineOp::Program) |
971 | |
972 | void AAHairlineOp::makeLineProgramInfo(const GrCaps& caps, SkArenaAlloc* arena, |
973 | const GrPipeline* pipeline, |
974 | const GrSurfaceProxyView* writeView, |
975 | const SkMatrix* geometryProcessorViewM, |
976 | const SkMatrix* geometryProcessorLocalM) { |
977 | if (fProgramInfos[0]) { |
978 | return; |
979 | } |
980 | |
981 | GrGeometryProcessor* lineGP; |
982 | { |
983 | using namespace GrDefaultGeoProcFactory; |
984 | |
985 | Color color(this->color()); |
986 | LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type |
987 | : LocalCoords::kUnused_Type); |
988 | localCoords.fMatrix = geometryProcessorLocalM; |
989 | |
990 | lineGP = GrDefaultGeoProcFactory::Make(arena, |
991 | color, |
992 | Coverage::kAttribute_Type, |
993 | localCoords, |
994 | *geometryProcessorViewM); |
995 | SkASSERT(sizeof(LineVertex) == lineGP->vertexStride()); |
996 | } |
997 | |
998 | fProgramInfos[0] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(arena, pipeline, writeView, lineGP, |
999 | GrPrimitiveType::kTriangles); |
1000 | } |
1001 | |
1002 | void AAHairlineOp::makeQuadProgramInfo(const GrCaps& caps, SkArenaAlloc* arena, |
1003 | const GrPipeline* pipeline, |
1004 | const GrSurfaceProxyView* writeView, |
1005 | const SkMatrix* geometryProcessorViewM, |
1006 | const SkMatrix* geometryProcessorLocalM) { |
1007 | if (fProgramInfos[1]) { |
1008 | return; |
1009 | } |
1010 | |
1011 | GrGeometryProcessor* quadGP = GrQuadEffect::Make(arena, |
1012 | this->color(), |
1013 | *geometryProcessorViewM, |
1014 | GrClipEdgeType::kHairlineAA, |
1015 | caps, |
1016 | *geometryProcessorLocalM, |
1017 | fHelper.usesLocalCoords(), |
1018 | this->coverage()); |
1019 | SkASSERT(sizeof(BezierVertex) == quadGP->vertexStride()); |
1020 | |
1021 | fProgramInfos[1] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(arena, pipeline, writeView, quadGP, |
1022 | GrPrimitiveType::kTriangles); |
1023 | } |
1024 | |
1025 | void AAHairlineOp::makeConicProgramInfo(const GrCaps& caps, SkArenaAlloc* arena, |
1026 | const GrPipeline* pipeline, |
1027 | const GrSurfaceProxyView* writeView, |
1028 | const SkMatrix* geometryProcessorViewM, |
1029 | const SkMatrix* geometryProcessorLocalM) { |
1030 | if (fProgramInfos[2]) { |
1031 | return; |
1032 | } |
1033 | |
1034 | GrGeometryProcessor* conicGP = GrConicEffect::Make(arena, |
1035 | this->color(), |
1036 | *geometryProcessorViewM, |
1037 | GrClipEdgeType::kHairlineAA, |
1038 | caps, |
1039 | *geometryProcessorLocalM, |
1040 | fHelper.usesLocalCoords(), |
1041 | this->coverage()); |
1042 | SkASSERT(sizeof(BezierVertex) == conicGP->vertexStride()); |
1043 | |
1044 | fProgramInfos[2] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(arena, pipeline, writeView, conicGP, |
1045 | GrPrimitiveType::kTriangles); |
1046 | } |
1047 | |
1048 | AAHairlineOp::Program AAHairlineOp::predictPrograms(const GrCaps* caps) const { |
1049 | bool convertConicsToQuads = !caps->shaderCaps()->floatIs32Bits(); |
1050 | |
1051 | // When predicting the programs we always include the lineProgram bc it is used as a fallback |
1052 | // for quads and conics. In non-DDL mode there are cases where it sometimes isn't needed for a |
1053 | // given path. |
1054 | Program neededPrograms = kLine_Program; |
