1 | /**************************************************************************/ |
2 | /* nav_map.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "nav_map.h" |
32 | |
33 | #include "nav_agent.h" |
34 | #include "nav_link.h" |
35 | #include "nav_obstacle.h" |
36 | #include "nav_region.h" |
37 | |
38 | #include "core/config/project_settings.h" |
39 | #include "core/object/worker_thread_pool.h" |
40 | |
41 | #include <Obstacle2d.h> |
42 | |
43 | #define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a))) |
44 | |
45 | // Helper macro |
46 | #define APPEND_METADATA(poly) \ |
47 | if (r_path_types) { \ |
48 | r_path_types->push_back(poly->owner->get_type()); \ |
49 | } \ |
50 | if (r_path_rids) { \ |
51 | r_path_rids->push_back(poly->owner->get_self()); \ |
52 | } \ |
53 | if (r_path_owners) { \ |
54 | r_path_owners->push_back(poly->owner->get_owner_id()); \ |
55 | } |
56 | |
57 | void NavMap::set_up(Vector3 p_up) { |
58 | if (up == p_up) { |
59 | return; |
60 | } |
61 | up = p_up; |
62 | regenerate_polygons = true; |
63 | } |
64 | |
65 | void NavMap::set_cell_size(real_t p_cell_size) { |
66 | if (cell_size == p_cell_size) { |
67 | return; |
68 | } |
69 | cell_size = p_cell_size; |
70 | regenerate_polygons = true; |
71 | } |
72 | |
73 | void NavMap::set_cell_height(real_t p_cell_height) { |
74 | if (cell_height == p_cell_height) { |
75 | return; |
76 | } |
77 | cell_height = p_cell_height; |
78 | regenerate_polygons = true; |
79 | } |
80 | |
81 | void NavMap::set_use_edge_connections(bool p_enabled) { |
82 | if (use_edge_connections == p_enabled) { |
83 | return; |
84 | } |
85 | use_edge_connections = p_enabled; |
86 | regenerate_links = true; |
87 | } |
88 | |
89 | void NavMap::set_edge_connection_margin(real_t p_edge_connection_margin) { |
90 | if (edge_connection_margin == p_edge_connection_margin) { |
91 | return; |
92 | } |
93 | edge_connection_margin = p_edge_connection_margin; |
94 | regenerate_links = true; |
95 | } |
96 | |
97 | void NavMap::set_link_connection_radius(real_t p_link_connection_radius) { |
98 | if (link_connection_radius == p_link_connection_radius) { |
99 | return; |
100 | } |
101 | link_connection_radius = p_link_connection_radius; |
102 | regenerate_links = true; |
103 | } |
104 | |
105 | gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const { |
106 | const int x = static_cast<int>(Math::floor(p_pos.x / cell_size)); |
107 | const int y = static_cast<int>(Math::floor(p_pos.y / cell_height)); |
108 | const int z = static_cast<int>(Math::floor(p_pos.z / cell_size)); |
109 | |
110 | gd::PointKey p; |
111 | p.key = 0; |
112 | p.x = x; |
113 | p.y = y; |
114 | p.z = z; |
115 | return p; |
116 | } |
117 | |
118 | Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners) const { |
119 | ERR_FAIL_COND_V_MSG(map_update_id == 0, Vector<Vector3>(), "NavigationServer map query failed because it was made before first map synchronization." ); |
120 | // Clear metadata outputs. |
121 | if (r_path_types) { |
122 | r_path_types->clear(); |
123 | } |
124 | if (r_path_rids) { |
125 | r_path_rids->clear(); |
126 | } |
127 | if (r_path_owners) { |
128 | r_path_owners->clear(); |
129 | } |
130 | |
131 | // Find the start poly and the end poly on this map. |
132 | const gd::Polygon *begin_poly = nullptr; |
133 | const gd::Polygon *end_poly = nullptr; |
134 | Vector3 begin_point; |
135 | Vector3 end_point; |
136 | real_t begin_d = FLT_MAX; |
137 | real_t end_d = FLT_MAX; |
138 | // Find the initial poly and the end poly on this map. |
139 | for (const gd::Polygon &p : polygons) { |
140 | // Only consider the polygon if it in a region with compatible layers. |
141 | if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) { |
142 | continue; |
143 | } |
144 | |
145 | // For each face check the distance between the origin/destination |
146 | for (size_t point_id = 2; point_id < p.points.size(); point_id++) { |
147 | const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos); |
148 | |
149 | Vector3 point = face.get_closest_point_to(p_origin); |
150 | real_t distance_to_point = point.distance_to(p_origin); |
151 | if (distance_to_point < begin_d) { |
152 | begin_d = distance_to_point; |
153 | begin_poly = &p; |
154 | begin_point = point; |
155 | } |
156 | |
157 | point = face.get_closest_point_to(p_destination); |
158 | distance_to_point = point.distance_to(p_destination); |
159 | if (distance_to_point < end_d) { |
160 | end_d = distance_to_point; |
161 | end_poly = &p; |
162 | end_point = point; |
163 | } |
164 | } |
165 | } |
166 | |
167 | // Check for trivial cases |
168 | if (!begin_poly || !end_poly) { |
169 | return Vector<Vector3>(); |
170 | } |
171 | if (begin_poly == end_poly) { |
172 | if (r_path_types) { |
173 | r_path_types->resize(2); |
174 | r_path_types->write[0] = begin_poly->owner->get_type(); |
175 | r_path_types->write[1] = end_poly->owner->get_type(); |
176 | } |
177 | |
178 | if (r_path_rids) { |
179 | r_path_rids->resize(2); |
180 | (*r_path_rids)[0] = begin_poly->owner->get_self(); |
181 | (*r_path_rids)[1] = end_poly->owner->get_self(); |
182 | } |
183 | |
184 | if (r_path_owners) { |
185 | r_path_owners->resize(2); |
186 | r_path_owners->write[0] = begin_poly->owner->get_owner_id(); |
187 | r_path_owners->write[1] = end_poly->owner->get_owner_id(); |
188 | } |
189 | |
190 | Vector<Vector3> path; |
191 | path.resize(2); |
192 | path.write[0] = begin_point; |
193 | path.write[1] = end_point; |
194 | return path; |
195 | } |
196 | |
197 | // List of all reachable navigation polys. |
198 | LocalVector<gd::NavigationPoly> navigation_polys; |
199 | navigation_polys.reserve(polygons.size() * 0.75); |
200 | |
201 | // Add the start polygon to the reachable navigation polygons. |
202 | gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly); |
203 | begin_navigation_poly.self_id = 0; |
204 | begin_navigation_poly.entry = begin_point; |
205 | begin_navigation_poly.back_navigation_edge_pathway_start = begin_point; |
206 | begin_navigation_poly.back_navigation_edge_pathway_end = begin_point; |
207 | navigation_polys.push_back(begin_navigation_poly); |
208 | |
