1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "ci/ciReplay.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/exceptionHandlerTable.hpp"
31#include "code/nmethod.hpp"
32#include "compiler/compileBroker.hpp"
33#include "compiler/compileLog.hpp"
34#include "compiler/disassembler.hpp"
35#include "compiler/oopMap.hpp"
36#include "gc/shared/barrierSet.hpp"
37#include "gc/shared/c2/barrierSetC2.hpp"
38#include "memory/resourceArea.hpp"
39#include "opto/addnode.hpp"
40#include "opto/block.hpp"
41#include "opto/c2compiler.hpp"
42#include "opto/callGenerator.hpp"
43#include "opto/callnode.hpp"
44#include "opto/castnode.hpp"
45#include "opto/cfgnode.hpp"
46#include "opto/chaitin.hpp"
47#include "opto/compile.hpp"
48#include "opto/connode.hpp"
49#include "opto/convertnode.hpp"
50#include "opto/divnode.hpp"
51#include "opto/escape.hpp"
52#include "opto/idealGraphPrinter.hpp"
53#include "opto/loopnode.hpp"
54#include "opto/machnode.hpp"
55#include "opto/macro.hpp"
56#include "opto/matcher.hpp"
57#include "opto/mathexactnode.hpp"
58#include "opto/memnode.hpp"
59#include "opto/mulnode.hpp"
60#include "opto/narrowptrnode.hpp"
61#include "opto/node.hpp"
62#include "opto/opcodes.hpp"
63#include "opto/output.hpp"
64#include "opto/parse.hpp"
65#include "opto/phaseX.hpp"
66#include "opto/rootnode.hpp"
67#include "opto/runtime.hpp"
68#include "opto/stringopts.hpp"
69#include "opto/type.hpp"
70#include "opto/vectornode.hpp"
71#include "runtime/arguments.hpp"
72#include "runtime/sharedRuntime.hpp"
73#include "runtime/signature.hpp"
74#include "runtime/stubRoutines.hpp"
75#include "runtime/timer.hpp"
76#include "utilities/align.hpp"
77#include "utilities/copy.hpp"
78#include "utilities/macros.hpp"
79#if INCLUDE_ZGC
80#include "gc/z/c2/zBarrierSetC2.hpp"
81#endif
82
83
84// -------------------- Compile::mach_constant_base_node -----------------------
85// Constant table base node singleton.
86MachConstantBaseNode* Compile::mach_constant_base_node() {
87 if (_mach_constant_base_node == NULL) {
88 _mach_constant_base_node = new MachConstantBaseNode();
89 _mach_constant_base_node->add_req(C->root());
90 }
91 return _mach_constant_base_node;
92}
93
94
95/// Support for intrinsics.
96
97// Return the index at which m must be inserted (or already exists).
98// The sort order is by the address of the ciMethod, with is_virtual as minor key.
99class IntrinsicDescPair {
100 private:
101 ciMethod* _m;
102 bool _is_virtual;
103 public:
104 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
105 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
106 ciMethod* m= elt->method();
107 ciMethod* key_m = key->_m;
108 if (key_m < m) return -1;
109 else if (key_m > m) return 1;
110 else {
111 bool is_virtual = elt->is_virtual();
112 bool key_virtual = key->_is_virtual;
113 if (key_virtual < is_virtual) return -1;
114 else if (key_virtual > is_virtual) return 1;
115 else return 0;
116 }
117 }
118};
119int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
120#ifdef ASSERT
121 for (int i = 1; i < _intrinsics->length(); i++) {
122 CallGenerator* cg1 = _intrinsics->at(i-1);
123 CallGenerator* cg2 = _intrinsics->at(i);
124 assert(cg1->method() != cg2->method()
125 ? cg1->method() < cg2->method()
126 : cg1->is_virtual() < cg2->is_virtual(),
127 "compiler intrinsics list must stay sorted");
128 }
129#endif
130 IntrinsicDescPair pair(m, is_virtual);
131 return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
132}
133
134void Compile::register_intrinsic(CallGenerator* cg) {
135 if (_intrinsics == NULL) {
136 _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
137 }
138 int len = _intrinsics->length();
139 bool found = false;
140 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
141 assert(!found, "registering twice");
142 _intrinsics->insert_before(index, cg);
143 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
144}
145
146CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
147 assert(m->is_loaded(), "don't try this on unloaded methods");
148 if (_intrinsics != NULL) {
149 bool found = false;
150 int index = intrinsic_insertion_index(m, is_virtual, found);
151 if (found) {
152 return _intrinsics->at(index);
153 }
154 }
155 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
156 if (m->intrinsic_id() != vmIntrinsics::_none &&
157 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
158 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
159 if (cg != NULL) {
160 // Save it for next time:
161 register_intrinsic(cg);
162 return cg;
163 } else {
164 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
165 }
166 }
167 return NULL;
168}
169
170// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
171// in library_call.cpp.
172
173
174#ifndef PRODUCT
175// statistics gathering...
176
177juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
178jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
179
180bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
181 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
182 int oflags = _intrinsic_hist_flags[id];
183 assert(flags != 0, "what happened?");
184 if (is_virtual) {
185 flags |= _intrinsic_virtual;
186 }
187 bool changed = (flags != oflags);
188 if ((flags & _intrinsic_worked) != 0) {
189 juint count = (_intrinsic_hist_count[id] += 1);
190 if (count == 1) {
191 changed = true; // first time
192 }
193 // increment the overall count also:
194 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
195 }
196 if (changed) {
197 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
198 // Something changed about the intrinsic's virtuality.
199 if ((flags & _intrinsic_virtual) != 0) {
200 // This is the first use of this intrinsic as a virtual call.
201 if (oflags != 0) {
202 // We already saw it as a non-virtual, so note both cases.
203 flags |= _intrinsic_both;
204 }
205 } else if ((oflags & _intrinsic_both) == 0) {
206 // This is the first use of this intrinsic as a non-virtual
207 flags |= _intrinsic_both;
208 }
209 }
210 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
211 }
212 // update the overall flags also:
213 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
214 return changed;
215}
216
217static char* format_flags(int flags, char* buf) {
218 buf[0] = 0;
219 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
220 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
221 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
222 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
223 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
224 if (buf[0] == 0) strcat(buf, ",");
225 assert(buf[0] == ',', "must be");
226 return &buf[1];
227}
228
229void Compile::print_intrinsic_statistics() {
230 char flagsbuf[100];
231 ttyLocker ttyl;
232 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
233 tty->print_cr("Compiler intrinsic usage:");
234 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
235 if (total == 0) total = 1; // avoid div0 in case of no successes
236 #define PRINT_STAT_LINE(name, c, f) \
237 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
238 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
239 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
240 int flags = _intrinsic_hist_flags[id];
241 juint count = _intrinsic_hist_count[id];
242 if ((flags | count) != 0) {
243 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
244 }
245 }
246 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
247 if (xtty != NULL) xtty->tail("statistics");
248}
249
250void Compile::print_statistics() {
251 { ttyLocker ttyl;
252 if (xtty != NULL) xtty->head("statistics type='opto'");
253 Parse::print_statistics();
254 PhaseCCP::print_statistics();
255 PhaseRegAlloc::print_statistics();
256 Scheduling::print_statistics();
257 PhasePeephole::print_statistics();
258 PhaseIdealLoop::print_statistics();
259 if (xtty != NULL) xtty->tail("statistics");
260 }
261 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
262 // put this under its own <statistics> element.
263 print_intrinsic_statistics();
264 }
265}
266#endif //PRODUCT
267
268// Support for bundling info
269Bundle* Compile::node_bundling(const Node *n) {
270 assert(valid_bundle_info(n), "oob");
271 return &_node_bundling_base[n->_idx];
272}
273
274bool Compile::valid_bundle_info(const Node *n) {
275 return (_node_bundling_limit > n->_idx);
276}
277
278
279void Compile::gvn_replace_by(Node* n, Node* nn) {
280 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
281 Node* use = n->last_out(i);
282 bool is_in_table = initial_gvn()->hash_delete(use);
283 uint uses_found = 0;
284 for (uint j = 0; j < use->len(); j++) {
285 if (use->in(j) == n) {
286 if (j < use->req())
287 use->set_req(j, nn);
288 else
289 use->set_prec(j, nn);
290 uses_found++;
291 }
292 }
293 if (is_in_table) {
294 // reinsert into table
295 initial_gvn()->hash_find_insert(use);
296 }
297 record_for_igvn(use);
298 i -= uses_found; // we deleted 1 or more copies of this edge
299 }
300}
301
302
303static inline bool not_a_node(const Node* n) {
304 if (n == NULL) return true;
305 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
306 if (*(address*)n == badAddress) return true; // kill by Node::destruct
307 return false;
308}
309
310// Identify all nodes that are reachable from below, useful.
311// Use breadth-first pass that records state in a Unique_Node_List,
312// recursive traversal is slower.
313void Compile::identify_useful_nodes(Unique_Node_List &useful) {
314 int estimated_worklist_size = live_nodes();
315 useful.map( estimated_worklist_size, NULL ); // preallocate space
316
317 // Initialize worklist
318 if (root() != NULL) { useful.push(root()); }
319 // If 'top' is cached, declare it useful to preserve cached node
320 if( cached_top_node() ) { useful.push(cached_top_node()); }
321
322 // Push all useful nodes onto the list, breadthfirst
323 for( uint next = 0; next < useful.size(); ++next ) {
324 assert( next < unique(), "Unique useful nodes < total nodes");
325 Node *n = useful.at(next);
326 uint max = n->len();
327 for( uint i = 0; i < max; ++i ) {
328 Node *m = n->in(i);
329 if (not_a_node(m)) continue;
330 useful.push(m);
331 }
332 }
333}
334
335// Update dead_node_list with any missing dead nodes using useful
336// list. Consider all non-useful nodes to be useless i.e., dead nodes.
337void Compile::update_dead_node_list(Unique_Node_List &useful) {
338 uint max_idx = unique();
339 VectorSet& useful_node_set = useful.member_set();
340
341 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
342 // If node with index node_idx is not in useful set,
343 // mark it as dead in dead node list.
344 if (! useful_node_set.test(node_idx) ) {
345 record_dead_node(node_idx);
346 }
347 }
348}
349
350void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
351 int shift = 0;
352 for (int i = 0; i < inlines->length(); i++) {
353 CallGenerator* cg = inlines->at(i);
354 CallNode* call = cg->call_node();
355 if (shift > 0) {
356 inlines->at_put(i-shift, cg);
357 }
358 if (!useful.member(call)) {
359 shift++;
360 }
361 }
362 inlines->trunc_to(inlines->length()-shift);
363}
364
365// Disconnect all useless nodes by disconnecting those at the boundary.
366void Compile::remove_useless_nodes(Unique_Node_List &useful) {
367 uint next = 0;
368 while (next < useful.size()) {
369 Node *n = useful.at(next++);
370 if (n->is_SafePoint()) {
371 // We're done with a parsing phase. Replaced nodes are not valid
372 // beyond that point.
373 n->as_SafePoint()->delete_replaced_nodes();
374 }
375 // Use raw traversal of out edges since this code removes out edges
376 int max = n->outcnt();
377 for (int j = 0; j < max; ++j) {
378 Node* child = n->raw_out(j);
379 if (! useful.member(child)) {
380 assert(!child->is_top() || child != top(),
381 "If top is cached in Compile object it is in useful list");
382 // Only need to remove this out-edge to the useless node
383 n->raw_del_out(j);
384 --j;
385 --max;
386 }
387 }
388 if (n->outcnt() == 1 && n->has_special_unique_user()) {
389 record_for_igvn(n->unique_out());
390 }
391 }
392 // Remove useless macro and predicate opaq nodes
393 for (int i = C->macro_count()-1; i >= 0; i--) {
394 Node* n = C->macro_node(i);
395 if (!useful.member(n)) {
396 remove_macro_node(n);
397 }
398 }
399 // Remove useless CastII nodes with range check dependency
400 for (int i = range_check_cast_count() - 1; i >= 0; i--) {
401 Node* cast = range_check_cast_node(i);
402 if (!useful.member(cast)) {
403 remove_range_check_cast(cast);
404 }
405 }
406 // Remove useless expensive nodes
407 for (int i = C->expensive_count()-1; i >= 0; i--) {
408 Node* n = C->expensive_node(i);
409 if (!useful.member(n)) {
410 remove_expensive_node(n);
411 }
412 }
413 // Remove useless Opaque4 nodes
414 for (int i = opaque4_count() - 1; i >= 0; i--) {
415 Node* opaq = opaque4_node(i);
416 if (!useful.member(opaq)) {
417 remove_opaque4_node(opaq);
418 }
419 }
420 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
421 bs->eliminate_useless_gc_barriers(useful, this);
422 // clean up the late inline lists
423 remove_useless_late_inlines(&_string_late_inlines, useful);
424 remove_useless_late_inlines(&_boxing_late_inlines, useful);
425 remove_useless_late_inlines(&_late_inlines, useful);
426 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
427}
428
429//------------------------------frame_size_in_words-----------------------------
430// frame_slots in units of words
431int Compile::frame_size_in_words() const {
432 // shift is 0 in LP32 and 1 in LP64
433 const int shift = (LogBytesPerWord - LogBytesPerInt);
434 int words = _frame_slots >> shift;
435 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
436 return words;
437}
438
439// To bang the stack of this compiled method we use the stack size
440// that the interpreter would need in case of a deoptimization. This
441// removes the need to bang the stack in the deoptimization blob which
442// in turn simplifies stack overflow handling.
443int Compile::bang_size_in_bytes() const {
444 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
445}
446
447// ============================================================================
448//------------------------------CompileWrapper---------------------------------
449class CompileWrapper : public StackObj {
450 Compile *const _compile;
451 public:
452 CompileWrapper(Compile* compile);
453
454 ~CompileWrapper();
455};
456
457CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
458 // the Compile* pointer is stored in the current ciEnv:
459 ciEnv* env = compile->env();
460 assert(env == ciEnv::current(), "must already be a ciEnv active");
461 assert(env->compiler_data() == NULL, "compile already active?");
462 env->set_compiler_data(compile);
463 assert(compile == Compile::current(), "sanity");
464
465 compile->set_type_dict(NULL);
466 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
467 compile->clone_map().set_clone_idx(0);
468 compile->set_type_hwm(NULL);
469 compile->set_type_last_size(0);
470 compile->set_last_tf(NULL, NULL);
471 compile->set_indexSet_arena(NULL);
472 compile->set_indexSet_free_block_list(NULL);
473 compile->init_type_arena();
474 Type::Initialize(compile);
475 _compile->set_scratch_buffer_blob(NULL);
476 _compile->begin_method();
477 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
478}
479CompileWrapper::~CompileWrapper() {
480 _compile->end_method();
481 if (_compile->scratch_buffer_blob() != NULL)
482 BufferBlob::free(_compile->scratch_buffer_blob());
483 _compile->env()->set_compiler_data(NULL);
484}
485
486
487//----------------------------print_compile_messages---------------------------
488void Compile::print_compile_messages() {
489#ifndef PRODUCT
490 // Check if recompiling
491 if (_subsume_loads == false && PrintOpto) {
492 // Recompiling without allowing machine instructions to subsume loads
493 tty->print_cr("*********************************************************");
494 tty->print_cr("** Bailout: Recompile without subsuming loads **");
495 tty->print_cr("*********************************************************");
496 }
497 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
498 // Recompiling without escape analysis
499 tty->print_cr("*********************************************************");
500 tty->print_cr("** Bailout: Recompile without escape analysis **");
501 tty->print_cr("*********************************************************");
502 }
503 if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
504 // Recompiling without boxing elimination
505 tty->print_cr("*********************************************************");
506 tty->print_cr("** Bailout: Recompile without boxing elimination **");
507 tty->print_cr("*********************************************************");
508 }
509 if (C->directive()->BreakAtCompileOption) {
510 // Open the debugger when compiling this method.
511 tty->print("### Breaking when compiling: ");
512 method()->print_short_name();
513 tty->cr();
514 BREAKPOINT;
515 }
516
517 if( PrintOpto ) {
518 if (is_osr_compilation()) {
519 tty->print("[OSR]%3d", _compile_id);
520 } else {
521 tty->print("%3d", _compile_id);
522 }
523 }
524#endif
525}
526
527
528//-----------------------init_scratch_buffer_blob------------------------------
529// Construct a temporary BufferBlob and cache it for this compile.
530void Compile::init_scratch_buffer_blob(int const_size) {
531 // If there is already a scratch buffer blob allocated and the
532 // constant section is big enough, use it. Otherwise free the
533 // current and allocate a new one.
534 BufferBlob* blob = scratch_buffer_blob();
535 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
536 // Use the current blob.
537 } else {
538 if (blob != NULL) {
539 BufferBlob::free(blob);
540 }
541
542 ResourceMark rm;
543 _scratch_const_size = const_size;
544 int size = C2Compiler::initial_code_buffer_size(const_size);
545 blob = BufferBlob::create("Compile::scratch_buffer", size);
546 // Record the buffer blob for next time.
547 set_scratch_buffer_blob(blob);
548 // Have we run out of code space?
549 if (scratch_buffer_blob() == NULL) {
550 // Let CompilerBroker disable further compilations.
551 record_failure("Not enough space for scratch buffer in CodeCache");
552 return;
553 }
554 }
555
556 // Initialize the relocation buffers
557 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
558 set_scratch_locs_memory(locs_buf);
559}
560
561
562//-----------------------scratch_emit_size-------------------------------------
563// Helper function that computes size by emitting code
564uint Compile::scratch_emit_size(const Node* n) {
565 // Start scratch_emit_size section.
566 set_in_scratch_emit_size(true);
567
568 // Emit into a trash buffer and count bytes emitted.
569 // This is a pretty expensive way to compute a size,
570 // but it works well enough if seldom used.
571 // All common fixed-size instructions are given a size
572 // method by the AD file.
573 // Note that the scratch buffer blob and locs memory are
574 // allocated at the beginning of the compile task, and
575 // may be shared by several calls to scratch_emit_size.
576 // The allocation of the scratch buffer blob is particularly
577 // expensive, since it has to grab the code cache lock.
578 BufferBlob* blob = this->scratch_buffer_blob();
579 assert(blob != NULL, "Initialize BufferBlob at start");
580 assert(blob->size() > MAX_inst_size, "sanity");
581 relocInfo* locs_buf = scratch_locs_memory();
582 address blob_begin = blob->content_begin();
583 address blob_end = (address)locs_buf;
584 assert(blob->contains(blob_end), "sanity");
585 CodeBuffer buf(blob_begin, blob_end - blob_begin);
586 buf.initialize_consts_size(_scratch_const_size);
587 buf.initialize_stubs_size(MAX_stubs_size);
588 assert(locs_buf != NULL, "sanity");
589 int lsize = MAX_locs_size / 3;
590 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
591 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
592 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
593 // Mark as scratch buffer.
594 buf.consts()->set_scratch_emit();
595 buf.insts()->set_scratch_emit();
596 buf.stubs()->set_scratch_emit();
597
598 // Do the emission.
599
600 Label fakeL; // Fake label for branch instructions.
601 Label* saveL = NULL;
602 uint save_bnum = 0;
603 bool is_branch = n->is_MachBranch();
604 if (is_branch) {
605 MacroAssembler masm(&buf);
606 masm.bind(fakeL);
607 n->as_MachBranch()->save_label(&saveL, &save_bnum);
608 n->as_MachBranch()->label_set(&fakeL, 0);
609 }
610 n->emit(buf, this->regalloc());
611
612 // Emitting into the scratch buffer should not fail
613 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
614
615 if (is_branch) // Restore label.