1055 | |
1056 | for (int i = 0; i < fPaths.count(); i++) { |
1057 | uint32_t mask = fPaths[i].fPath.getSegmentMasks(); |
1058 | |
1059 | if (mask & (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)) { |
1060 | neededPrograms |= kQuad_Program; |
1061 | } |
1062 | if (mask & SkPath::kConic_SegmentMask) { |
1063 | if (convertConicsToQuads) { |
1064 | neededPrograms |= kQuad_Program; |
1065 | } else { |
1066 | neededPrograms |= kConic_Program; |
1067 | } |
1068 | } |
1069 | } |
1070 | |
1071 | return neededPrograms; |
1072 | } |
1073 | |
1074 | void AAHairlineOp::onCreateProgramInfo(const GrCaps* caps, |
1075 | SkArenaAlloc* arena, |
1076 | const GrSurfaceProxyView* writeView, |
1077 | GrAppliedClip&& appliedClip, |
1078 | const GrXferProcessor::DstProxyView& dstProxyView) { |
1079 | // Setup the viewmatrix and localmatrix for the GrGeometryProcessor. |
1080 | SkMatrix invert; |
1081 | if (!this->viewMatrix().invert(&invert)) { |
1082 | return; |
1083 | } |
1084 | |
1085 | // we will transform to identity space if the viewmatrix does not have perspective |
1086 | bool hasPerspective = this->viewMatrix().hasPerspective(); |
1087 | const SkMatrix* geometryProcessorViewM = &SkMatrix::I(); |
1088 | const SkMatrix* geometryProcessorLocalM = &invert; |
1089 | if (hasPerspective) { |
1090 | geometryProcessorViewM = &this->viewMatrix(); |
1091 | geometryProcessorLocalM = &SkMatrix::I(); |
1092 | } |
1093 | |
1094 | auto pipeline = fHelper.createPipelineWithStencil(caps, arena, writeView->swizzle(), |
1095 | std::move(appliedClip), dstProxyView); |
1096 | |
1097 | if (fCharacterization & kLine_Program) { |
1098 | this->makeLineProgramInfo(*caps, arena, pipeline, writeView, |
1099 | geometryProcessorViewM, geometryProcessorLocalM); |
1100 | } |
1101 | if (fCharacterization & kQuad_Program) { |
1102 | this->makeQuadProgramInfo(*caps, arena, pipeline, writeView, |
1103 | geometryProcessorViewM, geometryProcessorLocalM); |
1104 | } |
1105 | if (fCharacterization & kConic_Program) { |
1106 | this->makeConicProgramInfo(*caps, arena, pipeline, writeView, |
1107 | geometryProcessorViewM, geometryProcessorLocalM); |
1108 | |
1109 | } |
1110 | } |
1111 | |
1112 | void AAHairlineOp::onPrePrepareDraws(GrRecordingContext* context, |
1113 | const GrSurfaceProxyView* writeView, |
1114 | GrAppliedClip* clip, |
1115 | const GrXferProcessor::DstProxyView& dstProxyView) { |
1116 | SkArenaAlloc* arena = context->priv().recordTimeAllocator(); |
1117 | const GrCaps* caps = context->priv().caps(); |
1118 | |
1119 | // This is equivalent to a GrOpFlushState::detachAppliedClip |
1120 | GrAppliedClip appliedClip = clip ? std::move(*clip) : GrAppliedClip(); |
1121 | |
1122 | // Conservatively predict which programs will be required |
1123 | fCharacterization = this->predictPrograms(caps); |
1124 | |
1125 | this->createProgramInfo(caps, arena, writeView, std::move(appliedClip), dstProxyView); |
1126 | |
1127 | context->priv().recordProgramInfo(fProgramInfos[0]); |
1128 | context->priv().recordProgramInfo(fProgramInfos[1]); |
1129 | context->priv().recordProgramInfo(fProgramInfos[2]); |
1130 | } |
1131 | |
1132 | void AAHairlineOp::onPrepareDraws(Target* target) { |
1133 | // Setup the viewmatrix and localmatrix for the GrGeometryProcessor. |
