| 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkString.h" |
| 9 | #include "include/core/SkTypes.h" |
| 10 | #include "src/core/SkGeometry.h" |
| 11 | #include "src/core/SkPathPriv.h" |
| 12 | #include "src/core/SkPointPriv.h" |
| 13 | #include "src/gpu/GrAuditTrail.h" |
| 14 | #include "src/gpu/GrCaps.h" |
| 15 | #include "src/gpu/GrDrawOpTest.h" |
| 16 | #include "src/gpu/GrGeometryProcessor.h" |
| 17 | #include "src/gpu/GrProcessor.h" |
| 18 | #include "src/gpu/GrProgramInfo.h" |
| 19 | #include "src/gpu/GrRenderTargetContext.h" |
| 20 | #include "src/gpu/GrVertexWriter.h" |
| 21 | #include "src/gpu/geometry/GrPathUtils.h" |
| 22 | #include "src/gpu/geometry/GrShape.h" |
| 23 | #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| 24 | #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" |
| 25 | #include "src/gpu/glsl/GrGLSLProgramDataManager.h" |
| 26 | #include "src/gpu/glsl/GrGLSLUniformHandler.h" |
| 27 | #include "src/gpu/glsl/GrGLSLVarying.h" |
| 28 | #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" |
| 29 | #include "src/gpu/ops/GrAAConvexPathRenderer.h" |
| 30 | #include "src/gpu/ops/GrMeshDrawOp.h" |
| 31 | #include "src/gpu/ops/GrSimpleMeshDrawOpHelperWithStencil.h" |
| 32 | |
| 33 | GrAAConvexPathRenderer::GrAAConvexPathRenderer() { |
| 34 | } |
| 35 | |
| 36 | struct Segment { |
| 37 | enum { |
| 38 | // These enum values are assumed in member functions below. |
| 39 | kLine = 0, |
| 40 | kQuad = 1, |
| 41 | } fType; |
| 42 | |
| 43 | // line uses one pt, quad uses 2 pts |
| 44 | SkPoint fPts[2]; |
| 45 | // normal to edge ending at each pt |
| 46 | SkVector fNorms[2]; |
| 47 | // is the corner where the previous segment meets this segment |
| 48 | // sharp. If so, fMid is a normalized bisector facing outward. |
| 49 | SkVector fMid; |
| 50 | |
| 51 | int countPoints() { |
| 52 | static_assert(0 == kLine && 1 == kQuad); |
| 53 | return fType + 1; |
| 54 | } |
| 55 | const SkPoint& endPt() const { |
| 56 | static_assert(0 == kLine && 1 == kQuad); |
| 57 | return fPts[fType]; |
| 58 | } |
| 59 | const SkPoint& endNorm() const { |
| 60 | static_assert(0 == kLine && 1 == kQuad); |
| 61 | return fNorms[fType]; |
| 62 | } |
| 63 | }; |
| 64 | |
| 65 | typedef SkTArray<Segment, true> SegmentArray; |
| 66 | |
| 67 | static bool center_of_mass(const SegmentArray& segments, SkPoint* c) { |
| 68 | SkScalar area = 0; |
| 69 | SkPoint center = {0, 0}; |
| 70 | int count = segments.count(); |
| 71 | SkPoint p0 = {0, 0}; |
| 72 | if (count > 2) { |
| 73 | // We translate the polygon so that the first point is at the origin. |
| 74 | // This avoids some precision issues with small area polygons far away |
| 75 | // from the origin. |
| 76 | p0 = segments[0].endPt(); |
| 77 | SkPoint pi; |
| 78 | SkPoint pj; |
| 79 | // the first and last iteration of the below loop would compute |
| 80 | // zeros since the starting / ending point is (0,0). So instead we start |
| 81 | // at i=1 and make the last iteration i=count-2. |
| 82 | pj = segments[1].endPt() - p0; |
| 83 | for (int i = 1; i < count - 1; ++i) { |
| 84 | pi = pj; |
| 85 | pj = segments[i + 1].endPt() - p0; |
| 86 | |
| 87 | SkScalar t = SkPoint::CrossProduct(pi, pj); |
| 88 | area += t; |
| 89 | center.fX += (pi.fX + pj.fX) * t; |
| 90 | center.fY += (pi.fY + pj.fY) * t; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | // If the poly has no area then we instead return the average of |
| 95 | // its points. |
| 96 | if (SkScalarNearlyZero(area)) { |
| 97 | SkPoint avg; |
| 98 | avg.set(0, 0); |
| 99 | for (int i = 0; i < count; ++i) { |
| 100 | const SkPoint& pt = segments[i].endPt(); |
| 101 | avg.fX += pt.fX; |
| 102 | avg.fY += pt.fY; |
| 103 | } |
| 104 | SkScalar denom = SK_Scalar1 / count; |
| 105 | avg.scale(denom); |
| 106 | *c = avg; |
| 107 | } else { |
| 108 | area *= 3; |
| 109 | area = SkScalarInvert(area); |
| 110 | center.scale(area); |
| 111 | // undo the translate of p0 to the origin. |
| 112 | *c = center + p0; |
| 113 | } |
| 114 | return !SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY) && c->isFinite(); |
| 115 | } |
| 116 | |
| 117 | static bool compute_vectors(SegmentArray* segments, |
| 118 | SkPoint* fanPt, |
| 119 | SkPathPriv::FirstDirection dir, |
| 120 | int* vCount, |
| 121 | int* iCount) { |
| 122 | if (!center_of_mass(*segments, fanPt)) { |
| 123 | return false; |