209 | // List of polygon IDs to visit. |
210 | List<uint32_t> to_visit; |
211 | to_visit.push_back(0); |
212 | |
213 | // This is an implementation of the A* algorithm. |
214 | int least_cost_id = 0; |
215 | int prev_least_cost_id = -1; |
216 | bool found_route = false; |
217 | |
218 | const gd::Polygon *reachable_end = nullptr; |
219 | real_t reachable_d = FLT_MAX; |
220 | bool is_reachable = true; |
221 | |
222 | while (true) { |
223 | // Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance. |
224 | for (const gd::Edge &edge : navigation_polys[least_cost_id].poly->edges) { |
225 | // Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon. |
226 | for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) { |
227 | const gd::Edge::Connection &connection = edge.connections[connection_index]; |
228 | |
229 | // Only consider the connection to another polygon if this polygon is in a region with compatible layers. |
230 | if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) { |
231 | continue; |
232 | } |
233 | |
234 | const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id]; |
235 | real_t poly_enter_cost = 0.0; |
236 | real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost(); |
237 | |
238 | if (prev_least_cost_id != -1 && (navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self())) { |
239 | poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost(); |
240 | } |
241 | prev_least_cost_id = least_cost_id; |
242 | |
243 | Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end }; |
244 | const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway); |
245 | const real_t new_distance = (least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost) + poly_enter_cost + least_cost_poly.traveled_distance; |
246 | |
247 | int64_t already_visited_polygon_index = navigation_polys.find(gd::NavigationPoly(connection.polygon)); |
248 | |
249 | if (already_visited_polygon_index != -1) { |
250 | // Polygon already visited, check if we can reduce the travel cost. |
251 | gd::NavigationPoly &avp = navigation_polys[already_visited_polygon_index]; |
252 | if (new_distance < avp.traveled_distance) { |
253 | avp.back_navigation_poly_id = least_cost_id; |
254 | avp.back_navigation_edge = connection.edge; |
255 | avp.back_navigation_edge_pathway_start = connection.pathway_start; |
256 | avp.back_navigation_edge_pathway_end = connection.pathway_end; |
257 | avp.traveled_distance = new_distance; |
258 | avp.entry = new_entry; |
259 | } |
260 | } else { |
261 | // Add the neighbor polygon to the reachable ones. |
262 | gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon); |
263 | new_navigation_poly.self_id = navigation_polys.size(); |
264 | new_navigation_poly.back_navigation_poly_id = least_cost_id; |
265 | new_navigation_poly.back_navigation_edge = connection.edge; |
266 | new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start; |
267 | new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end; |
268 | new_navigation_poly.traveled_distance = new_distance; |
269 | new_navigation_poly.entry = new_entry; |
270 | navigation_polys.push_back(new_navigation_poly); |
271 | |
272 | // Add the neighbor polygon to the polygons to visit. |
273 | to_visit.push_back(navigation_polys.size() - 1); |
274 | } |
275 | } |
276 | } |
277 | |
278 | // Removes the least cost polygon from the list of polygons to visit so we can advance. |
279 | to_visit.erase(least_cost_id); |
280 | |
281 | // When the list of polygons to visit is empty at this point it means the End Polygon is not reachable |
282 | if (to_visit.size() == 0) { |
283 | // Thus use the further reachable polygon |
284 | ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons" ); |
285 | is_reachable = false; |
286 | if (reachable_end == nullptr) { |
287 | // The path is not found and there is not a way out. |
288 | break; |
289 | } |
290 | |
291 | // Set as end point the furthest reachable point. |
292 | end_poly = reachable_end; |
293 | end_d = FLT_MAX; |
294 | for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) { |
295 | Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos); |
296 | Vector3 spoint = f.get_closest_point_to(p_destination); |
297 | real_t dpoint = spoint.distance_to(p_destination); |
298 | if (dpoint < end_d) { |
299 | end_point = spoint; |
300 | end_d = dpoint; |
301 | } |
302 | } |
303 | |
304 | // Search all faces of start polygon as well. |
305 | bool closest_point_on_start_poly = false; |
306 | for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) { |
307 | Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos); |
308 | Vector3 spoint = f.get_closest_point_to(p_destination); |
309 | real_t dpoint = spoint.distance_to(p_destination); |
310 | if (dpoint < end_d) { |
311 | end_point = spoint; |
312 | end_d = dpoint; |
313 | closest_point_on_start_poly = true; |
314 | } |
315 | } |
316 | |
317 | if (closest_point_on_start_poly) { |
318 | // No point to run PostProcessing when start and end convex polygon is the same. |
319 | if (r_path_types) { |
320 | r_path_types->resize(2); |
321 | r_path_types->write[0] = begin_poly->owner->get_type(); |
322 | r_path_types->write[1] = begin_poly->owner->get_type(); |
323 | } |
324 | |
325 | if (r_path_rids) { |
326 | r_path_rids->resize(2); |
327 | (*r_path_rids)[0] = begin_poly->owner->get_self(); |
328 | (*r_path_rids)[1] = begin_poly->owner->get_self(); |
329 | } |
330 | |
331 | if (r_path_owners) { |
332 | r_path_owners->resize(2); |
333 | r_path_owners->write[0] = begin_poly->owner->get_owner_id(); |
334 | r_path_owners->write[1] = begin_poly->owner->get_owner_id(); |
335 | } |
336 | |
337 | Vector<Vector3> path; |
338 | path.resize(2); |
339 | path.write[0] = begin_point; |
340 | path.write[1] = end_point; |
341 | return path; |
342 | } |
343 | |
344 | // Reset open and navigation_polys |
345 | gd::NavigationPoly np = navigation_polys[0]; |
346 | navigation_polys.clear(); |
347 | navigation_polys.push_back(np); |
348 | to_visit.clear(); |
349 | to_visit.push_back(0); |
350 | least_cost_id = 0; |
351 | prev_least_cost_id = -1; |
352 | |
353 | reachable_end = nullptr; |
354 | |
