1/*
2 * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "code/codeCache.hpp"
29#include "code/compiledMethod.inline.hpp"
30#include "code/compiledIC.hpp"
31#include "code/icBuffer.hpp"
32#include "code/nmethod.hpp"
33#include "code/pcDesc.hpp"
34#include "code/scopeDesc.hpp"
35#include "code/vtableStubs.hpp"
36#include "compiler/compileBroker.hpp"
37#include "compiler/oopMap.hpp"
38#include "gc/g1/heapRegion.hpp"
39#include "gc/shared/barrierSet.hpp"
40#include "gc/shared/collectedHeap.hpp"
41#include "gc/shared/gcLocker.hpp"
42#include "interpreter/bytecode.hpp"
43#include "interpreter/interpreter.hpp"
44#include "interpreter/linkResolver.hpp"
45#include "logging/log.hpp"
46#include "logging/logStream.hpp"
47#include "memory/oopFactory.hpp"
48#include "memory/resourceArea.hpp"
49#include "oops/objArrayKlass.hpp"
50#include "oops/oop.inline.hpp"
51#include "oops/typeArrayOop.inline.hpp"
52#include "opto/ad.hpp"
53#include "opto/addnode.hpp"
54#include "opto/callnode.hpp"
55#include "opto/cfgnode.hpp"
56#include "opto/graphKit.hpp"
57#include "opto/machnode.hpp"
58#include "opto/matcher.hpp"
59#include "opto/memnode.hpp"
60#include "opto/mulnode.hpp"
61#include "opto/runtime.hpp"
62#include "opto/subnode.hpp"
63#include "runtime/atomic.hpp"
64#include "runtime/frame.inline.hpp"
65#include "runtime/handles.inline.hpp"
66#include "runtime/interfaceSupport.inline.hpp"
67#include "runtime/javaCalls.hpp"
68#include "runtime/sharedRuntime.hpp"
69#include "runtime/signature.hpp"
70#include "runtime/threadCritical.hpp"
71#include "runtime/vframe.hpp"
72#include "runtime/vframeArray.hpp"
73#include "runtime/vframe_hp.hpp"
74#include "utilities/copy.hpp"
75#include "utilities/preserveException.hpp"
76
77
78// For debugging purposes:
79// To force FullGCALot inside a runtime function, add the following two lines
80//
81// Universe::release_fullgc_alot_dummy();
82// MarkSweep::invoke(0, "Debugging");
83//
84// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
85
86
87
88
89// Compiled code entry points
90address OptoRuntime::_new_instance_Java = NULL;
91address OptoRuntime::_new_array_Java = NULL;
92address OptoRuntime::_new_array_nozero_Java = NULL;
93address OptoRuntime::_multianewarray2_Java = NULL;
94address OptoRuntime::_multianewarray3_Java = NULL;
95address OptoRuntime::_multianewarray4_Java = NULL;
96address OptoRuntime::_multianewarray5_Java = NULL;
97address OptoRuntime::_multianewarrayN_Java = NULL;
98address OptoRuntime::_vtable_must_compile_Java = NULL;
99address OptoRuntime::_complete_monitor_locking_Java = NULL;
100address OptoRuntime::_monitor_notify_Java = NULL;
101address OptoRuntime::_monitor_notifyAll_Java = NULL;
102address OptoRuntime::_rethrow_Java = NULL;
103
104address OptoRuntime::_slow_arraycopy_Java = NULL;
105address OptoRuntime::_register_finalizer_Java = NULL;
106
107ExceptionBlob* OptoRuntime::_exception_blob;
108
109// This should be called in an assertion at the start of OptoRuntime routines
110// which are entered from compiled code (all of them)
111#ifdef ASSERT
112static bool check_compiled_frame(JavaThread* thread) {
113 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
114 RegisterMap map(thread, false);
115 frame caller = thread->last_frame().sender(&map);
116 assert(caller.is_compiled_frame(), "not being called from compiled like code");
117 return true;
118}
119#endif // ASSERT
120
121
122#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
123 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
124 if (var == NULL) { return false; }
125
126bool OptoRuntime::generate(ciEnv* env) {
127
128 generate_exception_blob();
129
130 // Note: tls: Means fetching the return oop out of the thread-local storage
131 //
132 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
133 // -------------------------------------------------------------------------------------------------------------------------------
134 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
135 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
136 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
137 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
138 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
139 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
140 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
141 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
142 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
143 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false, false);
144 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false, false);
145 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
146
147 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
148 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
149
150 return true;
151}
152
153#undef gen
154
155
156// Helper method to do generation of RunTimeStub's
157address OptoRuntime::generate_stub( ciEnv* env,
158 TypeFunc_generator gen, address C_function,
159 const char *name, int is_fancy_jump,
160 bool pass_tls,
161 bool save_argument_registers,
162 bool return_pc) {
163
164 // Matching the default directive, we currently have no method to match.
165 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
166 ResourceMark rm;
167 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
168 DirectivesStack::release(directive);
169 return C.stub_entry_point();
170}
171
172const char* OptoRuntime::stub_name(address entry) {
173#ifndef PRODUCT
174 CodeBlob* cb = CodeCache::find_blob(entry);
175 RuntimeStub* rs =(RuntimeStub *)cb;
176 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
177 return rs->name();
178#else
179 // Fast implementation for product mode (maybe it should be inlined too)
180 return "runtime stub";
181#endif
182}
183
184
185//=============================================================================
186// Opto compiler runtime routines
187//=============================================================================
188
189
190//=============================allocation======================================
191// We failed the fast-path allocation. Now we need to do a scavenge or GC
192// and try allocation again.
193
194// object allocation
195JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
196 JRT_BLOCK;
197#ifndef PRODUCT
198 SharedRuntime::_new_instance_ctr++; // new instance requires GC
199#endif
200 assert(check_compiled_frame(thread), "incorrect caller");
201
202 // These checks are cheap to make and support reflective allocation.
203 int lh = klass->layout_helper();
204 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
205 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
206 klass->check_valid_for_instantiation(false, THREAD);
207 if (!HAS_PENDING_EXCEPTION) {
208 InstanceKlass::cast(klass)->initialize(THREAD);
209 }
210 }
211
212 if (!HAS_PENDING_EXCEPTION) {
213 // Scavenge and allocate an instance.
214 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
215 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
216 thread->set_vm_result(result);
217
218 // Pass oops back through thread local storage. Our apparent type to Java
219 // is that we return an oop, but we can block on exit from this routine and
220 // a GC can trash the oop in C's return register. The generated stub will
221 // fetch the oop from TLS after any possible GC.
