1 | /**************************************************************************/ |
2 | /* importer_mesh.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "importer_mesh.h" |
32 | |
33 | #include "core/io/marshalls.h" |
34 | #include "core/math/convex_hull.h" |
35 | #include "core/math/random_pcg.h" |
36 | #include "core/math/static_raycaster.h" |
37 | #include "scene/resources/surface_tool.h" |
38 | |
39 | #include <cstdint> |
40 | |
41 | void ImporterMesh::Surface::split_normals(const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) { |
42 | _split_normals(arrays, p_indices, p_normals); |
43 | |
44 | for (BlendShape &blend_shape : blend_shape_data) { |
45 | _split_normals(blend_shape.arrays, p_indices, p_normals); |
46 | } |
47 | } |
48 | |
49 | void ImporterMesh::Surface::_split_normals(Array &r_arrays, const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) { |
50 | ERR_FAIL_COND(r_arrays.size() != RS::ARRAY_MAX); |
51 | |
52 | const PackedVector3Array &vertices = r_arrays[RS::ARRAY_VERTEX]; |
53 | int current_vertex_count = vertices.size(); |
54 | int new_vertex_count = p_indices.size(); |
55 | int final_vertex_count = current_vertex_count + new_vertex_count; |
56 | const int *indices_ptr = p_indices.ptr(); |
57 | |
58 | for (int i = 0; i < r_arrays.size(); i++) { |
59 | if (i == RS::ARRAY_INDEX) { |
60 | continue; |
61 | } |
62 | |
63 | if (r_arrays[i].get_type() == Variant::NIL) { |
64 | continue; |
65 | } |
66 | |
67 | switch (r_arrays[i].get_type()) { |
68 | case Variant::PACKED_VECTOR3_ARRAY: { |
69 | PackedVector3Array data = r_arrays[i]; |
70 | data.resize(final_vertex_count); |
71 | Vector3 *data_ptr = data.ptrw(); |
72 | if (i == RS::ARRAY_NORMAL) { |
73 | const Vector3 *normals_ptr = p_normals.ptr(); |
74 | memcpy(&data_ptr[current_vertex_count], normals_ptr, sizeof(Vector3) * new_vertex_count); |
75 | } else { |
76 | for (int j = 0; j < new_vertex_count; j++) { |
77 | data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; |
78 | } |
79 | } |
80 | r_arrays[i] = data; |
81 | } break; |
82 | case Variant::PACKED_VECTOR2_ARRAY: { |
83 | PackedVector2Array data = r_arrays[i]; |
84 | data.resize(final_vertex_count); |
85 | Vector2 *data_ptr = data.ptrw(); |
86 | for (int j = 0; j < new_vertex_count; j++) { |
87 | data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; |
88 | } |
89 | r_arrays[i] = data; |
90 | } break; |
91 | case Variant::PACKED_FLOAT32_ARRAY: { |
92 | PackedFloat32Array data = r_arrays[i]; |
93 | int elements = data.size() / current_vertex_count; |
94 | data.resize(final_vertex_count * elements); |
95 | float *data_ptr = data.ptrw(); |
96 | for (int j = 0; j < new_vertex_count; j++) { |
97 | memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(float) * elements); |
98 | } |
99 | r_arrays[i] = data; |
100 | } break; |
101 | case Variant::PACKED_INT32_ARRAY: { |
102 | PackedInt32Array data = r_arrays[i]; |
103 | int elements = data.size() / current_vertex_count; |
104 | data.resize(final_vertex_count * elements); |
105 | int32_t *data_ptr = data.ptrw(); |
106 | for (int j = 0; j < new_vertex_count; j++) { |
107 | memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(int32_t) * elements); |
108 | } |
109 | r_arrays[i] = data; |
110 | } break; |
111 | case Variant::PACKED_BYTE_ARRAY: { |
112 | PackedByteArray data = r_arrays[i]; |
113 | int elements = data.size() / current_vertex_count; |
114 | data.resize(final_vertex_count * elements); |
115 | uint8_t *data_ptr = data.ptrw(); |
116 | for (int j = 0; j < new_vertex_count; j++) { |
117 | memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(uint8_t) * elements); |
118 | } |