355 | continue; |
356 | } |
357 | |
358 | // Find the polygon with the minimum cost from the list of polygons to visit. |
359 | least_cost_id = -1; |
360 | real_t least_cost = FLT_MAX; |
361 | for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) { |
362 | gd::NavigationPoly *np = &navigation_polys[element->get()]; |
363 | real_t cost = np->traveled_distance; |
364 | cost += (np->entry.distance_to(end_point) * np->poly->owner->get_travel_cost()); |
365 | if (cost < least_cost) { |
366 | least_cost_id = np->self_id; |
367 | least_cost = cost; |
368 | } |
369 | } |
370 | |
371 | ERR_BREAK(least_cost_id == -1); |
372 | |
373 | // Stores the further reachable end polygon, in case our goal is not reachable. |
374 | if (is_reachable) { |
375 | real_t d = navigation_polys[least_cost_id].entry.distance_to(p_destination) * navigation_polys[least_cost_id].poly->owner->get_travel_cost(); |
376 | if (reachable_d > d) { |
377 | reachable_d = d; |
378 | reachable_end = navigation_polys[least_cost_id].poly; |
379 | } |
380 | } |
381 | |
382 | // Check if we reached the end |
383 | if (navigation_polys[least_cost_id].poly == end_poly) { |
384 | found_route = true; |
385 | break; |
386 | } |
387 | } |
388 | |
389 | // We did not find a route but we have both a start polygon and an end polygon at this point. |
390 | // Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon. |
391 | if (!found_route) { |
392 | end_d = FLT_MAX; |
393 | // Search all faces of the start polygon for the closest point to our target position. |
394 | for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) { |
395 | Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos); |
396 | Vector3 spoint = f.get_closest_point_to(p_destination); |
397 | real_t dpoint = spoint.distance_to(p_destination); |
398 | if (dpoint < end_d) { |
399 | end_point = spoint; |
400 | end_d = dpoint; |
401 | } |
402 | } |
403 | |
404 | if (r_path_types) { |
405 | r_path_types->resize(2); |
406 | r_path_types->write[0] = begin_poly->owner->get_type(); |
407 | r_path_types->write[1] = begin_poly->owner->get_type(); |
408 | } |
409 | |
410 | if (r_path_rids) { |
411 | r_path_rids->resize(2); |
412 | (*r_path_rids)[0] = begin_poly->owner->get_self(); |
413 | (*r_path_rids)[1] = begin_poly->owner->get_self(); |
414 | } |
415 | |
416 | if (r_path_owners) { |
417 | r_path_owners->resize(2); |
418 | r_path_owners->write[0] = begin_poly->owner->get_owner_id(); |
419 | r_path_owners->write[1] = begin_poly->owner->get_owner_id(); |
420 | } |
421 | |
422 | Vector<Vector3> path; |
423 | path.resize(2); |
424 | path.write[0] = begin_point; |
425 | path.write[1] = end_point; |
426 | return path; |
427 | } |
428 | |
429 | Vector<Vector3> path; |
430 | // Optimize the path. |
431 | if (p_optimize) { |
432 | // Set the apex poly/point to the end point |
433 | gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id]; |
434 | |
435 | Vector3 back_pathway[2] = { apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end }; |
436 | const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(end_point, back_pathway); |
437 | if (end_point.is_equal_approx(back_edge_closest_point)) { |
438 | // The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing. |
439 | // At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon. |
440 | if (apex_poly->back_navigation_poly_id != -1) { |
441 | apex_poly = &navigation_polys[apex_poly->back_navigation_poly_id]; |
442 | } |
443 | } |
444 | |
445 | Vector3 apex_point = end_point; |
446 | |
447 | gd::NavigationPoly *left_poly = apex_poly; |
448 | Vector3 left_portal = apex_point; |
449 | gd::NavigationPoly *right_poly = apex_poly; |
450 | Vector3 right_portal = apex_point; |
451 | |
452 | gd::NavigationPoly *p = apex_poly; |
453 | |
454 | path.push_back(end_point); |
455 | APPEND_METADATA(end_poly); |
456 | |
457 | while (p) { |
458 | // Set left and right points of the pathway between polygons. |
459 | Vector3 left = p->back_navigation_edge_pathway_start; |
460 | Vector3 right = p->back_navigation_edge_pathway_end; |
461 | if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) { |
462 | SWAP(left, right); |
463 | } |
464 | |
465 | bool skip = false; |
466 | if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) { |
467 | //process |
468 | if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) { |
469 | left_poly = p; |
470 | left_portal = left; |
471 | } else { |
472 | clip_path(navigation_polys, path, apex_poly, right_portal, right_poly, r_path_types, r_path_rids, r_path_owners); |
473 | |
474 | apex_point = right_portal; |
475 | p = right_poly; |
476 | left_poly = p; |
477 | apex_poly = p; |
478 | left_portal = apex_point; |
479 | right_portal = apex_point; |
480 | |
481 | path.push_back(apex_point); |
482 | APPEND_METADATA(apex_poly->poly); |
483 | skip = true; |
484 | } |
485 | } |
486 | |
487 | if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) { |
488 | //process |
489 | if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) { |
490 | right_poly = p; |
491 | right_portal = right; |
492 | } else { |
493 | clip_path(navigation_polys, path, apex_poly, left_portal, left_poly, r_path_types, r_path_rids, r_path_owners); |
494 | |
495 | apex_point = left_portal; |
496 | p = left_poly; |
497 | right_poly = p; |
498 | apex_poly = p; |
499 | right_portal = apex_point; |
500 | left_portal = apex_point; |
501 | |
502 | path.push_back(apex_point); |
503 | APPEND_METADATA(apex_poly->poly); |
504 | } |
505 | } |
506 | |
507 | // Go to the previous polygon. |
508 | if (p->back_navigation_poly_id != -1) { |
509 | p = &navigation_polys[p->back_navigation_poly_id]; |
510 | } else { |
511 | // The end |
512 | p = nullptr; |
513 | } |
514 | } |
515 | |
516 | // If the last point is not the begin point, add it to the list. |
517 | if (path[path.size() - 1] != begin_point) { |
518 | path.push_back(begin_point); |
519 | APPEND_METADATA(begin_poly); |
520 | } |
521 | |
522 | path.reverse(); |
523 | if (r_path_types) { |
524 | r_path_types->reverse(); |
525 | } |
526 | if (r_path_rids) { |
527 | r_path_rids->reverse(); |
528 | } |
529 | if (r_path_owners) { |
