1 | /* |
2 | * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/systemDictionary.hpp" |
27 | #include "classfile/vmSymbols.hpp" |
28 | #include "code/codeCache.hpp" |
29 | #include "code/compiledMethod.inline.hpp" |
30 | #include "code/compiledIC.hpp" |
31 | #include "code/icBuffer.hpp" |
32 | #include "code/nmethod.hpp" |
33 | #include "code/pcDesc.hpp" |
34 | #include "code/scopeDesc.hpp" |
35 | #include "code/vtableStubs.hpp" |
36 | #include "compiler/compileBroker.hpp" |
37 | #include "compiler/oopMap.hpp" |
38 | #include "gc/g1/heapRegion.hpp" |
39 | #include "gc/shared/barrierSet.hpp" |
40 | #include "gc/shared/collectedHeap.hpp" |
41 | #include "gc/shared/gcLocker.hpp" |
42 | #include "interpreter/bytecode.hpp" |
43 | #include "interpreter/interpreter.hpp" |
44 | #include "interpreter/linkResolver.hpp" |
45 | #include "logging/log.hpp" |
46 | #include "logging/logStream.hpp" |
47 | #include "memory/oopFactory.hpp" |
48 | #include "memory/resourceArea.hpp" |
49 | #include "oops/objArrayKlass.hpp" |
50 | #include "oops/oop.inline.hpp" |
51 | #include "oops/typeArrayOop.inline.hpp" |
52 | #include "opto/ad.hpp" |
53 | #include "opto/addnode.hpp" |
54 | #include "opto/callnode.hpp" |
55 | #include "opto/cfgnode.hpp" |
56 | #include "opto/graphKit.hpp" |
57 | #include "opto/machnode.hpp" |
58 | #include "opto/matcher.hpp" |
59 | #include "opto/memnode.hpp" |
60 | #include "opto/mulnode.hpp" |
61 | #include "opto/runtime.hpp" |
62 | #include "opto/subnode.hpp" |
63 | #include "runtime/atomic.hpp" |
64 | #include "runtime/frame.inline.hpp" |
65 | #include "runtime/handles.inline.hpp" |
66 | #include "runtime/interfaceSupport.inline.hpp" |
67 | #include "runtime/javaCalls.hpp" |
68 | #include "runtime/sharedRuntime.hpp" |
69 | #include "runtime/signature.hpp" |
70 | #include "runtime/threadCritical.hpp" |
71 | #include "runtime/vframe.hpp" |
72 | #include "runtime/vframeArray.hpp" |
73 | #include "runtime/vframe_hp.hpp" |
74 | #include "utilities/copy.hpp" |
75 | #include "utilities/preserveException.hpp" |
76 | |
77 | |
78 | // For debugging purposes: |
79 | // To force FullGCALot inside a runtime function, add the following two lines |
80 | // |
81 | // Universe::release_fullgc_alot_dummy(); |
82 | // MarkSweep::invoke(0, "Debugging"); |
83 | // |
84 | // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 |
85 | |
86 | |
87 | |
88 | |
89 | // Compiled code entry points |
90 | address OptoRuntime::_new_instance_Java = NULL; |
91 | address OptoRuntime::_new_array_Java = NULL; |
92 | address OptoRuntime::_new_array_nozero_Java = NULL; |
93 | address OptoRuntime::_multianewarray2_Java = NULL; |
94 | address OptoRuntime::_multianewarray3_Java = NULL; |
95 | address OptoRuntime::_multianewarray4_Java = NULL; |
96 | address OptoRuntime::_multianewarray5_Java = NULL; |
97 | address OptoRuntime::_multianewarrayN_Java = NULL; |
98 | address OptoRuntime::_vtable_must_compile_Java = NULL; |
99 | address OptoRuntime::_complete_monitor_locking_Java = NULL; |
100 | address OptoRuntime::_monitor_notify_Java = NULL; |
101 | address OptoRuntime::_monitor_notifyAll_Java = NULL; |
102 | address OptoRuntime::_rethrow_Java = NULL; |
103 | |
104 | address OptoRuntime::_slow_arraycopy_Java = NULL; |
105 | address OptoRuntime::_register_finalizer_Java = NULL; |
106 | |
107 | ExceptionBlob* OptoRuntime::_exception_blob; |
108 | |
109 | // This should be called in an assertion at the start of OptoRuntime routines |
110 | // which are entered from compiled code (all of them) |
111 | #ifdef ASSERT |
112 | static bool check_compiled_frame(JavaThread* thread) { |
113 | assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code" ); |
114 | RegisterMap map(thread, false); |
115 | frame caller = thread->last_frame().sender(&map); |
116 | assert(caller.is_compiled_frame(), "not being called from compiled like code" ); |
117 | return true; |
118 | } |
119 | #endif // ASSERT |
120 | |
121 | |
122 | #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \ |
123 | var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \ |
124 | if (var == NULL) { return false; } |
125 | |
126 | bool OptoRuntime::generate(ciEnv* env) { |
127 | |
128 | generate_exception_blob(); |
129 | |
130 | // Note: tls: Means fetching the return oop out of the thread-local storage |
131 | // |
132 | // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc |
133 | // ------------------------------------------------------------------------------------------------------------------------------- |
134 | gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false); |
135 | gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false); |
136 | gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false); |
137 | gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false); |
138 | gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false); |
139 | gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false); |
140 | gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false); |
141 | gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false); |
142 | gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false); |
143 | gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false, false); |
144 | gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false, false); |
145 | gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true ); |
146 | |
147 | gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false); |
148 | gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false); |
149 | |
150 | return true; |
151 | } |
152 | |
153 | #undef gen |
154 | |
155 | |
156 | // Helper method to do generation of RunTimeStub's |
157 | address OptoRuntime::generate_stub( ciEnv* env, |
158 | TypeFunc_generator gen, address C_function, |
159 | const char *name, int is_fancy_jump, |
160 | bool pass_tls, |
161 | bool save_argument_registers, |
162 | bool return_pc) { |
163 | |
164 | // Matching the default directive, we currently have no method to match. |
165 | DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); |
166 | ResourceMark rm; |
167 | Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive); |
168 | DirectivesStack::release(directive); |
169 | return C.stub_entry_point(); |
170 | } |
171 | |
172 | const char* OptoRuntime::stub_name(address entry) { |
173 | #ifndef PRODUCT |
174 | CodeBlob* cb = CodeCache::find_blob(entry); |
175 | RuntimeStub* rs =(RuntimeStub *)cb; |
176 | assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub" ); |
177 | return rs->name(); |
178 | #else |
179 | // Fast implementation for product mode (maybe it should be inlined too) |
180 | return "runtime stub" ; |
181 | #endif |
182 | } |
183 | |
184 | |
185 | //============================================================================= |
186 | // Opto compiler runtime routines |
187 | //============================================================================= |
188 | |
189 | |
190 | //=============================allocation====================================== |
191 | // We failed the fast-path allocation. Now we need to do a scavenge or GC |
192 | // and try allocation again. |
193 | |
194 | // object allocation |
195 | JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread)) |
196 | JRT_BLOCK; |
197 | #ifndef PRODUCT |
198 | SharedRuntime::_new_instance_ctr++; // new instance requires GC |
199 | #endif |
200 | assert(check_compiled_frame(thread), "incorrect caller" ); |
201 | |
202 | // These checks are cheap to make and support reflective allocation. |
203 | int lh = klass->layout_helper(); |
204 | if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { |
205 | Handle holder(THREAD, klass->klass_holder()); // keep the klass alive |
206 | klass->check_valid_for_instantiation(false, THREAD); |
207 | if (!HAS_PENDING_EXCEPTION) { |
208 | InstanceKlass::cast(klass)->initialize(THREAD); |
209 | } |
210 | } |
211 | |
212 | if (!HAS_PENDING_EXCEPTION) { |
213 | // Scavenge and allocate an instance. |
214 | Handle holder(THREAD, klass->klass_holder()); // keep the klass alive |
215 | oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); |
216 | thread->set_vm_result(result); |
217 | |
218 | // Pass oops back through thread local storage. Our apparent type to Java |
219 | // is that we return an oop, but we can block on exit from this routine and |
220 | // a GC can trash the oop in C's return register. The generated stub will |
221 | // fetch the oop from TLS after any possible GC. |