222 }
223
224 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
225 JRT_BLOCK_END;
226
227 // inform GC that we won't do card marks for initializing writes.
228 SharedRuntime::on_slowpath_allocation_exit(thread);
229JRT_END
230
231
232// array allocation
233JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
234 JRT_BLOCK;
235#ifndef PRODUCT
236 SharedRuntime::_new_array_ctr++; // new array requires GC
237#endif
238 assert(check_compiled_frame(thread), "incorrect caller");
239
240 // Scavenge and allocate an instance.
241 oop result;
242
243 if (array_type->is_typeArray_klass()) {
244 // The oopFactory likes to work with the element type.
245 // (We could bypass the oopFactory, since it doesn't add much value.)
246 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
247 result = oopFactory::new_typeArray(elem_type, len, THREAD);
248 } else {
249 // Although the oopFactory likes to work with the elem_type,
250 // the compiler prefers the array_type, since it must already have
251 // that latter value in hand for the fast path.
252 Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
253 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
254 result = oopFactory::new_objArray(elem_type, len, THREAD);
255 }
256
257 // Pass oops back through thread local storage. Our apparent type to Java
258 // is that we return an oop, but we can block on exit from this routine and
259 // a GC can trash the oop in C's return register. The generated stub will
260 // fetch the oop from TLS after any possible GC.
261 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
262 thread->set_vm_result(result);
263 JRT_BLOCK_END;
264
265 // inform GC that we won't do card marks for initializing writes.
266 SharedRuntime::on_slowpath_allocation_exit(thread);
267JRT_END
268
269// array allocation without zeroing
270JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
271 JRT_BLOCK;
272#ifndef PRODUCT
273 SharedRuntime::_new_array_ctr++; // new array requires GC
274#endif
275 assert(check_compiled_frame(thread), "incorrect caller");
276
277 // Scavenge and allocate an instance.
278 oop result;
279
280 assert(array_type->is_typeArray_klass(), "should be called only for type array");
281 // The oopFactory likes to work with the element type.
282 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
283 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
284
285 // Pass oops back through thread local storage. Our apparent type to Java
286 // is that we return an oop, but we can block on exit from this routine and
287 // a GC can trash the oop in C's return register. The generated stub will
288 // fetch the oop from TLS after any possible GC.
289 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
290 thread->set_vm_result(result);
291 JRT_BLOCK_END;
292
293
294 // inform GC that we won't do card marks for initializing writes.
295 SharedRuntime::on_slowpath_allocation_exit(thread);
296
297 oop result = thread->vm_result();
298 if ((len > 0) && (result != NULL) &&
299 is_deoptimized_caller_frame(thread)) {
300 // Zero array here if the caller is deoptimized.
301 int size = ((typeArrayOop)result)->object_size();
302 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
303 const size_t hs = arrayOopDesc::header_size(elem_type);
304 // Align to next 8 bytes to avoid trashing arrays's length.
305 const size_t aligned_hs = align_object_offset(hs);
306 HeapWord* obj = (HeapWord*)result;
307 if (aligned_hs > hs) {
308 Copy::zero_to_words(obj+hs, aligned_hs-hs);
309 }
310 // Optimized zeroing.
311 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
312 }
313
314JRT_END
315
316// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
317
318// multianewarray for 2 dimensions
319JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
320#ifndef PRODUCT
321 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
322#endif
323 assert(check_compiled_frame(thread), "incorrect caller");
324 assert(elem_type->is_klass(), "not a class");
325 jint dims[2];
326 dims[0] = len1;
327 dims[1] = len2;
328 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
329 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
330 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
331 thread->set_vm_result(obj);
332JRT_END
333
334// multianewarray for 3 dimensions
335JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
336#ifndef PRODUCT
337 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
338#endif
339 assert(check_compiled_frame(thread), "incorrect caller");
340 assert(elem_type->is_klass(), "not a class");
341 jint dims[3];
342 dims[0] = len1;
343 dims[1] = len2;
344 dims[2] = len3;
345 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
346 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
347 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
348 thread->set_vm_result(obj);
349JRT_END
350
351// multianewarray for 4 dimensions
352JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
353#ifndef PRODUCT
354 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
355#endif
356 assert(check_compiled_frame(thread), "incorrect caller");
357 assert(elem_type->is_klass(), "not a class");
358 jint dims[4];
359 dims[0] = len1;
360 dims[1] = len2;
361 dims[2] = len3;
362 dims[3] = len4;
363 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
364 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
365 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
366 thread->set_vm_result(obj);
367JRT_END
368
369// multianewarray for 5 dimensions
370JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
371#ifndef PRODUCT
372 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
373#endif
374 assert(check_compiled_frame(thread), "incorrect caller");
375 assert(elem_type->is_klass(), "not a class");
376 jint dims[5];
377 dims[0] = len1;
378 dims[1] = len2;
379 dims[2] = len3;
380 dims[3] = len4;
381 dims[4] = len5;
382 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
383 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
384 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
385 thread->set_vm_result(obj);
386JRT_END
387
388JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
389 assert(check_compiled_frame(thread), "incorrect caller");
390 assert(elem_type->is_klass(), "not a class");
391 assert(oop(dims)->is_typeArray(), "not an array");
392
393 ResourceMark rm;
394 jint len = dims->length();
395 assert(len > 0, "Dimensions array should contain data");
396 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
397 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
398 c_dims, len);
399
400 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
401 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
402 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
403 thread->set_vm_result(obj);
404JRT_END
405
406JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
407
408 // Very few notify/notifyAll operations find any threads on the waitset, so
409 // the dominant fast-path is to simply return.
410 // Relatedly, it's critical that notify/notifyAll be fast in order to
411 // reduce lock hold times.
412 if (!SafepointSynchronize::is_synchronizing()) {
413 if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
414 return;
415 }
416 }
417
418 // This is the case the fast-path above isn't provisioned to handle.
419 // The fast-path is designed to handle frequently arising cases in an efficient manner.
420 // (The fast-path is just a degenerate variant of the slow-path).
421 // Perform the dreaded state transition and pass control into the slow-path.
422 JRT_BLOCK;
423 Handle h_obj(THREAD, obj);
424 ObjectSynchronizer::notify(h_obj, CHECK);
425 JRT_BLOCK_END;
426JRT_END
427
428JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
429
430 if (!SafepointSynchronize::is_synchronizing() ) {
431 if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
432 return;
433 }
434 }
435
436 // This is the case the fast-path above isn't provisioned to handle.