530 | r_path_owners->reverse(); |
531 | } |
532 | |
533 | } else { |
534 | path.push_back(end_point); |
535 | APPEND_METADATA(end_poly); |
536 | |
537 | // Add mid points |
538 | int np_id = least_cost_id; |
539 | while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) { |
540 | if (navigation_polys[np_id].back_navigation_edge != -1) { |
541 | int prev = navigation_polys[np_id].back_navigation_edge; |
542 | int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size(); |
543 | Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5; |
544 | |
545 | path.push_back(point); |
546 | APPEND_METADATA(navigation_polys[np_id].poly); |
547 | } else { |
548 | path.push_back(navigation_polys[np_id].entry); |
549 | APPEND_METADATA(navigation_polys[np_id].poly); |
550 | } |
551 | |
552 | np_id = navigation_polys[np_id].back_navigation_poly_id; |
553 | } |
554 | |
555 | path.push_back(begin_point); |
556 | APPEND_METADATA(begin_poly); |
557 | |
558 | path.reverse(); |
559 | if (r_path_types) { |
560 | r_path_types->reverse(); |
561 | } |
562 | if (r_path_rids) { |
563 | r_path_rids->reverse(); |
564 | } |
565 | if (r_path_owners) { |
566 | r_path_owners->reverse(); |
567 | } |
568 | } |
569 | |
570 | // Ensure post conditions (path arrays MUST match in size). |
571 | CRASH_COND(r_path_types && path.size() != r_path_types->size()); |
572 | CRASH_COND(r_path_rids && path.size() != r_path_rids->size()); |
573 | CRASH_COND(r_path_owners && path.size() != r_path_owners->size()); |
574 | |
575 | return path; |
576 | } |
577 | |
578 | Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const { |
579 | ERR_FAIL_COND_V_MSG(map_update_id == 0, Vector3(), "NavigationServer map query failed because it was made before first map synchronization." ); |
580 | bool use_collision = p_use_collision; |
581 | Vector3 closest_point; |
582 | real_t closest_point_d = FLT_MAX; |
583 | |
584 | for (const gd::Polygon &p : polygons) { |
585 | // For each face check the distance to the segment |
586 | for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) { |
587 | const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos); |
588 | Vector3 inters; |
589 | if (f.intersects_segment(p_from, p_to, &inters)) { |
590 | const real_t d = closest_point_d = p_from.distance_to(inters); |
591 | if (use_collision == false) { |
592 | closest_point = inters; |
593 | use_collision = true; |
594 | closest_point_d = d; |
595 | } else if (closest_point_d > d) { |
596 | closest_point = inters; |
597 | closest_point_d = d; |
598 | } |
599 | } |
600 | } |
601 | |
602 | if (use_collision == false) { |
603 | for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) { |
604 | Vector3 a, b; |
605 | |
606 | Geometry3D::get_closest_points_between_segments( |
607 | p_from, |
608 | p_to, |
609 | p.points[point_id].pos, |
610 | p.points[(point_id + 1) % p.points.size()].pos, |
611 | a, |
612 | b); |
613 | |
614 | const real_t d = a.distance_to(b); |
615 | if (d < closest_point_d) { |
616 | closest_point_d = d; |
617 | closest_point = b; |
618 | } |
619 | } |
620 | } |
621 | } |
622 | |
623 | return closest_point; |
624 | } |
625 | |
626 | Vector3 NavMap::get_closest_point(const Vector3 &p_point) const { |
627 | ERR_FAIL_COND_V_MSG(map_update_id == 0, Vector3(), "NavigationServer map query failed because it was made before first map synchronization." ); |
628 | gd::ClosestPointQueryResult cp = get_closest_point_info(p_point); |
629 | return cp.point; |
630 | } |
631 | |
632 | Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const { |
633 | ERR_FAIL_COND_V_MSG(map_update_id == 0, Vector3(), "NavigationServer map query failed because it was made before first map synchronization." ); |
634 | gd::ClosestPointQueryResult cp = get_closest_point_info(p_point); |
635 | return cp.normal; |
636 | } |
637 | |
638 | RID NavMap::get_closest_point_owner(const Vector3 &p_point) const { |
639 | ERR_FAIL_COND_V_MSG(map_update_id == 0, RID(), "NavigationServer map query failed because it was made before first map synchronization." ); |
640 | gd::ClosestPointQueryResult cp = get_closest_point_info(p_point); |
641 | return cp.owner; |
642 | } |
643 | |
644 | gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const { |
645 | gd::ClosestPointQueryResult result; |
646 | real_t closest_point_ds = FLT_MAX; |
647 | |
648 | for (const gd::Polygon &p : polygons) { |
649 | // For each face check the distance to the point |
650 | for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) { |
651 | const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos); |
652 | const Vector3 inters = f.get_closest_point_to(p_point); |
653 | const real_t ds = inters.distance_squared_to(p_point); |
654 | if (ds < closest_point_ds) { |
655 | result.point = inters; |
656 | result.normal = f.get_plane().normal; |
657 | result.owner = p.owner->get_self(); |
658 | closest_point_ds = ds; |
659 | } |
660 | } |
661 | } |
662 | |
663 | return result; |
664 | } |
665 | |
666 | void NavMap::add_region(NavRegion *p_region) { |
667 | regions.push_back(p_region); |
668 | regenerate_links = true; |
669 | } |
670 | |
671 | void NavMap::remove_region(NavRegion *p_region) { |
672 | int64_t region_index = regions.find(p_region); |
673 | if (region_index >= 0) { |
674 | regions.remove_at_unordered(region_index); |
675 | regenerate_links = true; |
676 | } |
677 | } |
678 | |
679 | void NavMap::add_link(NavLink *p_link) { |
680 | links.push_back(p_link); |
681 | regenerate_links = true; |
682 | } |
683 | |
684 | void NavMap::remove_link(NavLink *p_link) { |
685 | int64_t link_index = links.find(p_link); |
686 | if (link_index >= 0) { |
687 | links.remove_at_unordered(link_index); |
688 | regenerate_links = true; |
689 | } |
690 | } |
691 | |
692 | bool NavMap::has_agent(NavAgent *agent) const { |
693 | return (agents.find(agent) >= 0); |
694 | } |
695 | |
696 | void NavMap::add_agent(NavAgent *agent) { |
697 | if (!has_agent(agent)) { |
698 | agents.push_back(agent); |
699 | agents_dirty = true; |
700 | } |
701 | } |
702 | |
703 | void NavMap::remove_agent(NavAgent *agent) { |
704 | remove_agent_as_controlled(agent); |