222 | } |
223 | |
224 | deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); |
225 | JRT_BLOCK_END; |
226 | |
227 | // inform GC that we won't do card marks for initializing writes. |
228 | SharedRuntime::on_slowpath_allocation_exit(thread); |
229 | JRT_END |
230 | |
231 | |
232 | // array allocation |
233 | JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread)) |
234 | JRT_BLOCK; |
235 | #ifndef PRODUCT |
236 | SharedRuntime::_new_array_ctr++; // new array requires GC |
237 | #endif |
238 | assert(check_compiled_frame(thread), "incorrect caller" ); |
239 | |
240 | // Scavenge and allocate an instance. |
241 | oop result; |
242 | |
243 | if (array_type->is_typeArray_klass()) { |
244 | // The oopFactory likes to work with the element type. |
245 | // (We could bypass the oopFactory, since it doesn't add much value.) |
246 | BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); |
247 | result = oopFactory::new_typeArray(elem_type, len, THREAD); |
248 | } else { |
249 | // Although the oopFactory likes to work with the elem_type, |
250 | // the compiler prefers the array_type, since it must already have |
251 | // that latter value in hand for the fast path. |
252 | Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive |
253 | Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); |
254 | result = oopFactory::new_objArray(elem_type, len, THREAD); |
255 | } |
256 | |
257 | // Pass oops back through thread local storage. Our apparent type to Java |
258 | // is that we return an oop, but we can block on exit from this routine and |
259 | // a GC can trash the oop in C's return register. The generated stub will |
260 | // fetch the oop from TLS after any possible GC. |
261 | deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); |
262 | thread->set_vm_result(result); |
263 | JRT_BLOCK_END; |
264 | |
265 | // inform GC that we won't do card marks for initializing writes. |
266 | SharedRuntime::on_slowpath_allocation_exit(thread); |
267 | JRT_END |
268 | |
269 | // array allocation without zeroing |
270 | JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread)) |
271 | JRT_BLOCK; |
272 | #ifndef PRODUCT |
273 | SharedRuntime::_new_array_ctr++; // new array requires GC |
274 | #endif |
275 | assert(check_compiled_frame(thread), "incorrect caller" ); |
276 | |
277 | // Scavenge and allocate an instance. |
278 | oop result; |
279 | |
280 | assert(array_type->is_typeArray_klass(), "should be called only for type array" ); |
281 | // The oopFactory likes to work with the element type. |
282 | BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); |
283 | result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); |
284 | |
285 | // Pass oops back through thread local storage. Our apparent type to Java |
286 | // is that we return an oop, but we can block on exit from this routine and |
287 | // a GC can trash the oop in C's return register. The generated stub will |
288 | // fetch the oop from TLS after any possible GC. |
289 | deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); |
290 | thread->set_vm_result(result); |
291 | JRT_BLOCK_END; |
292 | |
293 | |
294 | // inform GC that we won't do card marks for initializing writes. |
295 | SharedRuntime::on_slowpath_allocation_exit(thread); |
296 | |
297 | oop result = thread->vm_result(); |
298 | if ((len > 0) && (result != NULL) && |
299 | is_deoptimized_caller_frame(thread)) { |
300 | // Zero array here if the caller is deoptimized. |
301 | int size = ((typeArrayOop)result)->object_size(); |
302 | BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); |
303 | const size_t hs = arrayOopDesc::header_size(elem_type); |
304 | // Align to next 8 bytes to avoid trashing arrays's length. |
305 | const size_t aligned_hs = align_object_offset(hs); |
306 | HeapWord* obj = (HeapWord*)result; |
307 | if (aligned_hs > hs) { |
308 | Copy::zero_to_words(obj+hs, aligned_hs-hs); |
309 | } |
310 | // Optimized zeroing. |
311 | Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); |
312 | } |
313 | |
314 | JRT_END |
315 | |
316 | // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. |
317 | |
318 | // multianewarray for 2 dimensions |
319 | JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread)) |
320 | #ifndef PRODUCT |
321 | SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension |
322 | #endif |
323 | assert(check_compiled_frame(thread), "incorrect caller" ); |
324 | assert(elem_type->is_klass(), "not a class" ); |
325 | jint dims[2]; |
326 | dims[0] = len1; |
327 | dims[1] = len2; |
328 | Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive |
329 | oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); |
330 | deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); |
331 | thread->set_vm_result(obj); |
332 | JRT_END |
333 | |
334 | // multianewarray for 3 dimensions |
335 | JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread)) |
336 | #ifndef PRODUCT |
337 | SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension |
338 | #endif |
339 | assert(check_compiled_frame(thread), "incorrect caller" ); |
340 | assert(elem_type->is_klass(), "not a class" ); |
341 | jint dims[3]; |
342 | dims[0] = len1; |
343 | dims[1] = len2; |
344 | dims[2] = len3; |
345 | Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive |
346 | oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); |
347 | deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); |
348 | thread->set_vm_result(obj); |
349 | JRT_END |
350 | |
351 | // multianewarray for 4 dimensions |
352 | JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread)) |
353 | #ifndef PRODUCT |
354 | SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension |
355 | #endif |
356 | assert(check_compiled_frame(thread), "incorrect caller" ); |
357 | assert(elem_type->is_klass(), "not a class" ); |
358 | jint dims[4]; |
359 | dims[0] = len1; |
360 | dims[1] = len2; |
361 | dims[2] = len3; |
362 | dims[3] = len4; |
363 | Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive |
364 | oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); |
365 | deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); |
366 | thread->set_vm_result(obj); |
367 | JRT_END |
368 | |
369 | // multianewarray for 5 dimensions |
370 | JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread)) |
371 | #ifndef PRODUCT |
372 | SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension |
373 | #endif |
374 | assert(check_compiled_frame(thread), "incorrect caller" ); |
375 | assert(elem_type->is_klass(), "not a class" ); |
376 | jint dims[5]; |
377 | dims[0] = len1; |
378 | dims[1] = len2; |
379 | dims[2] = len3; |
380 | dims[3] = len4; |
381 | dims[4] = len5; |
382 | Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive |
383 | oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); |
384 | deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); |
385 | thread->set_vm_result(obj); |
386 | JRT_END |
387 | |
388 | JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread)) |
389 | assert(check_compiled_frame(thread), "incorrect caller" ); |
390 | assert(elem_type->is_klass(), "not a class" ); |
391 | assert(oop(dims)->is_typeArray(), "not an array" ); |
392 | |
393 | ResourceMark rm; |
394 | jint len = dims->length(); |
395 | assert(len > 0, "Dimensions array should contain data" ); |
396 | jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); |
397 | ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), |
398 | c_dims, len); |
399 | |
400 | Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive |
401 | oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); |
402 | deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); |
403 | thread->set_vm_result(obj); |
404 | JRT_END |
405 | |
406 | JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread)) |
407 | |
408 | // Very few notify/notifyAll operations find any threads on the waitset, so |
409 | // the dominant fast-path is to simply return. |
410 | // Relatedly, it's critical that notify/notifyAll be fast in order to |
411 | // reduce lock hold times. |
412 | if (!SafepointSynchronize::is_synchronizing()) { |
413 | if (ObjectSynchronizer::quick_notify(obj, thread, false)) { |
414 | return; |
415 | } |
416 | } |
417 | |
418 | // This is the case the fast-path above isn't provisioned to handle. |
419 | // The fast-path is designed to handle frequently arising cases in an efficient manner. |