| 124 | } |
| 125 | int count = segments->count(); |
| 126 | |
| 127 | // Make the normals point towards the outside |
| 128 | SkPointPriv::Side normSide; |
| 129 | if (dir == SkPathPriv::kCCW_FirstDirection) { |
| 130 | normSide = SkPointPriv::kRight_Side; |
| 131 | } else { |
| 132 | normSide = SkPointPriv::kLeft_Side; |
| 133 | } |
| 134 | |
| 135 | int64_t vCount64 = 0; |
| 136 | int64_t iCount64 = 0; |
| 137 | // compute normals at all points |
| 138 | for (int a = 0; a < count; ++a) { |
| 139 | Segment& sega = (*segments)[a]; |
| 140 | int b = (a + 1) % count; |
| 141 | Segment& segb = (*segments)[b]; |
| 142 | |
| 143 | const SkPoint* prevPt = &sega.endPt(); |
| 144 | int n = segb.countPoints(); |
| 145 | for (int p = 0; p < n; ++p) { |
| 146 | segb.fNorms[p] = segb.fPts[p] - *prevPt; |
| 147 | segb.fNorms[p].normalize(); |
| 148 | segb.fNorms[p] = SkPointPriv::MakeOrthog(segb.fNorms[p], normSide); |
| 149 | prevPt = &segb.fPts[p]; |
| 150 | } |
| 151 | if (Segment::kLine == segb.fType) { |
| 152 | vCount64 += 5; |
| 153 | iCount64 += 9; |
| 154 | } else { |
| 155 | vCount64 += 6; |
| 156 | iCount64 += 12; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | // compute mid-vectors where segments meet. TODO: Detect shallow corners |
| 161 | // and leave out the wedges and close gaps by stitching segments together. |
| 162 | for (int a = 0; a < count; ++a) { |
| 163 | const Segment& sega = (*segments)[a]; |
| 164 | int b = (a + 1) % count; |
| 165 | Segment& segb = (*segments)[b]; |
| 166 | segb.fMid = segb.fNorms[0] + sega.endNorm(); |
| 167 | segb.fMid.normalize(); |
| 168 | // corner wedges |
| 169 | vCount64 += 4; |
| 170 | iCount64 += 6; |
| 171 | } |
| 172 | if (vCount64 > SK_MaxS32 || iCount64 > SK_MaxS32) { |
| 173 | return false; |
| 174 | } |
| 175 | *vCount = vCount64; |
| 176 | *iCount = iCount64; |
| 177 | return true; |
| 178 | } |
| 179 | |
| 180 | struct DegenerateTestData { |
| 181 | DegenerateTestData() { fStage = kInitial; } |
| 182 | bool isDegenerate() const { return kNonDegenerate != fStage; } |
| 183 | enum { |
| 184 | kInitial, |
| 185 | kPoint, |
| 186 | kLine, |
| 187 | kNonDegenerate |
| 188 | } fStage; |
| 189 | SkPoint fFirstPoint; |
| 190 | SkVector fLineNormal; |
| 191 | SkScalar fLineC; |
| 192 | }; |
| 193 | |
| 194 | static const SkScalar kClose = (SK_Scalar1 / 16); |
| 195 | static const SkScalar kCloseSqd = kClose * kClose; |
| 196 | |
| 197 | static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) { |
| 198 | switch (data->fStage) { |
| 199 | case DegenerateTestData::kInitial: |
| 200 | data->fFirstPoint = pt; |
| 201 | data->fStage = DegenerateTestData::kPoint; |
| 202 | break; |
| 203 | case DegenerateTestData::kPoint: |
| 204 | if (SkPointPriv::DistanceToSqd(pt, data->fFirstPoint) > kCloseSqd) { |
| 205 | data->fLineNormal = pt - data->fFirstPoint; |
| 206 | data->fLineNormal.normalize(); |
| 207 | data->fLineNormal = SkPointPriv::MakeOrthog(data->fLineNormal); |
| 208 | data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); |
| 209 | data->fStage = DegenerateTestData::kLine; |
| 210 | } |
| 211 | break; |
| 212 | case DegenerateTestData::kLine: |
| 213 | if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { |
| 214 | data->fStage = DegenerateTestData::kNonDegenerate; |
| 215 | } |
| 216 | case DegenerateTestData::kNonDegenerate: |
| 217 | break; |
| 218 | default: |
| 219 | SK_ABORT("Unexpected degenerate test stage." ); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | static inline bool get_direction(const SkPath& path, const SkMatrix& m, |
| 224 | SkPathPriv::FirstDirection* dir) { |
| 225 | // At this point, we've already returned true from canDraw(), which checked that the path's |
| 226 | // direction could be determined, so this should just be fetching the cached direction. |
| 227 | // However, if perspective is involved, we're operating on a transformed path, which may no |
| 228 | // longer have a computable direction. |
| 229 | if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | // check whether m reverses the orientation |
| 234 | SkASSERT(!m.hasPerspective()); |
| 235 | SkScalar det2x2 = m.get(SkMatrix::kMScaleX) * m.get(SkMatrix::kMScaleY) - |
| 236 | m.get(SkMatrix::kMSkewX) * m.get(SkMatrix::kMSkewY); |
| 237 | if (det2x2 < 0) { |
| 238 | *dir = SkPathPriv::OppositeFirstDirection(*dir); |
| 239 | } |