437 // The fast-path is designed to handle frequently arising cases in an efficient manner.
438 // (The fast-path is just a degenerate variant of the slow-path).
439 // Perform the dreaded state transition and pass control into the slow-path.
440 JRT_BLOCK;
441 Handle h_obj(THREAD, obj);
442 ObjectSynchronizer::notifyall(h_obj, CHECK);
443 JRT_BLOCK_END;
444JRT_END
445
446const TypeFunc *OptoRuntime::new_instance_Type() {
447 // create input type (domain)
448 const Type **fields = TypeTuple::fields(1);
449 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
450 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
451
452 // create result type (range)
453 fields = TypeTuple::fields(1);
454 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
455
456 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
457
458 return TypeFunc::make(domain, range);
459}
460
461
462const TypeFunc *OptoRuntime::athrow_Type() {
463 // create input type (domain)
464 const Type **fields = TypeTuple::fields(1);
465 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
466 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
467
468 // create result type (range)
469 fields = TypeTuple::fields(0);
470
471 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
472
473 return TypeFunc::make(domain, range);
474}
475
476
477const TypeFunc *OptoRuntime::new_array_Type() {
478 // create input type (domain)
479 const Type **fields = TypeTuple::fields(2);
480 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
481 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
482 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
483
484 // create result type (range)
485 fields = TypeTuple::fields(1);
486 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
487
488 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
489
490 return TypeFunc::make(domain, range);
491}
492
493const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
494 // create input type (domain)
495 const int nargs = ndim + 1;
496 const Type **fields = TypeTuple::fields(nargs);
497 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
498 for( int i = 1; i < nargs; i++ )
499 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
500 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
501
502 // create result type (range)
503 fields = TypeTuple::fields(1);
504 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
505 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
506
507 return TypeFunc::make(domain, range);
508}
509
510const TypeFunc *OptoRuntime::multianewarray2_Type() {
511 return multianewarray_Type(2);
512}
513
514const TypeFunc *OptoRuntime::multianewarray3_Type() {
515 return multianewarray_Type(3);
516}
517
518const TypeFunc *OptoRuntime::multianewarray4_Type() {
519 return multianewarray_Type(4);
520}
521
522const TypeFunc *OptoRuntime::multianewarray5_Type() {
523 return multianewarray_Type(5);
524}
525
526const TypeFunc *OptoRuntime::multianewarrayN_Type() {
527 // create input type (domain)
528 const Type **fields = TypeTuple::fields(2);
529 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
530 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
531 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
532
533 // create result type (range)
534 fields = TypeTuple::fields(1);
535 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
536 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
537
538 return TypeFunc::make(domain, range);
539}
540
541const TypeFunc *OptoRuntime::uncommon_trap_Type() {
542 // create input type (domain)
543 const Type **fields = TypeTuple::fields(1);
544 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
545 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
546
547 // create result type (range)
548 fields = TypeTuple::fields(0);
549 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
550
551 return TypeFunc::make(domain, range);
552}
553
554//-----------------------------------------------------------------------------
555// Monitor Handling
556const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
557 // create input type (domain)
558 const Type **fields = TypeTuple::fields(2);
559 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
560 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
561 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
562
563 // create result type (range)
564 fields = TypeTuple::fields(0);
565
566 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
567
568 return TypeFunc::make(domain,range);
569}
570
571
572//-----------------------------------------------------------------------------
573const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
574 // create input type (domain)
575 const Type **fields = TypeTuple::fields(3);
576 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
577 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
578 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
579 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
580
581 // create result type (range)
582 fields = TypeTuple::fields(0);
583
584 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
585
586 return TypeFunc::make(domain, range);
587}
588
589const TypeFunc *OptoRuntime::monitor_notify_Type() {
590 // create input type (domain)
591 const Type **fields = TypeTuple::fields(1);
592 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
593 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
594
595 // create result type (range)
596 fields = TypeTuple::fields(0);
597 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
598 return TypeFunc::make(domain, range);
599}
600
601const TypeFunc* OptoRuntime::flush_windows_Type() {
602 // create input type (domain)
603 const Type** fields = TypeTuple::fields(1);
604 fields[TypeFunc::Parms+0] = NULL; // void
605 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
606
607 // create result type
608 fields = TypeTuple::fields(1);
609 fields[TypeFunc::Parms+0] = NULL; // void
610 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
611
612 return TypeFunc::make(domain, range);
613}
614
615const TypeFunc* OptoRuntime::l2f_Type() {
616 // create input type (domain)
617 const Type **fields = TypeTuple::fields(2);
618 fields[TypeFunc::Parms+0] = TypeLong::LONG;
619 fields[TypeFunc::Parms+1] = Type::HALF;
620 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
621
622 // create result type (range)
623 fields = TypeTuple::fields(1);
624 fields[TypeFunc::Parms+0] = Type::FLOAT;
625 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
626
627 return TypeFunc::make(domain, range);
628}
629
630const TypeFunc* OptoRuntime::modf_Type() {
631 const Type **fields = TypeTuple::fields(2);
632 fields[TypeFunc::Parms+0] = Type::FLOAT;
633 fields[TypeFunc::Parms+1] = Type::FLOAT;
634 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
635
636 // create result type (range)
637 fields = TypeTuple::fields(1);
638 fields[TypeFunc::Parms+0] = Type::FLOAT;
639
640 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
641
642 return TypeFunc::make(domain, range);
643}
644
645const TypeFunc *OptoRuntime::Math_D_D_Type() {
646 // create input type (domain)
647 const Type **fields = TypeTuple::fields(2);
648 // Symbol* name of class to be loaded
649 fields[TypeFunc::Parms+0] = Type::DOUBLE;
650 fields[TypeFunc::Parms+1] = Type::HALF;
651 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
652
653 // create result type (range)