616 n->as_MachBranch()->label_set(saveL, save_bnum);
617
618 // End scratch_emit_size section.
619 set_in_scratch_emit_size(false);
620
621 return buf.insts_size();
622}
623
624
625// ============================================================================
626//------------------------------Compile standard-------------------------------
627debug_only( int Compile::_debug_idx = 100000; )
628
629// Compile a method. entry_bci is -1 for normal compilations and indicates
630// the continuation bci for on stack replacement.
631
632
633Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
634 bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
635 : Phase(Compiler),
636 _compile_id(ci_env->compile_id()),
637 _save_argument_registers(false),
638 _subsume_loads(subsume_loads),
639 _do_escape_analysis(do_escape_analysis),
640 _eliminate_boxing(eliminate_boxing),
641 _method(target),
642 _entry_bci(osr_bci),
643 _stub_function(NULL),
644 _stub_name(NULL),
645 _stub_entry_point(NULL),
646 _max_node_limit(MaxNodeLimit),
647 _orig_pc_slot(0),
648 _orig_pc_slot_offset_in_bytes(0),
649 _inlining_progress(false),
650 _inlining_incrementally(false),
651 _do_cleanup(false),
652 _has_reserved_stack_access(target->has_reserved_stack_access()),
653#ifndef PRODUCT
654 _trace_opto_output(directive->TraceOptoOutputOption),
655#endif
656 _has_method_handle_invokes(false),
657 _clinit_barrier_on_entry(false),
658 _comp_arena(mtCompiler),
659 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
660 _env(ci_env),
661 _directive(directive),
662 _log(ci_env->log()),
663 _failure_reason(NULL),
664 _congraph(NULL),
665#ifndef PRODUCT
666 _printer(IdealGraphPrinter::printer()),
667#endif
668 _dead_node_list(comp_arena()),
669 _dead_node_count(0),
670 _node_arena(mtCompiler),
671 _old_arena(mtCompiler),
672 _mach_constant_base_node(NULL),
673 _Compile_types(mtCompiler),
674 _initial_gvn(NULL),
675 _for_igvn(NULL),
676 _warm_calls(NULL),
677 _late_inlines(comp_arena(), 2, 0, NULL),
678 _string_late_inlines(comp_arena(), 2, 0, NULL),
679 _boxing_late_inlines(comp_arena(), 2, 0, NULL),
680 _late_inlines_pos(0),
681 _number_of_mh_late_inlines(0),
682 _print_inlining_stream(NULL),
683 _print_inlining_list(NULL),
684 _print_inlining_idx(0),
685 _print_inlining_output(NULL),
686 _replay_inline_data(NULL),
687 _java_calls(0),
688 _inner_loops(0),
689 _interpreter_frame_size(0),
690 _node_bundling_limit(0),
691 _node_bundling_base(NULL),
692 _code_buffer("Compile::Fill_buffer"),
693 _scratch_const_size(-1),
694 _in_scratch_emit_size(false)
695#ifndef PRODUCT
696 , _in_dump_cnt(0)
697#endif
698{
699 C = this;
700#ifndef PRODUCT
701 if (_printer != NULL) {
702 _printer->set_compile(this);
703 }
704#endif
705 CompileWrapper cw(this);
706
707 if (CITimeVerbose) {
708 tty->print(" ");
709 target->holder()->name()->print();
710 tty->print(".");
711 target->print_short_name();
712 tty->print(" ");
713 }
714 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
715 TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
716
717#if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
718 bool print_opto_assembly = directive->PrintOptoAssemblyOption;
719 // We can always print a disassembly, either abstract (hex dump) or
720 // with the help of a suitable hsdis library. Thus, we should not
721 // couple print_assembly and print_opto_assembly controls.
722 // But: always print opto and regular assembly on compile command 'print'.
723 bool print_assembly = directive->PrintAssemblyOption;
724 set_print_assembly(print_opto_assembly || print_assembly);
725#else
726 set_print_assembly(false); // must initialize.
727#endif
728
729#ifndef PRODUCT
730 set_parsed_irreducible_loop(false);
731
732 if (directive->ReplayInlineOption) {
733 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
734 }
735#endif
736 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
737 set_print_intrinsics(directive->PrintIntrinsicsOption);
738 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
739
740 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
741 // Make sure the method being compiled gets its own MDO,
742 // so we can at least track the decompile_count().
743 // Need MDO to record RTM code generation state.
744 method()->ensure_method_data();
745 }
746
747 Init(::AliasLevel);
748
749
750 print_compile_messages();
751
752 _ilt = InlineTree::build_inline_tree_root();
753
754 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
755 assert(num_alias_types() >= AliasIdxRaw, "");
756
757#define MINIMUM_NODE_HASH 1023
758 // Node list that Iterative GVN will start with
759 Unique_Node_List for_igvn(comp_arena());
760 set_for_igvn(&for_igvn);
761
762 // GVN that will be run immediately on new nodes
763 uint estimated_size = method()->code_size()*4+64;
764 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
765 PhaseGVN gvn(node_arena(), estimated_size);
766 set_initial_gvn(&gvn);
767
768 print_inlining_init();
769 { // Scope for timing the parser
770 TracePhase tp("parse", &timers[_t_parser]);
771
772 // Put top into the hash table ASAP.
773 initial_gvn()->transform_no_reclaim(top());
774
775 // Set up tf(), start(), and find a CallGenerator.
776 CallGenerator* cg = NULL;
777 if (is_osr_compilation()) {
778 const TypeTuple *domain = StartOSRNode::osr_domain();
779 const TypeTuple *range = TypeTuple::make_range(method()->signature());
780 init_tf(TypeFunc::make(domain, range));
781 StartNode* s = new StartOSRNode(root(), domain);
782 initial_gvn()->set_type_bottom(s);
783 init_start(s);
784 cg = CallGenerator::for_osr(method(), entry_bci());
785 } else {
786 // Normal case.
787 init_tf(TypeFunc::make(method()));
788 StartNode* s = new StartNode(root(), tf()->domain());
789 initial_gvn()->set_type_bottom(s);
790 init_start(s);
791 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
792 // With java.lang.ref.reference.get() we must go through the
793 // intrinsic - even when get() is the root
794 // method of the compile - so that, if necessary, the value in
795 // the referent field of the reference object gets recorded by
796 // the pre-barrier code.
797 cg = find_intrinsic(method(), false);
798 }
799 if (cg == NULL) {
800 float past_uses = method()->interpreter_invocation_count();
801 float expected_uses = past_uses;
802 cg = CallGenerator::for_inline(method(), expected_uses);
803 }
804 }
805 if (failing()) return;
806 if (cg == NULL) {
807 record_method_not_compilable("cannot parse method");
808 return;
809 }
810 JVMState* jvms = build_start_state(start(), tf());
811 if ((jvms = cg->generate(jvms)) == NULL) {
812 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
813 record_method_not_compilable("method parse failed");
814 }
815 return;
816 }
817 GraphKit kit(jvms);
818
819 if (!kit.stopped()) {
820 // Accept return values, and transfer control we know not where.
821 // This is done by a special, unique ReturnNode bound to root.
822 return_values(kit.jvms());
823 }
824
825 if (kit.has_exceptions()) {
826 // Any exceptions that escape from this call must be rethrown
827 // to whatever caller is dynamically above us on the stack.
828 // This is done by a special, unique RethrowNode bound to root.
829 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
830 }
831
832 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
833
834 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
835 inline_string_calls(true);
836 }
837
838 if (failing()) return;
839
840 print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
841
842 // Remove clutter produced by parsing.
843 if (!failing()) {
844 ResourceMark rm;
845 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
846 }
847 }
848
849 // Note: Large methods are capped off in do_one_bytecode().
850 if (failing()) return;
851
852 // After parsing, node notes are no longer automagic.
853 // They must be propagated by register_new_node_with_optimizer(),
854 // clone(), or the like.
855 set_default_node_notes(NULL);
856
857 for (;;) {
858 int successes = Inline_Warm();
859 if (failing()) return;
860 if (successes == 0) break;
861 }
862
863 // Drain the list.
864 Finish_Warm();
865#ifndef PRODUCT
866 if (_printer && _printer->should_print(1)) {
867 _printer->print_inlining();
868 }
869#endif
870
871 if (failing()) return;
872 NOT_PRODUCT( verify_graph_edges(); )
873
874 // Now optimize
875 Optimize();
876 if (failing()) return;
877 NOT_PRODUCT( verify_graph_edges(); )
878
879#ifndef PRODUCT
880 if (PrintIdeal) {
881 ttyLocker ttyl; // keep the following output all in one block
882 // This output goes directly to the tty, not the compiler log.
883 // To enable tools to match it up with the compilation activity,
884 // be sure to tag this tty output with the compile ID.
885 if (xtty != NULL) {
886 xtty->head("ideal compile_id='%d'%s", compile_id(),
887 is_osr_compilation() ? " compile_kind='osr'" :
888 "");
889 }
890 root()->dump(9999);
891 if (xtty != NULL) {
892 xtty->tail("ideal");
893 }
894 }
895#endif
896
897#ifdef ASSERT
898 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
899 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
900#endif
901
902 // Dump compilation data to replay it.
903 if (directive->DumpReplayOption) {
904 env()->dump_replay_data(_compile_id);
905 }
906 if (directive->DumpInlineOption && (ilt() != NULL)) {
907 env()->dump_inline_data(_compile_id);
908 }
909
910 // Now that we know the size of all the monitors we can add a fixed slot
911 // for the original deopt pc.
912
913 _orig_pc_slot = fixed_slots();
914 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
915 set_fixed_slots(next_slot);
916
917 // Compute when to use implicit null checks. Used by matching trap based
918 // nodes and NullCheck optimization.
919 set_allowed_deopt_reasons();
920
921 // Now generate code
922 Code_Gen();
923 if (failing()) return;
924
925 // Check if we want to skip execution of all compiled code.
926 {
927#ifndef PRODUCT
928 if (OptoNoExecute) {
929 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
930 return;
931 }
932#endif
933 TracePhase tp("install_code", &timers[_t_registerMethod]);
934
935 if (is_osr_compilation()) {
936 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
937 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
938 } else {
939 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
940 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
941 }
942
943 env()->register_method(_method, _entry_bci,
944 &_code_offsets,
945 _orig_pc_slot_offset_in_bytes,
946 code_buffer(),
947 frame_size_in_words(), _oop_map_set,
948 &_handler_table, &_inc_table,
949 compiler,
950 has_unsafe_access(),
951 SharedRuntime::is_wide_vector(max_vector_size()),
952 rtm_state()
953 );
954
955 if (log() != NULL) // Print code cache state into compiler log
956 log()->code_cache_state();
957 }
958}
959
960//------------------------------Compile----------------------------------------
961// Compile a runtime stub
962Compile::Compile( ciEnv* ci_env,
963 TypeFunc_generator generator,
964 address stub_function,
965 const char *stub_name,
966 int is_fancy_jump,
967 bool pass_tls,
968 bool save_arg_registers,
969 bool return_pc,
970 DirectiveSet* directive)
971 : Phase(Compiler),
972 _compile_id(0),
973 _save_argument_registers(save_arg_registers),
974 _subsume_loads(true),
975 _do_escape_analysis(false),
976 _eliminate_boxing(false),
977 _method(NULL),
978 _entry_bci(InvocationEntryBci),
979 _stub_function(stub_function),
980 _stub_name(stub_name),
981 _stub_entry_point(NULL),
982 _max_node_limit(MaxNodeLimit),
983 _orig_pc_slot(0),
984 _orig_pc_slot_offset_in_bytes(0),
985 _inlining_progress(false),
986 _inlining_incrementally(false),
987 _has_reserved_stack_access(false),
988#ifndef PRODUCT
989 _trace_opto_output(directive->TraceOptoOutputOption),
990#endif
991 _has_method_handle_invokes(false),
992 _clinit_barrier_on_entry(false),
993 _comp_arena(mtCompiler),
994 _env(ci_env),
995 _directive(directive),
996 _log(ci_env->log()),
997 _failure_reason(NULL),
998 _congraph(NULL),
999#ifndef PRODUCT
1000 _printer(NULL),
1001#endif
1002 _dead_node_list(comp_arena()),
1003 _dead_node_count(0),
1004 _node_arena(mtCompiler),
1005 _old_arena(mtCompiler),
1006 _mach_constant_base_node(NULL),
1007 _Compile_types(mtCompiler),
1008 _initial_gvn(NULL),
1009 _for_igvn(NULL),
1010 _warm_calls(NULL),
1011 _number_of_mh_late_inlines(0),
1012 _print_inlining_stream(NULL),
1013 _print_inlining_list(NULL),
1014 _print_inlining_idx(0),
1015 _print_inlining_output(NULL),
1016 _replay_inline_data(NULL),
1017 _java_calls(0),
1018 _inner_loops(0),
1019 _interpreter_frame_size(0),
1020 _node_bundling_limit(0),
1021 _node_bundling_base(NULL),
1022 _code_buffer("Compile::Fill_buffer"),
1023#ifndef PRODUCT
1024 _in_dump_cnt(0),
1025#endif
1026 _allowed_reasons(0) {
1027 C = this;
1028
1029 TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1030 TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1031
1032#ifndef PRODUCT
1033 set_print_assembly(PrintFrameConverterAssembly);
1034 set_parsed_irreducible_loop(false);
1035#else
1036 set_print_assembly(false); // Must initialize.
1037#endif
1038 set_has_irreducible_loop(false); // no loops
1039
1040 CompileWrapper cw(this);
1041 Init(/*AliasLevel=*/ 0);
1042 init_tf((*generator)());
1043
1044 {
1045 // The following is a dummy for the sake of GraphKit::gen_stub
1046 Unique_Node_List for_igvn(comp_arena());
1047 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
1048 PhaseGVN gvn(Thread::current()->resource_area(),255);
1049 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
1050 gvn.transform_no_reclaim(top());
1051
1052 GraphKit kit;
1053 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1054 }
1055
1056 NOT_PRODUCT( verify_graph_edges(); )
1057 Code_Gen();
1058 if (failing()) return;
1059
1060
1061 // Entry point will be accessed using compile->stub_entry_point();
1062 if (code_buffer() == NULL) {
1063 Matcher::soft_match_failure();
1064 } else {
1065 if (PrintAssembly && (WizardMode || Verbose))
1066 tty->print_cr("### Stub::%s", stub_name);
1067
1068 if (!failing()) {
1069 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1070
1071 // Make the NMethod
1072 // For now we mark the frame as never safe for profile stackwalking
1073 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1074 code_buffer(),
1075 CodeOffsets::frame_never_safe,
1076 // _code_offsets.value(CodeOffsets::Frame_Complete),
1077 frame_size_in_words(),
1078 _oop_map_set,
1079 save_arg_registers);
1080 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1081
1082 _stub_entry_point = rs->entry_point();
1083 }
1084 }
1085}
1086
1087//------------------------------Init-------------------------------------------
1088// Prepare for a single compilation
1089void Compile::Init(int aliaslevel) {
1090 _unique = 0;
1091 _regalloc = NULL;
1092
1093 _tf = NULL; // filled in later
1094 _top = NULL; // cached later
1095 _matcher = NULL; // filled in later
1096 _cfg = NULL; // filled in later
1097
1098 set_24_bit_selection_and_mode(Use24BitFP, false);
1099
1100 _node_note_array = NULL;
1101 _default_node_notes = NULL;
1102 DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1103
1104 _immutable_memory = NULL; // filled in at first inquiry
1105
1106 // Globally visible Nodes
1107 // First set TOP to NULL to give safe behavior during creation of RootNode
1108 set_cached_top_node(NULL);
1109 set_root(new RootNode());
1110 // Now that you have a Root to point to, create the real TOP
1111 set_cached_top_node( new ConNode(Type::TOP) );
1112 set_recent_alloc(NULL, NULL);
1113
1114 // Create Debug Information Recorder to record scopes, oopmaps, etc.
1115 env()->set_oop_recorder(new OopRecorder(env()->arena()));
1116 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1117 env()->set_dependencies(new Dependencies(env()));
1118
1119 _fixed_slots = 0;
1120 set_has_split_ifs(false);
1121 set_has_loops(has_method() && method()->has_loops()); // first approximation
1122 set_has_stringbuilder(false);
1123 set_has_boxed_value(false);
1124 _trap_can_recompile = false; // no traps emitted yet
1125 _major_progress = true; // start out assuming good things will happen
1126 set_has_unsafe_access(false);
1127 set_max_vector_size(0);
1128 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers
1129 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1130 set_decompile_count(0);
1131
1132 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1133 _loop_opts_cnt = LoopOptsCount;
1134 set_do_inlining(Inline);
1135 set_max_inline_size(MaxInlineSize);
1136 set_freq_inline_size(FreqInlineSize);
1137 set_do_scheduling(OptoScheduling);
1138 set_do_count_invocations(false);
1139 set_do_method_data_update(false);
1140
1141 set_do_vector_loop(false);
1142
1143 if (AllowVectorizeOnDemand) {
1144 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1145 set_do_vector_loop(true);
1146 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());})
1147 } else if (has_method() && method()->name() != 0 &&
1148 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1149 set_do_vector_loop(true);
1150 }
1151 }
1152 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1153 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());})
1154
1155 set_age_code(has_method() && method()->profile_aging());
1156 set_rtm_state(NoRTM); // No RTM lock eliding by default
1157 _max_node_limit = _directive->MaxNodeLimitOption;
1158
1159#if INCLUDE_RTM_OPT
1160 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1161 int rtm_state = method()->method_data()->rtm_state();
1162 if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1163 // Don't generate RTM lock eliding code.
1164 set_rtm_state(NoRTM);
1165 } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1166 // Generate RTM lock eliding code without abort ratio calculation code.
1167 set_rtm_state(UseRTM);
1168 } else if (UseRTMDeopt) {
1169 // Generate RTM lock eliding code and include abort ratio calculation
1170 // code if UseRTMDeopt is on.
1171 set_rtm_state(ProfileRTM);
1172 }
1173 }
1174#endif
1175 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1176 set_clinit_barrier_on_entry(true);
1177 }
1178 if (debug_info()->recording_non_safepoints()) {
1179 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1180 (comp_arena(), 8, 0, NULL));
1181 set_default_node_notes(Node_Notes::make(this));
1182 }
1183
1184 // // -- Initialize types before each compile --
1185 // // Update cached type information
1186 // if( _method && _method->constants() )
1187 // Type::update_loaded_types(_method, _method->constants());
1188
1189 // Init alias_type map.
1190 if (!_do_escape_analysis && aliaslevel == 3)
1191 aliaslevel = 2; // No unique types without escape analysis
1192 _AliasLevel = aliaslevel;
1193 const int grow_ats = 16;
1194 _max_alias_types = grow_ats;
1195 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1196 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
1197 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1198 {
1199 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
1200 }
1201 // Initialize the first few types.
1202 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1203 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1204 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1205 _num_alias_types = AliasIdxRaw+1;
1206 // Zero out the alias type cache.
1207 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1208 // A NULL adr_type hits in the cache right away. Preload the right answer.
1209 probe_alias_cache(NULL)->_index = AliasIdxTop;
1210
1211 _intrinsics = NULL;
1212 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1213 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1214 _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1215 _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1216 _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
1217 register_library_intrinsics();
1218}
1219
1220//---------------------------init_start----------------------------------------
1221// Install the StartNode on this compile object.