420 | // (The fast-path is just a degenerate variant of the slow-path). |
421 | // Perform the dreaded state transition and pass control into the slow-path. |
422 | JRT_BLOCK; |
423 | Handle h_obj(THREAD, obj); |
424 | ObjectSynchronizer::notify(h_obj, CHECK); |
425 | JRT_BLOCK_END; |
426 | JRT_END |
427 | |
428 | JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread)) |
429 | |
430 | if (!SafepointSynchronize::is_synchronizing() ) { |
431 | if (ObjectSynchronizer::quick_notify(obj, thread, true)) { |
432 | return; |
433 | } |
434 | } |
435 | |
436 | // This is the case the fast-path above isn't provisioned to handle. |
437 | // The fast-path is designed to handle frequently arising cases in an efficient manner. |
438 | // (The fast-path is just a degenerate variant of the slow-path). |
439 | // Perform the dreaded state transition and pass control into the slow-path. |
440 | JRT_BLOCK; |
441 | Handle h_obj(THREAD, obj); |
442 | ObjectSynchronizer::notifyall(h_obj, CHECK); |
443 | JRT_BLOCK_END; |
444 | JRT_END |
445 | |
446 | const TypeFunc *OptoRuntime::new_instance_Type() { |
447 | // create input type (domain) |
448 | const Type **fields = TypeTuple::fields(1); |
449 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated |
450 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); |
451 | |
452 | // create result type (range) |
453 | fields = TypeTuple::fields(1); |
454 | fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop |
455 | |
456 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
457 | |
458 | return TypeFunc::make(domain, range); |
459 | } |
460 | |
461 | |
462 | const TypeFunc *OptoRuntime::athrow_Type() { |
463 | // create input type (domain) |
464 | const Type **fields = TypeTuple::fields(1); |
465 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated |
466 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); |
467 | |
468 | // create result type (range) |
469 | fields = TypeTuple::fields(0); |
470 | |
471 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); |
472 | |
473 | return TypeFunc::make(domain, range); |
474 | } |
475 | |
476 | |
477 | const TypeFunc *OptoRuntime::new_array_Type() { |
478 | // create input type (domain) |
479 | const Type **fields = TypeTuple::fields(2); |
480 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass |
481 | fields[TypeFunc::Parms+1] = TypeInt::INT; // array size |
482 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); |
483 | |
484 | // create result type (range) |
485 | fields = TypeTuple::fields(1); |
486 | fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop |
487 | |
488 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
489 | |
490 | return TypeFunc::make(domain, range); |
491 | } |
492 | |
493 | const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { |
494 | // create input type (domain) |
495 | const int nargs = ndim + 1; |
496 | const Type **fields = TypeTuple::fields(nargs); |
497 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass |
498 | for( int i = 1; i < nargs; i++ ) |
499 | fields[TypeFunc::Parms + i] = TypeInt::INT; // array size |
500 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); |
501 | |
502 | // create result type (range) |
503 | fields = TypeTuple::fields(1); |
504 | fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop |
505 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
506 | |
507 | return TypeFunc::make(domain, range); |
508 | } |
509 | |
510 | const TypeFunc *OptoRuntime::multianewarray2_Type() { |
511 | return multianewarray_Type(2); |
512 | } |
513 | |
514 | const TypeFunc *OptoRuntime::multianewarray3_Type() { |
515 | return multianewarray_Type(3); |
516 | } |
517 | |
518 | const TypeFunc *OptoRuntime::multianewarray4_Type() { |
519 | return multianewarray_Type(4); |
520 | } |
521 | |
522 | const TypeFunc *OptoRuntime::multianewarray5_Type() { |
523 | return multianewarray_Type(5); |
524 | } |
525 | |
526 | const TypeFunc *OptoRuntime::multianewarrayN_Type() { |
527 | // create input type (domain) |
528 | const Type **fields = TypeTuple::fields(2); |
529 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass |
530 | fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes |
531 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); |
532 | |
533 | // create result type (range) |
534 | fields = TypeTuple::fields(1); |
535 | fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop |
536 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
537 | |
538 | return TypeFunc::make(domain, range); |
539 | } |
540 | |
541 | const TypeFunc *OptoRuntime::uncommon_trap_Type() { |
542 | // create input type (domain) |
543 | const Type **fields = TypeTuple::fields(1); |
544 | fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) |
545 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); |
546 | |
547 | // create result type (range) |
548 | fields = TypeTuple::fields(0); |
549 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); |
550 | |
551 | return TypeFunc::make(domain, range); |
552 | } |
553 | |
554 | //----------------------------------------------------------------------------- |
555 | // Monitor Handling |
556 | const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { |
557 | // create input type (domain) |
558 | const Type **fields = TypeTuple::fields(2); |
559 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked |
560 | fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock |
561 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); |
562 | |
563 | // create result type (range) |
564 | fields = TypeTuple::fields(0); |
565 | |
566 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); |
567 | |
568 | return TypeFunc::make(domain,range); |
569 | } |
570 | |
571 | |
572 | //----------------------------------------------------------------------------- |
573 | const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { |
574 | // create input type (domain) |
575 | const Type **fields = TypeTuple::fields(3); |
576 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked |
577 | fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock |
578 | fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) |
579 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); |
580 | |
581 | // create result type (range) |
582 | fields = TypeTuple::fields(0); |
583 | |
584 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); |
585 | |
586 | return TypeFunc::make(domain, range); |
587 | } |
588 | |
589 | const TypeFunc *OptoRuntime::monitor_notify_Type() { |
590 | // create input type (domain) |
591 | const Type **fields = TypeTuple::fields(1); |
592 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked |
593 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); |
594 | |
595 | // create result type (range) |
596 | fields = TypeTuple::fields(0); |
597 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); |
598 | return TypeFunc::make(domain, range); |
599 | } |
600 | |
601 | const TypeFunc* OptoRuntime::flush_windows_Type() { |
602 | // create input type (domain) |
603 | const Type** fields = TypeTuple::fields(1); |
604 | fields[TypeFunc::Parms+0] = NULL; // void |
605 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); |
606 | |
607 | // create result type |
608 | fields = TypeTuple::fields(1); |
609 | fields[TypeFunc::Parms+0] = NULL; // void |
610 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); |
611 | |
612 | return TypeFunc::make(domain, range); |
613 | } |
614 | |
615 | const TypeFunc* OptoRuntime::l2f_Type() { |
616 | // create input type (domain) |
617 | const Type **fields = TypeTuple::fields(2); |
618 | fields[TypeFunc::Parms+0] = TypeLong::LONG; |
619 | fields[TypeFunc::Parms+1] = Type::HALF; |
620 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); |
621 | |
622 | // create result type (range) |
623 | fields = TypeTuple::fields(1); |
624 | fields[TypeFunc::Parms+0] = Type::FLOAT; |
625 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
626 | |
627 | return TypeFunc::make(domain, range); |
628 | } |
629 | |
630 | const TypeFunc* OptoRuntime::modf_Type() { |
631 | const Type **fields = TypeTuple::fields(2); |
632 | fields[TypeFunc::Parms+0] = Type::FLOAT; |
633 | fields[TypeFunc::Parms+1] = Type::FLOAT; |
634 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); |
635 | |
636 | // create result type (range) |
637 | fields = TypeTuple::fields(1); |
638 | fields[TypeFunc::Parms+0] = Type::FLOAT; |
639 | |