654 fields = TypeTuple::fields(2);
655 fields[TypeFunc::Parms+0] = Type::DOUBLE;
656 fields[TypeFunc::Parms+1] = Type::HALF;
657 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
658
659 return TypeFunc::make(domain, range);
660}
661
662const TypeFunc* OptoRuntime::Math_DD_D_Type() {
663 const Type **fields = TypeTuple::fields(4);
664 fields[TypeFunc::Parms+0] = Type::DOUBLE;
665 fields[TypeFunc::Parms+1] = Type::HALF;
666 fields[TypeFunc::Parms+2] = Type::DOUBLE;
667 fields[TypeFunc::Parms+3] = Type::HALF;
668 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
669
670 // create result type (range)
671 fields = TypeTuple::fields(2);
672 fields[TypeFunc::Parms+0] = Type::DOUBLE;
673 fields[TypeFunc::Parms+1] = Type::HALF;
674 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
675
676 return TypeFunc::make(domain, range);
677}
678
679//-------------- currentTimeMillis, currentTimeNanos, etc
680
681const TypeFunc* OptoRuntime::void_long_Type() {
682 // create input type (domain)
683 const Type **fields = TypeTuple::fields(0);
684 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
685
686 // create result type (range)
687 fields = TypeTuple::fields(2);
688 fields[TypeFunc::Parms+0] = TypeLong::LONG;
689 fields[TypeFunc::Parms+1] = Type::HALF;
690 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
691
692 return TypeFunc::make(domain, range);
693}
694
695// arraycopy stub variations:
696enum ArrayCopyType {
697 ac_fast, // void(ptr, ptr, size_t)
698 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
699 ac_slow, // void(ptr, int, ptr, int, int)
700 ac_generic // int(ptr, int, ptr, int, int)
701};
702
703static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
704 // create input type (domain)
705 int num_args = (act == ac_fast ? 3 : 5);
706 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
707 int argcnt = num_args;
708 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
709 const Type** fields = TypeTuple::fields(argcnt);
710 int argp = TypeFunc::Parms;
711 fields[argp++] = TypePtr::NOTNULL; // src
712 if (num_size_args == 0) {
713 fields[argp++] = TypeInt::INT; // src_pos
714 }
715 fields[argp++] = TypePtr::NOTNULL; // dest
716 if (num_size_args == 0) {
717 fields[argp++] = TypeInt::INT; // dest_pos
718 fields[argp++] = TypeInt::INT; // length
719 }
720 while (num_size_args-- > 0) {
721 fields[argp++] = TypeX_X; // size in whatevers (size_t)
722 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
723 }
724 if (act == ac_checkcast) {
725 fields[argp++] = TypePtr::NOTNULL; // super_klass
726 }
727 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
728 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
729
730 // create result type if needed
731 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
732 fields = TypeTuple::fields(1);
733 if (retcnt == 0)
734 fields[TypeFunc::Parms+0] = NULL; // void
735 else
736 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
737 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
738 return TypeFunc::make(domain, range);
739}
740
741const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
742 // This signature is simple: Two base pointers and a size_t.
743 return make_arraycopy_Type(ac_fast);
744}
745
746const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
747 // An extension of fast_arraycopy_Type which adds type checking.
748 return make_arraycopy_Type(ac_checkcast);
749}
750
751const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
752 // This signature is exactly the same as System.arraycopy.
753 // There are no intptr_t (int/long) arguments.
754 return make_arraycopy_Type(ac_slow);
755}
756
757const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
758 // This signature is like System.arraycopy, except that it returns status.
759 return make_arraycopy_Type(ac_generic);
760}
761
762
763const TypeFunc* OptoRuntime::array_fill_Type() {
764 const Type** fields;
765 int argp = TypeFunc::Parms;
766 // create input type (domain): pointer, int, size_t
767 fields = TypeTuple::fields(3 LP64_ONLY( + 1));
768 fields[argp++] = TypePtr::NOTNULL;
769 fields[argp++] = TypeInt::INT;
770 fields[argp++] = TypeX_X; // size in whatevers (size_t)
771 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
772 const TypeTuple *domain = TypeTuple::make(argp, fields);
773
774 // create result type
775 fields = TypeTuple::fields(1);
776 fields[TypeFunc::Parms+0] = NULL; // void
777 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
778
779 return TypeFunc::make(domain, range);
780}
781
782// for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
783const TypeFunc* OptoRuntime::aescrypt_block_Type() {
784 // create input type (domain)
785 int num_args = 3;
786 if (Matcher::pass_original_key_for_aes()) {
787 num_args = 4;
788 }
789 int argcnt = num_args;
790 const Type** fields = TypeTuple::fields(argcnt);
791 int argp = TypeFunc::Parms;
792 fields[argp++] = TypePtr::NOTNULL; // src
793 fields[argp++] = TypePtr::NOTNULL; // dest
794 fields[argp++] = TypePtr::NOTNULL; // k array
795 if (Matcher::pass_original_key_for_aes()) {
796 fields[argp++] = TypePtr::NOTNULL; // original k array
797 }
798 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
799 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
800
801 // no result type needed
802 fields = TypeTuple::fields(1);
803 fields[TypeFunc::Parms+0] = NULL; // void
804 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
805 return TypeFunc::make(domain, range);
806}
807
808/**
809 * int updateBytesCRC32(int crc, byte* b, int len)
810 */
811const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
812 // create input type (domain)
813 int num_args = 3;
814 int argcnt = num_args;
815 const Type** fields = TypeTuple::fields(argcnt);
816 int argp = TypeFunc::Parms;
817 fields[argp++] = TypeInt::INT; // crc
818 fields[argp++] = TypePtr::NOTNULL; // src
819 fields[argp++] = TypeInt::INT; // len
820 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
821 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
822
823 // result type needed
824 fields = TypeTuple::fields(1);
825 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
826 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
827 return TypeFunc::make(domain, range);
828}
829
830/**
831 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
832 */
833const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
834 // create input type (domain)
835 int num_args = 4;
836 int argcnt = num_args;
837 const Type** fields = TypeTuple::fields(argcnt);
838 int argp = TypeFunc::Parms;
839 fields[argp++] = TypeInt::INT; // crc
840 fields[argp++] = TypePtr::NOTNULL; // buf
841 fields[argp++] = TypeInt::INT; // len
842 fields[argp++] = TypePtr::NOTNULL; // table
843 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
844 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
845
846 // result type needed
847 fields = TypeTuple::fields(1);
848 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
849 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
850 return TypeFunc::make(domain, range);
851}
852
853/**
854* int updateBytesAdler32(int adler, bytes* b, int off, int len)
855*/
856const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
857 // create input type (domain)
858 int num_args = 3;
859 int argcnt = num_args;
860 const Type** fields = TypeTuple::fields(argcnt);
861 int argp = TypeFunc::Parms;