705 | int64_t agent_index = agents.find(agent); |
706 | if (agent_index >= 0) { |
707 | agents.remove_at_unordered(agent_index); |
708 | agents_dirty = true; |
709 | } |
710 | } |
711 | |
712 | bool NavMap::has_obstacle(NavObstacle *obstacle) const { |
713 | return (obstacles.find(obstacle) >= 0); |
714 | } |
715 | |
716 | void NavMap::add_obstacle(NavObstacle *obstacle) { |
717 | if (obstacle->get_paused()) { |
718 | // No point in adding a paused obstacle, it will add itself when unpaused again. |
719 | return; |
720 | } |
721 | |
722 | if (!has_obstacle(obstacle)) { |
723 | obstacles.push_back(obstacle); |
724 | obstacles_dirty = true; |
725 | } |
726 | } |
727 | |
728 | void NavMap::remove_obstacle(NavObstacle *obstacle) { |
729 | int64_t obstacle_index = obstacles.find(obstacle); |
730 | if (obstacle_index >= 0) { |
731 | obstacles.remove_at_unordered(obstacle_index); |
732 | obstacles_dirty = true; |
733 | } |
734 | } |
735 | |
736 | void NavMap::set_agent_as_controlled(NavAgent *agent) { |
737 | remove_agent_as_controlled(agent); |
738 | |
739 | if (agent->get_paused()) { |
740 | // No point in adding a paused agent, it will add itself when unpaused again. |
741 | return; |
742 | } |
743 | |
744 | if (agent->get_use_3d_avoidance()) { |
745 | int64_t agent_3d_index = active_3d_avoidance_agents.find(agent); |
746 | if (agent_3d_index < 0) { |
747 | active_3d_avoidance_agents.push_back(agent); |
748 | agents_dirty = true; |
749 | } |
750 | } else { |
751 | int64_t agent_2d_index = active_2d_avoidance_agents.find(agent); |
752 | if (agent_2d_index < 0) { |
753 | active_2d_avoidance_agents.push_back(agent); |
754 | agents_dirty = true; |
755 | } |
756 | } |
757 | } |
758 | |
759 | void NavMap::remove_agent_as_controlled(NavAgent *agent) { |
760 | int64_t agent_3d_index = active_3d_avoidance_agents.find(agent); |
761 | if (agent_3d_index >= 0) { |
762 | active_3d_avoidance_agents.remove_at_unordered(agent_3d_index); |
763 | agents_dirty = true; |
764 | } |
765 | int64_t agent_2d_index = active_2d_avoidance_agents.find(agent); |
766 | if (agent_2d_index >= 0) { |
767 | active_2d_avoidance_agents.remove_at_unordered(agent_2d_index); |
768 | agents_dirty = true; |
769 | } |
770 | } |
771 | |
772 | void NavMap::sync() { |
773 | // Performance Monitor |
774 | int _new_pm_region_count = regions.size(); |
775 | int _new_pm_agent_count = agents.size(); |
776 | int _new_pm_link_count = links.size(); |
777 | int _new_pm_polygon_count = pm_polygon_count; |
778 | int _new_pm_edge_count = pm_edge_count; |
779 | int _new_pm_edge_merge_count = pm_edge_merge_count; |
780 | int _new_pm_edge_connection_count = pm_edge_connection_count; |
781 | int _new_pm_edge_free_count = pm_edge_free_count; |
782 | |
783 | // Check if we need to update the links. |
784 | if (regenerate_polygons) { |
785 | for (NavRegion *region : regions) { |
786 | region->scratch_polygons(); |
787 | } |
788 | regenerate_links = true; |
789 | } |
790 | |
791 | for (NavRegion *region : regions) { |
792 | if (region->sync()) { |
793 | regenerate_links = true; |
794 | } |
795 | } |
796 | |
797 | for (NavLink *link : links) { |
798 | if (link->check_dirty()) { |
799 | regenerate_links = true; |
800 | } |
801 | } |
802 | |
803 | if (regenerate_links) { |
804 | _new_pm_polygon_count = 0; |
805 | _new_pm_edge_count = 0; |
806 | _new_pm_edge_merge_count = 0; |
807 | _new_pm_edge_connection_count = 0; |
808 | _new_pm_edge_free_count = 0; |
809 | |
810 | // Remove regions connections. |
811 | for (NavRegion *region : regions) { |
812 | region->get_connections().clear(); |
813 | } |
814 | |
815 | // Resize the polygon count. |
816 | int count = 0; |
817 | for (const NavRegion *region : regions) { |
818 | if (!region->get_enabled()) { |
819 | continue; |
820 | } |
821 | count += region->get_polygons().size(); |
822 | } |
823 | polygons.resize(count); |
824 | |
825 | // Copy all region polygons in the map. |
826 | count = 0; |
827 | for (const NavRegion *region : regions) { |
828 | if (!region->get_enabled()) { |
829 | continue; |
830 | } |
831 | const LocalVector<gd::Polygon> &polygons_source = region->get_polygons(); |
832 | for (uint32_t n = 0; n < polygons_source.size(); n++) { |
833 | polygons[count + n] = polygons_source[n]; |
834 | } |
835 | count += region->get_polygons().size(); |
836 | } |
837 | |
838 | _new_pm_polygon_count = polygons.size(); |
839 | |
840 | // Group all edges per key. |
841 | HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey> connections; |
842 | for (gd::Polygon &poly : polygons) { |
843 | for (uint32_t p = 0; p < poly.points.size(); p++) { |
844 | int next_point = (p + 1) % poly.points.size(); |
845 | gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key); |
846 | |
847 | HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey>::Iterator connection = connections.find(ek); |
848 | if (!connection) { |
849 | connections[ek] = Vector<gd::Edge::Connection>(); |
850 | _new_pm_edge_count += 1; |
851 | } |
852 | if (connections[ek].size() <= 1) { |
853 | // Add the polygon/edge tuple to this key. |
854 | gd::Edge::Connection new_connection; |
855 | new_connection.polygon = &poly; |
856 | new_connection.edge = p; |
857 | new_connection.pathway_start = poly.points[p].pos; |
858 | new_connection.pathway_end = poly.points[next_point].pos; |
859 | connections[ek].push_back(new_connection); |
860 | } else { |
861 | // The edge is already connected with another edge, skip. |
862 | ERR_PRINT_ONCE("Navigation map synchronization error. Attempted to merge a navigation mesh polygon edge with another already-merged edge. This is usually caused by crossing edges, overlapping polygons, or a mismatch of the NavigationMesh / NavigationPolygon baked 'cell_size' and navigation map 'cell_size'." ); |
863 | } |
864 | } |
865 | } |
866 | |
867 | Vector<gd::Edge::Connection> free_edges; |
868 | for (KeyValue<gd::EdgeKey, Vector<gd::Edge::Connection>> &E : connections) { |
869 | if (E.value.size() == 2) { |
870 | // Connect edge that are shared in different polygons. |
871 | gd::Edge::Connection &c1 = E.value.write[0]; |
872 | gd::Edge::Connection &c2 = E.value.write[1]; |