1222void Compile::init_start(StartNode* s) {
1223 if (failing())
1224 return; // already failing
1225 assert(s == start(), "");
1226}
1227
1228/**
1229 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1230 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1231 * the ideal graph.
1232 */
1233StartNode* Compile::start() const {
1234 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1235 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1236 Node* start = root()->fast_out(i);
1237 if (start->is_Start()) {
1238 return start->as_Start();
1239 }
1240 }
1241 fatal("Did not find Start node!");
1242 return NULL;
1243}
1244
1245//-------------------------------immutable_memory-------------------------------------
1246// Access immutable memory
1247Node* Compile::immutable_memory() {
1248 if (_immutable_memory != NULL) {
1249 return _immutable_memory;
1250 }
1251 StartNode* s = start();
1252 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1253 Node *p = s->fast_out(i);
1254 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1255 _immutable_memory = p;
1256 return _immutable_memory;
1257 }
1258 }
1259 ShouldNotReachHere();
1260 return NULL;
1261}
1262
1263//----------------------set_cached_top_node------------------------------------
1264// Install the cached top node, and make sure Node::is_top works correctly.
1265void Compile::set_cached_top_node(Node* tn) {
1266 if (tn != NULL) verify_top(tn);
1267 Node* old_top = _top;
1268 _top = tn;
1269 // Calling Node::setup_is_top allows the nodes the chance to adjust
1270 // their _out arrays.
1271 if (_top != NULL) _top->setup_is_top();
1272 if (old_top != NULL) old_top->setup_is_top();
1273 assert(_top == NULL || top()->is_top(), "");
1274}
1275
1276#ifdef ASSERT
1277uint Compile::count_live_nodes_by_graph_walk() {
1278 Unique_Node_List useful(comp_arena());
1279 // Get useful node list by walking the graph.
1280 identify_useful_nodes(useful);
1281 return useful.size();
1282}
1283
1284void Compile::print_missing_nodes() {
1285
1286 // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1287 if ((_log == NULL) && (! PrintIdealNodeCount)) {
1288 return;
1289 }
1290
1291 // This is an expensive function. It is executed only when the user
1292 // specifies VerifyIdealNodeCount option or otherwise knows the
1293 // additional work that needs to be done to identify reachable nodes
1294 // by walking the flow graph and find the missing ones using
1295 // _dead_node_list.
1296
1297 Unique_Node_List useful(comp_arena());
1298 // Get useful node list by walking the graph.
1299 identify_useful_nodes(useful);
1300
1301 uint l_nodes = C->live_nodes();
1302 uint l_nodes_by_walk = useful.size();
1303
1304 if (l_nodes != l_nodes_by_walk) {
1305 if (_log != NULL) {
1306 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1307 _log->stamp();
1308 _log->end_head();
1309 }
1310 VectorSet& useful_member_set = useful.member_set();
1311 int last_idx = l_nodes_by_walk;
1312 for (int i = 0; i < last_idx; i++) {
1313 if (useful_member_set.test(i)) {
1314 if (_dead_node_list.test(i)) {
1315 if (_log != NULL) {
1316 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1317 }
1318 if (PrintIdealNodeCount) {
1319 // Print the log message to tty
1320 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1321 useful.at(i)->dump();
1322 }
1323 }
1324 }
1325 else if (! _dead_node_list.test(i)) {
1326 if (_log != NULL) {
1327 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1328 }
1329 if (PrintIdealNodeCount) {
1330 // Print the log message to tty
1331 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1332 }
1333 }
1334 }
1335 if (_log != NULL) {
1336 _log->tail("mismatched_nodes");
1337 }
1338 }
1339}
1340void Compile::record_modified_node(Node* n) {
1341 if (_modified_nodes != NULL && !_inlining_incrementally &&
1342 n->outcnt() != 0 && !n->is_Con()) {
1343 _modified_nodes->push(n);
1344 }
1345}
1346
1347void Compile::remove_modified_node(Node* n) {
1348 if (_modified_nodes != NULL) {
1349 _modified_nodes->remove(n);
1350 }
1351}
1352#endif
1353
1354#ifndef PRODUCT
1355void Compile::verify_top(Node* tn) const {
1356 if (tn != NULL) {
1357 assert(tn->is_Con(), "top node must be a constant");
1358 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1359 assert(tn->in(0) != NULL, "must have live top node");
1360 }
1361}
1362#endif
1363
1364
1365///-------------------Managing Per-Node Debug & Profile Info-------------------
1366
1367void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1368 guarantee(arr != NULL, "");
1369 int num_blocks = arr->length();
1370 if (grow_by < num_blocks) grow_by = num_blocks;
1371 int num_notes = grow_by * _node_notes_block_size;
1372 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1373 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1374 while (num_notes > 0) {
1375 arr->append(notes);
1376 notes += _node_notes_block_size;
1377 num_notes -= _node_notes_block_size;
1378 }
1379 assert(num_notes == 0, "exact multiple, please");
1380}
1381
1382bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1383 if (source == NULL || dest == NULL) return false;
1384
1385 if (dest->is_Con())
1386 return false; // Do not push debug info onto constants.
1387
1388#ifdef ASSERT
1389 // Leave a bread crumb trail pointing to the original node:
1390 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1391 dest->set_debug_orig(source);
1392 }
1393#endif
1394
1395 if (node_note_array() == NULL)
1396 return false; // Not collecting any notes now.
1397
1398 // This is a copy onto a pre-existing node, which may already have notes.
1399 // If both nodes have notes, do not overwrite any pre-existing notes.
1400 Node_Notes* source_notes = node_notes_at(source->_idx);
1401 if (source_notes == NULL || source_notes->is_clear()) return false;
1402 Node_Notes* dest_notes = node_notes_at(dest->_idx);
1403 if (dest_notes == NULL || dest_notes->is_clear()) {
1404 return set_node_notes_at(dest->_idx, source_notes);
1405 }
1406
1407 Node_Notes merged_notes = (*source_notes);
1408 // The order of operations here ensures that dest notes will win...
1409 merged_notes.update_from(dest_notes);
1410 return set_node_notes_at(dest->_idx, &merged_notes);
1411}
1412
1413
1414//--------------------------allow_range_check_smearing-------------------------
1415// Gating condition for coalescing similar range checks.
1416// Sometimes we try 'speculatively' replacing a series of a range checks by a
1417// single covering check that is at least as strong as any of them.
1418// If the optimization succeeds, the simplified (strengthened) range check
1419// will always succeed. If it fails, we will deopt, and then give up
1420// on the optimization.
1421bool Compile::allow_range_check_smearing() const {
1422 // If this method has already thrown a range-check,
1423 // assume it was because we already tried range smearing
1424 // and it failed.
1425 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1426 return !already_trapped;
1427}
1428
1429
1430//------------------------------flatten_alias_type-----------------------------
1431const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1432 int offset = tj->offset();
1433 TypePtr::PTR ptr = tj->ptr();
1434
1435 // Known instance (scalarizable allocation) alias only with itself.
1436 bool is_known_inst = tj->isa_oopptr() != NULL &&
1437 tj->is_oopptr()->is_known_instance();
1438
1439 // Process weird unsafe references.
1440 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1441 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1442 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1443 tj = TypeOopPtr::BOTTOM;
1444 ptr = tj->ptr();
1445 offset = tj->offset();
1446 }
1447
1448 // Array pointers need some flattening
1449 const TypeAryPtr *ta = tj->isa_aryptr();
1450 if (ta && ta->is_stable()) {
1451 // Erase stability property for alias analysis.
1452 tj = ta = ta->cast_to_stable(false);
1453 }
1454 if( ta && is_known_inst ) {
1455 if ( offset != Type::OffsetBot &&
1456 offset > arrayOopDesc::length_offset_in_bytes() ) {
1457 offset = Type::OffsetBot; // Flatten constant access into array body only
1458 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1459 }
1460 } else if( ta && _AliasLevel >= 2 ) {
1461 // For arrays indexed by constant indices, we flatten the alias
1462 // space to include all of the array body. Only the header, klass
1463 // and array length can be accessed un-aliased.
1464 if( offset != Type::OffsetBot ) {
1465 if( ta->const_oop() ) { // MethodData* or Method*
1466 offset = Type::OffsetBot; // Flatten constant access into array body
1467 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1468 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1469 // range is OK as-is.
1470 tj = ta = TypeAryPtr::RANGE;
1471 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1472 tj = TypeInstPtr::KLASS; // all klass loads look alike
1473 ta = TypeAryPtr::RANGE; // generic ignored junk
1474 ptr = TypePtr::BotPTR;
1475 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1476 tj = TypeInstPtr::MARK;
1477 ta = TypeAryPtr::RANGE; // generic ignored junk
1478 ptr = TypePtr::BotPTR;
1479 } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1480 ta = tj->isa_aryptr();
1481 } else { // Random constant offset into array body
1482 offset = Type::OffsetBot; // Flatten constant access into array body
1483 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1484 }
1485 }
1486 // Arrays of fixed size alias with arrays of unknown size.
1487 if (ta->size() != TypeInt::POS) {
1488 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1489 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1490 }
1491 // Arrays of known objects become arrays of unknown objects.
1492 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1493 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1494 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1495 }
1496 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1497 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1498 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1499 }
1500 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1501 // cannot be distinguished by bytecode alone.
1502 if (ta->elem() == TypeInt::BOOL) {
1503 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1504 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1505 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1506 }
1507 // During the 2nd round of IterGVN, NotNull castings are removed.
1508 // Make sure the Bottom and NotNull variants alias the same.
1509 // Also, make sure exact and non-exact variants alias the same.
1510 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1511 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1512 }
1513 }
1514
1515 // Oop pointers need some flattening
1516 const TypeInstPtr *to = tj->isa_instptr();
1517 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1518 ciInstanceKlass *k = to->klass()->as_instance_klass();
1519 if( ptr == TypePtr::Constant ) {
1520 if (to->klass() != ciEnv::current()->Class_klass() ||
1521 offset < k->size_helper() * wordSize) {
1522 // No constant oop pointers (such as Strings); they alias with
1523 // unknown strings.
1524 assert(!is_known_inst, "not scalarizable allocation");
1525 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1526 }
1527 } else if( is_known_inst ) {
1528 tj = to; // Keep NotNull and klass_is_exact for instance type
1529 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1530 // During the 2nd round of IterGVN, NotNull castings are removed.
1531 // Make sure the Bottom and NotNull variants alias the same.
1532 // Also, make sure exact and non-exact variants alias the same.
1533 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1534 }
1535 if (to->speculative() != NULL) {
1536 tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1537 }
1538 // Canonicalize the holder of this field
1539 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1540 // First handle header references such as a LoadKlassNode, even if the
1541 // object's klass is unloaded at compile time (4965979).
1542 if (!is_known_inst) { // Do it only for non-instance types
1543 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1544 }
1545 } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1546 to = tj->is_instptr();
1547 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1548 // Static fields are in the space above the normal instance
1549 // fields in the java.lang.Class instance.
1550 if (to->klass() != ciEnv::current()->Class_klass()) {
1551 to = NULL;
1552 tj = TypeOopPtr::BOTTOM;
1553 offset = tj->offset();
1554 }
1555 } else {
1556 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1557 if (!k->equals(canonical_holder) || tj->offset() != offset) {
1558 if( is_known_inst ) {
1559 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1560 } else {
1561 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1562 }
1563 }
1564 }
1565 }
1566
1567 // Klass pointers to object array klasses need some flattening
1568 const TypeKlassPtr *tk = tj->isa_klassptr();
1569 if( tk ) {
1570 // If we are referencing a field within a Klass, we need
1571 // to assume the worst case of an Object. Both exact and
1572 // inexact types must flatten to the same alias class so
1573 // use NotNull as the PTR.
1574 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1575
1576 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1577 TypeKlassPtr::OBJECT->klass(),
1578 offset);
1579 }
1580
1581 ciKlass* klass = tk->klass();
1582 if( klass->is_obj_array_klass() ) {
1583 ciKlass* k = TypeAryPtr::OOPS->klass();
1584 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
1585 k = TypeInstPtr::BOTTOM->klass();
1586 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1587 }
1588
1589 // Check for precise loads from the primary supertype array and force them
1590 // to the supertype cache alias index. Check for generic array loads from
1591 // the primary supertype array and also force them to the supertype cache
1592 // alias index. Since the same load can reach both, we need to merge
1593 // these 2 disparate memories into the same alias class. Since the
1594 // primary supertype array is read-only, there's no chance of confusion
1595 // where we bypass an array load and an array store.
1596 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1597 if (offset == Type::OffsetBot ||
1598 (offset >= primary_supers_offset &&
1599 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1600 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1601 offset = in_bytes(Klass::secondary_super_cache_offset());
1602 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1603 }
1604 }
1605
1606 // Flatten all Raw pointers together.
1607 if (tj->base() == Type::RawPtr)
1608 tj = TypeRawPtr::BOTTOM;
1609
1610 if (tj->base() == Type::AnyPtr)
1611 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
1612
1613 // Flatten all to bottom for now
1614 switch( _AliasLevel ) {
1615 case 0:
1616 tj = TypePtr::BOTTOM;
1617 break;
1618 case 1: // Flatten to: oop, static, field or array
1619 switch (tj->base()) {
1620 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
1621 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
1622 case Type::AryPtr: // do not distinguish arrays at all
1623 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
1624 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1625 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
1626 default: ShouldNotReachHere();
1627 }
1628 break;
1629 case 2: // No collapsing at level 2; keep all splits
1630 case 3: // No collapsing at level 3; keep all splits
1631 break;
1632 default:
1633 Unimplemented();
1634 }
1635
1636 offset = tj->offset();
1637 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1638
1639 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1640 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1641 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1642 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1643 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1644 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1645 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1646 (BarrierSet::barrier_set()->barrier_set_c2()->verify_gc_alias_type(tj, offset)),
1647 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1648 assert( tj->ptr() != TypePtr::TopPTR &&
1649 tj->ptr() != TypePtr::AnyNull &&
1650 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1651// assert( tj->ptr() != TypePtr::Constant ||
1652// tj->base() == Type::RawPtr ||
1653// tj->base() == Type::KlassPtr, "No constant oop addresses" );
1654
1655 return tj;
1656}
1657
1658void Compile::AliasType::Init(int i, const TypePtr* at) {
1659 _index = i;
1660 _adr_type = at;
1661 _field = NULL;
1662 _element = NULL;
1663 _is_rewritable = true; // default
1664 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1665 if (atoop != NULL && atoop->is_known_instance()) {
1666 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1667 _general_index = Compile::current()->get_alias_index(gt);
1668 } else {
1669 _general_index = 0;
1670 }
1671}
1672
1673BasicType Compile::AliasType::basic_type() const {
1674 if (element() != NULL) {
1675 const Type* element = adr_type()->is_aryptr()->elem();
1676 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1677 } if (field() != NULL) {
1678 return field()->layout_type();
1679 } else {
1680 return T_ILLEGAL; // unknown
1681 }
1682}
1683
1684//---------------------------------print_on------------------------------------
1685#ifndef PRODUCT
1686void Compile::AliasType::print_on(outputStream* st) {
1687 if (index() < 10)
1688 st->print("@ <%d> ", index());
1689 else st->print("@ <%d>", index());
1690 st->print(is_rewritable() ? " " : " RO");
1691 int offset = adr_type()->offset();
1692 if (offset == Type::OffsetBot)
1693 st->print(" +any");
1694 else st->print(" +%-3d", offset);
1695 st->print(" in ");
1696 adr_type()->dump_on(st);
1697 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1698 if (field() != NULL && tjp) {
1699 if (tjp->klass() != field()->holder() ||
1700 tjp->offset() != field()->offset_in_bytes()) {
1701 st->print(" != ");
1702 field()->print();
1703 st->print(" ***");
1704 }
1705 }
1706}
1707
1708void print_alias_types() {
1709 Compile* C = Compile::current();
1710 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1711 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1712 C->alias_type(idx)->print_on(tty);
1713 tty->cr();
1714 }
1715}
1716#endif
1717
1718
1719//----------------------------probe_alias_cache--------------------------------
1720Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1721 intptr_t key = (intptr_t) adr_type;
1722 key ^= key >> logAliasCacheSize;
1723 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1724}
1725
1726
1727//-----------------------------grow_alias_types--------------------------------
1728void Compile::grow_alias_types() {
1729 const int old_ats = _max_alias_types; // how many before?
1730 const int new_ats = old_ats; // how many more?
1731 const int grow_ats = old_ats+new_ats; // how many now?
1732 _max_alias_types = grow_ats;
1733 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1734 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1735 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1736 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
1737}
1738
1739
1740//--------------------------------find_alias_type------------------------------
1741Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1742 if (_AliasLevel == 0)
1743 return alias_type(AliasIdxBot);
1744
1745 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1746 if (ace->_adr_type == adr_type) {
1747 return alias_type(ace->_index);
1748 }
1749
1750 // Handle special cases.
1751 if (adr_type == NULL) return alias_type(AliasIdxTop);
1752 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
1753
1754 // Do it the slow way.
1755 const TypePtr* flat = flatten_alias_type(adr_type);
1756
1757#ifdef ASSERT
1758 {
1759 ResourceMark rm;
1760 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1761 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1762 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1763 Type::str(adr_type));
1764 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1765 const TypeOopPtr* foop = flat->is_oopptr();
1766 // Scalarizable allocations have exact klass always.
1767 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1768 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1769 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1770 Type::str(foop), Type::str(xoop));
1771 }
1772 }
1773#endif
1774
1775 int idx = AliasIdxTop;
1776 for (int i = 0; i < num_alias_types(); i++) {
1777 if (alias_type(i)->adr_type() == flat) {
1778 idx = i;
1779 break;
1780 }
1781 }
1782
1783 if (idx == AliasIdxTop) {
1784 if (no_create) return NULL;
1785 // Grow the array if necessary.
1786 if (_num_alias_types == _max_alias_types) grow_alias_types();
1787 // Add a new alias type.
1788 idx = _num_alias_types++;
1789 _alias_types[idx]->Init(idx, flat);
1790 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
1791 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
1792 if (flat->isa_instptr()) {
1793 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1794 && flat->is_instptr()->klass() == env()->Class_klass())
1795 alias_type(idx)->set_rewritable(false);
1796 }
1797 if (flat->isa_aryptr()) {
1798#ifdef ASSERT
1799 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1800 // (T_BYTE has the weakest alignment and size restrictions...)
1801 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1802#endif
1803 if (flat->offset() == TypePtr::OffsetBot) {
1804 alias_type(idx)->set_element(flat->is_aryptr()->elem());
1805 }
1806 }
1807 if (flat->isa_klassptr()) {
1808 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1809 alias_type(idx)->set_rewritable(false);
1810 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1811 alias_type(idx)->set_rewritable(false);
1812 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1813 alias_type(idx)->set_rewritable(false);
1814 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1815 alias_type(idx)->set_rewritable(false);
1816 }
1817 // %%% (We would like to finalize JavaThread::threadObj_offset(),
1818 // but the base pointer type is not distinctive enough to identify
1819 // references into JavaThread.)
1820
1821 // Check for final fields.
1822 const TypeInstPtr* tinst = flat->isa_instptr();
1823 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1824 ciField* field;
1825 if (tinst->const_oop() != NULL &&
1826 tinst->klass() == ciEnv::current()->Class_klass() &&
1827 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1828 // static field
1829 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1830 field = k->get_field_by_offset(tinst->offset(), true);
1831 } else {
1832 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1833 field = k->get_field_by_offset(tinst->offset(), false);
1834 }
1835 assert(field == NULL ||
1836 original_field == NULL ||
1837 (field->holder() == original_field->holder() &&
1838 field->offset() == original_field->offset() &&
1839 field->is_static() == original_field->is_static()), "wrong field?");
1840 // Set field() and is_rewritable() attributes.