862 fields[argp++] = TypeInt::INT; // crc
863 fields[argp++] = TypePtr::NOTNULL; // src + offset
864 fields[argp++] = TypeInt::INT; // len
865 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
866 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
867
868 // result type needed
869 fields = TypeTuple::fields(1);
870 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
871 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
872 return TypeFunc::make(domain, range);
873}
874
875// for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
876const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
877 // create input type (domain)
878 int num_args = 5;
879 if (Matcher::pass_original_key_for_aes()) {
880 num_args = 6;
881 }
882 int argcnt = num_args;
883 const Type** fields = TypeTuple::fields(argcnt);
884 int argp = TypeFunc::Parms;
885 fields[argp++] = TypePtr::NOTNULL; // src
886 fields[argp++] = TypePtr::NOTNULL; // dest
887 fields[argp++] = TypePtr::NOTNULL; // k array
888 fields[argp++] = TypePtr::NOTNULL; // r array
889 fields[argp++] = TypeInt::INT; // src len
890 if (Matcher::pass_original_key_for_aes()) {
891 fields[argp++] = TypePtr::NOTNULL; // original k array
892 }
893 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
894 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
895
896 // returning cipher len (int)
897 fields = TypeTuple::fields(1);
898 fields[TypeFunc::Parms+0] = TypeInt::INT;
899 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
900 return TypeFunc::make(domain, range);
901}
902
903//for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
904const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
905 // create input type (domain)
906 int num_args = 7;
907 if (Matcher::pass_original_key_for_aes()) {
908 num_args = 8;
909 }
910 int argcnt = num_args;
911 const Type** fields = TypeTuple::fields(argcnt);
912 int argp = TypeFunc::Parms;
913 fields[argp++] = TypePtr::NOTNULL; // src
914 fields[argp++] = TypePtr::NOTNULL; // dest
915 fields[argp++] = TypePtr::NOTNULL; // k array
916 fields[argp++] = TypePtr::NOTNULL; // counter array
917 fields[argp++] = TypeInt::INT; // src len
918 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
919 fields[argp++] = TypePtr::NOTNULL; // saved used addr
920 if (Matcher::pass_original_key_for_aes()) {
921 fields[argp++] = TypePtr::NOTNULL; // original k array
922 }
923 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
924 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
925 // returning cipher len (int)
926 fields = TypeTuple::fields(1);
927 fields[TypeFunc::Parms + 0] = TypeInt::INT;
928 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
929 return TypeFunc::make(domain, range);
930}
931
932/*
933 * void implCompress(byte[] buf, int ofs)
934 */
935const TypeFunc* OptoRuntime::sha_implCompress_Type() {
936 // create input type (domain)
937 int num_args = 2;
938 int argcnt = num_args;
939 const Type** fields = TypeTuple::fields(argcnt);
940 int argp = TypeFunc::Parms;
941 fields[argp++] = TypePtr::NOTNULL; // buf
942 fields[argp++] = TypePtr::NOTNULL; // state
943 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
944 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
945
946 // no result type needed
947 fields = TypeTuple::fields(1);
948 fields[TypeFunc::Parms+0] = NULL; // void
949 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
950 return TypeFunc::make(domain, range);
951}
952
953/*
954 * int implCompressMultiBlock(byte[] b, int ofs, int limit)
955 */
956const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
957 // create input type (domain)
958 int num_args = 4;
959 int argcnt = num_args;
960 const Type** fields = TypeTuple::fields(argcnt);
961 int argp = TypeFunc::Parms;
962 fields[argp++] = TypePtr::NOTNULL; // buf
963 fields[argp++] = TypePtr::NOTNULL; // state
964 fields[argp++] = TypeInt::INT; // ofs
965 fields[argp++] = TypeInt::INT; // limit
966 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
967 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
968
969 // returning ofs (int)
970 fields = TypeTuple::fields(1);
971 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
972 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
973 return TypeFunc::make(domain, range);
974}
975
976const TypeFunc* OptoRuntime::multiplyToLen_Type() {
977 // create input type (domain)
978 int num_args = 6;
979 int argcnt = num_args;
980 const Type** fields = TypeTuple::fields(argcnt);
981 int argp = TypeFunc::Parms;
982 fields[argp++] = TypePtr::NOTNULL; // x
983 fields[argp++] = TypeInt::INT; // xlen
984 fields[argp++] = TypePtr::NOTNULL; // y
985 fields[argp++] = TypeInt::INT; // ylen
986 fields[argp++] = TypePtr::NOTNULL; // z
987 fields[argp++] = TypeInt::INT; // zlen
988 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
989 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
990
991 // no result type needed
992 fields = TypeTuple::fields(1);
993 fields[TypeFunc::Parms+0] = NULL;
994 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
995 return TypeFunc::make(domain, range);
996}
997
998const TypeFunc* OptoRuntime::squareToLen_Type() {
999 // create input type (domain)
1000 int num_args = 4;
1001 int argcnt = num_args;
1002 const Type** fields = TypeTuple::fields(argcnt);
1003 int argp = TypeFunc::Parms;
1004 fields[argp++] = TypePtr::NOTNULL; // x
1005 fields[argp++] = TypeInt::INT; // len
1006 fields[argp++] = TypePtr::NOTNULL; // z
1007 fields[argp++] = TypeInt::INT; // zlen
1008 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1009 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1010
1011 // no result type needed
1012 fields = TypeTuple::fields(1);
1013 fields[TypeFunc::Parms+0] = NULL;
1014 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1015 return TypeFunc::make(domain, range);
1016}
1017
1018// for mulAdd calls, 2 pointers and 3 ints, returning int
1019const TypeFunc* OptoRuntime::mulAdd_Type() {
1020 // create input type (domain)
1021 int num_args = 5;
1022 int argcnt = num_args;
1023 const Type** fields = TypeTuple::fields(argcnt);
1024 int argp = TypeFunc::Parms;
1025 fields[argp++] = TypePtr::NOTNULL; // out
1026 fields[argp++] = TypePtr::NOTNULL; // in
1027 fields[argp++] = TypeInt::INT; // offset
1028 fields[argp++] = TypeInt::INT; // len
1029 fields[argp++] = TypeInt::INT; // k
1030 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1031 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1032
1033 // returning carry (int)
1034 fields = TypeTuple::fields(1);
1035 fields[TypeFunc::Parms+0] = TypeInt::INT;
1036 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1037 return TypeFunc::make(domain, range);
1038}
1039
1040const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1041 // create input type (domain)
1042 int num_args = 7;
1043 int argcnt = num_args;
1044 const Type** fields = TypeTuple::fields(argcnt);
1045 int argp = TypeFunc::Parms;
1046 fields[argp++] = TypePtr::NOTNULL; // a
1047 fields[argp++] = TypePtr::NOTNULL; // b
1048 fields[argp++] = TypePtr::NOTNULL; // n
1049 fields[argp++] = TypeInt::INT; // len
1050 fields[argp++] = TypeLong::LONG; // inv
1051 fields[argp++] = Type::HALF;
1052 fields[argp++] = TypePtr::NOTNULL; // result
1053 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1054 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1055
1056 // result type needed
1057 fields = TypeTuple::fields(1);