640 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
641 | |
642 | return TypeFunc::make(domain, range); |
643 | } |
644 | |
645 | const TypeFunc *OptoRuntime::Math_D_D_Type() { |
646 | // create input type (domain) |
647 | const Type **fields = TypeTuple::fields(2); |
648 | // Symbol* name of class to be loaded |
649 | fields[TypeFunc::Parms+0] = Type::DOUBLE; |
650 | fields[TypeFunc::Parms+1] = Type::HALF; |
651 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); |
652 | |
653 | // create result type (range) |
654 | fields = TypeTuple::fields(2); |
655 | fields[TypeFunc::Parms+0] = Type::DOUBLE; |
656 | fields[TypeFunc::Parms+1] = Type::HALF; |
657 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); |
658 | |
659 | return TypeFunc::make(domain, range); |
660 | } |
661 | |
662 | const TypeFunc* OptoRuntime::Math_DD_D_Type() { |
663 | const Type **fields = TypeTuple::fields(4); |
664 | fields[TypeFunc::Parms+0] = Type::DOUBLE; |
665 | fields[TypeFunc::Parms+1] = Type::HALF; |
666 | fields[TypeFunc::Parms+2] = Type::DOUBLE; |
667 | fields[TypeFunc::Parms+3] = Type::HALF; |
668 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); |
669 | |
670 | // create result type (range) |
671 | fields = TypeTuple::fields(2); |
672 | fields[TypeFunc::Parms+0] = Type::DOUBLE; |
673 | fields[TypeFunc::Parms+1] = Type::HALF; |
674 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); |
675 | |
676 | return TypeFunc::make(domain, range); |
677 | } |
678 | |
679 | //-------------- currentTimeMillis, currentTimeNanos, etc |
680 | |
681 | const TypeFunc* OptoRuntime::void_long_Type() { |
682 | // create input type (domain) |
683 | const Type **fields = TypeTuple::fields(0); |
684 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); |
685 | |
686 | // create result type (range) |
687 | fields = TypeTuple::fields(2); |
688 | fields[TypeFunc::Parms+0] = TypeLong::LONG; |
689 | fields[TypeFunc::Parms+1] = Type::HALF; |
690 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); |
691 | |
692 | return TypeFunc::make(domain, range); |
693 | } |
694 | |
695 | // arraycopy stub variations: |
696 | enum ArrayCopyType { |
697 | ac_fast, // void(ptr, ptr, size_t) |
698 | ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) |
699 | ac_slow, // void(ptr, int, ptr, int, int) |
700 | ac_generic // int(ptr, int, ptr, int, int) |
701 | }; |
702 | |
703 | static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { |
704 | // create input type (domain) |
705 | int num_args = (act == ac_fast ? 3 : 5); |
706 | int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); |
707 | int argcnt = num_args; |
708 | LP64_ONLY(argcnt += num_size_args); // halfwords for lengths |
709 | const Type** fields = TypeTuple::fields(argcnt); |
710 | int argp = TypeFunc::Parms; |
711 | fields[argp++] = TypePtr::NOTNULL; // src |
712 | if (num_size_args == 0) { |
713 | fields[argp++] = TypeInt::INT; // src_pos |
714 | } |
715 | fields[argp++] = TypePtr::NOTNULL; // dest |
716 | if (num_size_args == 0) { |
717 | fields[argp++] = TypeInt::INT; // dest_pos |
718 | fields[argp++] = TypeInt::INT; // length |
719 | } |
720 | while (num_size_args-- > 0) { |
721 | fields[argp++] = TypeX_X; // size in whatevers (size_t) |
722 | LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length |
723 | } |
724 | if (act == ac_checkcast) { |
725 | fields[argp++] = TypePtr::NOTNULL; // super_klass |
726 | } |
727 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act" ); |
728 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
729 | |
730 | // create result type if needed |
731 | int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); |
732 | fields = TypeTuple::fields(1); |
733 | if (retcnt == 0) |
734 | fields[TypeFunc::Parms+0] = NULL; // void |
735 | else |
736 | fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed |
737 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); |
738 | return TypeFunc::make(domain, range); |
739 | } |
740 | |
741 | const TypeFunc* OptoRuntime::fast_arraycopy_Type() { |
742 | // This signature is simple: Two base pointers and a size_t. |
743 | return make_arraycopy_Type(ac_fast); |
744 | } |
745 | |
746 | const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { |
747 | // An extension of fast_arraycopy_Type which adds type checking. |
748 | return make_arraycopy_Type(ac_checkcast); |
749 | } |
750 | |
751 | const TypeFunc* OptoRuntime::slow_arraycopy_Type() { |
752 | // This signature is exactly the same as System.arraycopy. |
753 | // There are no intptr_t (int/long) arguments. |
754 | return make_arraycopy_Type(ac_slow); |
755 | } |
756 | |
757 | const TypeFunc* OptoRuntime::generic_arraycopy_Type() { |
758 | // This signature is like System.arraycopy, except that it returns status. |
759 | return make_arraycopy_Type(ac_generic); |
760 | } |
761 | |
762 | |
763 | const TypeFunc* OptoRuntime::array_fill_Type() { |
764 | const Type** fields; |
765 | int argp = TypeFunc::Parms; |
766 | // create input type (domain): pointer, int, size_t |
767 | fields = TypeTuple::fields(3 LP64_ONLY( + 1)); |
768 | fields[argp++] = TypePtr::NOTNULL; |
769 | fields[argp++] = TypeInt::INT; |
770 | fields[argp++] = TypeX_X; // size in whatevers (size_t) |
771 | LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length |
772 | const TypeTuple *domain = TypeTuple::make(argp, fields); |
773 | |
774 | // create result type |
775 | fields = TypeTuple::fields(1); |
776 | fields[TypeFunc::Parms+0] = NULL; // void |
777 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); |
778 | |
779 | return TypeFunc::make(domain, range); |
780 | } |
781 | |
782 | // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) |
783 | const TypeFunc* OptoRuntime::aescrypt_block_Type() { |
784 | // create input type (domain) |
785 | int num_args = 3; |
786 | if (Matcher::pass_original_key_for_aes()) { |
787 | num_args = 4; |
788 | } |
789 | int argcnt = num_args; |
790 | const Type** fields = TypeTuple::fields(argcnt); |
791 | int argp = TypeFunc::Parms; |
792 | fields[argp++] = TypePtr::NOTNULL; // src |
793 | fields[argp++] = TypePtr::NOTNULL; // dest |
794 | fields[argp++] = TypePtr::NOTNULL; // k array |
795 | if (Matcher::pass_original_key_for_aes()) { |
796 | fields[argp++] = TypePtr::NOTNULL; // original k array |
797 | } |
798 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
799 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
800 | |
801 | // no result type needed |
802 | fields = TypeTuple::fields(1); |
803 | fields[TypeFunc::Parms+0] = NULL; // void |
804 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); |
805 | return TypeFunc::make(domain, range); |
806 | } |
807 | |
808 | /** |
809 | * int updateBytesCRC32(int crc, byte* b, int len) |
810 | */ |
811 | const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { |
812 | // create input type (domain) |
813 | int num_args = 3; |
814 | int argcnt = num_args; |
815 | const Type** fields = TypeTuple::fields(argcnt); |
816 | int argp = TypeFunc::Parms; |
817 | fields[argp++] = TypeInt::INT; // crc |
818 | fields[argp++] = TypePtr::NOTNULL; // src |
819 | fields[argp++] = TypeInt::INT; // len |
820 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
821 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
822 | |
823 | // result type needed |
824 | fields = TypeTuple::fields(1); |
825 | fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result |
826 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); |
827 | return TypeFunc::make(domain, range); |
828 | } |
829 | |
830 | /** |
831 | * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) |
832 | */ |
833 | const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { |
834 | // create input type (domain) |
835 | int num_args = 4; |
836 | int argcnt = num_args; |
837 | const Type** fields = TypeTuple::fields(argcnt); |
838 | int argp = TypeFunc::Parms; |
839 | fields[argp++] = TypeInt::INT; // crc |
840 | fields[argp++] = TypePtr::NOTNULL; // buf |
841 | fields[argp++] = TypeInt::INT; // len |
842 | fields[argp++] = TypePtr::NOTNULL; // table |
843 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
844 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
845 | |
846 | // result type needed |
847 | fields = TypeTuple::fields(1); |
848 | fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result |
849 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); |
850 | return TypeFunc::make(domain, range); |