1841 if (field != NULL) alias_type(idx)->set_field(field);
1842 }
1843 }
1844
1845 // Fill the cache for next time.
1846 ace->_adr_type = adr_type;
1847 ace->_index = idx;
1848 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
1849
1850 // Might as well try to fill the cache for the flattened version, too.
1851 AliasCacheEntry* face = probe_alias_cache(flat);
1852 if (face->_adr_type == NULL) {
1853 face->_adr_type = flat;
1854 face->_index = idx;
1855 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1856 }
1857
1858 return alias_type(idx);
1859}
1860
1861
1862Compile::AliasType* Compile::alias_type(ciField* field) {
1863 const TypeOopPtr* t;
1864 if (field->is_static())
1865 t = TypeInstPtr::make(field->holder()->java_mirror());
1866 else
1867 t = TypeOopPtr::make_from_klass_raw(field->holder());
1868 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1869 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1870 return atp;
1871}
1872
1873
1874//------------------------------have_alias_type--------------------------------
1875bool Compile::have_alias_type(const TypePtr* adr_type) {
1876 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1877 if (ace->_adr_type == adr_type) {
1878 return true;
1879 }
1880
1881 // Handle special cases.
1882 if (adr_type == NULL) return true;
1883 if (adr_type == TypePtr::BOTTOM) return true;
1884
1885 return find_alias_type(adr_type, true, NULL) != NULL;
1886}
1887
1888//-----------------------------must_alias--------------------------------------
1889// True if all values of the given address type are in the given alias category.
1890bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1891 if (alias_idx == AliasIdxBot) return true; // the universal category
1892 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
1893 if (alias_idx == AliasIdxTop) return false; // the empty category
1894 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1895
1896 // the only remaining possible overlap is identity
1897 int adr_idx = get_alias_index(adr_type);
1898 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1899 assert(adr_idx == alias_idx ||
1900 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1901 && adr_type != TypeOopPtr::BOTTOM),
1902 "should not be testing for overlap with an unsafe pointer");
1903 return adr_idx == alias_idx;
1904}
1905
1906//------------------------------can_alias--------------------------------------
1907// True if any values of the given address type are in the given alias category.
1908bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1909 if (alias_idx == AliasIdxTop) return false; // the empty category
1910 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
1911 if (alias_idx == AliasIdxBot) return true; // the universal category
1912 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
1913
1914 // the only remaining possible overlap is identity
1915 int adr_idx = get_alias_index(adr_type);
1916 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1917 return adr_idx == alias_idx;
1918}
1919
1920
1921
1922//---------------------------pop_warm_call-------------------------------------
1923WarmCallInfo* Compile::pop_warm_call() {
1924 WarmCallInfo* wci = _warm_calls;
1925 if (wci != NULL) _warm_calls = wci->remove_from(wci);
1926 return wci;
1927}
1928
1929//----------------------------Inline_Warm--------------------------------------
1930int Compile::Inline_Warm() {
1931 // If there is room, try to inline some more warm call sites.
1932 // %%% Do a graph index compaction pass when we think we're out of space?
1933 if (!InlineWarmCalls) return 0;
1934
1935 int calls_made_hot = 0;
1936 int room_to_grow = NodeCountInliningCutoff - unique();
1937 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1938 int amount_grown = 0;
1939 WarmCallInfo* call;
1940 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1941 int est_size = (int)call->size();
1942 if (est_size > (room_to_grow - amount_grown)) {
1943 // This one won't fit anyway. Get rid of it.
1944 call->make_cold();
1945 continue;
1946 }
1947 call->make_hot();
1948 calls_made_hot++;
1949 amount_grown += est_size;
1950 amount_to_grow -= est_size;
1951 }
1952
1953 if (calls_made_hot > 0) set_major_progress();
1954 return calls_made_hot;
1955}
1956
1957
1958//----------------------------Finish_Warm--------------------------------------
1959void Compile::Finish_Warm() {
1960 if (!InlineWarmCalls) return;
1961 if (failing()) return;
1962 if (warm_calls() == NULL) return;
1963
1964 // Clean up loose ends, if we are out of space for inlining.
1965 WarmCallInfo* call;
1966 while ((call = pop_warm_call()) != NULL) {
1967 call->make_cold();
1968 }
1969}
1970
1971//---------------------cleanup_loop_predicates-----------------------
1972// Remove the opaque nodes that protect the predicates so that all unused
1973// checks and uncommon_traps will be eliminated from the ideal graph
1974void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1975 if (predicate_count()==0) return;
1976 for (int i = predicate_count(); i > 0; i--) {
1977 Node * n = predicate_opaque1_node(i-1);
1978 assert(n->Opcode() == Op_Opaque1, "must be");
1979 igvn.replace_node(n, n->in(1));
1980 }
1981 assert(predicate_count()==0, "should be clean!");
1982}
1983
1984void Compile::add_range_check_cast(Node* n) {
1985 assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1986 assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1987 _range_check_casts->append(n);
1988}
1989
1990// Remove all range check dependent CastIINodes.
1991void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1992 for (int i = range_check_cast_count(); i > 0; i--) {
1993 Node* cast = range_check_cast_node(i-1);
1994 assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1995 igvn.replace_node(cast, cast->in(1));
1996 }
1997 assert(range_check_cast_count() == 0, "should be empty");
1998}
1999
2000void Compile::add_opaque4_node(Node* n) {
2001 assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
2002 assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
2003 _opaque4_nodes->append(n);
2004}
2005
2006// Remove all Opaque4 nodes.
2007void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2008 for (int i = opaque4_count(); i > 0; i--) {
2009 Node* opaq = opaque4_node(i-1);
2010 assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2011 igvn.replace_node(opaq, opaq->in(2));
2012 }
2013 assert(opaque4_count() == 0, "should be empty");
2014}
2015
2016// StringOpts and late inlining of string methods
2017void Compile::inline_string_calls(bool parse_time) {
2018 {
2019 // remove useless nodes to make the usage analysis simpler
2020 ResourceMark rm;
2021 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2022 }
2023
2024 {
2025 ResourceMark rm;
2026 print_method(PHASE_BEFORE_STRINGOPTS, 3);
2027 PhaseStringOpts pso(initial_gvn(), for_igvn());
2028 print_method(PHASE_AFTER_STRINGOPTS, 3);
2029 }
2030
2031 // now inline anything that we skipped the first time around
2032 if (!parse_time) {
2033 _late_inlines_pos = _late_inlines.length();
2034 }
2035
2036 while (_string_late_inlines.length() > 0) {
2037 CallGenerator* cg = _string_late_inlines.pop();
2038 cg->do_late_inline();
2039 if (failing()) return;
2040 }
2041 _string_late_inlines.trunc_to(0);
2042}
2043
2044// Late inlining of boxing methods
2045void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2046 if (_boxing_late_inlines.length() > 0) {
2047 assert(has_boxed_value(), "inconsistent");
2048
2049 PhaseGVN* gvn = initial_gvn();
2050 set_inlining_incrementally(true);
2051
2052 assert( igvn._worklist.size() == 0, "should be done with igvn" );
2053 for_igvn()->clear();
2054 gvn->replace_with(&igvn);
2055
2056 _late_inlines_pos = _late_inlines.length();
2057
2058 while (_boxing_late_inlines.length() > 0) {
2059 CallGenerator* cg = _boxing_late_inlines.pop();
2060 cg->do_late_inline();
2061 if (failing()) return;
2062 }
2063 _boxing_late_inlines.trunc_to(0);
2064
2065 inline_incrementally_cleanup(igvn);
2066
2067 set_inlining_incrementally(false);
2068 }
2069}
2070
2071bool Compile::inline_incrementally_one() {
2072 assert(IncrementalInline, "incremental inlining should be on");
2073
2074 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2075 set_inlining_progress(false);
2076 set_do_cleanup(false);
2077 int i = 0;
2078 for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2079 CallGenerator* cg = _late_inlines.at(i);
2080 _late_inlines_pos = i+1;
2081 cg->do_late_inline();
2082 if (failing()) return false;
2083 }
2084 int j = 0;
2085 for (; i < _late_inlines.length(); i++, j++) {
2086 _late_inlines.at_put(j, _late_inlines.at(i));
2087 }
2088 _late_inlines.trunc_to(j);
2089 assert(inlining_progress() || _late_inlines.length() == 0, "");
2090
2091 bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2092
2093 set_inlining_progress(false);
2094 set_do_cleanup(false);
2095 return (_late_inlines.length() > 0) && !needs_cleanup;
2096}
2097
2098void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2099 {
2100 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2101 ResourceMark rm;
2102 PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2103 }
2104 {
2105 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2106 igvn = PhaseIterGVN(initial_gvn());
2107 igvn.optimize();
2108 }
2109}
2110
2111// Perform incremental inlining until bound on number of live nodes is reached
2112void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2113 TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2114
2115 set_inlining_incrementally(true);
2116 uint low_live_nodes = 0;
2117
2118 while (_late_inlines.length() > 0) {
2119 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2120 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2121 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2122 // PhaseIdealLoop is expensive so we only try it once we are
2123 // out of live nodes and we only try it again if the previous
2124 // helped got the number of nodes down significantly
2125 PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2126 if (failing()) return;
2127 low_live_nodes = live_nodes();
2128 _major_progress = true;
2129 }
2130
2131 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2132 break; // finish
2133 }
2134 }
2135
2136 for_igvn()->clear();
2137 initial_gvn()->replace_with(&igvn);
2138
2139 while (inline_incrementally_one()) {
2140 assert(!failing(), "inconsistent");
2141 }
2142
2143 if (failing()) return;
2144
2145 inline_incrementally_cleanup(igvn);
2146
2147 if (failing()) return;
2148 }
2149 assert( igvn._worklist.size() == 0, "should be done with igvn" );
2150
2151 if (_string_late_inlines.length() > 0) {
2152 assert(has_stringbuilder(), "inconsistent");
2153 for_igvn()->clear();
2154 initial_gvn()->replace_with(&igvn);
2155
2156 inline_string_calls(false);
2157
2158 if (failing()) return;
2159
2160 inline_incrementally_cleanup(igvn);
2161 }
2162
2163 set_inlining_incrementally(false);
2164}
2165
2166
2167bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2168 if(_loop_opts_cnt > 0) {
2169 debug_only( int cnt = 0; );
2170 while(major_progress() && (_loop_opts_cnt > 0)) {
2171 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2172 assert( cnt++ < 40, "infinite cycle in loop optimization" );
2173 PhaseIdealLoop::optimize(igvn, mode);
2174 _loop_opts_cnt--;
2175 if (failing()) return false;
2176 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2177 }
2178 }
2179 return true;
2180}
2181
2182// Remove edges from "root" to each SafePoint at a backward branch.
2183// They were inserted during parsing (see add_safepoint()) to make
2184// infinite loops without calls or exceptions visible to root, i.e.,
2185// useful.
2186void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2187 Node *r = root();
2188 if (r != NULL) {
2189 for (uint i = r->req(); i < r->len(); ++i) {
2190 Node *n = r->in(i);
2191 if (n != NULL && n->is_SafePoint()) {
2192 r->rm_prec(i);
2193 if (n->outcnt() == 0) {
2194 igvn.remove_dead_node(n);
2195 }
2196 --i;
2197 }
2198 }
2199 }
2200}
2201
2202//------------------------------Optimize---------------------------------------
2203// Given a graph, optimize it.
2204void Compile::Optimize() {
2205 TracePhase tp("optimizer", &timers[_t_optimizer]);
2206
2207#ifndef PRODUCT
2208 if (_directive->BreakAtCompileOption) {
2209 BREAKPOINT;
2210 }
2211
2212#endif
2213
2214 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2215#ifdef ASSERT
2216 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2217#endif
2218
2219 ResourceMark rm;
2220
2221 print_inlining_reinit();
2222
2223 NOT_PRODUCT( verify_graph_edges(); )
2224
2225 print_method(PHASE_AFTER_PARSING);
2226
2227 {
2228 // Iterative Global Value Numbering, including ideal transforms
2229 // Initialize IterGVN with types and values from parse-time GVN
2230 PhaseIterGVN igvn(initial_gvn());
2231#ifdef ASSERT
2232 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2233#endif
2234 {
2235 TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2236 igvn.optimize();
2237 }
2238
2239 if (failing()) return;
2240
2241 print_method(PHASE_ITER_GVN1, 2);
2242
2243 inline_incrementally(igvn);
2244
2245 print_method(PHASE_INCREMENTAL_INLINE, 2);
2246
2247 if (failing()) return;
2248
2249 if (eliminate_boxing()) {
2250 // Inline valueOf() methods now.
2251 inline_boxing_calls(igvn);
2252
2253 if (AlwaysIncrementalInline) {
2254 inline_incrementally(igvn);
2255 }
2256
2257 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2258
2259 if (failing()) return;
2260 }
2261
2262 // Now that all inlining is over, cut edge from root to loop
2263 // safepoints
2264 remove_root_to_sfpts_edges(igvn);
2265
2266 // Remove the speculative part of types and clean up the graph from
2267 // the extra CastPP nodes whose only purpose is to carry them. Do
2268 // that early so that optimizations are not disrupted by the extra
2269 // CastPP nodes.
2270 remove_speculative_types(igvn);
2271
2272 // No more new expensive nodes will be added to the list from here
2273 // so keep only the actual candidates for optimizations.
2274 cleanup_expensive_nodes(igvn);
2275
2276 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2277 Compile::TracePhase tp("", &timers[_t_renumberLive]);
2278 initial_gvn()->replace_with(&igvn);
2279 for_igvn()->clear();
2280 Unique_Node_List new_worklist(C->comp_arena());
2281 {
2282 ResourceMark rm;
2283 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2284 }
2285 set_for_igvn(&new_worklist);
2286 igvn = PhaseIterGVN(initial_gvn());
2287 igvn.optimize();
2288 }
2289
2290 // Perform escape analysis
2291 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2292 if (has_loops()) {
2293 // Cleanup graph (remove dead nodes).
2294 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2295 PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2296 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2297 if (failing()) return;
2298 }
2299 ConnectionGraph::do_analysis(this, &igvn);
2300
2301 if (failing()) return;
2302
2303 // Optimize out fields loads from scalar replaceable allocations.
2304 igvn.optimize();
2305 print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2306
2307 if (failing()) return;
2308
2309 if (congraph() != NULL && macro_count() > 0) {
2310 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2311 PhaseMacroExpand mexp(igvn);
2312 mexp.eliminate_macro_nodes();
2313 igvn.set_delay_transform(false);
2314
2315 igvn.optimize();
2316 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2317
2318 if (failing()) return;
2319 }
2320 }
2321
2322 // Loop transforms on the ideal graph. Range Check Elimination,
2323 // peeling, unrolling, etc.
2324
2325 // Set loop opts counter
2326 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2327 {
2328 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2329 PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2330 _loop_opts_cnt--;
2331 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2332 if (failing()) return;
2333 }
2334 // Loop opts pass if partial peeling occurred in previous pass
2335 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2336 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2337 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2338 _loop_opts_cnt--;
2339 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2340 if (failing()) return;
2341 }
2342 // Loop opts pass for loop-unrolling before CCP
2343 if(major_progress() && (_loop_opts_cnt > 0)) {
2344 TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2345 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2346 _loop_opts_cnt--;
2347 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2348 }
2349 if (!failing()) {
2350 // Verify that last round of loop opts produced a valid graph
2351 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2352 PhaseIdealLoop::verify(igvn);
2353 }
2354 }
2355 if (failing()) return;
2356
2357 // Conditional Constant Propagation;
2358 PhaseCCP ccp( &igvn );
2359 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2360 {
2361 TracePhase tp("ccp", &timers[_t_ccp]);
2362 ccp.do_transform();
2363 }
2364 print_method(PHASE_CPP1, 2);
2365
2366 assert( true, "Break here to ccp.dump_old2new_map()");
2367
2368 // Iterative Global Value Numbering, including ideal transforms
2369 {
2370 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2371 igvn = ccp;
2372 igvn.optimize();
2373 }
2374 print_method(PHASE_ITER_GVN2, 2);
2375
2376 if (failing()) return;
2377
2378 // Loop transforms on the ideal graph. Range Check Elimination,
2379 // peeling, unrolling, etc.
2380 if (!optimize_loops(igvn, LoopOptsDefault)) {
2381 return;
2382 }
2383
2384 if (failing()) return;
2385
2386 // Ensure that major progress is now clear
2387 C->clear_major_progress();
2388
2389 {
2390 // Verify that all previous optimizations produced a valid graph
2391 // at least to this point, even if no loop optimizations were done.
2392 TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2393 PhaseIdealLoop::verify(igvn);
2394 }
2395
2396 if (range_check_cast_count() > 0) {
2397 // No more loop optimizations. Remove all range check dependent CastIINodes.
2398 C->remove_range_check_casts(igvn);
2399 igvn.optimize();
2400 }
2401
2402#ifdef ASSERT
2403 bs->verify_gc_barriers(this, BarrierSetC2::BeforeLateInsertion);
2404#endif
2405
2406 bs->barrier_insertion_phase(C, igvn);
2407 if (failing()) return;
2408
2409#ifdef ASSERT
2410 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2411#endif
2412
2413 {
2414 TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2415 PhaseMacroExpand mex(igvn);
2416 if (mex.expand_macro_nodes()) {
2417 assert(failing(), "must bail out w/ explicit message");
2418 return;
2419 }
2420 print_method(PHASE_MACRO_EXPANSION, 2);
2421 }
2422
2423 {
2424 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2425 if (bs->expand_barriers(this, igvn)) {
2426 assert(failing(), "must bail out w/ explicit message");
2427 return;
2428 }
2429 print_method(PHASE_BARRIER_EXPANSION, 2);
2430 }
2431
2432 if (opaque4_count() > 0) {
2433 C->remove_opaque4_nodes(igvn);
2434 igvn.optimize();
2435 }
2436
2437 DEBUG_ONLY( _modified_nodes = NULL; )
2438 } // (End scope of igvn; run destructor if necessary for asserts.)
2439
2440 process_print_inlining();
2441 // A method with only infinite loops has no edges entering loops from root
2442 {
2443 TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2444 if (final_graph_reshaping()) {
2445 assert(failing(), "must bail out w/ explicit message");
2446 return;
2447 }
2448 }
2449
2450 print_method(PHASE_OPTIMIZE_FINISHED, 2);
2451}
2452
2453
2454//------------------------------Code_Gen---------------------------------------
2455// Given a graph, generate code for it
2456void Compile::Code_Gen() {
2457 if (failing()) {
2458 return;
2459 }
2460
2461 // Perform instruction selection. You might think we could reclaim Matcher
2462 // memory PDQ, but actually the Matcher is used in generating spill code.
2463 // Internals of the Matcher (including some VectorSets) must remain live
2464 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2465 // set a bit in reclaimed memory.
2466
2467 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2468 // nodes. Mapping is only valid at the root of each matched subtree.
2469 NOT_PRODUCT( verify_graph_edges(); )
2470
2471 Matcher matcher;
2472 _matcher = &matcher;
2473 {
2474 TracePhase tp("matcher", &timers[_t_matcher]);
2475 matcher.match();
2476 }
2477 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2478 // nodes. Mapping is only valid at the root of each matched subtree.