| 240 | |
| 241 | return true; |
| 242 | } |
| 243 | |
| 244 | static inline void add_line_to_segment(const SkPoint& pt, |
| 245 | SegmentArray* segments) { |
| 246 | segments->push_back(); |
| 247 | segments->back().fType = Segment::kLine; |
| 248 | segments->back().fPts[0] = pt; |
| 249 | } |
| 250 | |
| 251 | static inline void add_quad_segment(const SkPoint pts[3], |
| 252 | SegmentArray* segments) { |
| 253 | if (SkPointPriv::DistanceToLineSegmentBetweenSqd(pts[1], pts[0], pts[2]) < kCloseSqd) { |
| 254 | if (pts[0] != pts[2]) { |
| 255 | add_line_to_segment(pts[2], segments); |
| 256 | } |
| 257 | } else { |
| 258 | segments->push_back(); |
| 259 | segments->back().fType = Segment::kQuad; |
| 260 | segments->back().fPts[0] = pts[1]; |
| 261 | segments->back().fPts[1] = pts[2]; |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | static inline void add_cubic_segments(const SkPoint pts[4], |
| 266 | SkPathPriv::FirstDirection dir, |
| 267 | SegmentArray* segments) { |
| 268 | SkSTArray<15, SkPoint, true> quads; |
| 269 | GrPathUtils::convertCubicToQuadsConstrainToTangents(pts, SK_Scalar1, dir, &quads); |
| 270 | int count = quads.count(); |
| 271 | for (int q = 0; q < count; q += 3) { |
| 272 | add_quad_segment(&quads[q], segments); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | static bool get_segments(const SkPath& path, |
| 277 | const SkMatrix& m, |
| 278 | SegmentArray* segments, |
| 279 | SkPoint* fanPt, |
| 280 | int* vCount, |
| 281 | int* iCount) { |
| 282 | SkPath::Iter iter(path, true); |
| 283 | // This renderer over-emphasizes very thin path regions. We use the distance |
| 284 | // to the path from the sample to compute coverage. Every pixel intersected |
| 285 | // by the path will be hit and the maximum distance is sqrt(2)/2. We don't |
| 286 | // notice that the sample may be close to a very thin area of the path and |
| 287 | // thus should be very light. This is particularly egregious for degenerate |
| 288 | // line paths. We detect paths that are very close to a line (zero area) and |
| 289 | // draw nothing. |
| 290 | DegenerateTestData degenerateData; |
| 291 | SkPathPriv::FirstDirection dir; |
| 292 | if (!get_direction(path, m, &dir)) { |
| 293 | return false; |
| 294 | } |
| 295 | |
| 296 | for (;;) { |
| 297 | SkPoint pts[4]; |
| 298 | SkPath::Verb verb = iter.next(pts); |
| 299 | switch (verb) { |
| 300 | case SkPath::kMove_Verb: |
| 301 | m.mapPoints(pts, 1); |
| 302 | update_degenerate_test(°enerateData, pts[0]); |
| 303 | break; |
| 304 | case SkPath::kLine_Verb: { |
| 305 | if (!SkPathPriv::AllPointsEq(pts, 2)) { |
| 306 | m.mapPoints(&pts[1], 1); |
| 307 | update_degenerate_test(°enerateData, pts[1]); |
| 308 | add_line_to_segment(pts[1], segments); |
| 309 | } |
| 310 | break; |
| 311 | } |
| 312 | case SkPath::kQuad_Verb: |
| 313 | if (!SkPathPriv::AllPointsEq(pts, 3)) { |
| 314 | m.mapPoints(pts, 3); |
| 315 | update_degenerate_test(°enerateData, pts[1]); |
| 316 | update_degenerate_test(°enerateData, pts[2]); |
| 317 | add_quad_segment(pts, segments); |
| 318 | } |
| 319 | break; |
| 320 | case SkPath::kConic_Verb: { |
| 321 | if (!SkPathPriv::AllPointsEq(pts, 3)) { |
| 322 | m.mapPoints(pts, 3); |
| 323 | SkScalar weight = iter.conicWeight(); |
| 324 | SkAutoConicToQuads converter; |
| 325 | const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f); |
| 326 | for (int i = 0; i < converter.countQuads(); ++i) { |
| 327 | update_degenerate_test(°enerateData, quadPts[2*i + 1]); |
| 328 | update_degenerate_test(°enerateData, quadPts[2*i + 2]); |
| 329 | add_quad_segment(quadPts + 2*i, segments); |
| 330 | } |
| 331 | } |
| 332 | break; |
| 333 | } |
| 334 | case SkPath::kCubic_Verb: { |
| 335 | if (!SkPathPriv::AllPointsEq(pts, 4)) { |
| 336 | m.mapPoints(pts, 4); |
| 337 | update_degenerate_test(°enerateData, pts[1]); |
| 338 | update_degenerate_test(°enerateData, pts[2]); |
| 339 | update_degenerate_test(°enerateData, pts[3]); |
| 340 | add_cubic_segments(pts, dir, segments); |
| 341 | } |
| 342 | break; |
| 343 | } |
| 344 | case SkPath::kDone_Verb: |
| 345 | if (degenerateData.isDegenerate()) { |
| 346 | return false; |
| 347 | } else { |
| 348 | return compute_vectors(segments, fanPt, dir, vCount, iCount); |
| 349 | } |
| 350 | default: |
| 351 | break; |
| 352 | } |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | struct Draw { |