851 | } |
852 | |
853 | /** |
854 | * int updateBytesAdler32(int adler, bytes* b, int off, int len) |
855 | */ |
856 | const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { |
857 | // create input type (domain) |
858 | int num_args = 3; |
859 | int argcnt = num_args; |
860 | const Type** fields = TypeTuple::fields(argcnt); |
861 | int argp = TypeFunc::Parms; |
862 | fields[argp++] = TypeInt::INT; // crc |
863 | fields[argp++] = TypePtr::NOTNULL; // src + offset |
864 | fields[argp++] = TypeInt::INT; // len |
865 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
866 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
867 | |
868 | // result type needed |
869 | fields = TypeTuple::fields(1); |
870 | fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result |
871 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); |
872 | return TypeFunc::make(domain, range); |
873 | } |
874 | |
875 | // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int |
876 | const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { |
877 | // create input type (domain) |
878 | int num_args = 5; |
879 | if (Matcher::pass_original_key_for_aes()) { |
880 | num_args = 6; |
881 | } |
882 | int argcnt = num_args; |
883 | const Type** fields = TypeTuple::fields(argcnt); |
884 | int argp = TypeFunc::Parms; |
885 | fields[argp++] = TypePtr::NOTNULL; // src |
886 | fields[argp++] = TypePtr::NOTNULL; // dest |
887 | fields[argp++] = TypePtr::NOTNULL; // k array |
888 | fields[argp++] = TypePtr::NOTNULL; // r array |
889 | fields[argp++] = TypeInt::INT; // src len |
890 | if (Matcher::pass_original_key_for_aes()) { |
891 | fields[argp++] = TypePtr::NOTNULL; // original k array |
892 | } |
893 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
894 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
895 | |
896 | // returning cipher len (int) |
897 | fields = TypeTuple::fields(1); |
898 | fields[TypeFunc::Parms+0] = TypeInt::INT; |
899 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); |
900 | return TypeFunc::make(domain, range); |
901 | } |
902 | |
903 | //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int |
904 | const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { |
905 | // create input type (domain) |
906 | int num_args = 7; |
907 | if (Matcher::pass_original_key_for_aes()) { |
908 | num_args = 8; |
909 | } |
910 | int argcnt = num_args; |
911 | const Type** fields = TypeTuple::fields(argcnt); |
912 | int argp = TypeFunc::Parms; |
913 | fields[argp++] = TypePtr::NOTNULL; // src |
914 | fields[argp++] = TypePtr::NOTNULL; // dest |
915 | fields[argp++] = TypePtr::NOTNULL; // k array |
916 | fields[argp++] = TypePtr::NOTNULL; // counter array |
917 | fields[argp++] = TypeInt::INT; // src len |
918 | fields[argp++] = TypePtr::NOTNULL; // saved_encCounter |
919 | fields[argp++] = TypePtr::NOTNULL; // saved used addr |
920 | if (Matcher::pass_original_key_for_aes()) { |
921 | fields[argp++] = TypePtr::NOTNULL; // original k array |
922 | } |
923 | assert(argp == TypeFunc::Parms + argcnt, "correct decoding" ); |
924 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); |
925 | // returning cipher len (int) |
926 | fields = TypeTuple::fields(1); |
927 | fields[TypeFunc::Parms + 0] = TypeInt::INT; |
928 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); |
929 | return TypeFunc::make(domain, range); |
930 | } |
931 | |
932 | /* |
933 | * void implCompress(byte[] buf, int ofs) |
934 | */ |
935 | const TypeFunc* OptoRuntime::sha_implCompress_Type() { |
936 | // create input type (domain) |
937 | int num_args = 2; |
938 | int argcnt = num_args; |
939 | const Type** fields = TypeTuple::fields(argcnt); |
940 | int argp = TypeFunc::Parms; |
941 | fields[argp++] = TypePtr::NOTNULL; // buf |
942 | fields[argp++] = TypePtr::NOTNULL; // state |
943 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
944 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
945 | |
946 | // no result type needed |
947 | fields = TypeTuple::fields(1); |
948 | fields[TypeFunc::Parms+0] = NULL; // void |
949 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); |
950 | return TypeFunc::make(domain, range); |
951 | } |
952 | |
953 | /* |
954 | * int implCompressMultiBlock(byte[] b, int ofs, int limit) |
955 | */ |
956 | const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() { |
957 | // create input type (domain) |
958 | int num_args = 4; |
959 | int argcnt = num_args; |
960 | const Type** fields = TypeTuple::fields(argcnt); |
961 | int argp = TypeFunc::Parms; |
962 | fields[argp++] = TypePtr::NOTNULL; // buf |
963 | fields[argp++] = TypePtr::NOTNULL; // state |
964 | fields[argp++] = TypeInt::INT; // ofs |
965 | fields[argp++] = TypeInt::INT; // limit |
966 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
967 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
968 | |
969 | // returning ofs (int) |
970 | fields = TypeTuple::fields(1); |
971 | fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs |
972 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); |
973 | return TypeFunc::make(domain, range); |
974 | } |
975 | |
976 | const TypeFunc* OptoRuntime::multiplyToLen_Type() { |
977 | // create input type (domain) |
978 | int num_args = 6; |
979 | int argcnt = num_args; |
980 | const Type** fields = TypeTuple::fields(argcnt); |
981 | int argp = TypeFunc::Parms; |
982 | fields[argp++] = TypePtr::NOTNULL; // x |
983 | fields[argp++] = TypeInt::INT; // xlen |
984 | fields[argp++] = TypePtr::NOTNULL; // y |
985 | fields[argp++] = TypeInt::INT; // ylen |
986 | fields[argp++] = TypePtr::NOTNULL; // z |
987 | fields[argp++] = TypeInt::INT; // zlen |
988 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
989 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
990 | |
991 | // no result type needed |
992 | fields = TypeTuple::fields(1); |
993 | fields[TypeFunc::Parms+0] = NULL; |
994 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); |
995 | return TypeFunc::make(domain, range); |
996 | } |
997 | |
998 | const TypeFunc* OptoRuntime::squareToLen_Type() { |
999 | // create input type (domain) |
1000 | int num_args = 4; |
1001 | int argcnt = num_args; |
1002 | const Type** fields = TypeTuple::fields(argcnt); |
1003 | int argp = TypeFunc::Parms; |
1004 | fields[argp++] = TypePtr::NOTNULL; // x |
1005 | fields[argp++] = TypeInt::INT; // len |
1006 | fields[argp++] = TypePtr::NOTNULL; // z |
1007 | fields[argp++] = TypeInt::INT; // zlen |
1008 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
1009 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
1010 | |
1011 | // no result type needed |
1012 | fields = TypeTuple::fields(1); |
1013 | fields[TypeFunc::Parms+0] = NULL; |
1014 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); |
1015 | return TypeFunc::make(domain, range); |
1016 | } |
1017 | |
1018 | // for mulAdd calls, 2 pointers and 3 ints, returning int |
1019 | const TypeFunc* OptoRuntime::mulAdd_Type() { |
1020 | // create input type (domain) |
1021 | int num_args = 5; |
1022 | int argcnt = num_args; |
1023 | const Type** fields = TypeTuple::fields(argcnt); |
1024 | int argp = TypeFunc::Parms; |
1025 | fields[argp++] = TypePtr::NOTNULL; // out |
1026 | fields[argp++] = TypePtr::NOTNULL; // in |
1027 | fields[argp++] = TypeInt::INT; // offset |
1028 | fields[argp++] = TypeInt::INT; // len |
1029 | fields[argp++] = TypeInt::INT; // k |
1030 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
1031 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
1032 | |
1033 | // returning carry (int) |
1034 | fields = TypeTuple::fields(1); |
1035 | fields[TypeFunc::Parms+0] = TypeInt::INT; |
1036 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); |
1037 | return TypeFunc::make(domain, range); |
1038 | } |
1039 | |
1040 | const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { |
1041 | // create input type (domain) |
1042 | int num_args = 7; |
1043 | int argcnt = num_args; |
1044 | const Type** fields = TypeTuple::fields(argcnt); |
1045 | int argp = TypeFunc::Parms; |
1046 | fields[argp++] = TypePtr::NOTNULL; // a |
1047 | fields[argp++] = TypePtr::NOTNULL; // b |
1048 | fields[argp++] = TypePtr::NOTNULL; // n |
1049 | fields[argp++] = TypeInt::INT; // len |
1050 | fields[argp++] = TypeLong::LONG; // inv |
1051 | fields[argp++] = Type::HALF; |
1052 | fields[argp++] = TypePtr::NOTNULL; // result |
1053 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