2479 NOT_PRODUCT( verify_graph_edges(); )
2480
2481 // If you have too many nodes, or if matching has failed, bail out
2482 check_node_count(0, "out of nodes matching instructions");
2483 if (failing()) {
2484 return;
2485 }
2486
2487 print_method(PHASE_MATCHING, 2);
2488
2489 // Build a proper-looking CFG
2490 PhaseCFG cfg(node_arena(), root(), matcher);
2491 _cfg = &cfg;
2492 {
2493 TracePhase tp("scheduler", &timers[_t_scheduler]);
2494 bool success = cfg.do_global_code_motion();
2495 if (!success) {
2496 return;
2497 }
2498
2499 print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2500 NOT_PRODUCT( verify_graph_edges(); )
2501 debug_only( cfg.verify(); )
2502 }
2503
2504 PhaseChaitin regalloc(unique(), cfg, matcher, false);
2505 _regalloc = &regalloc;
2506 {
2507 TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2508 // Perform register allocation. After Chaitin, use-def chains are
2509 // no longer accurate (at spill code) and so must be ignored.
2510 // Node->LRG->reg mappings are still accurate.
2511 _regalloc->Register_Allocate();
2512
2513 // Bail out if the allocator builds too many nodes
2514 if (failing()) {
2515 return;
2516 }
2517 }
2518
2519 // Prior to register allocation we kept empty basic blocks in case the
2520 // the allocator needed a place to spill. After register allocation we
2521 // are not adding any new instructions. If any basic block is empty, we
2522 // can now safely remove it.
2523 {
2524 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2525 cfg.remove_empty_blocks();
2526 if (do_freq_based_layout()) {
2527 PhaseBlockLayout layout(cfg);
2528 } else {
2529 cfg.set_loop_alignment();
2530 }
2531 cfg.fixup_flow();
2532 }
2533
2534 // Apply peephole optimizations
2535 if( OptoPeephole ) {
2536 TracePhase tp("peephole", &timers[_t_peephole]);
2537 PhasePeephole peep( _regalloc, cfg);
2538 peep.do_transform();
2539 }
2540
2541 // Do late expand if CPU requires this.
2542 if (Matcher::require_postalloc_expand) {
2543 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2544 cfg.postalloc_expand(_regalloc);
2545 }
2546
2547 // Convert Nodes to instruction bits in a buffer
2548 {
2549 TraceTime tp("output", &timers[_t_output], CITime);
2550 Output();
2551 }
2552
2553 print_method(PHASE_FINAL_CODE);
2554
2555 // He's dead, Jim.
2556 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef);
2557 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2558}
2559
2560
2561//------------------------------dump_asm---------------------------------------
2562// Dump formatted assembly
2563#if defined(SUPPORT_OPTO_ASSEMBLY)
2564void Compile::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
2565
2566 int pc_digits = 3; // #chars required for pc
2567 int sb_chars = 3; // #chars for "start bundle" indicator
2568 int tab_size = 8;
2569 if (pcs != NULL) {
2570 int max_pc = 0;
2571 for (uint i = 0; i < pc_limit; i++) {
2572 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
2573 }
2574 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
2575 }
2576 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
2577
2578 bool cut_short = false;
2579 st->print_cr("#");
2580 st->print("# "); _tf->dump_on(st); st->cr();
2581 st->print_cr("#");
2582
2583 // For all blocks
2584 int pc = 0x0; // Program counter
2585 char starts_bundle = ' ';
2586 _regalloc->dump_frame();
2587
2588 Node *n = NULL;
2589 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2590 if (VMThread::should_terminate()) {
2591 cut_short = true;
2592 break;
2593 }
2594 Block* block = _cfg->get_block(i);
2595 if (block->is_connector() && !Verbose) {
2596 continue;
2597 }
2598 n = block->head();
2599 if ((pcs != NULL) && (n->_idx < pc_limit)) {
2600 pc = pcs[n->_idx];
2601 st->print("%*.*x", pc_digits, pc_digits, pc);
2602 }
2603 st->fill_to(prefix_len);
2604 block->dump_head(_cfg, st);
2605 if (block->is_connector()) {
2606 st->fill_to(prefix_len);
2607 st->print_cr("# Empty connector block");
2608 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2609 st->fill_to(prefix_len);
2610 st->print_cr("# Block is sole successor of call");
2611 }
2612
2613 // For all instructions
2614 Node *delay = NULL;
2615 for (uint j = 0; j < block->number_of_nodes(); j++) {
2616 if (VMThread::should_terminate()) {
2617 cut_short = true;
2618 break;
2619 }
2620 n = block->get_node(j);
2621 if (valid_bundle_info(n)) {
2622 Bundle* bundle = node_bundling(n);
2623 if (bundle->used_in_unconditional_delay()) {
2624 delay = n;
2625 continue;
2626 }
2627 if (bundle->starts_bundle()) {
2628 starts_bundle = '+';
2629 }
2630 }
2631
2632 if (WizardMode) {
2633 n->dump();
2634 }
2635
2636 if( !n->is_Region() && // Dont print in the Assembly
2637 !n->is_Phi() && // a few noisely useless nodes
2638 !n->is_Proj() &&
2639 !n->is_MachTemp() &&
2640 !n->is_SafePointScalarObject() &&
2641 !n->is_Catch() && // Would be nice to print exception table targets
2642 !n->is_MergeMem() && // Not very interesting
2643 !n->is_top() && // Debug info table constants
2644 !(n->is_Con() && !n->is_Mach())// Debug info table constants
2645 ) {
2646 if ((pcs != NULL) && (n->_idx < pc_limit)) {
2647 pc = pcs[n->_idx];
2648 st->print("%*.*x", pc_digits, pc_digits, pc);
2649 } else {
2650 st->fill_to(pc_digits);
2651 }
2652 st->print(" %c ", starts_bundle);
2653 starts_bundle = ' ';
2654 st->fill_to(prefix_len);
2655 n->format(_regalloc, st);
2656 st->cr();
2657 }
2658
2659 // If we have an instruction with a delay slot, and have seen a delay,
2660 // then back up and print it
2661 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2662 // Coverity finding - Explicit null dereferenced.
2663 guarantee(delay != NULL, "no unconditional delay instruction");
2664 if (WizardMode) delay->dump();
2665
2666 if (node_bundling(delay)->starts_bundle())
2667 starts_bundle = '+';
2668 if ((pcs != NULL) && (n->_idx < pc_limit)) {
2669 pc = pcs[n->_idx];
2670 st->print("%*.*x", pc_digits, pc_digits, pc);
2671 } else {
2672 st->fill_to(pc_digits);
2673 }
2674 st->print(" %c ", starts_bundle);
2675 starts_bundle = ' ';
2676 st->fill_to(prefix_len);
2677 delay->format(_regalloc, st);
2678 st->cr();
2679 delay = NULL;
2680 }
2681
2682 // Dump the exception table as well
2683 if( n->is_Catch() && (Verbose || WizardMode) ) {
2684 // Print the exception table for this offset
2685 _handler_table.print_subtable_for(pc);
2686 }
2687 st->bol(); // Make sure we start on a new line
2688 }
2689 st->cr(); // one empty line between blocks
2690 assert(cut_short || delay == NULL, "no unconditional delay branch");
2691 } // End of per-block dump
2692
2693 if (cut_short) st->print_cr("*** disassembly is cut short ***");
2694}
2695#endif
2696
2697//------------------------------Final_Reshape_Counts---------------------------
2698// This class defines counters to help identify when a method
2699// may/must be executed using hardware with only 24-bit precision.
2700struct Final_Reshape_Counts : public StackObj {
2701 int _call_count; // count non-inlined 'common' calls
2702 int _float_count; // count float ops requiring 24-bit precision
2703 int _double_count; // count double ops requiring more precision
2704 int _java_call_count; // count non-inlined 'java' calls
2705 int _inner_loop_count; // count loops which need alignment
2706 VectorSet _visited; // Visitation flags
2707 Node_List _tests; // Set of IfNodes & PCTableNodes
2708
2709 Final_Reshape_Counts() :
2710 _call_count(0), _float_count(0), _double_count(0),
2711 _java_call_count(0), _inner_loop_count(0),
2712 _visited( Thread::current()->resource_area() ) { }
2713
2714 void inc_call_count () { _call_count ++; }
2715 void inc_float_count () { _float_count ++; }
2716 void inc_double_count() { _double_count++; }
2717 void inc_java_call_count() { _java_call_count++; }
2718 void inc_inner_loop_count() { _inner_loop_count++; }
2719
2720 int get_call_count () const { return _call_count ; }
2721 int get_float_count () const { return _float_count ; }
2722 int get_double_count() const { return _double_count; }
2723 int get_java_call_count() const { return _java_call_count; }
2724 int get_inner_loop_count() const { return _inner_loop_count; }
2725};
2726
2727#ifdef ASSERT
2728static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2729 ciInstanceKlass *k = tp->klass()->as_instance_klass();
2730 // Make sure the offset goes inside the instance layout.
2731 return k->contains_field_offset(tp->offset());
2732 // Note that OffsetBot and OffsetTop are very negative.
2733}
2734#endif
2735
2736// Eliminate trivially redundant StoreCMs and accumulate their
2737// precedence edges.
2738void Compile::eliminate_redundant_card_marks(Node* n) {
2739 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2740 if (n->in(MemNode::Address)->outcnt() > 1) {
2741 // There are multiple users of the same address so it might be
2742 // possible to eliminate some of the StoreCMs
2743 Node* mem = n->in(MemNode::Memory);
2744 Node* adr = n->in(MemNode::Address);
2745 Node* val = n->in(MemNode::ValueIn);
2746 Node* prev = n;
2747 bool done = false;
2748 // Walk the chain of StoreCMs eliminating ones that match. As
2749 // long as it's a chain of single users then the optimization is
2750 // safe. Eliminating partially redundant StoreCMs would require
2751 // cloning copies down the other paths.
2752 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2753 if (adr == mem->in(MemNode::Address) &&
2754 val == mem->in(MemNode::ValueIn)) {
2755 // redundant StoreCM
2756 if (mem->req() > MemNode::OopStore) {
2757 // Hasn't been processed by this code yet.
2758 n->add_prec(mem->in(MemNode::OopStore));
2759 } else {
2760 // Already converted to precedence edge
2761 for (uint i = mem->req(); i < mem->len(); i++) {
2762 // Accumulate any precedence edges
2763 if (mem->in(i) != NULL) {
2764 n->add_prec(mem->in(i));
2765 }
2766 }
2767 // Everything above this point has been processed.
2768 done = true;
2769 }
2770 // Eliminate the previous StoreCM
2771 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2772 assert(mem->outcnt() == 0, "should be dead");
2773 mem->disconnect_inputs(NULL, this);
2774 } else {
2775 prev = mem;
2776 }
2777 mem = prev->in(MemNode::Memory);
2778 }
2779 }
2780}
2781
2782//------------------------------final_graph_reshaping_impl----------------------
2783// Implement items 1-5 from final_graph_reshaping below.
2784void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2785
2786 if ( n->outcnt() == 0 ) return; // dead node
2787 uint nop = n->Opcode();
2788
2789 // Check for 2-input instruction with "last use" on right input.
2790 // Swap to left input. Implements item (2).
2791 if( n->req() == 3 && // two-input instruction
2792 n->in(1)->outcnt() > 1 && // left use is NOT a last use
2793 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2794 n->in(2)->outcnt() == 1 &&// right use IS a last use
2795 !n->in(2)->is_Con() ) { // right use is not a constant
2796 // Check for commutative opcode
2797 switch( nop ) {
2798 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
2799 case Op_MaxI: case Op_MinI:
2800 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
2801 case Op_AndL: case Op_XorL: case Op_OrL:
2802 case Op_AndI: case Op_XorI: case Op_OrI: {
2803 // Move "last use" input to left by swapping inputs
2804 n->swap_edges(1, 2);
2805 break;
2806 }
2807 default:
2808 break;
2809 }
2810 }
2811
2812#ifdef ASSERT
2813 if( n->is_Mem() ) {
2814 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2815 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2816 // oop will be recorded in oop map if load crosses safepoint
2817 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2818 LoadNode::is_immutable_value(n->in(MemNode::Address))),
2819 "raw memory operations should have control edge");
2820 }
2821 if (n->is_MemBar()) {
2822 MemBarNode* mb = n->as_MemBar();
2823 if (mb->trailing_store() || mb->trailing_load_store()) {
2824 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2825 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
2826 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2827 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2828 } else if (mb->leading()) {
2829 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2830 }
2831 }
2832#endif
2833 // Count FPU ops and common calls, implements item (3)
2834 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
2835 if (!gc_handled) {
2836 final_graph_reshaping_main_switch(n, frc, nop);
2837 }
2838
2839 // Collect CFG split points
2840 if (n->is_MultiBranch() && !n->is_RangeCheck()) {
2841 frc._tests.push(n);
2842 }
2843}
2844
2845void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
2846 switch( nop ) {
2847 // Count all float operations that may use FPU
2848 case Op_AddF:
2849 case Op_SubF:
2850 case Op_MulF:
2851 case Op_DivF:
2852 case Op_NegF:
2853 case Op_ModF:
2854 case Op_ConvI2F:
2855 case Op_ConF:
2856 case Op_CmpF:
2857 case Op_CmpF3:
2858 // case Op_ConvL2F: // longs are split into 32-bit halves
2859 frc.inc_float_count();
2860 break;
2861
2862 case Op_ConvF2D:
2863 case Op_ConvD2F:
2864 frc.inc_float_count();
2865 frc.inc_double_count();
2866 break;
2867
2868 // Count all double operations that may use FPU
2869 case Op_AddD:
2870 case Op_SubD:
2871 case Op_MulD:
2872 case Op_DivD:
2873 case Op_NegD:
2874 case Op_ModD:
2875 case Op_ConvI2D:
2876 case Op_ConvD2I:
2877 // case Op_ConvL2D: // handled by leaf call
2878 // case Op_ConvD2L: // handled by leaf call
2879 case Op_ConD:
2880 case Op_CmpD:
2881 case Op_CmpD3:
2882 frc.inc_double_count();
2883 break;
2884 case Op_Opaque1: // Remove Opaque Nodes before matching
2885 case Op_Opaque2: // Remove Opaque Nodes before matching
2886 case Op_Opaque3:
2887 n->subsume_by(n->in(1), this);
2888 break;
2889 case Op_CallStaticJava:
2890 case Op_CallJava:
2891 case Op_CallDynamicJava:
2892 frc.inc_java_call_count(); // Count java call site;
2893 case Op_CallRuntime:
2894 case Op_CallLeaf:
2895 case Op_CallLeafNoFP: {
2896 assert (n->is_Call(), "");
2897 CallNode *call = n->as_Call();
2898 // Count call sites where the FP mode bit would have to be flipped.
2899 // Do not count uncommon runtime calls:
2900 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2901 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2902 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2903 frc.inc_call_count(); // Count the call site
2904 } else { // See if uncommon argument is shared
2905 Node *n = call->in(TypeFunc::Parms);
2906 int nop = n->Opcode();
2907 // Clone shared simple arguments to uncommon calls, item (1).
2908 if (n->outcnt() > 1 &&
2909 !n->is_Proj() &&
2910 nop != Op_CreateEx &&
2911 nop != Op_CheckCastPP &&
2912 nop != Op_DecodeN &&
2913 nop != Op_DecodeNKlass &&
2914 !n->is_Mem() &&
2915 !n->is_Phi()) {
2916 Node *x = n->clone();
2917 call->set_req(TypeFunc::Parms, x);
2918 }
2919 }
2920 break;
2921 }
2922
2923 case Op_StoreD:
2924 case Op_LoadD:
2925 case Op_LoadD_unaligned:
2926 frc.inc_double_count();
2927 goto handle_mem;
2928 case Op_StoreF:
2929 case Op_LoadF:
2930 frc.inc_float_count();
2931 goto handle_mem;
2932
2933 case Op_StoreCM:
2934 {
2935 // Convert OopStore dependence into precedence edge
2936 Node* prec = n->in(MemNode::OopStore);
2937 n->del_req(MemNode::OopStore);
2938 n->add_prec(prec);
2939 eliminate_redundant_card_marks(n);
2940 }
2941
2942 // fall through
2943
2944 case Op_StoreB:
2945 case Op_StoreC:
2946 case Op_StorePConditional:
2947 case Op_StoreI:
2948 case Op_StoreL:
2949 case Op_StoreIConditional:
2950 case Op_StoreLConditional:
2951 case Op_CompareAndSwapB:
2952 case Op_CompareAndSwapS:
2953 case Op_CompareAndSwapI:
2954 case Op_CompareAndSwapL:
2955 case Op_CompareAndSwapP:
2956 case Op_CompareAndSwapN:
2957 case Op_WeakCompareAndSwapB:
2958 case Op_WeakCompareAndSwapS:
2959 case Op_WeakCompareAndSwapI:
2960 case Op_WeakCompareAndSwapL:
2961 case Op_WeakCompareAndSwapP:
2962 case Op_WeakCompareAndSwapN:
2963 case Op_CompareAndExchangeB:
2964 case Op_CompareAndExchangeS:
2965 case Op_CompareAndExchangeI:
2966 case Op_CompareAndExchangeL:
2967 case Op_CompareAndExchangeP:
2968 case Op_CompareAndExchangeN:
2969 case Op_GetAndAddS:
2970 case Op_GetAndAddB:
2971 case Op_GetAndAddI:
2972 case Op_GetAndAddL:
2973 case Op_GetAndSetS:
2974 case Op_GetAndSetB:
2975 case Op_GetAndSetI:
2976 case Op_GetAndSetL:
2977 case Op_GetAndSetP:
2978 case Op_GetAndSetN:
2979 case Op_StoreP:
2980 case Op_StoreN:
2981 case Op_StoreNKlass:
2982 case Op_LoadB:
2983 case Op_LoadUB:
2984 case Op_LoadUS:
2985 case Op_LoadI:
2986 case Op_LoadKlass:
2987 case Op_LoadNKlass:
2988 case Op_LoadL:
2989 case Op_LoadL_unaligned:
2990 case Op_LoadPLocked:
2991 case Op_LoadP:
2992 case Op_LoadN:
2993 case Op_LoadRange:
2994 case Op_LoadS: {
2995 handle_mem:
2996#ifdef ASSERT
2997 if( VerifyOptoOopOffsets ) {
2998 MemNode* mem = n->as_Mem();
2999 // Check to see if address types have grounded out somehow.
3000 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
3001 assert( !tp || oop_offset_is_sane(tp), "" );
3002 }
3003#endif
3004 break;
3005 }
3006
3007 case Op_AddP: { // Assert sane base pointers
3008 Node *addp = n->in(AddPNode::Address);
3009 assert( !addp->is_AddP() ||
3010 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3011 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3012 "Base pointers must match (addp %u)", addp->_idx );
3013#ifdef _LP64
3014 if ((UseCompressedOops || UseCompressedClassPointers) &&
3015 addp->Opcode() == Op_ConP &&
3016 addp == n->in(AddPNode::Base) &&
3017 n->in(AddPNode::Offset)->is_Con()) {
3018 // If the transformation of ConP to ConN+DecodeN is beneficial depends
3019 // on the platform and on the compressed oops mode.
3020 // Use addressing with narrow klass to load with offset on x86.
3021 // Some platforms can use the constant pool to load ConP.
3022 // Do this transformation here since IGVN will convert ConN back to ConP.