873 | c1.polygon->edges[c1.edge].connections.push_back(c2); |
874 | c2.polygon->edges[c2.edge].connections.push_back(c1); |
875 | // Note: The pathway_start/end are full for those connection and do not need to be modified. |
876 | _new_pm_edge_merge_count += 1; |
877 | } else { |
878 | CRASH_COND_MSG(E.value.size() != 1, vformat("Number of connection != 1. Found: %d" , E.value.size())); |
879 | if (use_edge_connections && E.value[0].polygon->owner->get_use_edge_connections()) { |
880 | free_edges.push_back(E.value[0]); |
881 | } |
882 | } |
883 | } |
884 | |
885 | // Find the compatible near edges. |
886 | // |
887 | // Note: |
888 | // Considering that the edges must be compatible (for obvious reasons) |
889 | // to be connected, create new polygons to remove that small gap is |
890 | // not really useful and would result in wasteful computation during |
891 | // connection, integration and path finding. |
892 | _new_pm_edge_free_count = free_edges.size(); |
893 | |
894 | for (int i = 0; i < free_edges.size(); i++) { |
895 | const gd::Edge::Connection &free_edge = free_edges[i]; |
896 | Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos; |
897 | Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos; |
898 | |
899 | for (int j = 0; j < free_edges.size(); j++) { |
900 | const gd::Edge::Connection &other_edge = free_edges[j]; |
901 | if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) { |
902 | continue; |
903 | } |
904 | |
905 | Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos; |
906 | Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos; |
907 | |
908 | // Compute the projection of the opposite edge on the current one |
909 | Vector3 edge_vector = edge_p2 - edge_p1; |
910 | real_t projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared()); |
911 | real_t projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared()); |
912 | if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) { |
913 | continue; |
914 | } |
915 | |
916 | // Check if the two edges are close to each other enough and compute a pathway between the two regions. |
917 | Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1; |
918 | Vector3 other1; |
919 | if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) { |
920 | other1 = other_edge_p1; |
921 | } else { |
922 | other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); |
923 | } |
924 | if (other1.distance_to(self1) > edge_connection_margin) { |
925 | continue; |
926 | } |
927 | |
928 | Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1; |
929 | Vector3 other2; |
930 | if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) { |
931 | other2 = other_edge_p2; |
932 | } else { |
933 | other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio)); |
934 | } |
935 | if (other2.distance_to(self2) > edge_connection_margin) { |
936 | continue; |
937 | } |
938 | |
939 | // The edges can now be connected. |
940 | gd::Edge::Connection new_connection = other_edge; |
941 | new_connection.pathway_start = (self1 + other1) / 2.0; |
942 | new_connection.pathway_end = (self2 + other2) / 2.0; |
943 | free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection); |
944 | |
945 | // Add the connection to the region_connection map. |
946 | ((NavRegion *)free_edge.polygon->owner)->get_connections().push_back(new_connection); |
947 | _new_pm_edge_connection_count += 1; |
948 | } |
949 | } |
950 | |
951 | uint32_t link_poly_idx = 0; |
952 | link_polygons.resize(links.size()); |
953 | |
954 | // Search for polygons within range of a nav link. |
955 | for (const NavLink *link : links) { |
956 | const Vector3 start = link->get_start_position(); |
957 | const Vector3 end = link->get_end_position(); |
958 | |
959 | gd::Polygon *closest_start_polygon = nullptr; |
960 | real_t closest_start_distance = link_connection_radius; |
961 | Vector3 closest_start_point; |
962 | |
963 | gd::Polygon *closest_end_polygon = nullptr; |
964 | real_t closest_end_distance = link_connection_radius; |
965 | Vector3 closest_end_point; |
966 | |
967 | // Create link to any polygons within the search radius of the start point. |
968 | for (uint32_t start_index = 0; start_index < polygons.size(); start_index++) { |
969 | gd::Polygon &start_poly = polygons[start_index]; |
970 | |
971 | // For each face check the distance to the start |
972 | for (uint32_t start_point_id = 2; start_point_id < start_poly.points.size(); start_point_id += 1) { |
973 | const Face3 start_face(start_poly.points[0].pos, start_poly.points[start_point_id - 1].pos, start_poly.points[start_point_id].pos); |
974 | const Vector3 start_point = start_face.get_closest_point_to(start); |
975 | const real_t start_distance = start_point.distance_to(start); |
976 | |
977 | // Pick the polygon that is within our radius and is closer than anything we've seen yet. |
978 | if (start_distance <= link_connection_radius && start_distance < closest_start_distance) { |
979 | closest_start_distance = start_distance; |
980 | closest_start_point = start_point; |
981 | closest_start_polygon = &start_poly; |
982 | } |
983 | } |
984 | } |
985 | |
986 | // Find any polygons within the search radius of the end point. |
987 | for (gd::Polygon &end_poly : polygons) { |
988 | // For each face check the distance to the end |
989 | for (uint32_t end_point_id = 2; end_point_id < end_poly.points.size(); end_point_id += 1) { |
990 | const Face3 end_face(end_poly.points[0].pos, end_poly.points[end_point_id - 1].pos, end_poly.points[end_point_id].pos); |
991 | const Vector3 end_point = end_face.get_closest_point_to(end); |
992 | const real_t end_distance = end_point.distance_to(end); |
993 | |
994 | // Pick the polygon that is within our radius and is closer than anything we've seen yet. |
995 | if (end_distance <= link_connection_radius && end_distance < closest_end_distance) { |
996 | closest_end_distance = end_distance; |
997 | closest_end_point = end_point; |
998 | closest_end_polygon = &end_poly; |
999 | } |
1000 | } |
1001 | } |
1002 | |
1003 | // If we have both a start and end point, then create a synthetic polygon to route through. |