1054 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
1055 | |
1056 | // result type needed |
1057 | fields = TypeTuple::fields(1); |
1058 | fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; |
1059 | |
1060 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); |
1061 | return TypeFunc::make(domain, range); |
1062 | } |
1063 | |
1064 | const TypeFunc* OptoRuntime::montgomerySquare_Type() { |
1065 | // create input type (domain) |
1066 | int num_args = 6; |
1067 | int argcnt = num_args; |
1068 | const Type** fields = TypeTuple::fields(argcnt); |
1069 | int argp = TypeFunc::Parms; |
1070 | fields[argp++] = TypePtr::NOTNULL; // a |
1071 | fields[argp++] = TypePtr::NOTNULL; // n |
1072 | fields[argp++] = TypeInt::INT; // len |
1073 | fields[argp++] = TypeLong::LONG; // inv |
1074 | fields[argp++] = Type::HALF; |
1075 | fields[argp++] = TypePtr::NOTNULL; // result |
1076 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
1077 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
1078 | |
1079 | // result type needed |
1080 | fields = TypeTuple::fields(1); |
1081 | fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; |
1082 | |
1083 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); |
1084 | return TypeFunc::make(domain, range); |
1085 | } |
1086 | |
1087 | const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { |
1088 | // create input type (domain) |
1089 | int num_args = 4; |
1090 | int argcnt = num_args; |
1091 | const Type** fields = TypeTuple::fields(argcnt); |
1092 | int argp = TypeFunc::Parms; |
1093 | fields[argp++] = TypePtr::NOTNULL; // obja |
1094 | fields[argp++] = TypePtr::NOTNULL; // objb |
1095 | fields[argp++] = TypeInt::INT; // length, number of elements |
1096 | fields[argp++] = TypeInt::INT; // log2scale, element size |
1097 | assert(argp == TypeFunc::Parms + argcnt, "correct decoding" ); |
1098 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); |
1099 | |
1100 | //return mismatch index (int) |
1101 | fields = TypeTuple::fields(1); |
1102 | fields[TypeFunc::Parms + 0] = TypeInt::INT; |
1103 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); |
1104 | return TypeFunc::make(domain, range); |
1105 | } |
1106 | |
1107 | // GHASH block processing |
1108 | const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { |
1109 | int argcnt = 4; |
1110 | |
1111 | const Type** fields = TypeTuple::fields(argcnt); |
1112 | int argp = TypeFunc::Parms; |
1113 | fields[argp++] = TypePtr::NOTNULL; // state |
1114 | fields[argp++] = TypePtr::NOTNULL; // subkeyH |
1115 | fields[argp++] = TypePtr::NOTNULL; // data |
1116 | fields[argp++] = TypeInt::INT; // blocks |
1117 | assert(argp == TypeFunc::Parms+argcnt, "correct decoding" ); |
1118 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
1119 | |
1120 | // result type needed |
1121 | fields = TypeTuple::fields(1); |
1122 | fields[TypeFunc::Parms+0] = NULL; // void |
1123 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); |
1124 | return TypeFunc::make(domain, range); |
1125 | } |
1126 | // Base64 encode function |
1127 | const TypeFunc* OptoRuntime::base64_encodeBlock_Type() { |
1128 | int argcnt = 6; |
1129 | |
1130 | const Type** fields = TypeTuple::fields(argcnt); |
1131 | int argp = TypeFunc::Parms; |
1132 | fields[argp++] = TypePtr::NOTNULL; // src array |
1133 | fields[argp++] = TypeInt::INT; // offset |
1134 | fields[argp++] = TypeInt::INT; // length |
1135 | fields[argp++] = TypePtr::NOTNULL; // dest array |
1136 | fields[argp++] = TypeInt::INT; // dp |
1137 | fields[argp++] = TypeInt::BOOL; // isURL |
1138 | assert(argp == TypeFunc::Parms + argcnt, "correct decoding" ); |
1139 | const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); |
1140 | |
1141 | // result type needed |
1142 | fields = TypeTuple::fields(1); |
1143 | fields[TypeFunc::Parms + 0] = NULL; // void |
1144 | const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); |
1145 | return TypeFunc::make(domain, range); |
1146 | } |
1147 | |
1148 | //------------- Interpreter state access for on stack replacement |
1149 | const TypeFunc* OptoRuntime::osr_end_Type() { |
1150 | // create input type (domain) |
1151 | const Type **fields = TypeTuple::fields(1); |
1152 | fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf |
1153 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); |
1154 | |
1155 | // create result type |
1156 | fields = TypeTuple::fields(1); |
1157 | // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop |
1158 | fields[TypeFunc::Parms+0] = NULL; // void |
1159 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); |
1160 | return TypeFunc::make(domain, range); |
1161 | } |
1162 | |
1163 | //-------------- methodData update helpers |
1164 | |
1165 | const TypeFunc* OptoRuntime::profile_receiver_type_Type() { |
1166 | // create input type (domain) |
1167 | const Type **fields = TypeTuple::fields(2); |
1168 | fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer |
1169 | fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop |
1170 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); |
1171 | |
1172 | // create result type |
1173 | fields = TypeTuple::fields(1); |
1174 | fields[TypeFunc::Parms+0] = NULL; // void |
1175 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); |
1176 | return TypeFunc::make(domain,range); |
1177 | } |
1178 | |
1179 | JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver)) |
1180 | if (receiver == NULL) return; |
1181 | Klass* receiver_klass = receiver->klass(); |
1182 | |
1183 | intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells(); |
1184 | int empty_row = -1; // free row, if any is encountered |
1185 | |
1186 | // ReceiverTypeData* vc = new ReceiverTypeData(mdp); |
1187 | for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) { |
1188 | // if (vc->receiver(row) == receiver_klass) |
1189 | int receiver_off = ReceiverTypeData::receiver_cell_index(row); |
1190 | intptr_t row_recv = *(mdp + receiver_off); |
1191 | if (row_recv == (intptr_t) receiver_klass) { |
1192 | // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment); |
1193 | int count_off = ReceiverTypeData::receiver_count_cell_index(row); |
1194 | *(mdp + count_off) += DataLayout::counter_increment; |
1195 | return; |
1196 | } else if (row_recv == 0) { |
1197 | // else if (vc->receiver(row) == NULL) |
1198 | empty_row = (int) row; |
1199 | } |
1200 | } |
1201 | |
1202 | if (empty_row != -1) { |
1203 | int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row); |
1204 | // vc->set_receiver(empty_row, receiver_klass); |
1205 | *(mdp + receiver_off) = (intptr_t) receiver_klass; |
1206 | // vc->set_receiver_count(empty_row, DataLayout::counter_increment); |
1207 | int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row); |
1208 | *(mdp + count_off) = DataLayout::counter_increment; |
1209 | } else { |
1210 | // Receiver did not match any saved receiver and there is no empty row for it. |
1211 | // Increment total counter to indicate polymorphic case. |
1212 | intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset())); |
1213 | *count_p += DataLayout::counter_increment; |
1214 | } |
1215 | JRT_END |
1216 | |
1217 | //------------------------------------------------------------------------------------- |
1218 | // register policy |
1219 | |
1220 | bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { |
1221 | assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register" ); |
1222 | switch (register_save_policy[reg]) { |
1223 | case 'C': return false; //SOC |
1224 | case 'E': return true ; //SOE |
1225 | case 'N': return false; //NS |
1226 | case 'A': return false; //AS |
1227 | } |
1228 | ShouldNotReachHere(); |
1229 | return false; |
1230 | } |
1231 | |
1232 | //----------------------------------------------------------------------- |
1233 | // Exceptions |
1234 | // |
1235 | |
1236 | static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); |
1237 | |
1238 | // The method is an entry that is always called by a C++ method not |
1239 | // directly from compiled code. Compiled code will call the C++ method following. |
1240 | // We can't allow async exception to be installed during exception processing. |
1241 | JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm)) |
1242 | |
1243 | // Do not confuse exception_oop with pending_exception. The exception_oop |
1244 | // is only used to pass arguments into the method. Not for general |
1245 | // exception handling. DO NOT CHANGE IT to use pending_exception, since |