3023 const Type* t = addp->bottom_type();
3024 bool is_oop = t->isa_oopptr() != NULL;
3025 bool is_klass = t->isa_klassptr() != NULL;
3026
3027 if ((is_oop && Matcher::const_oop_prefer_decode() ) ||
3028 (is_klass && Matcher::const_klass_prefer_decode())) {
3029 Node* nn = NULL;
3030
3031 int op = is_oop ? Op_ConN : Op_ConNKlass;
3032
3033 // Look for existing ConN node of the same exact type.
3034 Node* r = root();
3035 uint cnt = r->outcnt();
3036 for (uint i = 0; i < cnt; i++) {
3037 Node* m = r->raw_out(i);
3038 if (m!= NULL && m->Opcode() == op &&
3039 m->bottom_type()->make_ptr() == t) {
3040 nn = m;
3041 break;
3042 }
3043 }
3044 if (nn != NULL) {
3045 // Decode a narrow oop to match address
3046 // [R12 + narrow_oop_reg<<3 + offset]
3047 if (is_oop) {
3048 nn = new DecodeNNode(nn, t);
3049 } else {
3050 nn = new DecodeNKlassNode(nn, t);
3051 }
3052 // Check for succeeding AddP which uses the same Base.
3053 // Otherwise we will run into the assertion above when visiting that guy.
3054 for (uint i = 0; i < n->outcnt(); ++i) {
3055 Node *out_i = n->raw_out(i);
3056 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3057 out_i->set_req(AddPNode::Base, nn);
3058#ifdef ASSERT
3059 for (uint j = 0; j < out_i->outcnt(); ++j) {
3060 Node *out_j = out_i->raw_out(j);
3061 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3062 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3063 }
3064#endif
3065 }
3066 }
3067 n->set_req(AddPNode::Base, nn);
3068 n->set_req(AddPNode::Address, nn);
3069 if (addp->outcnt() == 0) {
3070 addp->disconnect_inputs(NULL, this);
3071 }
3072 }
3073 }
3074 }
3075#endif
3076 // platform dependent reshaping of the address expression
3077 reshape_address(n->as_AddP());
3078 break;
3079 }
3080
3081 case Op_CastPP: {
3082 // Remove CastPP nodes to gain more freedom during scheduling but
3083 // keep the dependency they encode as control or precedence edges
3084 // (if control is set already) on memory operations. Some CastPP
3085 // nodes don't have a control (don't carry a dependency): skip
3086 // those.
3087 if (n->in(0) != NULL) {
3088 ResourceMark rm;
3089 Unique_Node_List wq;
3090 wq.push(n);
3091 for (uint next = 0; next < wq.size(); ++next) {
3092 Node *m = wq.at(next);
3093 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3094 Node* use = m->fast_out(i);
3095 if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3096 use->ensure_control_or_add_prec(n->in(0));
3097 } else {
3098 switch(use->Opcode()) {
3099 case Op_AddP:
3100 case Op_DecodeN:
3101 case Op_DecodeNKlass:
3102 case Op_CheckCastPP:
3103 case Op_CastPP:
3104 wq.push(use);
3105 break;
3106 }
3107 }
3108 }
3109 }
3110 }
3111 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3112 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3113 Node* in1 = n->in(1);
3114 const Type* t = n->bottom_type();
3115 Node* new_in1 = in1->clone();
3116 new_in1->as_DecodeN()->set_type(t);
3117
3118 if (!Matcher::narrow_oop_use_complex_address()) {
3119 //
3120 // x86, ARM and friends can handle 2 adds in addressing mode
3121 // and Matcher can fold a DecodeN node into address by using
3122 // a narrow oop directly and do implicit NULL check in address:
3123 //
3124 // [R12 + narrow_oop_reg<<3 + offset]
3125 // NullCheck narrow_oop_reg
3126 //
3127 // On other platforms (Sparc) we have to keep new DecodeN node and
3128 // use it to do implicit NULL check in address:
3129 //
3130 // decode_not_null narrow_oop_reg, base_reg
3131 // [base_reg + offset]
3132 // NullCheck base_reg
3133 //
3134 // Pin the new DecodeN node to non-null path on these platform (Sparc)
3135 // to keep the information to which NULL check the new DecodeN node
3136 // corresponds to use it as value in implicit_null_check().
3137 //
3138 new_in1->set_req(0, n->in(0));
3139 }
3140
3141 n->subsume_by(new_in1, this);
3142 if (in1->outcnt() == 0) {
3143 in1->disconnect_inputs(NULL, this);
3144 }
3145 } else {
3146 n->subsume_by(n->in(1), this);
3147 if (n->outcnt() == 0) {
3148 n->disconnect_inputs(NULL, this);
3149 }
3150 }
3151 break;
3152 }
3153#ifdef _LP64
3154 case Op_CmpP:
3155 // Do this transformation here to preserve CmpPNode::sub() and
3156 // other TypePtr related Ideal optimizations (for example, ptr nullness).
3157 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3158 Node* in1 = n->in(1);
3159 Node* in2 = n->in(2);
3160 if (!in1->is_DecodeNarrowPtr()) {
3161 in2 = in1;
3162 in1 = n->in(2);
3163 }
3164 assert(in1->is_DecodeNarrowPtr(), "sanity");
3165
3166 Node* new_in2 = NULL;
3167 if (in2->is_DecodeNarrowPtr()) {
3168 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3169 new_in2 = in2->in(1);
3170 } else if (in2->Opcode() == Op_ConP) {
3171 const Type* t = in2->bottom_type();
3172 if (t == TypePtr::NULL_PTR) {
3173 assert(in1->is_DecodeN(), "compare klass to null?");
3174 // Don't convert CmpP null check into CmpN if compressed
3175 // oops implicit null check is not generated.
3176 // This will allow to generate normal oop implicit null check.
3177 if (Matcher::gen_narrow_oop_implicit_null_checks())
3178 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3179 //
3180 // This transformation together with CastPP transformation above
3181 // will generated code for implicit NULL checks for compressed oops.
3182 //
3183 // The original code after Optimize()
3184 //
3185 // LoadN memory, narrow_oop_reg
3186 // decode narrow_oop_reg, base_reg
3187 // CmpP base_reg, NULL
3188 // CastPP base_reg // NotNull
3189 // Load [base_reg + offset], val_reg
3190 //
3191 // after these transformations will be
3192 //
3193 // LoadN memory, narrow_oop_reg
3194 // CmpN narrow_oop_reg, NULL
3195 // decode_not_null narrow_oop_reg, base_reg
3196 // Load [base_reg + offset], val_reg
3197 //
3198 // and the uncommon path (== NULL) will use narrow_oop_reg directly
3199 // since narrow oops can be used in debug info now (see the code in
3200 // final_graph_reshaping_walk()).
3201 //
3202 // At the end the code will be matched to
3203 // on x86:
3204 //
3205 // Load_narrow_oop memory, narrow_oop_reg
3206 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3207 // NullCheck narrow_oop_reg
3208 //
3209 // and on sparc:
3210 //
3211 // Load_narrow_oop memory, narrow_oop_reg
3212 // decode_not_null narrow_oop_reg, base_reg
3213 // Load [base_reg + offset], val_reg
3214 // NullCheck base_reg
3215 //
3216 } else if (t->isa_oopptr()) {
3217 new_in2 = ConNode::make(t->make_narrowoop());
3218 } else if (t->isa_klassptr()) {
3219 new_in2 = ConNode::make(t->make_narrowklass());
3220 }
3221 }
3222 if (new_in2 != NULL) {
3223 Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3224 n->subsume_by(cmpN, this);
3225 if (in1->outcnt() == 0) {
3226 in1->disconnect_inputs(NULL, this);
3227 }
3228 if (in2->outcnt() == 0) {
3229 in2->disconnect_inputs(NULL, this);
3230 }
3231 }
3232 }
3233 break;
3234
3235 case Op_DecodeN:
3236 case Op_DecodeNKlass:
3237 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3238 // DecodeN could be pinned when it can't be fold into
3239 // an address expression, see the code for Op_CastPP above.
3240 assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3241 break;
3242
3243 case Op_EncodeP:
3244 case Op_EncodePKlass: {
3245 Node* in1 = n->in(1);
3246 if (in1->is_DecodeNarrowPtr()) {
3247 n->subsume_by(in1->in(1), this);
3248 } else if (in1->Opcode() == Op_ConP) {
3249 const Type* t = in1->bottom_type();
3250 if (t == TypePtr::NULL_PTR) {
3251 assert(t->isa_oopptr(), "null klass?");
3252 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3253 } else if (t->isa_oopptr()) {
3254 n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3255 } else if (t->isa_klassptr()) {
3256 n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3257 }
3258 }
3259 if (in1->outcnt() == 0) {
3260 in1->disconnect_inputs(NULL, this);
3261 }
3262 break;
3263 }
3264
3265 case Op_Proj: {
3266 if (OptimizeStringConcat) {
3267 ProjNode* p = n->as_Proj();
3268 if (p->_is_io_use) {
3269 // Separate projections were used for the exception path which
3270 // are normally removed by a late inline. If it wasn't inlined
3271 // then they will hang around and should just be replaced with
3272 // the original one.
3273 Node* proj = NULL;
3274 // Replace with just one
3275 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3276 Node *use = i.get();
3277 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3278 proj = use;
3279 break;
3280 }
3281 }
3282 assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3283 if (proj != NULL) {
3284 p->subsume_by(proj, this);
3285 }
3286 }
3287 }
3288 break;
3289 }
3290
3291 case Op_Phi:
3292 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3293 // The EncodeP optimization may create Phi with the same edges
3294 // for all paths. It is not handled well by Register Allocator.
3295 Node* unique_in = n->in(1);
3296 assert(unique_in != NULL, "");
3297 uint cnt = n->req();
3298 for (uint i = 2; i < cnt; i++) {
3299 Node* m = n->in(i);
3300 assert(m != NULL, "");
3301 if (unique_in != m)
3302 unique_in = NULL;
3303 }
3304 if (unique_in != NULL) {
3305 n->subsume_by(unique_in, this);
3306 }
3307 }
3308 break;
3309
3310#endif
3311
3312#ifdef ASSERT
3313 case Op_CastII:
3314 // Verify that all range check dependent CastII nodes were removed.
3315 if (n->isa_CastII()->has_range_check()) {
3316 n->dump(3);
3317 assert(false, "Range check dependent CastII node was not removed");
3318 }
3319 break;
3320#endif
3321
3322 case Op_ModI:
3323 if (UseDivMod) {
3324 // Check if a%b and a/b both exist
3325 Node* d = n->find_similar(Op_DivI);
3326 if (d) {
3327 // Replace them with a fused divmod if supported
3328 if (Matcher::has_match_rule(Op_DivModI)) {
3329 DivModINode* divmod = DivModINode::make(n);
3330 d->subsume_by(divmod->div_proj(), this);
3331 n->subsume_by(divmod->mod_proj(), this);
3332 } else {
3333 // replace a%b with a-((a/b)*b)
3334 Node* mult = new MulINode(d, d->in(2));
3335 Node* sub = new SubINode(d->in(1), mult);
3336 n->subsume_by(sub, this);
3337 }
3338 }
3339 }
3340 break;
3341
3342 case Op_ModL:
3343 if (UseDivMod) {
3344 // Check if a%b and a/b both exist
3345 Node* d = n->find_similar(Op_DivL);
3346 if (d) {
3347 // Replace them with a fused divmod if supported
3348 if (Matcher::has_match_rule(Op_DivModL)) {
3349 DivModLNode* divmod = DivModLNode::make(n);
3350 d->subsume_by(divmod->div_proj(), this);
3351 n->subsume_by(divmod->mod_proj(), this);
3352 } else {
3353 // replace a%b with a-((a/b)*b)
3354 Node* mult = new MulLNode(d, d->in(2));
3355 Node* sub = new SubLNode(d->in(1), mult);
3356 n->subsume_by(sub, this);
3357 }
3358 }
3359 }
3360 break;
3361
3362 case Op_LoadVector:
3363 case Op_StoreVector:
3364 break;
3365
3366 case Op_AddReductionVI:
3367 case Op_AddReductionVL:
3368 case Op_AddReductionVF:
3369 case Op_AddReductionVD:
3370 case Op_MulReductionVI:
3371 case Op_MulReductionVL:
3372 case Op_MulReductionVF:
3373 case Op_MulReductionVD:
3374 case Op_MinReductionV:
3375 case Op_MaxReductionV:
3376 break;
3377
3378 case Op_PackB:
3379 case Op_PackS:
3380 case Op_PackI:
3381 case Op_PackF:
3382 case Op_PackL:
3383 case Op_PackD:
3384 if (n->req()-1 > 2) {
3385 // Replace many operand PackNodes with a binary tree for matching
3386 PackNode* p = (PackNode*) n;
3387 Node* btp = p->binary_tree_pack(1, n->req());
3388 n->subsume_by(btp, this);
3389 }
3390 break;
3391 case Op_Loop:
3392 case Op_CountedLoop:
3393 case Op_OuterStripMinedLoop:
3394 if (n->as_Loop()->is_inner_loop()) {
3395 frc.inc_inner_loop_count();
3396 }
3397 n->as_Loop()->verify_strip_mined(0);
3398 break;
3399 case Op_LShiftI:
3400 case Op_RShiftI:
3401 case Op_URShiftI:
3402 case Op_LShiftL:
3403 case Op_RShiftL:
3404 case Op_URShiftL:
3405 if (Matcher::need_masked_shift_count) {
3406 // The cpu's shift instructions don't restrict the count to the
3407 // lower 5/6 bits. We need to do the masking ourselves.
3408 Node* in2 = n->in(2);
3409 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3410 const TypeInt* t = in2->find_int_type();
3411 if (t != NULL && t->is_con()) {
3412 juint shift = t->get_con();
3413 if (shift > mask) { // Unsigned cmp
3414 n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3415 }
3416 } else {
3417 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3418 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3419 n->set_req(2, shift);
3420 }
3421 }
3422 if (in2->outcnt() == 0) { // Remove dead node
3423 in2->disconnect_inputs(NULL, this);
3424 }
3425 }
3426 break;
3427 case Op_MemBarStoreStore:
3428 case Op_MemBarRelease:
3429 // Break the link with AllocateNode: it is no longer useful and
3430 // confuses register allocation.
3431 if (n->req() > MemBarNode::Precedent) {
3432 n->set_req(MemBarNode::Precedent, top());
3433 }
3434 break;
3435 case Op_MemBarAcquire: {
3436 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3437 // At parse time, the trailing MemBarAcquire for a volatile load
3438 // is created with an edge to the load. After optimizations,
3439 // that input may be a chain of Phis. If those phis have no
3440 // other use, then the MemBarAcquire keeps them alive and
3441 // register allocation can be confused.
3442 ResourceMark rm;
3443 Unique_Node_List wq;
3444 wq.push(n->in(MemBarNode::Precedent));
3445 n->set_req(MemBarNode::Precedent, top());
3446 while (wq.size() > 0) {
3447 Node* m = wq.pop();
3448 if (m->outcnt() == 0) {
3449 for (uint j = 0; j < m->req(); j++) {
3450 Node* in = m->in(j);
3451 if (in != NULL) {
3452 wq.push(in);
3453 }
3454 }
3455 m->disconnect_inputs(NULL, this);
3456 }
3457 }
3458 }
3459 break;
3460 }
3461 case Op_RangeCheck: {
3462 RangeCheckNode* rc = n->as_RangeCheck();
3463 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3464 n->subsume_by(iff, this);
3465 frc._tests.push(iff);
3466 break;
3467 }
3468 case Op_ConvI2L: {
3469 if (!Matcher::convi2l_type_required) {
3470 // Code generation on some platforms doesn't need accurate
3471 // ConvI2L types. Widening the type can help remove redundant
3472 // address computations.
3473 n->as_Type()->set_type(TypeLong::INT);
3474 ResourceMark rm;
3475 Node_List wq;
3476 wq.push(n);
3477 for (uint next = 0; next < wq.size(); next++) {
3478 Node *m = wq.at(next);
3479
3480 for(;;) {
3481 // Loop over all nodes with identical inputs edges as m
3482 Node* k = m->find_similar(m->Opcode());
3483 if (k == NULL) {
3484 break;
3485 }
3486 // Push their uses so we get a chance to remove node made
3487 // redundant
3488 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3489 Node* u = k->fast_out(i);
3490 assert(!wq.contains(u), "shouldn't process one node several times");
3491 if (u->Opcode() == Op_LShiftL ||
3492 u->Opcode() == Op_AddL ||
3493 u->Opcode() == Op_SubL ||
3494 u->Opcode() == Op_AddP) {
3495 wq.push(u);
3496 }
3497 }
3498 // Replace all nodes with identical edges as m with m
3499 k->subsume_by(m, this);
3500 }
3501 }
3502 }
3503 break;
3504 }
3505 case Op_CmpUL: {
3506 if (!Matcher::has_match_rule(Op_CmpUL)) {
3507 // No support for unsigned long comparisons
3508 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3509 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3510 Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3511 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3512 Node* andl = new AndLNode(orl, remove_sign_mask);
3513 Node* cmp = new CmpLNode(andl, n->in(2));
3514 n->subsume_by(cmp, this);
3515 }
3516 break;
3517 }
3518 default:
3519 assert(!n->is_Call(), "");
3520 assert(!n->is_Mem(), "");
3521 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3522 break;
3523 }
3524}
3525
3526//------------------------------final_graph_reshaping_walk---------------------
3527// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3528// requires that the walk visits a node's inputs before visiting the node.
3529void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3530 ResourceArea *area = Thread::current()->resource_area();
3531 Unique_Node_List sfpt(area);
3532
3533 frc._visited.set(root->_idx); // first, mark node as visited
3534 uint cnt = root->req();
3535 Node *n = root;
3536 uint i = 0;
3537 while (true) {
3538 if (i < cnt) {
3539 // Place all non-visited non-null inputs onto stack
3540 Node* m = n->in(i);
3541 ++i;
3542 if (m != NULL && !frc._visited.test_set(m->_idx)) {
3543 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3544 // compute worst case interpreter size in case of a deoptimization
3545 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3546
3547 sfpt.push(m);
3548 }
3549 cnt = m->req();
3550 nstack.push(n, i); // put on stack parent and next input's index
3551 n = m;
3552 i = 0;
3553 }
3554 } else {
3555 // Now do post-visit work
3556 final_graph_reshaping_impl( n, frc );
3557 if (nstack.is_empty())
3558 break; // finished
3559 n = nstack.node(); // Get node from stack
3560 cnt = n->req();
3561 i = nstack.index();
3562 nstack.pop(); // Shift to the next node on stack
3563 }
3564 }
3565
3566 // Skip next transformation if compressed oops are not used.
3567 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3568 (!UseCompressedOops && !UseCompressedClassPointers))
3569 return;
3570
3571 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3572 // It could be done for an uncommon traps or any safepoints/calls
3573 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3574 while (sfpt.size() > 0) {
3575 n = sfpt.pop();
3576 JVMState *jvms = n->as_SafePoint()->jvms();
3577 assert(jvms != NULL, "sanity");
3578 int start = jvms->debug_start();
3579 int end = n->req();
3580 bool is_uncommon = (n->is_CallStaticJava() &&
3581 n->as_CallStaticJava()->uncommon_trap_request() != 0);
3582 for (int j = start; j < end; j++) {
3583 Node* in = n->in(j);
3584 if (in->is_DecodeNarrowPtr()) {
3585 bool safe_to_skip = true;
3586 if (!is_uncommon ) {
3587 // Is it safe to skip?