1058 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1059
1060 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1061 return TypeFunc::make(domain, range);
1062}
1063
1064const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1065 // create input type (domain)
1066 int num_args = 6;
1067 int argcnt = num_args;
1068 const Type** fields = TypeTuple::fields(argcnt);
1069 int argp = TypeFunc::Parms;
1070 fields[argp++] = TypePtr::NOTNULL; // a
1071 fields[argp++] = TypePtr::NOTNULL; // n
1072 fields[argp++] = TypeInt::INT; // len
1073 fields[argp++] = TypeLong::LONG; // inv
1074 fields[argp++] = Type::HALF;
1075 fields[argp++] = TypePtr::NOTNULL; // result
1076 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1077 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1078
1079 // result type needed
1080 fields = TypeTuple::fields(1);
1081 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1082
1083 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1084 return TypeFunc::make(domain, range);
1085}
1086
1087const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1088 // create input type (domain)
1089 int num_args = 4;
1090 int argcnt = num_args;
1091 const Type** fields = TypeTuple::fields(argcnt);
1092 int argp = TypeFunc::Parms;
1093 fields[argp++] = TypePtr::NOTNULL; // obja
1094 fields[argp++] = TypePtr::NOTNULL; // objb
1095 fields[argp++] = TypeInt::INT; // length, number of elements
1096 fields[argp++] = TypeInt::INT; // log2scale, element size
1097 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1098 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1099
1100 //return mismatch index (int)
1101 fields = TypeTuple::fields(1);
1102 fields[TypeFunc::Parms + 0] = TypeInt::INT;
1103 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1104 return TypeFunc::make(domain, range);
1105}
1106
1107// GHASH block processing
1108const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1109 int argcnt = 4;
1110
1111 const Type** fields = TypeTuple::fields(argcnt);
1112 int argp = TypeFunc::Parms;
1113 fields[argp++] = TypePtr::NOTNULL; // state
1114 fields[argp++] = TypePtr::NOTNULL; // subkeyH
1115 fields[argp++] = TypePtr::NOTNULL; // data
1116 fields[argp++] = TypeInt::INT; // blocks
1117 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1118 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1119
1120 // result type needed
1121 fields = TypeTuple::fields(1);
1122 fields[TypeFunc::Parms+0] = NULL; // void
1123 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1124 return TypeFunc::make(domain, range);
1125}
1126// Base64 encode function
1127const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1128 int argcnt = 6;
1129
1130 const Type** fields = TypeTuple::fields(argcnt);
1131 int argp = TypeFunc::Parms;
1132 fields[argp++] = TypePtr::NOTNULL; // src array
1133 fields[argp++] = TypeInt::INT; // offset
1134 fields[argp++] = TypeInt::INT; // length
1135 fields[argp++] = TypePtr::NOTNULL; // dest array
1136 fields[argp++] = TypeInt::INT; // dp
1137 fields[argp++] = TypeInt::BOOL; // isURL
1138 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1139 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1140
1141 // result type needed
1142 fields = TypeTuple::fields(1);
1143 fields[TypeFunc::Parms + 0] = NULL; // void
1144 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1145 return TypeFunc::make(domain, range);
1146}
1147
1148//------------- Interpreter state access for on stack replacement
1149const TypeFunc* OptoRuntime::osr_end_Type() {
1150 // create input type (domain)
1151 const Type **fields = TypeTuple::fields(1);
1152 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1153 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1154
1155 // create result type
1156 fields = TypeTuple::fields(1);
1157 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1158 fields[TypeFunc::Parms+0] = NULL; // void
1159 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1160 return TypeFunc::make(domain, range);
1161}
1162
1163//-------------- methodData update helpers
1164
1165const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1166 // create input type (domain)
1167 const Type **fields = TypeTuple::fields(2);
1168 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
1169 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
1170 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1171
1172 // create result type
1173 fields = TypeTuple::fields(1);
1174 fields[TypeFunc::Parms+0] = NULL; // void
1175 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1176 return TypeFunc::make(domain,range);
1177}
1178
1179JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1180 if (receiver == NULL) return;
1181 Klass* receiver_klass = receiver->klass();
1182
1183 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1184 int empty_row = -1; // free row, if any is encountered
1185
1186 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1187 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1188 // if (vc->receiver(row) == receiver_klass)
1189 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1190 intptr_t row_recv = *(mdp + receiver_off);
1191 if (row_recv == (intptr_t) receiver_klass) {
1192 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1193 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1194 *(mdp + count_off) += DataLayout::counter_increment;
1195 return;
1196 } else if (row_recv == 0) {
1197 // else if (vc->receiver(row) == NULL)
1198 empty_row = (int) row;
1199 }
1200 }
1201
1202 if (empty_row != -1) {
1203 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1204 // vc->set_receiver(empty_row, receiver_klass);
1205 *(mdp + receiver_off) = (intptr_t) receiver_klass;
1206 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1207 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1208 *(mdp + count_off) = DataLayout::counter_increment;
1209 } else {
1210 // Receiver did not match any saved receiver and there is no empty row for it.
1211 // Increment total counter to indicate polymorphic case.
1212 intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1213 *count_p += DataLayout::counter_increment;
1214 }
1215JRT_END
1216
1217//-------------------------------------------------------------------------------------
1218// register policy
1219
1220bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1221 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1222 switch (register_save_policy[reg]) {
1223 case 'C': return false; //SOC
1224 case 'E': return true ; //SOE
1225 case 'N': return false; //NS
1226 case 'A': return false; //AS
1227 }
1228 ShouldNotReachHere();
1229 return false;
1230}
1231
1232//-----------------------------------------------------------------------
1233// Exceptions
1234//
1235
1236static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1237
1238// The method is an entry that is always called by a C++ method not
1239// directly from compiled code. Compiled code will call the C++ method following.
1240// We can't allow async exception to be installed during exception processing.
1241JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1242
1243 // Do not confuse exception_oop with pending_exception. The exception_oop
1244 // is only used to pass arguments into the method. Not for general
1245 // exception handling. DO NOT CHANGE IT to use pending_exception, since
1246 // the runtime stubs checks this on exit.