| 357 | Draw() : fVertexCnt(0), fIndexCnt(0) {} |
| 358 | int fVertexCnt; |
| 359 | int fIndexCnt; |
| 360 | }; |
| 361 | |
| 362 | typedef SkTArray<Draw, true> DrawArray; |
| 363 | |
| 364 | static void create_vertices(const SegmentArray& segments, |
| 365 | const SkPoint& fanPt, |
| 366 | const GrVertexColor& color, |
| 367 | DrawArray* draws, |
| 368 | GrVertexWriter& verts, |
| 369 | uint16_t* idxs, |
| 370 | size_t vertexStride) { |
| 371 | Draw* draw = &draws->push_back(); |
| 372 | // alias just to make vert/index assignments easier to read. |
| 373 | int* v = &draw->fVertexCnt; |
| 374 | int* i = &draw->fIndexCnt; |
| 375 | const size_t uvOffset = sizeof(SkPoint) + color.size(); |
| 376 | |
| 377 | int count = segments.count(); |
| 378 | for (int a = 0; a < count; ++a) { |
| 379 | const Segment& sega = segments[a]; |
| 380 | int b = (a + 1) % count; |
| 381 | const Segment& segb = segments[b]; |
| 382 | |
| 383 | // Check whether adding the verts for this segment to the current draw would cause index |
| 384 | // values to overflow. |
| 385 | int vCount = 4; |
| 386 | if (Segment::kLine == segb.fType) { |
| 387 | vCount += 5; |
| 388 | } else { |
| 389 | vCount += 6; |
| 390 | } |
| 391 | if (draw->fVertexCnt + vCount > (1 << 16)) { |
| 392 | idxs += *i; |
| 393 | draw = &draws->push_back(); |
| 394 | v = &draw->fVertexCnt; |
| 395 | i = &draw->fIndexCnt; |
| 396 | } |
| 397 | |
| 398 | const SkScalar negOneDists[2] = { -SK_Scalar1, -SK_Scalar1 }; |
| 399 | |
| 400 | // FIXME: These tris are inset in the 1 unit arc around the corner |
| 401 | SkPoint p0 = sega.endPt(); |
| 402 | // Position, Color, UV, D0, D1 |
| 403 | verts.write(p0, color, SkPoint{0, 0}, negOneDists); |
| 404 | verts.write(p0 + sega.endNorm(), color, SkPoint{0, -SK_Scalar1}, negOneDists); |
| 405 | verts.write(p0 + segb.fMid, color, SkPoint{0, -SK_Scalar1}, negOneDists); |
| 406 | verts.write(p0 + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists); |
| 407 | |
| 408 | idxs[*i + 0] = *v + 0; |
| 409 | idxs[*i + 1] = *v + 2; |
| 410 | idxs[*i + 2] = *v + 1; |
| 411 | idxs[*i + 3] = *v + 0; |
| 412 | idxs[*i + 4] = *v + 3; |
| 413 | idxs[*i + 5] = *v + 2; |
| 414 | |
| 415 | *v += 4; |
| 416 | *i += 6; |
| 417 | |
| 418 | if (Segment::kLine == segb.fType) { |
| 419 | // we draw the line edge as a degenerate quad (u is 0, v is the |
| 420 | // signed distance to the edge) |
| 421 | SkPoint v1Pos = sega.endPt(); |
| 422 | SkPoint v2Pos = segb.fPts[0]; |
| 423 | SkScalar dist = SkPointPriv::DistanceToLineBetween(fanPt, v1Pos, v2Pos); |
| 424 | |
| 425 | verts.write(fanPt, color, SkPoint{0, dist}, negOneDists); |
| 426 | verts.write(v1Pos, color, SkPoint{0, 0}, negOneDists); |
| 427 | verts.write(v2Pos, color, SkPoint{0, 0}, negOneDists); |
| 428 | verts.write(v1Pos + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists); |
| 429 | verts.write(v2Pos + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists); |
| 430 | |
| 431 | idxs[*i + 0] = *v + 3; |
| 432 | idxs[*i + 1] = *v + 1; |
| 433 | idxs[*i + 2] = *v + 2; |
| 434 | |
| 435 | idxs[*i + 3] = *v + 4; |
| 436 | idxs[*i + 4] = *v + 3; |
| 437 | idxs[*i + 5] = *v + 2; |
| 438 | |
| 439 | *i += 6; |
| 440 | |
| 441 | // Draw the interior fan if it exists. |
| 442 | // TODO: Detect and combine colinear segments. This will ensure we catch every case |
| 443 | // with no interior, and that the resulting shared edge uses the same endpoints. |
| 444 | if (count >= 3) { |
| 445 | idxs[*i + 0] = *v + 0; |
| 446 | idxs[*i + 1] = *v + 2; |
| 447 | idxs[*i + 2] = *v + 1; |
| 448 | |
| 449 | *i += 3; |
| 450 | } |
| 451 | |
| 452 | *v += 5; |
| 453 | } else { |
| 454 | void* quadVertsBegin = verts.fPtr; |
| 455 | |
| 456 | SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; |
| 457 | |
| 458 | SkScalar c0 = segb.fNorms[0].dot(qpts[0]); |
| 459 | SkScalar c1 = segb.fNorms[1].dot(qpts[2]); |
| 460 | GrVertexWriter::Skip<SkPoint> skipUVs; |
| 461 | |
| 462 | verts.write(fanPt, |
| 463 | color, skipUVs, |
| 464 | -segb.fNorms[0].dot(fanPt) + c0, |
| 465 | -segb.fNorms[1].dot(fanPt) + c1); |
| 466 | |
| 467 | verts.write(qpts[0], |
| 468 | color, skipUVs, |
| 469 | 0.0f, |
| 470 | -segb.fNorms[1].dot(qpts[0]) + c1); |
| 471 | |
| 472 | verts.write(qpts[2], |
| 473 | color, skipUVs, |
| 474 | -segb.fNorms[0].dot(qpts[2]) + c0, |
| 475 | 0.0f); |