1134 | SkMatrix invert; |
1135 | if (!this->viewMatrix().invert(&invert)) { |
1136 | return; |
1137 | } |
1138 | |
1139 | // we will transform to identity space if the viewmatrix does not have perspective |
1140 | const SkMatrix* toDevice = nullptr; |
1141 | const SkMatrix* toSrc = nullptr; |
1142 | if (this->viewMatrix().hasPerspective()) { |
1143 | toDevice = &this->viewMatrix(); |
1144 | toSrc = &invert; |
1145 | } |
1146 | |
1147 | SkDEBUGCODE(Program predictedPrograms = this->predictPrograms(&target->caps())); |
1148 | Program actualPrograms = kNone_Program; |
1149 | |
1150 | // This is hand inlined for maximum performance. |
1151 | PREALLOC_PTARRAY(128) lines; |
1152 | PREALLOC_PTARRAY(128) quads; |
1153 | PREALLOC_PTARRAY(128) conics; |
1154 | IntArray qSubdivs; |
1155 | FloatArray cWeights; |
1156 | int quadCount = 0; |
1157 | |
1158 | int instanceCount = fPaths.count(); |
1159 | bool convertConicsToQuads = !target->caps().shaderCaps()->floatIs32Bits(); |
1160 | for (int i = 0; i < instanceCount; i++) { |
1161 | const PathData& args = fPaths[i]; |
1162 | quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds, |
1163 | args.fCapLength, convertConicsToQuads, &lines, &quads, |
1164 | &conics, &qSubdivs, &cWeights); |
1165 | } |
1166 | |
1167 | int lineCount = lines.count() / 2; |
1168 | int conicCount = conics.count() / 3; |
1169 | int quadAndConicCount = conicCount + quadCount; |
1170 | |
1171 | static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices; |
1172 | static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices; |
1173 | if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) { |
1174 | return; |
1175 | } |
1176 | |
1177 | // do lines first |
1178 | if (lineCount) { |
1179 | SkASSERT(predictedPrograms & kLine_Program); |
1180 | actualPrograms |= kLine_Program; |
1181 | |
1182 | sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider()); |
1183 | |
1184 | GrMeshDrawOp::PatternHelper helper(target, GrPrimitiveType::kTriangles, sizeof(LineVertex), |
1185 | std::move(linesIndexBuffer), kLineSegNumVertices, |
1186 | kIdxsPerLineSeg, lineCount, kLineSegsNumInIdxBuffer); |
1187 | |
1188 | LineVertex* verts = reinterpret_cast<LineVertex*>(helper.vertices()); |
1189 | if (!verts) { |
1190 | SkDebugf("Could not allocate vertices\n" ); |
1191 | return; |
1192 | } |
1193 | |
1194 | for (int i = 0; i < lineCount; ++i) { |
1195 | add_line(&lines[2*i], toSrc, this->coverage(), &verts); |
1196 | } |
1197 | |
1198 | fMeshes[0] = helper.mesh(); |
1199 | } |
1200 | |
1201 | if (quadCount || conicCount) { |
1202 | sk_sp<const GrBuffer> vertexBuffer; |
1203 | int firstVertex; |
1204 | |
1205 | sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider()); |
1206 | |
1207 | int vertexCount = kQuadNumVertices * quadAndConicCount; |
1208 | void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer, |
1209 | &firstVertex); |
1210 | |
1211 | if (!vertices || !quadsIndexBuffer) { |
1212 | SkDebugf("Could not allocate vertices\n" ); |
1213 | return; |
1214 | } |
1215 | |
1216 | // Setup vertices |
1217 | BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices); |
1218 | |
1219 | int unsubdivQuadCnt = quads.count() / 3; |
1220 | for (int i = 0; i < unsubdivQuadCnt; ++i) { |