1247 assert(thread->exception_oop() != NULL, "exception oop is found");
1248 address handler_address = NULL;
1249
1250 Handle exception(thread, thread->exception_oop());
1251 address pc = thread->exception_pc();
1252
1253 // Clear out the exception oop and pc since looking up an
1254 // exception handler can cause class loading, which might throw an
1255 // exception and those fields are expected to be clear during
1256 // normal bytecode execution.
1257 thread->clear_exception_oop_and_pc();
1258
1259 LogTarget(Info, exceptions) lt;
1260 if (lt.is_enabled()) {
1261 ResourceMark rm;
1262 LogStream ls(lt);
1263 trace_exception(&ls, exception(), pc, "");
1264 }
1265
1266 // for AbortVMOnException flag
1267 Exceptions::debug_check_abort(exception);
1268
1269#ifdef ASSERT
1270 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1271 // should throw an exception here
1272 ShouldNotReachHere();
1273 }
1274#endif
1275
1276 // new exception handling: this method is entered only from adapters
1277 // exceptions from compiled java methods are handled in compiled code
1278 // using rethrow node
1279
1280 nm = CodeCache::find_nmethod(pc);
1281 assert(nm != NULL, "No NMethod found");
1282 if (nm->is_native_method()) {
1283 fatal("Native method should not have path to exception handling");
1284 } else {
1285 // we are switching to old paradigm: search for exception handler in caller_frame
1286 // instead in exception handler of caller_frame.sender()
1287
1288 if (JvmtiExport::can_post_on_exceptions()) {
1289 // "Full-speed catching" is not necessary here,
1290 // since we're notifying the VM on every catch.
1291 // Force deoptimization and the rest of the lookup
1292 // will be fine.
1293 deoptimize_caller_frame(thread);
1294 }
1295
1296 // Check the stack guard pages. If enabled, look for handler in this frame;
1297 // otherwise, forcibly unwind the frame.
1298 //
1299 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1300 bool force_unwind = !thread->reguard_stack();
1301 bool deopting = false;
1302 if (nm->is_deopt_pc(pc)) {
1303 deopting = true;
1304 RegisterMap map(thread, false);
1305 frame deoptee = thread->last_frame().sender(&map);
1306 assert(deoptee.is_deoptimized_frame(), "must be deopted");
1307 // Adjust the pc back to the original throwing pc
1308 pc = deoptee.pc();
1309 }
1310
1311 // If we are forcing an unwind because of stack overflow then deopt is
1312 // irrelevant since we are throwing the frame away anyway.
1313
1314 if (deopting && !force_unwind) {
1315 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1316 } else {
1317
1318 handler_address =
1319 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1320
1321 if (handler_address == NULL) {
1322 bool recursive_exception = false;
1323 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1324 assert (handler_address != NULL, "must have compiled handler");
1325 // Update the exception cache only when the unwind was not forced
1326 // and there didn't happen another exception during the computation of the
1327 // compiled exception handler. Checking for exception oop equality is not
1328 // sufficient because some exceptions are pre-allocated and reused.
1329 if (!force_unwind && !recursive_exception) {
1330 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1331 }
1332 } else {
1333#ifdef ASSERT
1334 bool recursive_exception = false;
1335 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1336 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1337 p2i(handler_address), p2i(computed_address));
1338#endif
1339 }
1340 }
1341
1342 thread->set_exception_pc(pc);
1343 thread->set_exception_handler_pc(handler_address);
1344
1345 // Check if the exception PC is a MethodHandle call site.
1346 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1347 }
1348
1349 // Restore correct return pc. Was saved above.
1350 thread->set_exception_oop(exception());
1351 return handler_address;
1352
1353JRT_END
1354
1355// We are entering here from exception_blob
1356// If there is a compiled exception handler in this method, we will continue there;
1357// otherwise we will unwind the stack and continue at the caller of top frame method
1358// Note we enter without the usual JRT wrapper. We will call a helper routine that
1359// will do the normal VM entry. We do it this way so that we can see if the nmethod
1360// we looked up the handler for has been deoptimized in the meantime. If it has been
1361// we must not use the handler and instead return the deopt blob.
1362address OptoRuntime::handle_exception_C(JavaThread* thread) {
1363//
1364// We are in Java not VM and in debug mode we have a NoHandleMark
1365//
1366#ifndef PRODUCT
1367 SharedRuntime::_find_handler_ctr++; // find exception handler
1368#endif
1369 debug_only(NoHandleMark __hm;)
1370 nmethod* nm = NULL;
1371 address handler_address = NULL;
1372 {
1373 // Enter the VM
1374
1375 ResetNoHandleMark rnhm;
1376 handler_address = handle_exception_C_helper(thread, nm);
1377 }
1378
1379 // Back in java: Use no oops, DON'T safepoint
1380
1381 // Now check to see if the handler we are returning is in a now
1382 // deoptimized frame
1383
1384 if (nm != NULL) {
1385 RegisterMap map(thread, false);
1386 frame caller = thread->last_frame().sender(&map);
1387#ifdef ASSERT
1388 assert(caller.is_compiled_frame(), "must be");
1389#endif // ASSERT
1390 if (caller.is_deoptimized_frame()) {
1391 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1392 }
1393 }
1394 return handler_address;
1395}
1396
1397//------------------------------rethrow----------------------------------------
1398// We get here after compiled code has executed a 'RethrowNode'. The callee
1399// is either throwing or rethrowing an exception. The callee-save registers
1400// have been restored, synchronized objects have been unlocked and the callee
1401// stack frame has been removed. The return address was passed in.
1402// Exception oop is passed as the 1st argument. This routine is then called
1403// from the stub. On exit, we know where to jump in the caller's code.
1404// After this C code exits, the stub will pop his frame and end in a jump
1405// (instead of a return). We enter the caller's default handler.
1406//
1407// This must be JRT_LEAF:
1408// - caller will not change its state as we cannot block on exit,
1409// therefore raw_exception_handler_for_return_address is all it takes
1410// to handle deoptimized blobs
1411//
1412// However, there needs to be a safepoint check in the middle! So compiled
1413// safepoints are completely watertight.
1414//
1415// Thus, it cannot be a leaf since it contains the NoGCVerifier.