| 476 | |
| 477 | verts.write(qpts[0] + segb.fNorms[0], |
| 478 | color, skipUVs, |
| 479 | -SK_ScalarMax/100, |
| 480 | -SK_ScalarMax/100); |
| 481 | |
| 482 | verts.write(qpts[2] + segb.fNorms[1], |
| 483 | color, skipUVs, |
| 484 | -SK_ScalarMax/100, |
| 485 | -SK_ScalarMax/100); |
| 486 | |
| 487 | SkVector midVec = segb.fNorms[0] + segb.fNorms[1]; |
| 488 | midVec.normalize(); |
| 489 | |
| 490 | verts.write(qpts[1] + midVec, |
| 491 | color, skipUVs, |
| 492 | -SK_ScalarMax/100, |
| 493 | -SK_ScalarMax/100); |
| 494 | |
| 495 | GrPathUtils::QuadUVMatrix toUV(qpts); |
| 496 | toUV.apply(quadVertsBegin, 6, vertexStride, uvOffset); |
| 497 | |
| 498 | idxs[*i + 0] = *v + 3; |
| 499 | idxs[*i + 1] = *v + 1; |
| 500 | idxs[*i + 2] = *v + 2; |
| 501 | idxs[*i + 3] = *v + 4; |
| 502 | idxs[*i + 4] = *v + 3; |
| 503 | idxs[*i + 5] = *v + 2; |
| 504 | |
| 505 | idxs[*i + 6] = *v + 5; |
| 506 | idxs[*i + 7] = *v + 3; |
| 507 | idxs[*i + 8] = *v + 4; |
| 508 | |
| 509 | *i += 9; |
| 510 | |
| 511 | // Draw the interior fan if it exists. |
| 512 | // TODO: Detect and combine colinear segments. This will ensure we catch every case |
| 513 | // with no interior, and that the resulting shared edge uses the same endpoints. |
| 514 | if (count >= 3) { |
| 515 | idxs[*i + 0] = *v + 0; |
| 516 | idxs[*i + 1] = *v + 2; |
| 517 | idxs[*i + 2] = *v + 1; |
| 518 | |
| 519 | *i += 3; |
| 520 | } |
| 521 | |
| 522 | *v += 6; |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | /////////////////////////////////////////////////////////////////////////////// |
| 528 | |
| 529 | /* |
| 530 | * Quadratic specified by 0=u^2-v canonical coords. u and v are the first |
| 531 | * two components of the vertex attribute. Coverage is based on signed |
| 532 | * distance with negative being inside, positive outside. The edge is specified in |
| 533 | * window space (y-down). If either the third or fourth component of the interpolated |
| 534 | * vertex coord is > 0 then the pixel is considered outside the edge. This is used to |
| 535 | * attempt to trim to a portion of the infinite quad. |
| 536 | * Requires shader derivative instruction support. |
| 537 | */ |
| 538 | |
| 539 | class QuadEdgeEffect : public GrGeometryProcessor { |
| 540 | public: |
| 541 | static GrGeometryProcessor* Make(SkArenaAlloc* arena, |
| 542 | const SkMatrix& localMatrix, |
| 543 | bool usesLocalCoords, |
| 544 | bool wideColor) { |
| 545 | return arena->make<QuadEdgeEffect>(localMatrix, usesLocalCoords, wideColor); |
| 546 | } |
| 547 | |
| 548 | ~QuadEdgeEffect() override {} |
| 549 | |
| 550 | const char* name() const override { return "QuadEdge" ; } |
| 551 | |
| 552 | class GLSLProcessor : public GrGLSLGeometryProcessor { |
| 553 | public: |
| 554 | GLSLProcessor() {} |
| 555 | |
| 556 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| 557 | const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>(); |
| 558 | GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| 559 | GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| 560 | GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| 561 | |
| 562 | // emit attributes |
| 563 | varyingHandler->emitAttributes(qe); |
| 564 | |
| 565 | GrGLSLVarying v(kHalf4_GrSLType); |
| 566 | varyingHandler->addVarying("QuadEdge" , &v); |
| 567 | vertBuilder->codeAppendf("%s = %s;" , v.vsOut(), qe.fInQuadEdge.name()); |
| 568 | |
| 569 | // Setup pass through color |
| 570 | varyingHandler->addPassThroughAttribute(qe.fInColor, args.fOutputColor); |
| 571 | |
| 572 | GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| 573 | |
| 574 | // Setup position |
| 575 | this->writeOutputPosition(vertBuilder, gpArgs, qe.fInPosition.name()); |
| 576 | |
| 577 | // emit transforms |
| 578 | this->emitTransforms(vertBuilder, |
| 579 | varyingHandler, |
| 580 | uniformHandler, |
| 581 | qe.fInPosition.asShaderVar(), |
| 582 | qe.fLocalMatrix, |
| 583 | args.fFPCoordTransformHandler); |
| 584 | |
| 585 | fragBuilder->codeAppendf("half edgeAlpha;" ); |
| 586 | |
| 587 | // keep the derivative instructions outside the conditional |
| 588 | fragBuilder->codeAppendf("half2 duvdx = half2(dFdx(%s.xy));" , v.fsIn()); |
| 589 | fragBuilder->codeAppendf("half2 duvdy = half2(dFdy(%s.xy));" , v.fsIn()); |
| 590 | fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {" , v.fsIn(), v.fsIn()); |