119 | r_arrays[i] = data; |
120 | } break; |
121 | case Variant::PACKED_COLOR_ARRAY: { |
122 | PackedColorArray data = r_arrays[i]; |
123 | data.resize(final_vertex_count); |
124 | Color *data_ptr = data.ptrw(); |
125 | for (int j = 0; j < new_vertex_count; j++) { |
126 | data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; |
127 | } |
128 | r_arrays[i] = data; |
129 | } break; |
130 | default: { |
131 | ERR_FAIL_MSG("Unhandled array type." ); |
132 | } break; |
133 | } |
134 | } |
135 | } |
136 | |
137 | void ImporterMesh::add_blend_shape(const String &p_name) { |
138 | ERR_FAIL_COND(surfaces.size() > 0); |
139 | blend_shapes.push_back(p_name); |
140 | } |
141 | |
142 | int ImporterMesh::get_blend_shape_count() const { |
143 | return blend_shapes.size(); |
144 | } |
145 | |
146 | String ImporterMesh::get_blend_shape_name(int p_blend_shape) const { |
147 | ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String()); |
148 | return blend_shapes[p_blend_shape]; |
149 | } |
150 | |
151 | void ImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) { |
152 | blend_shape_mode = p_blend_shape_mode; |
153 | } |
154 | |
155 | Mesh::BlendShapeMode ImporterMesh::get_blend_shape_mode() const { |
156 | return blend_shape_mode; |
157 | } |
158 | |
159 | void ImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const TypedArray<Array> &p_blend_shapes, const Dictionary &p_lods, const Ref<Material> &p_material, const String &p_name, const uint32_t p_flags) { |
160 | ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size()); |
161 | ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX); |
162 | Surface s; |
163 | s.primitive = p_primitive; |
164 | s.arrays = p_arrays; |
165 | s.name = p_name; |
166 | s.flags = p_flags; |
167 | |
168 | Vector<Vector3> vertex_array = p_arrays[Mesh::ARRAY_VERTEX]; |
169 | int vertex_count = vertex_array.size(); |
170 | ERR_FAIL_COND(vertex_count == 0); |
171 | |
172 | for (int i = 0; i < blend_shapes.size(); i++) { |
173 | Array bsdata = p_blend_shapes[i]; |
174 | ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX); |
175 | Vector<Vector3> vertex_data = bsdata[Mesh::ARRAY_VERTEX]; |
176 | ERR_FAIL_COND(vertex_data.size() != vertex_count); |
177 | Surface::BlendShape bs; |
178 | bs.arrays = bsdata; |
179 | s.blend_shape_data.push_back(bs); |
180 | } |
181 | |
182 | List<Variant> lods; |
183 | p_lods.get_key_list(&lods); |
184 | for (const Variant &E : lods) { |
185 | ERR_CONTINUE(!E.is_num()); |
186 | Surface::LOD lod; |
187 | lod.distance = E; |
188 | lod.indices = p_lods[E]; |
189 | ERR_CONTINUE(lod.indices.size() == 0); |
190 | s.lods.push_back(lod); |
191 | } |
192 | |
193 | s.material = p_material; |
194 | |
195 | surfaces.push_back(s); |
196 | mesh.unref(); |
197 | } |
198 | |
199 | int ImporterMesh::get_surface_count() const { |
200 | return surfaces.size(); |
201 | } |
202 | |
203 | Mesh::PrimitiveType ImporterMesh::get_surface_primitive_type(int p_surface) { |
204 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX); |
205 | return surfaces[p_surface].primitive; |
206 | } |
207 | Array ImporterMesh::get_surface_arrays(int p_surface) const { |
208 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); |
209 | return surfaces[p_surface].arrays; |
210 | } |
211 | String ImporterMesh::get_surface_name(int p_surface) const { |
212 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String()); |
213 | return surfaces[p_surface].name; |
214 | } |
215 | void ImporterMesh::set_surface_name(int p_surface, const String &p_name) { |
216 | ERR_FAIL_INDEX(p_surface, surfaces.size()); |
217 | surfaces.write[p_surface].name = p_name; |