1416//
1417// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1418//
1419address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1420#ifndef PRODUCT
1421 SharedRuntime::_rethrow_ctr++; // count rethrows
1422#endif
1423 assert (exception != NULL, "should have thrown a NULLPointerException");
1424#ifdef ASSERT
1425 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1426 // should throw an exception here
1427 ShouldNotReachHere();
1428 }
1429#endif
1430
1431 thread->set_vm_result(exception);
1432 // Frame not compiled (handles deoptimization blob)
1433 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1434}
1435
1436
1437const TypeFunc *OptoRuntime::rethrow_Type() {
1438 // create input type (domain)
1439 const Type **fields = TypeTuple::fields(1);
1440 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1441 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1442
1443 // create result type (range)
1444 fields = TypeTuple::fields(1);
1445 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1446 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1447
1448 return TypeFunc::make(domain, range);
1449}
1450
1451
1452void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1453 // Deoptimize the caller before continuing, as the compiled
1454 // exception handler table may not be valid.
1455 if (!StressCompiledExceptionHandlers && doit) {
1456 deoptimize_caller_frame(thread);
1457 }
1458}
1459
1460void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1461 // Called from within the owner thread, so no need for safepoint
1462 RegisterMap reg_map(thread);
1463 frame stub_frame = thread->last_frame();
1464 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1465 frame caller_frame = stub_frame.sender(&reg_map);
1466
1467 // Deoptimize the caller frame.
1468 Deoptimization::deoptimize_frame(thread, caller_frame.id());
1469}
1470
1471
1472bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1473 // Called from within the owner thread, so no need for safepoint
1474 RegisterMap reg_map(thread);
1475 frame stub_frame = thread->last_frame();
1476 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1477 frame caller_frame = stub_frame.sender(&reg_map);
1478 return caller_frame.is_deoptimized_frame();
1479}
1480
1481
1482const TypeFunc *OptoRuntime::register_finalizer_Type() {
1483 // create input type (domain)
1484 const Type **fields = TypeTuple::fields(1);
1485 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
1486 // // The JavaThread* is passed to each routine as the last argument
1487 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
1488 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1489
1490 // create result type (range)
1491 fields = TypeTuple::fields(0);
1492
1493 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1494
1495 return TypeFunc::make(domain,range);
1496}
1497
1498
1499//-----------------------------------------------------------------------------
1500// Dtrace support. entry and exit probes have the same signature
1501const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1502 // create input type (domain)
1503 const Type **fields = TypeTuple::fields(2);
1504 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1505 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
1506 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1507
1508 // create result type (range)
1509 fields = TypeTuple::fields(0);
1510
1511 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1512
1513 return TypeFunc::make(domain,range);
1514}
1515
1516const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1517 // create input type (domain)
1518 const Type **fields = TypeTuple::fields(2);
1519 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1520 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
1521
1522 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1523
1524 // create result type (range)
1525 fields = TypeTuple::fields(0);
1526
1527 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1528
1529 return TypeFunc::make(domain,range);
1530}
1531
1532
1533JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1534 assert(oopDesc::is_oop(obj), "must be a valid oop");
1535 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1536 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1537JRT_END
1538
1539//-----------------------------------------------------------------------------
1540
1541NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1542
1543//
1544// dump the collected NamedCounters.
1545//
1546void OptoRuntime::print_named_counters() {
1547 int total_lock_count = 0;
1548 int eliminated_lock_count = 0;
1549
1550 NamedCounter* c = _named_counters;
1551 while (c) {
1552 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1553 int count = c->count();
1554 if (count > 0) {
1555 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1556 if (Verbose) {
1557 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1558 }
1559 total_lock_count += count;
1560 if (eliminated) {
1561 eliminated_lock_count += count;
1562 }
1563 }
1564 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1565 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1566 if (blc->nonzero()) {
1567 tty->print_cr("%s", c->name());
1568 blc->print_on(tty);
1569 }
1570#if INCLUDE_RTM_OPT
1571 } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1572 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1573 if (rlc->nonzero()) {
1574 tty->print_cr("%s", c->name());
1575 rlc->print_on(tty);
1576 }
1577#endif
1578 }
1579 c = c->next();
1580 }
1581 if (total_lock_count > 0) {
1582 tty->print_cr("dynamic locks: %d", total_lock_count);
1583 if (eliminated_lock_count) {
1584 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1585 (int)(eliminated_lock_count * 100.0 / total_lock_count));
1586 }
1587 }
1588}
1589
1590//
1591// Allocate a new NamedCounter. The JVMState is used to generate the
1592// name which consists of method@line for the inlining tree.
1593//
1594
1595NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1596 int max_depth = youngest_jvms->depth();
1597
1598 // Visit scopes from youngest to oldest.
1599 bool first = true;
1600 stringStream st;
1601 for (int depth = max_depth; depth >= 1; depth--) {
1602 JVMState* jvms = youngest_jvms->of_depth(depth);
1603 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1604 if (!first) {
1605 st.print(" ");
1606 } else {
1607 first = false;
1608 }
1609 int bci = jvms->bci();
1610 if (bci < 0) bci = 0;
1611 if (m != NULL) {
1612 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1613 } else {
1614 st.print("no method");
1615 }
1616 st.print("@%d", bci);
1617 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1618 }
1619 NamedCounter* c;
1620 if (tag == NamedCounter::BiasedLockingCounter) {
1621 c = new BiasedLockingNamedCounter(st.as_string());
1622 } else if (tag == NamedCounter::RTMLockingCounter) {
1623 c = new RTMLockingNamedCounter(st.as_string());
1624 } else {
1625 c = new NamedCounter(st.as_string(), tag);
1626 }
1627
1628 // atomically add the new counter to the head of the list. We only
1629 // add counters so this is safe.
1630 NamedCounter* head;
1631 do {
1632 c->set_next(NULL);
1633 head = _named_counters;
1634 c->set_next(head);
1635 } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1636 return c;
1637}
1638
1639int trace_exception_counter = 0;
1640static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1641 trace_exception_counter++;
1642 stringStream tempst;
1643
1644 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1645 exception_oop->print_value_on(&tempst);
1646 tempst.print(" in ");
1647 CodeBlob* blob = CodeCache::find_blob(exception_pc);
1648 if (blob->is_compiled()) {
1649 CompiledMethod* cm = blob->as_compiled_method_or_null();
1650 cm->method()->print_value_on(&tempst);
1651 } else if (blob->is_runtime_stub()) {
1652 tempst.print("<runtime-stub>");
1653 } else {
1654 tempst.print("<unknown>");
1655 }
1656 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
1657 tempst.print("]");
1658
1659 st->print_raw_cr(tempst.as_string());
1660}
1661