| 591 | // today we know z and w are in device space. We could use derivatives |
| 592 | fragBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);" , v.fsIn(), |
| 593 | v.fsIn()); |
| 594 | fragBuilder->codeAppendf ("} else {" ); |
| 595 | fragBuilder->codeAppendf("half2 gF = half2(2.0*%s.x*duvdx.x - duvdx.y," |
| 596 | " 2.0*%s.x*duvdy.x - duvdy.y);" , |
| 597 | v.fsIn(), v.fsIn()); |
| 598 | fragBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);" , v.fsIn(), v.fsIn(), |
| 599 | v.fsIn()); |
| 600 | fragBuilder->codeAppendf("edgeAlpha = " |
| 601 | "saturate(0.5 - edgeAlpha / length(gF));}" ); |
| 602 | |
| 603 | fragBuilder->codeAppendf("%s = half4(edgeAlpha);" , args.fOutputCoverage); |
| 604 | } |
| 605 | |
| 606 | static inline void GenKey(const GrGeometryProcessor& gp, |
| 607 | const GrShaderCaps&, |
| 608 | GrProcessorKeyBuilder* b) { |
| 609 | const QuadEdgeEffect& qee = gp.cast<QuadEdgeEffect>(); |
| 610 | b->add32(SkToBool(qee.fUsesLocalCoords && qee.fLocalMatrix.hasPerspective())); |
| 611 | } |
| 612 | |
| 613 | void setData(const GrGLSLProgramDataManager& pdman, |
| 614 | const GrPrimitiveProcessor& gp, |
| 615 | const CoordTransformRange& transformRange) override { |
| 616 | const QuadEdgeEffect& qe = gp.cast<QuadEdgeEffect>(); |
| 617 | this->setTransformDataHelper(qe.fLocalMatrix, pdman, transformRange); |
| 618 | } |
| 619 | |
| 620 | private: |
| 621 | typedef GrGLSLGeometryProcessor INHERITED; |
| 622 | }; |
| 623 | |
| 624 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { |
| 625 | GLSLProcessor::GenKey(*this, caps, b); |
| 626 | } |
| 627 | |
| 628 | GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { |
| 629 | return new GLSLProcessor(); |
| 630 | } |
| 631 | |
| 632 | private: |
| 633 | friend class ::SkArenaAlloc; // for access to ctor |
| 634 | |
| 635 | QuadEdgeEffect(const SkMatrix& localMatrix, bool usesLocalCoords, bool wideColor) |
| 636 | : INHERITED(kQuadEdgeEffect_ClassID) |
| 637 | , fLocalMatrix(localMatrix) |
| 638 | , fUsesLocalCoords(usesLocalCoords) { |
| 639 | fInPosition = {"inPosition" , kFloat2_GrVertexAttribType, kFloat2_GrSLType}; |
| 640 | fInColor = MakeColorAttribute("inColor" , wideColor); |
| 641 | fInQuadEdge = {"inQuadEdge" , kFloat4_GrVertexAttribType, kHalf4_GrSLType}; |
| 642 | this->setVertexAttributes(&fInPosition, 3); |
| 643 | } |
| 644 | |
| 645 | Attribute fInPosition; |
| 646 | Attribute fInColor; |
| 647 | Attribute fInQuadEdge; |
| 648 | |
| 649 | SkMatrix fLocalMatrix; |
| 650 | bool fUsesLocalCoords; |
| 651 | |
| 652 | GR_DECLARE_GEOMETRY_PROCESSOR_TEST |
| 653 | |
| 654 | typedef GrGeometryProcessor INHERITED; |
| 655 | }; |
| 656 | |
| 657 | GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect); |
| 658 | |
| 659 | #if GR_TEST_UTILS |
| 660 | GrGeometryProcessor* QuadEdgeEffect::TestCreate(GrProcessorTestData* d) { |
| 661 | // Doesn't work without derivative instructions. |
| 662 | return d->caps()->shaderCaps()->shaderDerivativeSupport() |
| 663 | ? QuadEdgeEffect::Make(d->allocator(), GrTest::TestMatrix(d->fRandom), |
| 664 | d->fRandom->nextBool(), d->fRandom->nextBool()) |
| 665 | : nullptr; |
| 666 | } |
| 667 | #endif |
| 668 | |
| 669 | /////////////////////////////////////////////////////////////////////////////// |
| 670 | |
| 671 | GrPathRenderer::CanDrawPath |
| 672 | GrAAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { |
| 673 | // This check requires convexity and known direction, since the direction is used to build |
| 674 | // the geometry segments. Degenerate convex paths will fall through to some other path renderer. |
| 675 | if (args.fCaps->shaderCaps()->shaderDerivativeSupport() && |
| 676 | (GrAAType::kCoverage == args.fAAType) && args.fShape->style().isSimpleFill() && |
| 677 | !args.fShape->inverseFilled() && args.fShape->knownToBeConvex() && |
| 678 | args.fShape->knownDirection()) { |
| 679 | return CanDrawPath::kYes; |
| 680 | } |
| 681 | return CanDrawPath::kNo; |
| 682 | } |
| 683 | |
| 684 | namespace { |
| 685 | |
| 686 | class AAConvexPathOp final : public GrMeshDrawOp { |
| 687 | private: |
| 688 | using Helper = GrSimpleMeshDrawOpHelperWithStencil; |
| 689 | |
| 690 | public: |
| 691 | DEFINE_OP_CLASS_ID |
| 692 | |
| 693 | static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context, |
| 694 | GrPaint&& paint, |
| 695 | const SkMatrix& viewMatrix, |