218 | mesh.unref(); |
219 | } |
220 | |
221 | Array ImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const { |
222 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); |
223 | ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array()); |
224 | return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays; |
225 | } |
226 | int ImporterMesh::get_surface_lod_count(int p_surface) const { |
227 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); |
228 | return surfaces[p_surface].lods.size(); |
229 | } |
230 | Vector<int> ImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const { |
231 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector<int>()); |
232 | ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector<int>()); |
233 | |
234 | return surfaces[p_surface].lods[p_lod].indices; |
235 | } |
236 | |
237 | float ImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const { |
238 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); |
239 | ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0); |
240 | return surfaces[p_surface].lods[p_lod].distance; |
241 | } |
242 | |
243 | uint32_t ImporterMesh::get_surface_format(int p_surface) const { |
244 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); |
245 | return surfaces[p_surface].flags; |
246 | } |
247 | |
248 | Ref<Material> ImporterMesh::get_surface_material(int p_surface) const { |
249 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref<Material>()); |
250 | return surfaces[p_surface].material; |
251 | } |
252 | |
253 | void ImporterMesh::set_surface_material(int p_surface, const Ref<Material> &p_material) { |
254 | ERR_FAIL_INDEX(p_surface, surfaces.size()); |
255 | surfaces.write[p_surface].material = p_material; |
256 | mesh.unref(); |
257 | } |
258 | |
259 | #define VERTEX_SKIN_FUNC(bone_count, vert_idx, read_array, write_array, transform_array, bone_array, weight_array) \ |
260 | Vector3 transformed_vert; \ |
261 | for (unsigned int weight_idx = 0; weight_idx < bone_count; weight_idx++) { \ |
262 | int bone_idx = bone_array[vert_idx * bone_count + weight_idx]; \ |
263 | float w = weight_array[vert_idx * bone_count + weight_idx]; \ |
264 | if (w < FLT_EPSILON) { \ |
265 | continue; \ |
266 | } \ |
267 | ERR_FAIL_INDEX(bone_idx, static_cast<int>(transform_array.size())); \ |
268 | transformed_vert += transform_array[bone_idx].xform(read_array[vert_idx]) * w; \ |
269 | } \ |
270 | write_array[vert_idx] = transformed_vert; |
271 | |
272 | void ImporterMesh::generate_lods(float p_normal_merge_angle, float p_normal_split_angle, Array p_bone_transform_array) { |
273 | if (!SurfaceTool::simplify_scale_func) { |
274 | return; |
275 | } |
276 | if (!SurfaceTool::simplify_with_attrib_func) { |
277 | return; |
278 | } |
279 | if (!SurfaceTool::optimize_vertex_cache_func) { |
280 | return; |
281 | } |
282 | |
283 | LocalVector<Transform3D> bone_transform_vector; |
284 | for (int i = 0; i < p_bone_transform_array.size(); i++) { |
285 | ERR_FAIL_COND(p_bone_transform_array[i].get_type() != Variant::TRANSFORM3D); |
286 | bone_transform_vector.push_back(p_bone_transform_array[i]); |
287 | } |
288 | |
289 | for (int i = 0; i < surfaces.size(); i++) { |
290 | if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) { |
291 | continue; |
292 | } |
293 | |
294 | surfaces.write[i].lods.clear(); |
295 | Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX]; |
296 | PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX]; |
297 | Vector<Vector3> normals = surfaces[i].arrays[RS::ARRAY_NORMAL]; |
298 | Vector<Vector2> uvs = surfaces[i].arrays[RS::ARRAY_TEX_UV]; |
299 | Vector<Vector2> uv2s = surfaces[i].arrays[RS::ARRAY_TEX_UV2]; |