3588 for (uint i = 0; i < in->outcnt(); i++) {
3589 Node* u = in->raw_out(i);
3590 if (!u->is_SafePoint() ||
3591 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3592 safe_to_skip = false;
3593 }
3594 }
3595 }
3596 if (safe_to_skip) {
3597 n->set_req(j, in->in(1));
3598 }
3599 if (in->outcnt() == 0) {
3600 in->disconnect_inputs(NULL, this);
3601 }
3602 }
3603 }
3604 }
3605}
3606
3607//------------------------------final_graph_reshaping--------------------------
3608// Final Graph Reshaping.
3609//
3610// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3611// and not commoned up and forced early. Must come after regular
3612// optimizations to avoid GVN undoing the cloning. Clone constant
3613// inputs to Loop Phis; these will be split by the allocator anyways.
3614// Remove Opaque nodes.
3615// (2) Move last-uses by commutative operations to the left input to encourage
3616// Intel update-in-place two-address operations and better register usage
3617// on RISCs. Must come after regular optimizations to avoid GVN Ideal
3618// calls canonicalizing them back.
3619// (3) Count the number of double-precision FP ops, single-precision FP ops
3620// and call sites. On Intel, we can get correct rounding either by
3621// forcing singles to memory (requires extra stores and loads after each
3622// FP bytecode) or we can set a rounding mode bit (requires setting and
3623// clearing the mode bit around call sites). The mode bit is only used
3624// if the relative frequency of single FP ops to calls is low enough.
3625// This is a key transform for SPEC mpeg_audio.
3626// (4) Detect infinite loops; blobs of code reachable from above but not
3627// below. Several of the Code_Gen algorithms fail on such code shapes,
3628// so we simply bail out. Happens a lot in ZKM.jar, but also happens
3629// from time to time in other codes (such as -Xcomp finalizer loops, etc).
3630// Detection is by looking for IfNodes where only 1 projection is
3631// reachable from below or CatchNodes missing some targets.
3632// (5) Assert for insane oop offsets in debug mode.
3633
3634bool Compile::final_graph_reshaping() {
3635 // an infinite loop may have been eliminated by the optimizer,
3636 // in which case the graph will be empty.
3637 if (root()->req() == 1) {
3638 record_method_not_compilable("trivial infinite loop");
3639 return true;
3640 }
3641
3642 // Expensive nodes have their control input set to prevent the GVN
3643 // from freely commoning them. There's no GVN beyond this point so
3644 // no need to keep the control input. We want the expensive nodes to
3645 // be freely moved to the least frequent code path by gcm.
3646 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3647 for (int i = 0; i < expensive_count(); i++) {
3648 _expensive_nodes->at(i)->set_req(0, NULL);
3649 }
3650
3651 Final_Reshape_Counts frc;
3652
3653 // Visit everybody reachable!
3654 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3655 Node_Stack nstack(live_nodes() >> 1);
3656 final_graph_reshaping_walk(nstack, root(), frc);
3657
3658 // Check for unreachable (from below) code (i.e., infinite loops).
3659 for( uint i = 0; i < frc._tests.size(); i++ ) {
3660 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3661 // Get number of CFG targets.
3662 // Note that PCTables include exception targets after calls.
3663 uint required_outcnt = n->required_outcnt();
3664 if (n->outcnt() != required_outcnt) {
3665 // Check for a few special cases. Rethrow Nodes never take the
3666 // 'fall-thru' path, so expected kids is 1 less.
3667 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3668 if (n->in(0)->in(0)->is_Call()) {
3669 CallNode *call = n->in(0)->in(0)->as_Call();
3670 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3671 required_outcnt--; // Rethrow always has 1 less kid
3672 } else if (call->req() > TypeFunc::Parms &&
3673 call->is_CallDynamicJava()) {
3674 // Check for null receiver. In such case, the optimizer has
3675 // detected that the virtual call will always result in a null
3676 // pointer exception. The fall-through projection of this CatchNode
3677 // will not be populated.
3678 Node *arg0 = call->in(TypeFunc::Parms);
3679 if (arg0->is_Type() &&
3680 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3681 required_outcnt--;
3682 }
3683 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3684 call->req() > TypeFunc::Parms+1 &&
3685 call->is_CallStaticJava()) {
3686 // Check for negative array length. In such case, the optimizer has
3687 // detected that the allocation attempt will always result in an
3688 // exception. There is no fall-through projection of this CatchNode .
3689 Node *arg1 = call->in(TypeFunc::Parms+1);
3690 if (arg1->is_Type() &&
3691 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3692 required_outcnt--;
3693 }
3694 }
3695 }
3696 }
3697 // Recheck with a better notion of 'required_outcnt'
3698 if (n->outcnt() != required_outcnt) {
3699 record_method_not_compilable("malformed control flow");
3700 return true; // Not all targets reachable!
3701 }
3702 }
3703 // Check that I actually visited all kids. Unreached kids
3704 // must be infinite loops.
3705 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3706 if (!frc._visited.test(n->fast_out(j)->_idx)) {
3707 record_method_not_compilable("infinite loop");
3708 return true; // Found unvisited kid; must be unreach
3709 }
3710
3711 // Here so verification code in final_graph_reshaping_walk()
3712 // always see an OuterStripMinedLoopEnd
3713 if (n->is_OuterStripMinedLoopEnd()) {
3714 IfNode* init_iff = n->as_If();
3715 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3716 n->subsume_by(iff, this);
3717 }
3718 }
3719
3720 // If original bytecodes contained a mixture of floats and doubles
3721 // check if the optimizer has made it homogenous, item (3).
3722 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3723 frc.get_float_count() > 32 &&
3724 frc.get_double_count() == 0 &&
3725 (10 * frc.get_call_count() < frc.get_float_count()) ) {
3726 set_24_bit_selection_and_mode( false, true );
3727 }
3728
3729 set_java_calls(frc.get_java_call_count());
3730 set_inner_loops(frc.get_inner_loop_count());
3731
3732 // No infinite loops, no reason to bail out.
3733 return false;
3734}
3735
3736//-----------------------------too_many_traps----------------------------------
3737// Report if there are too many traps at the current method and bci.
3738// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3739bool Compile::too_many_traps(ciMethod* method,
3740 int bci,
3741 Deoptimization::DeoptReason reason) {
3742 ciMethodData* md = method->method_data();
3743 if (md->is_empty()) {
3744 // Assume the trap has not occurred, or that it occurred only
3745 // because of a transient condition during start-up in the interpreter.
3746 return false;
3747 }
3748 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3749 if (md->has_trap_at(bci, m, reason) != 0) {
3750 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3751 // Also, if there are multiple reasons, or if there is no per-BCI record,
3752 // assume the worst.
3753 if (log())
3754 log()->elem("observe trap='%s' count='%d'",
3755 Deoptimization::trap_reason_name(reason),
3756 md->trap_count(reason));
3757 return true;
3758 } else {
3759 // Ignore method/bci and see if there have been too many globally.
3760 return too_many_traps(reason, md);
3761 }
3762}
3763
3764// Less-accurate variant which does not require a method and bci.
3765bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3766 ciMethodData* logmd) {
3767 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3768 // Too many traps globally.
3769 // Note that we use cumulative trap_count, not just md->trap_count.
3770 if (log()) {
3771 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3772 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3773 Deoptimization::trap_reason_name(reason),
3774 mcount, trap_count(reason));
3775 }
3776 return true;
3777 } else {
3778 // The coast is clear.
3779 return false;
3780 }
3781}
3782
3783//--------------------------too_many_recompiles--------------------------------
3784// Report if there are too many recompiles at the current method and bci.
3785// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3786// Is not eager to return true, since this will cause the compiler to use
3787// Action_none for a trap point, to avoid too many recompilations.
3788bool Compile::too_many_recompiles(ciMethod* method,
3789 int bci,
3790 Deoptimization::DeoptReason reason) {
3791 ciMethodData* md = method->method_data();
3792 if (md->is_empty()) {
3793 // Assume the trap has not occurred, or that it occurred only
3794 // because of a transient condition during start-up in the interpreter.
3795 return false;
3796 }
3797 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3798 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3799 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
3800 Deoptimization::DeoptReason per_bc_reason
3801 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3802 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3803 if ((per_bc_reason == Deoptimization::Reason_none
3804 || md->has_trap_at(bci, m, reason) != 0)
3805 // The trap frequency measure we care about is the recompile count:
3806 && md->trap_recompiled_at(bci, m)
3807 && md->overflow_recompile_count() >= bc_cutoff) {
3808 // Do not emit a trap here if it has already caused recompilations.
3809 // Also, if there are multiple reasons, or if there is no per-BCI record,
3810 // assume the worst.
3811 if (log())
3812 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3813 Deoptimization::trap_reason_name(reason),
3814 md->trap_count(reason),
3815 md->overflow_recompile_count());
3816 return true;
3817 } else if (trap_count(reason) != 0
3818 && decompile_count() >= m_cutoff) {
3819 // Too many recompiles globally, and we have seen this sort of trap.
3820 // Use cumulative decompile_count, not just md->decompile_count.
3821 if (log())
3822 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3823 Deoptimization::trap_reason_name(reason),
3824 md->trap_count(reason), trap_count(reason),
3825 md->decompile_count(), decompile_count());
3826 return true;
3827 } else {
3828 // The coast is clear.
3829 return false;
3830 }
3831}
3832
3833// Compute when not to trap. Used by matching trap based nodes and
3834// NullCheck optimization.
3835void Compile::set_allowed_deopt_reasons() {
3836 _allowed_reasons = 0;
3837 if (is_method_compilation()) {
3838 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3839 assert(rs < BitsPerInt, "recode bit map");
3840 if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3841 _allowed_reasons |= nth_bit(rs);
3842 }
3843 }
3844 }
3845}
3846
3847bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
3848 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
3849}
3850
3851bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
3852 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
3853}
3854
3855bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
3856 if (holder->is_initialized()) {
3857 return false;
3858 }
3859 if (holder->is_being_initialized()) {
3860 if (accessing_method->holder() == holder) {
3861 // Access inside a class. The barrier can be elided when access happens in <clinit>,
3862 // <init>, or a static method. In all those cases, there was an initialization
3863 // barrier on the holder klass passed.
3864 if (accessing_method->is_static_initializer() ||
3865 accessing_method->is_object_initializer() ||
3866 accessing_method->is_static()) {
3867 return false;
3868 }
3869 } else if (accessing_method->holder()->is_subclass_of(holder)) {
3870 // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
3871 // In case of <init> or a static method, the barrier is on the subclass is not enough:
3872 // child class can become fully initialized while its parent class is still being initialized.
3873 if (accessing_method->is_static_initializer()) {
3874 return false;
3875 }
3876 }
3877 ciMethod* root = method(); // the root method of compilation
3878 if (root != accessing_method) {
3879 return needs_clinit_barrier(holder, root); // check access in the context of compilation root
3880 }
3881 }
3882 return true;
3883}
3884
3885#ifndef PRODUCT
3886//------------------------------verify_graph_edges---------------------------
3887// Walk the Graph and verify that there is a one-to-one correspondence
3888// between Use-Def edges and Def-Use edges in the graph.
3889void Compile::verify_graph_edges(bool no_dead_code) {
3890 if (VerifyGraphEdges) {
3891 ResourceArea *area = Thread::current()->resource_area();
3892 Unique_Node_List visited(area);
3893 // Call recursive graph walk to check edges
3894 _root->verify_edges(visited);
3895 if (no_dead_code) {
3896 // Now make sure that no visited node is used by an unvisited node.
3897 bool dead_nodes = false;
3898 Unique_Node_List checked(area);
3899 while (visited.size() > 0) {
3900 Node* n = visited.pop();
3901 checked.push(n);
3902 for (uint i = 0; i < n->outcnt(); i++) {
3903 Node* use = n->raw_out(i);
3904 if (checked.member(use)) continue; // already checked
3905 if (visited.member(use)) continue; // already in the graph
3906 if (use->is_Con()) continue; // a dead ConNode is OK
3907 // At this point, we have found a dead node which is DU-reachable.
3908 if (!dead_nodes) {
3909 tty->print_cr("*** Dead nodes reachable via DU edges:");
3910 dead_nodes = true;
3911 }
3912 use->dump(2);
3913 tty->print_cr("---");
3914 checked.push(use); // No repeats; pretend it is now checked.
3915 }
3916 }
3917 assert(!dead_nodes, "using nodes must be reachable from root");
3918 }
3919 }
3920}
3921#endif
3922
3923// The Compile object keeps track of failure reasons separately from the ciEnv.
3924// This is required because there is not quite a 1-1 relation between the
3925// ciEnv and its compilation task and the Compile object. Note that one
3926// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3927// to backtrack and retry without subsuming loads. Other than this backtracking
3928// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3929// by the logic in C2Compiler.
3930void Compile::record_failure(const char* reason) {
3931 if (log() != NULL) {
3932 log()->elem("failure reason='%s' phase='compile'", reason);
3933 }
3934 if (_failure_reason == NULL) {
3935 // Record the first failure reason.
3936 _failure_reason = reason;
3937 }
3938
3939 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3940 C->print_method(PHASE_FAILURE);
3941 }
3942 _root = NULL; // flush the graph, too
3943}
3944
3945Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3946 : TraceTime(name, accumulator, CITime, CITimeVerbose),
3947 _phase_name(name), _dolog(CITimeVerbose)
3948{
3949 if (_dolog) {
3950 C = Compile::current();
3951 _log = C->log();
3952 } else {
3953 C = NULL;
3954 _log = NULL;
3955 }
3956 if (_log != NULL) {
3957 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3958 _log->stamp();
3959 _log->end_head();
3960 }
3961}
3962
3963Compile::TracePhase::~TracePhase() {
3964
3965 C = Compile::current();
3966 if (_dolog) {
3967 _log = C->log();
3968 } else {
3969 _log = NULL;
3970 }
3971
3972#ifdef ASSERT
3973 if (PrintIdealNodeCount) {
3974 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3975 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3976 }
3977
3978 if (VerifyIdealNodeCount) {
3979 Compile::current()->print_missing_nodes();
3980 }
3981#endif
3982
3983 if (_log != NULL) {
3984 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3985 }
3986}
3987
3988//=============================================================================
3989// Two Constant's are equal when the type and the value are equal.
3990bool Compile::Constant::operator==(const Constant& other) {
3991 if (type() != other.type() ) return false;
3992 if (can_be_reused() != other.can_be_reused()) return false;
3993 // For floating point values we compare the bit pattern.
3994 switch (type()) {
3995 case T_INT:
3996 case T_FLOAT: return (_v._value.i == other._v._value.i);
3997 case T_LONG:
3998 case T_DOUBLE: return (_v._value.j == other._v._value.j);
3999 case T_OBJECT:
4000 case T_ADDRESS: return (_v._value.l == other._v._value.l);
4001 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
4002 case T_METADATA: return (_v._metadata == other._v._metadata);
4003 default: ShouldNotReachHere(); return false;
4004 }
4005}
4006
4007static int type_to_size_in_bytes(BasicType t) {
4008 switch (t) {
4009 case T_INT: return sizeof(jint );
4010 case T_LONG: return sizeof(jlong );
4011 case T_FLOAT: return sizeof(jfloat );
4012 case T_DOUBLE: return sizeof(jdouble);
4013 case T_METADATA: return sizeof(Metadata*);
4014 // We use T_VOID as marker for jump-table entries (labels) which
4015 // need an internal word relocation.
4016 case T_VOID:
4017 case T_ADDRESS:
4018 case T_OBJECT: return sizeof(jobject);
4019 default:
4020 ShouldNotReachHere();
4021 return -1;
4022 }
4023}
4024
4025int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4026 // sort descending
4027 if (a->freq() > b->freq()) return -1;
4028 if (a->freq() < b->freq()) return 1;
4029 return 0;
4030}
4031
4032void Compile::ConstantTable::calculate_offsets_and_size() {
4033 // First, sort the array by frequencies.
4034 _constants.sort(qsort_comparator);
4035
4036#ifdef ASSERT
4037 // Make sure all jump-table entries were sorted to the end of the
4038 // array (they have a negative frequency).
4039 bool found_void = false;
4040 for (int i = 0; i < _constants.length(); i++) {
4041 Constant con = _constants.at(i);
4042 if (con.type() == T_VOID)
4043 found_void = true; // jump-tables
4044 else
4045 assert(!found_void, "wrong sorting");
4046 }
4047#endif
4048
4049 int offset = 0;
4050 for (int i = 0; i < _constants.length(); i++) {
4051 Constant* con = _constants.adr_at(i);
4052
4053 // Align offset for type.
4054 int typesize = type_to_size_in_bytes(con->type());
4055 offset = align_up(offset, typesize);
4056 con->set_offset(offset); // set constant's offset
4057
4058 if (con->type() == T_VOID) {
4059 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4060 offset = offset + typesize * n->outcnt(); // expand jump-table
4061 } else {
4062 offset = offset + typesize;
4063 }
4064 }
4065
4066 // Align size up to the next section start (which is insts; see
4067 // CodeBuffer::align_at_start).
4068 assert(_size == -1, "already set?");
4069 _size = align_up(offset, (int)CodeEntryAlignment);
4070}
4071
4072void Compile::ConstantTable::emit(CodeBuffer& cb) {
4073 MacroAssembler _masm(&cb);
4074 for (int i = 0; i < _constants.length(); i++) {
4075 Constant con = _constants.at(i);
4076 address constant_addr = NULL;
4077 switch (con.type()) {
4078 case T_INT: constant_addr = _masm.int_constant( con.get_jint() ); break;
4079 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
4080 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4081 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4082 case T_OBJECT: {
4083 jobject obj = con.get_jobject();
4084 int oop_index = _masm.oop_recorder()->find_index(obj);
4085 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4086 break;
4087 }
4088 case T_ADDRESS: {
4089 address addr = (address) con.get_jobject();
4090 constant_addr = _masm.address_constant(addr);
4091 break;
4092 }
4093 // We use T_VOID as marker for jump-table entries (labels) which
4094 // need an internal word relocation.
4095 case T_VOID: {
4096 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4097 // Fill the jump-table with a dummy word. The real value is
4098 // filled in later in fill_jump_table.
4099 address dummy = (address) n;
4100 constant_addr = _masm.address_constant(dummy);
4101 // Expand jump-table
4102 for (uint i = 1; i < n->outcnt(); i++) {
4103 address temp_addr = _masm.address_constant(dummy + i);
4104 assert(temp_addr, "consts section too small");
4105 }
4106 break;
4107 }
4108 case T_METADATA: {
4109 Metadata* obj = con.get_metadata();
4110 int metadata_index = _masm.oop_recorder()->find_index(obj);
4111 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4112 break;
4113 }
4114 default: ShouldNotReachHere();
4115 }
4116 assert(constant_addr, "consts section too small");
4117 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4118 "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4119 }
4120}
4121
4122int Compile::ConstantTable::find_offset(Constant& con) const {
4123 int idx = _constants.find(con);
4124 guarantee(idx != -1, "constant must be in constant table");
4125 int offset = _constants.at(idx).offset();
4126 guarantee(offset != -1, "constant table not emitted yet?");
4127 return offset;
4128}
4129
4130void Compile::ConstantTable::add(Constant& con) {
4131 if (con.can_be_reused()) {
4132 int idx = _constants.find(con);
4133 if (idx != -1 && _constants.at(idx).can_be_reused()) {
4134 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
4135 return;
4136 }
4137 }
4138 (void) _constants.append(con);
4139}
4140
4141Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4142 Block* b = Compile::current()->cfg()->get_block_for_node(n);
4143 Constant con(type, value, b->_freq);
4144 add(con);
4145 return con;
4146}
4147
4148Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4149 Constant con(metadata);
4150 add(con);
4151 return con;
4152}
4153
4154Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4155 jvalue value;
4156 BasicType type = oper->type()->basic_type();
4157 switch (type) {
4158 case T_LONG: value.j = oper->constantL(); break;
4159 case T_FLOAT: value.f = oper->constantF(); break;
4160 case T_DOUBLE: value.d = oper->constantD(); break;
4161 case T_OBJECT:
4162 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4163 case T_METADATA: return add((Metadata*)oper->constant()); break;
4164 default: guarantee(false, "unhandled type: %s", type2name(type));
4165 }
4166 return add(n, type, value);
4167}
4168
4169Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4170 jvalue value;
4171 // We can use the node pointer here to identify the right jump-table
4172 // as this method is called from Compile::Fill_buffer right before
4173 // the MachNodes are emitted and the jump-table is filled (means the
4174 // MachNode pointers do not change anymore).