| 696 | const SkPath& path, |
| 697 | const GrUserStencilSettings* stencilSettings) { |
| 698 | return Helper::FactoryHelper<AAConvexPathOp>(context, std::move(paint), viewMatrix, path, |
| 699 | stencilSettings); |
| 700 | } |
| 701 | |
| 702 | AAConvexPathOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, |
| 703 | const SkMatrix& viewMatrix, const SkPath& path, |
| 704 | const GrUserStencilSettings* stencilSettings) |
| 705 | : INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kCoverage, stencilSettings) { |
| 706 | fPaths.emplace_back(PathData{viewMatrix, path, color}); |
| 707 | this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes, |
| 708 | IsHairline::kNo); |
| 709 | } |
| 710 | |
| 711 | const char* name() const override { return "AAConvexPathOp" ; } |
| 712 | |
| 713 | void visitProxies(const VisitProxyFunc& func) const override { |
| 714 | if (fProgramInfo) { |
| 715 | fProgramInfo->visitFPProxies(func); |
| 716 | } else { |
| 717 | fHelper.visitProxies(func); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | #ifdef SK_DEBUG |
| 722 | SkString dumpInfo() const override { |
| 723 | SkString string; |
| 724 | string.appendf("Count: %d\n" , fPaths.count()); |
| 725 | string += fHelper.dumpInfo(); |
| 726 | string += INHERITED::dumpInfo(); |
| 727 | return string; |
| 728 | } |
| 729 | #endif |
| 730 | |
| 731 | FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } |
| 732 | |
| 733 | GrProcessorSet::Analysis finalize( |
| 734 | const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
| 735 | GrClampType clampType) override { |
| 736 | return fHelper.finalizeProcessors( |
| 737 | caps, clip, hasMixedSampledCoverage, clampType, |
| 738 | GrProcessorAnalysisCoverage::kSingleChannel, &fPaths.back().fColor, &fWideColor); |
| 739 | } |
| 740 | |
| 741 | private: |
| 742 | GrProgramInfo* programInfo() override { return fProgramInfo; } |
| 743 | |
| 744 | void onCreateProgramInfo(const GrCaps* caps, |
| 745 | SkArenaAlloc* arena, |
| 746 | const GrSurfaceProxyView* writeView, |
| 747 | GrAppliedClip&& appliedClip, |
| 748 | const GrXferProcessor::DstProxyView& dstProxyView) override { |
| 749 | SkMatrix invert; |
| 750 | if (fHelper.usesLocalCoords() && !fPaths.back().fViewMatrix.invert(&invert)) { |
| 751 | return; |
| 752 | } |
| 753 | |
| 754 | GrGeometryProcessor* quadProcessor = QuadEdgeEffect::Make(arena, invert, |
| 755 | fHelper.usesLocalCoords(), |
| 756 | fWideColor); |
| 757 | |
| 758 | fProgramInfo = fHelper.createProgramInfoWithStencil(caps, arena, writeView, |
| 759 | std::move(appliedClip), |
| 760 | dstProxyView, quadProcessor, |
| 761 | GrPrimitiveType::kTriangles); |
| 762 | } |
| 763 | |
| 764 | void onPrepareDraws(Target* target) override { |
| 765 | int instanceCount = fPaths.count(); |
| 766 | |
| 767 | if (!fProgramInfo) { |
| 768 | this->createProgramInfo(target); |
| 769 | if (!fProgramInfo) { |
| 770 | return; |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | const size_t kVertexStride = fProgramInfo->primProc().vertexStride(); |
| 775 | |
| 776 | fDraws.reserve(instanceCount); |
| 777 | |
| 778 | // TODO generate all segments for all paths and use one vertex buffer |
| 779 | for (int i = 0; i < instanceCount; i++) { |
| 780 | const PathData& args = fPaths[i]; |
| 781 | |
| 782 | // We use the fact that SkPath::transform path does subdivision based on |
| 783 | // perspective. Otherwise, we apply the view matrix when copying to the |
| 784 | // segment representation. |
| 785 | const SkMatrix* viewMatrix = &args.fViewMatrix; |
| 786 | |
| 787 | // We avoid initializing the path unless we have to |
| 788 | const SkPath* pathPtr = &args.fPath; |
| 789 | SkTLazy<SkPath> tmpPath; |
| 790 | if (viewMatrix->hasPerspective()) { |
| 791 | SkPath* tmpPathPtr = tmpPath.init(*pathPtr); |
| 792 | tmpPathPtr->setIsVolatile(true); |
| 793 | tmpPathPtr->transform(*viewMatrix); |
| 794 | viewMatrix = &SkMatrix::I(); |
| 795 | pathPtr = tmpPathPtr; |
| 796 | } |
| 797 | |
| 798 | int vertexCount; |
| 799 | int indexCount; |
| 800 | enum { |
| 801 | kPreallocSegmentCnt = 512 / sizeof(Segment), |
| 802 | kPreallocDrawCnt = 4, |
| 803 | }; |
| 804 | SkSTArray<kPreallocSegmentCnt, Segment, true> segments; |
| 805 | SkPoint fanPt; |
| 806 | |
| 807 | if (!get_segments(*pathPtr, *viewMatrix, &segments, &fanPt, &vertexCount, |
| 808 | &indexCount)) { |