300 | Vector<int> bones = surfaces[i].arrays[RS::ARRAY_BONES]; |
301 | Vector<float> weights = surfaces[i].arrays[RS::ARRAY_WEIGHTS]; |
302 | |
303 | unsigned int index_count = indices.size(); |
304 | unsigned int vertex_count = vertices.size(); |
305 | |
306 | if (index_count == 0) { |
307 | continue; //no lods if no indices |
308 | } |
309 | |
310 | const Vector3 *vertices_ptr = vertices.ptr(); |
311 | const int *indices_ptr = indices.ptr(); |
312 | |
313 | if (normals.is_empty()) { |
314 | normals.resize(index_count); |
315 | Vector3 *n_ptr = normals.ptrw(); |
316 | for (unsigned int j = 0; j < index_count; j += 3) { |
317 | const Vector3 &v0 = vertices_ptr[indices_ptr[j + 0]]; |
318 | const Vector3 &v1 = vertices_ptr[indices_ptr[j + 1]]; |
319 | const Vector3 &v2 = vertices_ptr[indices_ptr[j + 2]]; |
320 | Vector3 n = vec3_cross(v0 - v2, v0 - v1).normalized(); |
321 | n_ptr[j + 0] = n; |
322 | n_ptr[j + 1] = n; |
323 | n_ptr[j + 2] = n; |
324 | } |
325 | } |
326 | |
327 | if (bones.size() > 0 && weights.size() && bone_transform_vector.size() > 0) { |
328 | Vector3 *vertices_ptrw = vertices.ptrw(); |
329 | |
330 | // Apply bone transforms to regular surface. |
331 | unsigned int bone_weight_length = surfaces[i].flags & Mesh::ARRAY_FLAG_USE_8_BONE_WEIGHTS ? 8 : 4; |
332 | |
333 | const int *bo = bones.ptr(); |
334 | const float *we = weights.ptr(); |
335 | |
336 | for (unsigned int j = 0; j < vertex_count; j++) { |
337 | VERTEX_SKIN_FUNC(bone_weight_length, j, vertices_ptr, vertices_ptrw, bone_transform_vector, bo, we) |
338 | } |
339 | |
340 | vertices_ptr = vertices.ptr(); |
341 | } |
342 | |
343 | float normal_merge_threshold = Math::cos(Math::deg_to_rad(p_normal_merge_angle)); |
344 | float normal_pre_split_threshold = Math::cos(Math::deg_to_rad(MIN(180.0f, p_normal_split_angle * 2.0f))); |
345 | float normal_split_threshold = Math::cos(Math::deg_to_rad(p_normal_split_angle)); |
346 | const Vector3 *normals_ptr = normals.ptr(); |
347 | |
348 | HashMap<Vector3, LocalVector<Pair<int, int>>> unique_vertices; |
349 | |
350 | LocalVector<int> vertex_remap; |
351 | LocalVector<int> vertex_inverse_remap; |
352 | LocalVector<Vector3> merged_vertices; |
353 | LocalVector<Vector3> merged_normals; |
354 | LocalVector<int> merged_normals_counts; |
355 | const Vector2 *uvs_ptr = uvs.ptr(); |
356 | const Vector2 *uv2s_ptr = uv2s.ptr(); |
357 | |
358 | for (unsigned int j = 0; j < vertex_count; j++) { |
359 | const Vector3 &v = vertices_ptr[j]; |
360 | const Vector3 &n = normals_ptr[j]; |
361 | |
362 | HashMap<Vector3, LocalVector<Pair<int, int>>>::Iterator E = unique_vertices.find(v); |
363 | |
364 | if (E) { |
365 | const LocalVector<Pair<int, int>> &close_verts = E->value; |
366 | |
367 | bool found = false; |
368 | for (const Pair<int, int> &idx : close_verts) { |
369 | bool is_uvs_close = (!uvs_ptr || uvs_ptr[j].distance_squared_to(uvs_ptr[idx.second]) < CMP_EPSILON2); |
370 | bool is_uv2s_close = (!uv2s_ptr || uv2s_ptr[j].distance_squared_to(uv2s_ptr[idx.second]) < CMP_EPSILON2); |
371 | ERR_FAIL_INDEX(idx.second, normals.size()); |
372 | bool is_normals_close = normals[idx.second].dot(n) > normal_merge_threshold; |
373 | if (is_uvs_close && is_uv2s_close && is_normals_close) { |
374 | vertex_remap.push_back(idx.first); |
375 | merged_normals[idx.first] += normals[idx.second]; |
376 | merged_normals_counts[idx.first]++; |
377 | found = true; |
378 | break; |
379 | } |
380 | } |
381 | |
382 | if (!found) { |
383 | int vcount = merged_vertices.size(); |
384 | unique_vertices[v].push_back(Pair<int, int>(vcount, j)); |
385 | vertex_inverse_remap.push_back(j); |