4175 value.l = (jobject) n;
4176 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
4177 add(con);
4178 return con;
4179}
4180
4181void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4182 // If called from Compile::scratch_emit_size do nothing.
4183 if (Compile::current()->in_scratch_emit_size()) return;
4184
4185 assert(labels.is_nonempty(), "must be");
4186 assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4187
4188 // Since MachConstantNode::constant_offset() also contains
4189 // table_base_offset() we need to subtract the table_base_offset()
4190 // to get the plain offset into the constant table.
4191 int offset = n->constant_offset() - table_base_offset();
4192
4193 MacroAssembler _masm(&cb);
4194 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4195
4196 for (uint i = 0; i < n->outcnt(); i++) {
4197 address* constant_addr = &jump_table_base[i];
4198 assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4199 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4200 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4201 }
4202}
4203
4204//----------------------------static_subtype_check-----------------------------
4205// Shortcut important common cases when superklass is exact:
4206// (0) superklass is java.lang.Object (can occur in reflective code)
4207// (1) subklass is already limited to a subtype of superklass => always ok
4208// (2) subklass does not overlap with superklass => always fail
4209// (3) superklass has NO subtypes and we can check with a simple compare.
4210int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4211 if (StressReflectiveCode) {
4212 return SSC_full_test; // Let caller generate the general case.
4213 }
4214
4215 if (superk == env()->Object_klass()) {
4216 return SSC_always_true; // (0) this test cannot fail
4217 }
4218
4219 ciType* superelem = superk;
4220 if (superelem->is_array_klass())
4221 superelem = superelem->as_array_klass()->base_element_type();
4222
4223 if (!subk->is_interface()) { // cannot trust static interface types yet
4224 if (subk->is_subtype_of(superk)) {
4225 return SSC_always_true; // (1) false path dead; no dynamic test needed
4226 }
4227 if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4228 !superk->is_subtype_of(subk)) {
4229 return SSC_always_false;
4230 }
4231 }
4232
4233 // If casting to an instance klass, it must have no subtypes
4234 if (superk->is_interface()) {
4235 // Cannot trust interfaces yet.
4236 // %%% S.B. superk->nof_implementors() == 1
4237 } else if (superelem->is_instance_klass()) {
4238 ciInstanceKlass* ik = superelem->as_instance_klass();
4239 if (!ik->has_subklass() && !ik->is_interface()) {
4240 if (!ik->is_final()) {
4241 // Add a dependency if there is a chance of a later subclass.
4242 dependencies()->assert_leaf_type(ik);
4243 }
4244 return SSC_easy_test; // (3) caller can do a simple ptr comparison
4245 }
4246 } else {
4247 // A primitive array type has no subtypes.
4248 return SSC_easy_test; // (3) caller can do a simple ptr comparison
4249 }
4250
4251 return SSC_full_test;
4252}
4253
4254Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4255#ifdef _LP64
4256 // The scaled index operand to AddP must be a clean 64-bit value.
4257 // Java allows a 32-bit int to be incremented to a negative
4258 // value, which appears in a 64-bit register as a large
4259 // positive number. Using that large positive number as an
4260 // operand in pointer arithmetic has bad consequences.
4261 // On the other hand, 32-bit overflow is rare, and the possibility
4262 // can often be excluded, if we annotate the ConvI2L node with
4263 // a type assertion that its value is known to be a small positive
4264 // number. (The prior range check has ensured this.)
4265 // This assertion is used by ConvI2LNode::Ideal.
4266 int index_max = max_jint - 1; // array size is max_jint, index is one less
4267 if (sizetype != NULL) index_max = sizetype->_hi - 1;
4268 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4269 idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4270#endif
4271 return idx;
4272}
4273
4274// Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4275Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4276 if (ctrl != NULL) {
4277 // Express control dependency by a CastII node with a narrow type.
4278 value = new CastIINode(value, itype, false, true /* range check dependency */);
4279 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4280 // node from floating above the range check during loop optimizations. Otherwise, the
4281 // ConvI2L node may be eliminated independently of the range check, causing the data path
4282 // to become TOP while the control path is still there (although it's unreachable).
4283 value->set_req(0, ctrl);
4284 // Save CastII node to remove it after loop optimizations.
4285 phase->C->add_range_check_cast(value);
4286 value = phase->transform(value);
4287 }
4288 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4289 return phase->transform(new ConvI2LNode(value, ltype));
4290}
4291
4292// The message about the current inlining is accumulated in
4293// _print_inlining_stream and transfered into the _print_inlining_list
4294// once we know whether inlining succeeds or not. For regular
4295// inlining, messages are appended to the buffer pointed by
4296// _print_inlining_idx in the _print_inlining_list. For late inlining,
4297// a new buffer is added after _print_inlining_idx in the list. This
4298// way we can update the inlining message for late inlining call site
4299// when the inlining is attempted again.
4300void Compile::print_inlining_init() {
4301 if (print_inlining() || print_intrinsics()) {
4302 _print_inlining_stream = new stringStream();
4303 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4304 }
4305}
4306
4307void Compile::print_inlining_reinit() {
4308 if (print_inlining() || print_intrinsics()) {
4309 // Re allocate buffer when we change ResourceMark
4310 _print_inlining_stream = new stringStream();
4311 }
4312}
4313
4314void Compile::print_inlining_reset() {
4315 _print_inlining_stream->reset();
4316}
4317
4318void Compile::print_inlining_commit() {
4319 assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4320 // Transfer the message from _print_inlining_stream to the current
4321 // _print_inlining_list buffer and clear _print_inlining_stream.
4322 _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4323 print_inlining_reset();
4324}
4325
4326void Compile::print_inlining_push() {
4327 // Add new buffer to the _print_inlining_list at current position
4328 _print_inlining_idx++;
4329 _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4330}
4331
4332Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4333 return _print_inlining_list->at(_print_inlining_idx);
4334}
4335
4336void Compile::print_inlining_update(CallGenerator* cg) {
4337 if (print_inlining() || print_intrinsics()) {
4338 if (!cg->is_late_inline()) {
4339 if (print_inlining_current().cg() != NULL) {
4340 print_inlining_push();
4341 }
4342 print_inlining_commit();
4343 } else {
4344 if (print_inlining_current().cg() != cg &&
4345 (print_inlining_current().cg() != NULL ||
4346 print_inlining_current().ss()->size() != 0)) {
4347 print_inlining_push();
4348 }
4349 print_inlining_commit();
4350 print_inlining_current().set_cg(cg);
4351 }
4352 }
4353}
4354
4355void Compile::print_inlining_move_to(CallGenerator* cg) {
4356 // We resume inlining at a late inlining call site. Locate the
4357 // corresponding inlining buffer so that we can update it.
4358 if (print_inlining()) {
4359 for (int i = 0; i < _print_inlining_list->length(); i++) {
4360 if (_print_inlining_list->adr_at(i)->cg() == cg) {
4361 _print_inlining_idx = i;
4362 return;
4363 }
4364 }
4365 ShouldNotReachHere();
4366 }
4367}
4368
4369void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4370 if (print_inlining()) {
4371 assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4372 assert(print_inlining_current().cg() == cg, "wrong entry");
4373 // replace message with new message
4374 _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4375 print_inlining_commit();
4376 print_inlining_current().set_cg(cg);
4377 }
4378}
4379
4380void Compile::print_inlining_assert_ready() {
4381 assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4382}
4383
4384void Compile::process_print_inlining() {
4385 bool do_print_inlining = print_inlining() || print_intrinsics();
4386 if (do_print_inlining || log() != NULL) {
4387 // Print inlining message for candidates that we couldn't inline
4388 // for lack of space
4389 for (int i = 0; i < _late_inlines.length(); i++) {
4390 CallGenerator* cg = _late_inlines.at(i);
4391 if (!cg->is_mh_late_inline()) {
4392 const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4393 if (do_print_inlining) {
4394 cg->print_inlining_late(msg);
4395 }
4396 log_late_inline_failure(cg, msg);
4397 }
4398 }
4399 }
4400 if (do_print_inlining) {
4401 ResourceMark rm;
4402 stringStream ss;
4403 for (int i = 0; i < _print_inlining_list->length(); i++) {
4404 ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4405 }
4406 size_t end = ss.size();
4407 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4408 strncpy(_print_inlining_output, ss.base(), end+1);
4409 _print_inlining_output[end] = 0;
4410 }
4411}
4412
4413void Compile::dump_print_inlining() {
4414 if (_print_inlining_output != NULL) {
4415 tty->print_raw(_print_inlining_output);
4416 }
4417}
4418
4419void Compile::log_late_inline(CallGenerator* cg) {
4420 if (log() != NULL) {
4421 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4422 cg->unique_id());
4423 JVMState* p = cg->call_node()->jvms();
4424 while (p != NULL) {
4425 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4426 p = p->caller();
4427 }
4428 log()->tail("late_inline");
4429 }
4430}
4431
4432void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4433 log_late_inline(cg);
4434 if (log() != NULL) {
4435 log()->inline_fail(msg);
4436 }
4437}
4438
4439void Compile::log_inline_id(CallGenerator* cg) {
4440 if (log() != NULL) {
4441 // The LogCompilation tool needs a unique way to identify late
4442 // inline call sites. This id must be unique for this call site in
4443 // this compilation. Try to have it unique across compilations as
4444 // well because it can be convenient when grepping through the log
4445 // file.
4446 // Distinguish OSR compilations from others in case CICountOSR is
4447 // on.
4448 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4449 cg->set_unique_id(id);
4450 log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4451 }
4452}
4453
4454void Compile::log_inline_failure(const char* msg) {
4455 if (C->log() != NULL) {
4456 C->log()->inline_fail(msg);
4457 }
4458}
4459
4460
4461// Dump inlining replay data to the stream.
4462// Don't change thread state and acquire any locks.
4463void Compile::dump_inline_data(outputStream* out) {
4464 InlineTree* inl_tree = ilt();
4465 if (inl_tree != NULL) {
4466 out->print(" inline %d", inl_tree->count());
4467 inl_tree->dump_replay_data(out);
4468 }
4469}
4470
4471int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4472 if (n1->Opcode() < n2->Opcode()) return -1;
4473 else if (n1->Opcode() > n2->Opcode()) return 1;
4474
4475 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4476 for (uint i = 1; i < n1->req(); i++) {
4477 if (n1->in(i) < n2->in(i)) return -1;
4478 else if (n1->in(i) > n2->in(i)) return 1;
4479 }
4480
4481 return 0;
4482}
4483
4484int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4485 Node* n1 = *n1p;
4486 Node* n2 = *n2p;
4487
4488 return cmp_expensive_nodes(n1, n2);
4489}
4490
4491void Compile::sort_expensive_nodes() {
4492 if (!expensive_nodes_sorted()) {
4493 _expensive_nodes->sort(cmp_expensive_nodes);
4494 }
4495}
4496
4497bool Compile::expensive_nodes_sorted() const {
4498 for (int i = 1; i < _expensive_nodes->length(); i++) {
4499 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4500 return false;
4501 }
4502 }
4503 return true;
4504}
4505
4506bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4507 if (_expensive_nodes->length() == 0) {
4508 return false;
4509 }
4510
4511 assert(OptimizeExpensiveOps, "optimization off?");
4512
4513 // Take this opportunity to remove dead nodes from the list
4514 int j = 0;
4515 for (int i = 0; i < _expensive_nodes->length(); i++) {
4516 Node* n = _expensive_nodes->at(i);
4517 if (!n->is_unreachable(igvn)) {
4518 assert(n->is_expensive(), "should be expensive");
4519 _expensive_nodes->at_put(j, n);
4520 j++;
4521 }
4522 }
4523 _expensive_nodes->trunc_to(j);
4524
4525 // Then sort the list so that similar nodes are next to each other
4526 // and check for at least two nodes of identical kind with same data
4527 // inputs.
4528 sort_expensive_nodes();
4529
4530 for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4531 if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4532 return true;
4533 }
4534 }
4535
4536 return false;
4537}
4538
4539void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4540 if (_expensive_nodes->length() == 0) {
4541 return;
4542 }
4543
4544 assert(OptimizeExpensiveOps, "optimization off?");
4545
4546 // Sort to bring similar nodes next to each other and clear the
4547 // control input of nodes for which there's only a single copy.
4548 sort_expensive_nodes();
4549
4550 int j = 0;
4551 int identical = 0;
4552 int i = 0;
4553 bool modified = false;
4554 for (; i < _expensive_nodes->length()-1; i++) {
4555 assert(j <= i, "can't write beyond current index");
4556 if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4557 identical++;
4558 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4559 continue;
4560 }
4561 if (identical > 0) {
4562 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4563 identical = 0;
4564 } else {
4565 Node* n = _expensive_nodes->at(i);
4566 igvn.replace_input_of(n, 0, NULL);
4567 igvn.hash_insert(n);
4568 modified = true;
4569 }
4570 }
4571 if (identical > 0) {
4572 _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4573 } else if (_expensive_nodes->length() >= 1) {
4574 Node* n = _expensive_nodes->at(i);
4575 igvn.replace_input_of(n, 0, NULL);
4576 igvn.hash_insert(n);
4577 modified = true;
4578 }
4579 _expensive_nodes->trunc_to(j);
4580 if (modified) {
4581 igvn.optimize();
4582 }
4583}
4584
4585void Compile::add_expensive_node(Node * n) {
4586 assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4587 assert(n->is_expensive(), "expensive nodes with non-null control here only");
4588 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4589 if (OptimizeExpensiveOps) {
4590 _expensive_nodes->append(n);
4591 } else {
4592 // Clear control input and let IGVN optimize expensive nodes if
4593 // OptimizeExpensiveOps is off.
4594 n->set_req(0, NULL);
4595 }
4596}
4597
4598/**
4599 * Remove the speculative part of types and clean up the graph
4600 */
4601void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4602 if (UseTypeSpeculation) {
4603 Unique_Node_List worklist;
4604 worklist.push(root());
4605 int modified = 0;
4606 // Go over all type nodes that carry a speculative type, drop the
4607 // speculative part of the type and enqueue the node for an igvn
4608 // which may optimize it out.
4609 for (uint next = 0; next < worklist.size(); ++next) {
4610 Node *n = worklist.at(next);
4611 if (n->is_Type()) {
4612 TypeNode* tn = n->as_Type();
4613 const Type* t = tn->type();
4614 const Type* t_no_spec = t->remove_speculative();
4615 if (t_no_spec != t) {
4616 bool in_hash = igvn.hash_delete(n);
4617 assert(in_hash, "node should be in igvn hash table");
4618 tn->set_type(t_no_spec);
4619 igvn.hash_insert(n);
4620 igvn._worklist.push(n); // give it a chance to go away
4621 modified++;
4622 }
4623 }
4624 uint max = n->len();
4625 for( uint i = 0; i < max; ++i ) {
4626 Node *m = n->in(i);
4627 if (not_a_node(m)) continue;
4628 worklist.push(m);
4629 }
4630 }
4631 // Drop the speculative part of all types in the igvn's type table
4632 igvn.remove_speculative_types();
4633 if (modified > 0) {
4634 igvn.optimize();
4635 }
4636#ifdef ASSERT
4637 // Verify that after the IGVN is over no speculative type has resurfaced
4638 worklist.clear();
4639 worklist.push(root());
4640 for (uint next = 0; next < worklist.size(); ++next) {
4641 Node *n = worklist.at(next);
4642 const Type* t = igvn.type_or_null(n);
4643 assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4644 if (n->is_Type()) {
4645 t = n->as_Type()->type();
4646 assert(t == t->remove_speculative(), "no more speculative types");
4647 }
4648 uint max = n->len();
4649 for( uint i = 0; i < max; ++i ) {
4650 Node *m = n->in(i);
4651 if (not_a_node(m)) continue;
4652 worklist.push(m);
4653 }
4654 }
4655 igvn.check_no_speculative_types();
4656#endif
4657 }
4658}
4659
4660// Auxiliary method to support randomized stressing/fuzzing.
4661//
4662// This method can be called the arbitrary number of times, with current count
4663// as the argument. The logic allows selecting a single candidate from the
4664// running list of candidates as follows:
4665// int count = 0;
4666// Cand* selected = null;
4667// while(cand = cand->next()) {
4668// if (randomized_select(++count)) {
4669// selected = cand;
4670// }
4671// }
4672//
4673// Including count equalizes the chances any candidate is "selected".
4674// This is useful when we don't have the complete list of candidates to choose
4675// from uniformly. In this case, we need to adjust the randomicity of the
4676// selection, or else we will end up biasing the selection towards the latter
4677// candidates.
4678//
4679// Quick back-envelope calculation shows that for the list of n candidates
4680// the equal probability for the candidate to persist as "best" can be
4681// achieved by replacing it with "next" k-th candidate with the probability
4682// of 1/k. It can be easily shown that by the end of the run, the
4683// probability for any candidate is converged to 1/n, thus giving the
4684// uniform distribution among all the candidates.
4685//
4686// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4687#define RANDOMIZED_DOMAIN_POW 29
4688#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4689#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4690bool Compile::randomized_select(int count) {
4691 assert(count > 0, "only positive");
4692 return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4693}
4694
4695CloneMap& Compile::clone_map() { return _clone_map; }
4696void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; }
4697
4698void NodeCloneInfo::dump() const {
4699 tty->print(" {%d:%d} ", idx(), gen());
4700}
4701
4702void CloneMap::clone(Node* old, Node* nnn, int gen) {
4703 uint64_t val = value(old->_idx);
4704 NodeCloneInfo cio(val);
4705 assert(val != 0, "old node should be in the map");
4706 NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4707 insert(nnn->_idx, cin.get());
4708#ifndef PRODUCT
4709 if (is_debug()) {
4710 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4711 }
4712#endif
4713}
4714
4715void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4716 NodeCloneInfo cio(value(old->_idx));
4717 if (cio.get() == 0) {
4718 cio.set(old->_idx, 0);
4719 insert(old->_idx, cio.get());
4720#ifndef PRODUCT
4721 if (is_debug()) {
4722 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4723 }
4724#endif
4725 }
4726 clone(old, nnn, gen);
4727}
4728
4729int CloneMap::max_gen() const {
4730 int g = 0;
4731 DictI di(_dict);
4732 for(; di.test(); ++di) {
4733 int t = gen(di._key);
4734 if (g < t) {
4735 g = t;
4736#ifndef PRODUCT
4737 if (is_debug()) {
4738 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4739 }
4740#endif
4741 }
4742 }
4743 return g;
4744}
4745
4746void CloneMap::dump(node_idx_t key) const {
4747 uint64_t val = value(key);
4748 if (val != 0) {
4749 NodeCloneInfo ni(val);
4750 ni.dump();
4751 }
4752}
4753