1246 | // the runtime stubs checks this on exit. |
1247 | assert(thread->exception_oop() != NULL, "exception oop is found" ); |
1248 | address handler_address = NULL; |
1249 | |
1250 | Handle exception(thread, thread->exception_oop()); |
1251 | address pc = thread->exception_pc(); |
1252 | |
1253 | // Clear out the exception oop and pc since looking up an |
1254 | // exception handler can cause class loading, which might throw an |
1255 | // exception and those fields are expected to be clear during |
1256 | // normal bytecode execution. |
1257 | thread->clear_exception_oop_and_pc(); |
1258 | |
1259 | LogTarget(Info, exceptions) lt; |
1260 | if (lt.is_enabled()) { |
1261 | ResourceMark rm; |
1262 | LogStream ls(lt); |
1263 | trace_exception(&ls, exception(), pc, "" ); |
1264 | } |
1265 | |
1266 | // for AbortVMOnException flag |
1267 | Exceptions::debug_check_abort(exception); |
1268 | |
1269 | #ifdef ASSERT |
1270 | if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { |
1271 | // should throw an exception here |
1272 | ShouldNotReachHere(); |
1273 | } |
1274 | #endif |
1275 | |
1276 | // new exception handling: this method is entered only from adapters |
1277 | // exceptions from compiled java methods are handled in compiled code |
1278 | // using rethrow node |
1279 | |
1280 | nm = CodeCache::find_nmethod(pc); |
1281 | assert(nm != NULL, "No NMethod found" ); |
1282 | if (nm->is_native_method()) { |
1283 | fatal("Native method should not have path to exception handling" ); |
1284 | } else { |
1285 | // we are switching to old paradigm: search for exception handler in caller_frame |
1286 | // instead in exception handler of caller_frame.sender() |
1287 | |
1288 | if (JvmtiExport::can_post_on_exceptions()) { |
1289 | // "Full-speed catching" is not necessary here, |
1290 | // since we're notifying the VM on every catch. |
1291 | // Force deoptimization and the rest of the lookup |
1292 | // will be fine. |
1293 | deoptimize_caller_frame(thread); |
1294 | } |
1295 | |
1296 | // Check the stack guard pages. If enabled, look for handler in this frame; |
1297 | // otherwise, forcibly unwind the frame. |
1298 | // |
1299 | // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. |
1300 | bool force_unwind = !thread->reguard_stack(); |
1301 | bool deopting = false; |
1302 | if (nm->is_deopt_pc(pc)) { |
1303 | deopting = true; |
1304 | RegisterMap map(thread, false); |
1305 | frame deoptee = thread->last_frame().sender(&map); |
1306 | assert(deoptee.is_deoptimized_frame(), "must be deopted" ); |
1307 | // Adjust the pc back to the original throwing pc |
1308 | pc = deoptee.pc(); |
1309 | } |
1310 | |
1311 | // If we are forcing an unwind because of stack overflow then deopt is |
1312 | // irrelevant since we are throwing the frame away anyway. |
1313 | |
1314 | if (deopting && !force_unwind) { |
1315 | handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); |
1316 | } else { |
1317 | |
1318 | handler_address = |
1319 | force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); |
1320 | |
1321 | if (handler_address == NULL) { |
1322 | bool recursive_exception = false; |
1323 | handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); |
1324 | assert (handler_address != NULL, "must have compiled handler" ); |
1325 | // Update the exception cache only when the unwind was not forced |
1326 | // and there didn't happen another exception during the computation of the |
1327 | // compiled exception handler. Checking for exception oop equality is not |
1328 | // sufficient because some exceptions are pre-allocated and reused. |
1329 | if (!force_unwind && !recursive_exception) { |
1330 | nm->add_handler_for_exception_and_pc(exception,pc,handler_address); |
1331 | } |
1332 | } else { |
1333 | #ifdef ASSERT |
1334 | bool recursive_exception = false; |
1335 | address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); |
1336 | vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, |
1337 | p2i(handler_address), p2i(computed_address)); |
1338 | #endif |
1339 | } |
1340 | } |
1341 | |
1342 | thread->set_exception_pc(pc); |
1343 | thread->set_exception_handler_pc(handler_address); |
1344 | |
1345 | // Check if the exception PC is a MethodHandle call site. |
1346 | thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); |
1347 | } |
1348 | |
1349 | // Restore correct return pc. Was saved above. |
1350 | thread->set_exception_oop(exception()); |
1351 | return handler_address; |
1352 | |
1353 | JRT_END |
1354 | |
1355 | // We are entering here from exception_blob |
1356 | // If there is a compiled exception handler in this method, we will continue there; |
1357 | // otherwise we will unwind the stack and continue at the caller of top frame method |
1358 | // Note we enter without the usual JRT wrapper. We will call a helper routine that |
1359 | // will do the normal VM entry. We do it this way so that we can see if the nmethod |
1360 | // we looked up the handler for has been deoptimized in the meantime. If it has been |
1361 | // we must not use the handler and instead return the deopt blob. |
1362 | address OptoRuntime::handle_exception_C(JavaThread* thread) { |
1363 | // |
1364 | // We are in Java not VM and in debug mode we have a NoHandleMark |
1365 | // |
1366 | #ifndef PRODUCT |
1367 | SharedRuntime::_find_handler_ctr++; // find exception handler |
1368 | #endif |
1369 | debug_only(NoHandleMark __hm;) |
1370 | nmethod* nm = NULL; |
1371 | address handler_address = NULL; |
1372 | { |
1373 | // Enter the VM |
1374 | |
1375 | ResetNoHandleMark rnhm; |
1376 | handler_address = handle_exception_C_helper(thread, nm); |
1377 | } |
1378 | |
1379 | // Back in java: Use no oops, DON'T safepoint |
1380 | |
1381 | // Now check to see if the handler we are returning is in a now |
1382 | // deoptimized frame |
1383 | |
1384 | if (nm != NULL) { |
1385 | RegisterMap map(thread, false); |
1386 | frame caller = thread->last_frame().sender(&map); |
1387 | #ifdef ASSERT |
1388 | assert(caller.is_compiled_frame(), "must be" ); |
1389 | #endif // ASSERT |
1390 | if (caller.is_deoptimized_frame()) { |
1391 | handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); |
1392 | } |
1393 | } |
1394 | return handler_address; |
1395 | } |
1396 | |
1397 | //------------------------------rethrow---------------------------------------- |
1398 | // We get here after compiled code has executed a 'RethrowNode'. The callee |
1399 | // is either throwing or rethrowing an exception. The callee-save registers |
1400 | // have been restored, synchronized objects have been unlocked and the callee |
1401 | // stack frame has been removed. The return address was passed in. |
1402 | // Exception oop is passed as the 1st argument. This routine is then called |
1403 | // from the stub. On exit, we know where to jump in the caller's code. |
1404 | // After this C code exits, the stub will pop his frame and end in a jump |
1405 | // (instead of a return). We enter the caller's default handler. |
1406 | // |
1407 | // This must be JRT_LEAF: |
1408 | // - caller will not change its state as we cannot block on exit, |
1409 | // therefore raw_exception_handler_for_return_address is all it takes |
1410 | // to handle deoptimized blobs |
1411 | // |
1412 | // However, there needs to be a safepoint check in the middle! So compiled |
1413 | // safepoints are completely watertight. |
1414 | // |
1415 | // Thus, it cannot be a leaf since it contains the NoGCVerifier. |
1416 | // |
1417 | // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* |
1418 | // |
1419 | address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { |
1420 | #ifndef PRODUCT |
1421 | SharedRuntime::_rethrow_ctr++; // count rethrows |
1422 | #endif |
1423 | assert (exception != NULL, "should have thrown a NULLPointerException" ); |
1424 | #ifdef ASSERT |
1425 | if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { |
1426 | // should throw an exception here |
1427 | ShouldNotReachHere(); |
1428 | } |
1429 | #endif |
1430 | |
1431 | thread->set_vm_result(exception); |
1432 | // Frame not compiled (handles deoptimization blob) |
1433 | return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); |
1434 | } |
1435 | |
1436 | |
1437 | const TypeFunc *OptoRuntime::rethrow_Type() { |
1438 | // create input type (domain) |
1439 | const Type **fields = TypeTuple::fields(1); |
1440 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop |
1441 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); |
1442 | |
1443 | // create result type (range) |
1444 | fields = TypeTuple::fields(1); |
1445 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop |
1446 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); |
1447 | |
1448 | return TypeFunc::make(domain, range); |
1449 | } |
1450 | |
1451 | |
1452 | void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { |
1453 | // Deoptimize the caller before continuing, as the compiled |
1454 | // exception handler table may not be valid. |
1455 | if (!StressCompiledExceptionHandlers && doit) { |
1456 | deoptimize_caller_frame(thread); |
1457 | } |
1458 | } |
1459 | |
1460 | void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { |
1461 | // Called from within the owner thread, so no need for safepoint |
1462 | RegisterMap reg_map(thread); |
1463 | frame stub_frame = thread->last_frame(); |
1464 | assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check" ); |
1465 | frame caller_frame = stub_frame.sender(®_map); |
1466 | |
1467 | // Deoptimize the caller frame. |
1468 | Deoptimization::deoptimize_frame(thread, caller_frame.id()); |
1469 | } |
1470 | |
1471 | |
1472 | bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { |
1473 | // Called from within the owner thread, so no need for safepoint |
1474 | RegisterMap reg_map(thread); |
1475 | frame stub_frame = thread->last_frame(); |
1476 | assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check" ); |
1477 | frame caller_frame = stub_frame.sender(®_map); |
1478 | return caller_frame.is_deoptimized_frame(); |
1479 | } |
1480 | |
1481 | |
1482 | const TypeFunc *OptoRuntime::register_finalizer_Type() { |
1483 | // create input type (domain) |
1484 | const Type **fields = TypeTuple::fields(1); |
1485 | fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver |
1486 | // // The JavaThread* is passed to each routine as the last argument |
1487 | // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread |
1488 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); |
1489 | |
1490 | // create result type (range) |
1491 | fields = TypeTuple::fields(0); |
1492 | |
1493 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); |
1494 | |
1495 | return TypeFunc::make(domain,range); |
1496 | } |
1497 | |
1498 | |
1499 | //----------------------------------------------------------------------------- |
1500 | // Dtrace support. entry and exit probes have the same signature |
1501 | const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { |
1502 | // create input type (domain) |
1503 | const Type **fields = TypeTuple::fields(2); |
1504 | fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage |
1505 | fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering |
1506 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); |
1507 | |
1508 | // create result type (range) |
1509 | fields = TypeTuple::fields(0); |
1510 | |
1511 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); |
1512 | |
1513 | return TypeFunc::make(domain,range); |
1514 | } |
1515 | |
1516 | const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { |
1517 | // create input type (domain) |
1518 | const Type **fields = TypeTuple::fields(2); |
1519 | fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage |
1520 | fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object |
1521 | |
1522 | const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); |
1523 | |
1524 | // create result type (range) |
1525 | fields = TypeTuple::fields(0); |
1526 | |
1527 | const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); |
1528 | |
1529 | return TypeFunc::make(domain,range); |
1530 | } |
1531 | |
1532 | |
1533 | JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread)) |
1534 | assert(oopDesc::is_oop(obj), "must be a valid oop" ); |
1535 | assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise" ); |
1536 | InstanceKlass::register_finalizer(instanceOop(obj), CHECK); |
1537 | JRT_END |
1538 | |
1539 | //----------------------------------------------------------------------------- |
1540 | |
1541 | NamedCounter * volatile OptoRuntime::_named_counters = NULL; |
1542 | |
1543 | // |
1544 | // dump the collected NamedCounters. |
1545 | // |
1546 | void OptoRuntime::print_named_counters() { |
1547 | int total_lock_count = 0; |
1548 | int eliminated_lock_count = 0; |
1549 | |
1550 | NamedCounter* c = _named_counters; |
1551 | while (c) { |
1552 | if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { |
1553 | int count = c->count(); |
1554 | if (count > 0) { |
1555 | bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; |
1556 | if (Verbose) { |
1557 | tty->print_cr("%d %s%s" , count, c->name(), eliminated ? " (eliminated)" : "" ); |
1558 | } |
1559 | total_lock_count += count; |
1560 | if (eliminated) { |
1561 | eliminated_lock_count += count; |
1562 | } |
1563 | } |
1564 | } else if (c->tag() == NamedCounter::BiasedLockingCounter) { |
1565 | BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); |
1566 | if (blc->nonzero()) { |
1567 | tty->print_cr("%s" , c->name()); |
1568 | blc->print_on(tty); |
1569 | } |
1570 | #if INCLUDE_RTM_OPT |
1571 | } else if (c->tag() == NamedCounter::RTMLockingCounter) { |
1572 | RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); |
1573 | if (rlc->nonzero()) { |
1574 | tty->print_cr("%s" , c->name()); |
1575 | rlc->print_on(tty); |
1576 | } |
1577 | #endif |
1578 | } |
1579 | c = c->next(); |
1580 | } |
1581 | if (total_lock_count > 0) { |
1582 | tty->print_cr("dynamic locks: %d" , total_lock_count); |
1583 | if (eliminated_lock_count) { |
1584 | tty->print_cr("eliminated locks: %d (%d%%)" , eliminated_lock_count, |
1585 | (int)(eliminated_lock_count * 100.0 / total_lock_count)); |
1586 | } |
1587 | } |
1588 | } |
1589 | |
1590 | // |
1591 | // Allocate a new NamedCounter. The JVMState is used to generate the |
1592 | // name which consists of method@line for the inlining tree. |
1593 | // |
1594 | |
1595 | NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { |
1596 | int max_depth = youngest_jvms->depth(); |
1597 | |
1598 | // Visit scopes from youngest to oldest. |
1599 | bool first = true; |
1600 | stringStream st; |
1601 | for (int depth = max_depth; depth >= 1; depth--) { |
1602 | JVMState* jvms = youngest_jvms->of_depth(depth); |
1603 | ciMethod* m = jvms->has_method() ? jvms->method() : NULL; |
1604 | if (!first) { |
1605 | st.print(" " ); |
1606 | } else { |
1607 | first = false; |
1608 | } |
1609 | int bci = jvms->bci(); |
1610 | if (bci < 0) bci = 0; |
1611 | if (m != NULL) { |
1612 | st.print("%s.%s" , m->holder()->name()->as_utf8(), m->name()->as_utf8()); |
1613 | } else { |
1614 | st.print("no method" ); |
1615 | } |
1616 | st.print("@%d" , bci); |
1617 | // To print linenumbers instead of bci use: m->line_number_from_bci(bci) |
1618 | } |
1619 | NamedCounter* c; |
1620 | if (tag == NamedCounter::BiasedLockingCounter) { |
1621 | c = new BiasedLockingNamedCounter(st.as_string()); |
1622 | } else if (tag == NamedCounter::RTMLockingCounter) { |
1623 | c = new RTMLockingNamedCounter(st.as_string()); |
1624 | } else { |
1625 | c = new NamedCounter(st.as_string(), tag); |
1626 | } |
1627 | |
1628 | // atomically add the new counter to the head of the list. We only |
1629 | // add counters so this is safe. |
1630 | NamedCounter* head; |
1631 | do { |
1632 | c->set_next(NULL); |
1633 | head = _named_counters; |
1634 | c->set_next(head); |
1635 | } while (Atomic::cmpxchg(c, &_named_counters, head) != head); |
1636 | return c; |
1637 | } |
1638 | |
1639 | int trace_exception_counter = 0; |
1640 | static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { |
1641 | trace_exception_counter++; |
1642 | stringStream tempst; |
1643 | |
1644 | tempst.print("%d [Exception (%s): " , trace_exception_counter, msg); |
1645 | exception_oop->print_value_on(&tempst); |
1646 | tempst.print(" in " ); |
1647 | CodeBlob* blob = CodeCache::find_blob(exception_pc); |
1648 | if (blob->is_compiled()) { |
1649 | CompiledMethod* cm = blob->as_compiled_method_or_null(); |
1650 | cm->method()->print_value_on(&tempst); |
1651 | } else if (blob->is_runtime_stub()) { |
1652 | tempst.print("<runtime-stub>" ); |
1653 | } else { |
1654 | tempst.print("<unknown>" ); |
1655 | } |
1656 | tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); |
1657 | tempst.print("]" ); |
1658 | |
1659 | st->print_raw_cr(tempst.as_string()); |
1660 | } |
1661 | |