| 809 | continue; |
| 810 | } |
| 811 | |
| 812 | sk_sp<const GrBuffer> vertexBuffer; |
| 813 | int firstVertex; |
| 814 | |
| 815 | GrVertexWriter verts{target->makeVertexSpace(kVertexStride, vertexCount, |
| 816 | &vertexBuffer, &firstVertex)}; |
| 817 | |
| 818 | if (!verts.fPtr) { |
| 819 | SkDebugf("Could not allocate vertices\n" ); |
| 820 | return; |
| 821 | } |
| 822 | |
| 823 | sk_sp<const GrBuffer> indexBuffer; |
| 824 | int firstIndex; |
| 825 | |
| 826 | uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); |
| 827 | if (!idxs) { |
| 828 | SkDebugf("Could not allocate indices\n" ); |
| 829 | return; |
| 830 | } |
| 831 | |
| 832 | SkSTArray<kPreallocDrawCnt, Draw, true> draws; |
| 833 | GrVertexColor color(args.fColor, fWideColor); |
| 834 | create_vertices(segments, fanPt, color, &draws, verts, idxs, kVertexStride); |
| 835 | |
| 836 | GrSimpleMesh* meshes = target->allocMeshes(draws.count()); |
| 837 | for (int j = 0; j < draws.count(); ++j) { |
| 838 | const Draw& draw = draws[j]; |
| 839 | meshes[j].setIndexed(indexBuffer, draw.fIndexCnt, firstIndex, 0, |
| 840 | draw.fVertexCnt - 1, GrPrimitiveRestart::kNo, vertexBuffer, |
| 841 | firstVertex); |
| 842 | firstIndex += draw.fIndexCnt; |
| 843 | firstVertex += draw.fVertexCnt; |
| 844 | } |
| 845 | |
| 846 | fDraws.push_back({ meshes, draws.count() }); |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { |
| 851 | if (!fProgramInfo || fDraws.isEmpty()) { |
| 852 | return; |
| 853 | } |
| 854 | |
| 855 | flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); |
| 856 | flushState->bindTextures(fProgramInfo->primProc(), nullptr, fProgramInfo->pipeline()); |
| 857 | for (int i = 0; i < fDraws.count(); ++i) { |
| 858 | for (int j = 0; j < fDraws[i].fMeshCount; ++j) { |
| 859 | flushState->drawMesh(fDraws[i].fMeshes[j]); |
| 860 | } |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | CombineResult onCombineIfPossible(GrOp* t, GrRecordingContext::Arenas*, |
| 865 | const GrCaps& caps) override { |
| 866 | AAConvexPathOp* that = t->cast<AAConvexPathOp>(); |
| 867 | if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { |
| 868 | return CombineResult::kCannotCombine; |
| 869 | } |
| 870 | if (fHelper.usesLocalCoords() && |
| 871 | !SkMatrixPriv::CheapEqual(fPaths[0].fViewMatrix, that->fPaths[0].fViewMatrix)) { |
| 872 | return CombineResult::kCannotCombine; |
| 873 | } |
| 874 | |
| 875 | fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin()); |
| 876 | fWideColor |= that->fWideColor; |
| 877 | return CombineResult::kMerged; |
| 878 | } |
| 879 | |
| 880 | struct PathData { |
| 881 | SkMatrix fViewMatrix; |
| 882 | SkPath fPath; |
| 883 | SkPMColor4f fColor; |
| 884 | }; |
| 885 | |
| 886 | Helper fHelper; |
| 887 | SkSTArray<1, PathData, true> fPaths; |
| 888 | bool fWideColor; |
| 889 | |
| 890 | struct MeshDraw { |
| 891 | GrSimpleMesh* fMeshes; |
| 892 | int fMeshCount; |
| 893 | }; |
| 894 | |
| 895 | SkTDArray<MeshDraw> fDraws; |
| 896 | GrProgramInfo* fProgramInfo = nullptr; |
| 897 | |
| 898 | typedef GrMeshDrawOp INHERITED; |
| 899 | }; |
| 900 | |
| 901 | } // anonymous namespace |
| 902 | |
| 903 | bool GrAAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { |
| 904 | GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), |
| 905 | "GrAAConvexPathRenderer::onDrawPath" ); |
| 906 | SkASSERT(args.fRenderTargetContext->numSamples() <= 1); |
| 907 | SkASSERT(!args.fShape->isEmpty()); |
| 908 | |
| 909 | SkPath path; |
| 910 | args.fShape->asPath(&path); |
| 911 | |
| 912 | std::unique_ptr<GrDrawOp> op = AAConvexPathOp::Make(args.fContext, std::move(args.fPaint), |
| 913 | *args.fViewMatrix, |
| 914 | path, args.fUserStencilSettings); |
| 915 | args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op)); |
| 916 | return true; |
| 917 | } |
| 918 | |
| 919 | /////////////////////////////////////////////////////////////////////////////////////////////////// |
| 920 | |
| 921 | #if GR_TEST_UTILS |
| 922 | |
| 923 | GR_DRAW_OP_TEST_DEFINE(AAConvexPathOp) { |
| 924 | SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); |
| 925 | SkPath path = GrTest::TestPathConvex(random); |
| 926 | const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context); |
| 927 | return AAConvexPathOp::Make(context, std::move(paint), viewMatrix, path, stencilSettings); |
| 928 | } |
| 929 | |
| 930 | #endif |
| 931 | |