1221 | SkASSERT(qSubdivs[i] >= 0); |
1222 | add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts); |
1223 | } |
1224 | |
1225 | // Start Conics |
1226 | for (int i = 0; i < conicCount; ++i) { |
1227 | add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts); |
1228 | } |
1229 | |
1230 | if (quadCount > 0) { |
1231 | SkASSERT(predictedPrograms & kQuad_Program); |
1232 | actualPrograms |= kQuad_Program; |
1233 | |
1234 | fMeshes[1] = target->allocMesh(); |
1235 | fMeshes[1]->setIndexedPatterned(quadsIndexBuffer, kIdxsPerQuad, quadCount, |
1236 | kQuadsNumInIdxBuffer, vertexBuffer, kQuadNumVertices, |
1237 | firstVertex); |
1238 | firstVertex += quadCount * kQuadNumVertices; |
1239 | } |
1240 | |
1241 | if (conicCount > 0) { |
1242 | SkASSERT(predictedPrograms & kConic_Program); |
1243 | actualPrograms |= kConic_Program; |
1244 | |
1245 | fMeshes[2] = target->allocMesh(); |
1246 | fMeshes[2]->setIndexedPatterned(std::move(quadsIndexBuffer), kIdxsPerQuad, conicCount, |
1247 | kQuadsNumInIdxBuffer, std::move(vertexBuffer), |
1248 | kQuadNumVertices, firstVertex); |
1249 | } |
1250 | } |
1251 | |
1252 | // In DDL mode this will replace the predicted program requirements with the actual ones. |
1253 | // However, we will already have surfaced the predicted programs to the DDL. |
1254 | fCharacterization = actualPrograms; |
1255 | } |
1256 | |
1257 | void AAHairlineOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) { |
1258 | this->createProgramInfo(flushState); |
1259 | |
1260 | for (int i = 0; i < 3; ++i) { |
1261 | if (fProgramInfos[i] && fMeshes[i]) { |
1262 | flushState->bindPipelineAndScissorClip(*fProgramInfos[i], chainBounds); |
1263 | flushState->bindTextures(fProgramInfos[i]->primProc(), nullptr, |
1264 | fProgramInfos[i]->pipeline()); |
1265 | flushState->drawMesh(*fMeshes[i]); |
1266 | } |
1267 | } |
1268 | } |
1269 | |
1270 | bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) { |
1271 | GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), |
1272 | "GrAAHairlinePathRenderer::onDrawPath" ); |
1273 | SkASSERT(args.fRenderTargetContext->numSamples() <= 1); |
1274 | |
1275 | SkIRect devClipBounds; |
1276 | args.fClip->getConservativeBounds(args.fRenderTargetContext->width(), |
1277 | args.fRenderTargetContext->height(), |
1278 | &devClipBounds); |
1279 | SkPath path; |
1280 | args.fShape->asPath(&path); |
1281 | std::unique_ptr<GrDrawOp> op = |
1282 | AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path, |
1283 | args.fShape->style(), devClipBounds, args.fUserStencilSettings); |
1284 | args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op)); |
1285 | return true; |
1286 | } |
1287 | |
1288 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
1289 | |
1290 | #if GR_TEST_UTILS |
1291 | |
1292 | GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) { |
1293 | SkMatrix viewMatrix = GrTest::TestMatrix(random); |
1294 | SkPath path = GrTest::TestPath(random); |
1295 | SkIRect devClipBounds; |
1296 | devClipBounds.setEmpty(); |
1297 | return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path, |
1298 | GrStyle::SimpleHairline(), devClipBounds, |
1299 | GrGetRandomStencil(random, context)); |
1300 | } |
1301 | |
1302 | #endif |
1303 | |