1004 | if (closest_start_polygon && closest_end_polygon) { |
1005 | gd::Polygon &new_polygon = link_polygons[link_poly_idx++]; |
1006 | new_polygon.owner = link; |
1007 | |
1008 | new_polygon.edges.clear(); |
1009 | new_polygon.edges.resize(4); |
1010 | new_polygon.points.clear(); |
1011 | new_polygon.points.reserve(4); |
1012 | |
1013 | // Build a set of vertices that create a thin polygon going from the start to the end point. |
1014 | new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) }); |
1015 | new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) }); |
1016 | new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) }); |
1017 | new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) }); |
1018 | |
1019 | Vector3 center; |
1020 | for (int p = 0; p < 4; ++p) { |
1021 | center += new_polygon.points[p].pos; |
1022 | } |
1023 | new_polygon.center = center / real_t(new_polygon.points.size()); |
1024 | new_polygon.clockwise = true; |
1025 | |
1026 | // Setup connections to go forward in the link. |
1027 | { |
1028 | gd::Edge::Connection entry_connection; |
1029 | entry_connection.polygon = &new_polygon; |
1030 | entry_connection.edge = -1; |
1031 | entry_connection.pathway_start = new_polygon.points[0].pos; |
1032 | entry_connection.pathway_end = new_polygon.points[1].pos; |
1033 | closest_start_polygon->edges[0].connections.push_back(entry_connection); |
1034 | |
1035 | gd::Edge::Connection exit_connection; |
1036 | exit_connection.polygon = closest_end_polygon; |
1037 | exit_connection.edge = -1; |
1038 | exit_connection.pathway_start = new_polygon.points[2].pos; |
1039 | exit_connection.pathway_end = new_polygon.points[3].pos; |
1040 | new_polygon.edges[2].connections.push_back(exit_connection); |
1041 | } |
1042 | |
1043 | // If the link is bi-directional, create connections from the end to the start. |
1044 | if (link->is_bidirectional()) { |
1045 | gd::Edge::Connection entry_connection; |
1046 | entry_connection.polygon = &new_polygon; |
1047 | entry_connection.edge = -1; |
1048 | entry_connection.pathway_start = new_polygon.points[2].pos; |
1049 | entry_connection.pathway_end = new_polygon.points[3].pos; |
1050 | closest_end_polygon->edges[0].connections.push_back(entry_connection); |
1051 | |
1052 | gd::Edge::Connection exit_connection; |
1053 | exit_connection.polygon = closest_start_polygon; |
1054 | exit_connection.edge = -1; |
1055 | exit_connection.pathway_start = new_polygon.points[0].pos; |
1056 | exit_connection.pathway_end = new_polygon.points[1].pos; |
1057 | new_polygon.edges[0].connections.push_back(exit_connection); |
1058 | } |
1059 | } |
1060 | } |
1061 | |
1062 | // Update the update ID. |
1063 | // Some code treats 0 as a failure case, so we avoid returning 0. |
1064 | map_update_id = map_update_id % 9999999 + 1; |
1065 | } |
1066 | |
1067 | // Do we have modified obstacle positions? |
1068 | for (NavObstacle *obstacle : obstacles) { |
1069 | if (obstacle->check_dirty()) { |
1070 | obstacles_dirty = true; |
1071 | } |
1072 | } |
1073 | // Do we have modified agent arrays? |
1074 | for (NavAgent *agent : agents) { |
1075 | if (agent->check_dirty()) { |
1076 | agents_dirty = true; |
1077 | } |
1078 | } |
1079 | |
1080 | // Update avoidance worlds. |
1081 | if (obstacles_dirty || agents_dirty) { |
1082 | _update_rvo_simulation(); |
1083 | } |
1084 | |
1085 | regenerate_polygons = false; |
1086 | regenerate_links = false; |
1087 | obstacles_dirty = false; |
1088 | agents_dirty = false; |
1089 | |
1090 | // Performance Monitor. |
1091 | pm_region_count = _new_pm_region_count; |
1092 | pm_agent_count = _new_pm_agent_count; |
1093 | pm_link_count = _new_pm_link_count; |
1094 | pm_polygon_count = _new_pm_polygon_count; |
1095 | pm_edge_count = _new_pm_edge_count; |
1096 | pm_edge_merge_count = _new_pm_edge_merge_count; |
1097 | pm_edge_connection_count = _new_pm_edge_connection_count; |
1098 | pm_edge_free_count = _new_pm_edge_free_count; |
1099 | } |
1100 | |
1101 | void NavMap::_update_rvo_obstacles_tree_2d() { |
1102 | int obstacle_vertex_count = 0; |
1103 | for (NavObstacle *obstacle : obstacles) { |
1104 | obstacle_vertex_count += obstacle->get_vertices().size(); |
1105 | } |
1106 | |
1107 | // Cannot use LocalVector here as RVO library expects std::vector to build KdTree |
1108 | std::vector<RVO2D::Obstacle2D *> raw_obstacles; |
1109 | raw_obstacles.reserve(obstacle_vertex_count); |
1110 | |
1111 | // The following block is modified copy from RVO2D::AddObstacle() |
1112 | // Obstacles are linked and depend on all other obstacles. |
1113 | for (NavObstacle *obstacle : obstacles) { |
1114 | const Vector3 &_obstacle_position = obstacle->get_position(); |
1115 | const Vector<Vector3> &_obstacle_vertices = obstacle->get_vertices(); |
1116 | |
1117 | if (_obstacle_vertices.size() < 2) { |
1118 | continue; |
1119 | } |
1120 | |
1121 | std::vector<RVO2D::Vector2> rvo_2d_vertices; |
1122 | rvo_2d_vertices.reserve(_obstacle_vertices.size()); |
1123 | |
1124 | uint32_t _obstacle_avoidance_layers = obstacle->get_avoidance_layers(); |
1125 | |
1126 | for (const Vector3 &_obstacle_vertex : _obstacle_vertices) { |
1127 | rvo_2d_vertices.push_back(RVO2D::Vector2(_obstacle_vertex.x + _obstacle_position.x, _obstacle_vertex.z + _obstacle_position.z)); |
1128 | } |
1129 | |
1130 | const size_t obstacleNo = raw_obstacles.size(); |
1131 | |
1132 | for (size_t i = 0; i < rvo_2d_vertices.size(); i++) { |
1133 | RVO2D::Obstacle2D *rvo_2d_obstacle = new RVO2D::Obstacle2D(); |
1134 | rvo_2d_obstacle->point_ = rvo_2d_vertices[i]; |
1135 | rvo_2d_obstacle->avoidance_layers_ = _obstacle_avoidance_layers; |
1136 | |
1137 | if (i != 0) { |
1138 | rvo_2d_obstacle->prevObstacle_ = raw_obstacles.back(); |
1139 | rvo_2d_obstacle->prevObstacle_->nextObstacle_ = rvo_2d_obstacle; |
1140 | } |
1141 | |
1142 | if (i == rvo_2d_vertices.size() - 1) { |
1143 | rvo_2d_obstacle->nextObstacle_ = raw_obstacles[obstacleNo]; |
1144 | rvo_2d_obstacle->nextObstacle_->prevObstacle_ = rvo_2d_obstacle; |
1145 | } |
1146 | |
1147 | rvo_2d_obstacle->unitDir_ = normalize(rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)] - rvo_2d_vertices[i]); |
1148 | |
1149 | if (rvo_2d_vertices.size() == 2) { |
1150 | rvo_2d_obstacle->isConvex_ = true; |
1151 | } else { |
1152 | rvo_2d_obstacle->isConvex_ = (leftOf(rvo_2d_vertices[(i == 0 ? rvo_2d_vertices.size() - 1 : i - 1)], rvo_2d_vertices[i], rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)]) >= 0.0f); |
1153 | } |
1154 | |
1155 | rvo_2d_obstacle->id_ = raw_obstacles.size(); |
1156 | |
1157 | raw_obstacles.push_back(rvo_2d_obstacle); |
1158 | } |
1159 | } |
1160 | |
1161 | rvo_simulation_2d.kdTree_->buildObstacleTree(raw_obstacles); |
1162 | } |
1163 | |
1164 | void NavMap::_update_rvo_agents_tree_2d() { |
1165 | // Cannot use LocalVector here as RVO library expects std::vector to build KdTree. |
1166 | std::vector<RVO2D::Agent2D *> raw_agents; |
1167 | raw_agents.reserve(active_2d_avoidance_agents.size()); |
1168 | for (NavAgent *agent : active_2d_avoidance_agents) { |
1169 | raw_agents.push_back(agent->get_rvo_agent_2d()); |
1170 | } |
1171 | rvo_simulation_2d.kdTree_->buildAgentTree(raw_agents); |
1172 | } |
1173 | |
1174 | void NavMap::_update_rvo_agents_tree_3d() { |
1175 | // Cannot use LocalVector here as RVO library expects std::vector to build KdTree. |
1176 | std::vector<RVO3D::Agent3D *> raw_agents; |
1177 | raw_agents.reserve(active_3d_avoidance_agents.size()); |
1178 | for (NavAgent *agent : active_3d_avoidance_agents) { |
1179 | raw_agents.push_back(agent->get_rvo_agent_3d()); |
1180 | } |
1181 | rvo_simulation_3d.kdTree_->buildAgentTree(raw_agents); |
1182 | } |
1183 | |
1184 | void NavMap::_update_rvo_simulation() { |
1185 | if (obstacles_dirty) { |
1186 | _update_rvo_obstacles_tree_2d(); |
1187 | } |
1188 | if (agents_dirty) { |
1189 | _update_rvo_agents_tree_2d(); |
1190 | _update_rvo_agents_tree_3d(); |
1191 | } |
1192 | } |
1193 | |
1194 | void NavMap::compute_single_avoidance_step_2d(uint32_t index, NavAgent **agent) { |
1195 | (*(agent + index))->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d); |
1196 | (*(agent + index))->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d); |
1197 | (*(agent + index))->get_rvo_agent_2d()->update(&rvo_simulation_2d); |
1198 | (*(agent + index))->update(); |
1199 | } |
1200 | |
1201 | void NavMap::compute_single_avoidance_step_3d(uint32_t index, NavAgent **agent) { |
1202 | (*(agent + index))->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d); |
1203 | (*(agent + index))->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d); |
1204 | (*(agent + index))->get_rvo_agent_3d()->update(&rvo_simulation_3d); |
1205 | (*(agent + index))->update(); |
1206 | } |
1207 | |
1208 | void NavMap::step(real_t p_deltatime) { |
1209 | deltatime = p_deltatime; |
1210 | |
1211 | rvo_simulation_2d.setTimeStep(float(deltatime)); |
1212 | rvo_simulation_3d.setTimeStep(float(deltatime)); |
1213 | |
1214 | if (active_2d_avoidance_agents.size() > 0) { |
1215 | if (use_threads && avoidance_use_multiple_threads) { |
1216 | WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_2d, active_2d_avoidance_agents.ptr(), active_2d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents2D" )); |
1217 | WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task); |
1218 | } else { |
1219 | for (NavAgent *agent : active_2d_avoidance_agents) { |
1220 | agent->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d); |
1221 | agent->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d); |
1222 | agent->get_rvo_agent_2d()->update(&rvo_simulation_2d); |
1223 | agent->update(); |
1224 | } |
1225 | } |
1226 | } |
1227 | |
1228 | if (active_3d_avoidance_agents.size() > 0) { |
1229 | if (use_threads && avoidance_use_multiple_threads) { |
1230 | WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_3d, active_3d_avoidance_agents.ptr(), active_3d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents3D" )); |
1231 | WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task); |
1232 | } else { |
1233 | for (NavAgent *agent : active_3d_avoidance_agents) { |
1234 | agent->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d); |
1235 | agent->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d); |
1236 | agent->get_rvo_agent_3d()->update(&rvo_simulation_3d); |
1237 | agent->update(); |
1238 | } |
1239 | } |
1240 | } |
1241 | } |
1242 | |
1243 | void NavMap::dispatch_callbacks() { |
1244 | for (NavAgent *agent : active_2d_avoidance_agents) { |
1245 | agent->dispatch_avoidance_callback(); |
1246 | } |
1247 | |
1248 | for (NavAgent *agent : active_3d_avoidance_agents) { |
1249 | agent->dispatch_avoidance_callback(); |
1250 | } |
1251 | } |
1252 | |
1253 | void NavMap::clip_path(const LocalVector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners) const { |
1254 | Vector3 from = path[path.size() - 1]; |
1255 | |
1256 | if (from.is_equal_approx(p_to_point)) { |
1257 | return; |
1258 | } |
1259 | Plane cut_plane; |
1260 | cut_plane.normal = (from - p_to_point).cross(up); |
1261 | if (cut_plane.normal == Vector3()) { |
1262 | return; |
1263 | } |
1264 | cut_plane.normal.normalize(); |
1265 | cut_plane.d = cut_plane.normal.dot(from); |
1266 | |
1267 | while (from_poly != p_to_poly) { |
1268 | Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start; |
1269 | Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end; |
1270 | |
1271 | ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1); |
1272 | from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id]; |
1273 | |
1274 | if (!pathway_start.is_equal_approx(pathway_end)) { |
1275 | Vector3 inters; |
1276 | if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) { |
1277 | if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) { |
1278 | path.push_back(inters); |
1279 | APPEND_METADATA(from_poly->poly); |
1280 | } |
1281 | } |
1282 | } |
1283 | } |
1284 | } |
1285 | |
1286 | NavMap::NavMap() { |
1287 | avoidance_use_multiple_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_multiple_threads" ); |
1288 | avoidance_use_high_priority_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_high_priority_threads" ); |
1289 | } |
1290 | |
1291 | NavMap::~NavMap() { |
1292 | } |
1293 | |