386 | merged_vertices.push_back(v); |
387 | vertex_remap.push_back(vcount); |
388 | merged_normals.push_back(normals_ptr[j]); |
389 | merged_normals_counts.push_back(1); |
390 | } |
391 | } else { |
392 | int vcount = merged_vertices.size(); |
393 | unique_vertices[v] = LocalVector<Pair<int, int>>(); |
394 | unique_vertices[v].push_back(Pair<int, int>(vcount, j)); |
395 | vertex_inverse_remap.push_back(j); |
396 | merged_vertices.push_back(v); |
397 | vertex_remap.push_back(vcount); |
398 | merged_normals.push_back(normals_ptr[j]); |
399 | merged_normals_counts.push_back(1); |
400 | } |
401 | } |
402 | |
403 | LocalVector<int> merged_indices; |
404 | merged_indices.resize(index_count); |
405 | for (unsigned int j = 0; j < index_count; j++) { |
406 | merged_indices[j] = vertex_remap[indices[j]]; |
407 | } |
408 | |
409 | unsigned int merged_vertex_count = merged_vertices.size(); |
410 | const Vector3 *merged_vertices_ptr = merged_vertices.ptr(); |
411 | const int32_t *merged_indices_ptr = merged_indices.ptr(); |
412 | |
413 | { |
414 | const int *counts_ptr = merged_normals_counts.ptr(); |
415 | Vector3 *merged_normals_ptrw = merged_normals.ptr(); |
416 | for (unsigned int j = 0; j < merged_vertex_count; j++) { |
417 | merged_normals_ptrw[j] /= counts_ptr[j]; |
418 | } |
419 | } |
420 | |
421 | LocalVector<float> normal_weights; |
422 | normal_weights.resize(merged_vertex_count); |
423 | for (unsigned int j = 0; j < merged_vertex_count; j++) { |
424 | normal_weights[j] = 2.0; // Give some weight to normal preservation, may be worth exposing as an import setting |
425 | } |
426 | |
427 | Vector<float> merged_vertices_f32 = vector3_to_float32_array(merged_vertices_ptr, merged_vertex_count); |
428 | float scale = SurfaceTool::simplify_scale_func(merged_vertices_f32.ptr(), merged_vertex_count, sizeof(float) * 3); |
429 | |
430 | unsigned int index_target = 12; // Start with the smallest target, 4 triangles |
431 | unsigned int last_index_count = 0; |
432 | |
433 | int split_vertex_count = vertex_count; |
434 | LocalVector<Vector3> split_vertex_normals; |
435 | LocalVector<int> split_vertex_indices; |
436 | split_vertex_normals.reserve(index_count / 3); |
437 | split_vertex_indices.reserve(index_count / 3); |
438 | |
439 | RandomPCG pcg; |
440 | pcg.seed(123456789); // Keep seed constant across imports |
441 | |
442 | Ref<StaticRaycaster> raycaster = StaticRaycaster::create(); |
443 | if (raycaster.is_valid()) { |
444 | raycaster->add_mesh(vertices, indices, 0); |
445 | raycaster->commit(); |
446 | } |
447 | |
448 | const float max_mesh_error = FLT_MAX; // We don't want to limit by error, just by index target |
449 | float mesh_error = 0.0f; |
450 | |
451 | while (index_target < index_count) { |
452 | PackedInt32Array new_indices; |
453 | new_indices.resize(index_count); |
454 | |
455 | Vector<float> merged_normals_f32 = vector3_to_float32_array(merged_normals.ptr(), merged_normals.size()); |
456 | const int simplify_options = SurfaceTool::SIMPLIFY_LOCK_BORDER; |
457 | |
458 | size_t new_index_count = SurfaceTool::simplify_with_attrib_func( |
459 | (unsigned int *)new_indices.ptrw(), |
460 | (const uint32_t *)merged_indices_ptr, index_count, |
461 | merged_vertices_f32.ptr(), merged_vertex_count, |
462 | sizeof(float) * 3, // Vertex stride |
463 | index_target, |
464 | max_mesh_error, |
465 | simplify_options, |
466 | &mesh_error, |
467 | merged_normals_f32.ptr(), |
468 | normal_weights.ptr(), 3); |
469 | |
470 | if (new_index_count < last_index_count * 1.5f) { |
471 | index_target = index_target * 1.5f; |
472 | continue; |
473 | } |
474 | |
475 | if (new_index_count == 0 || (new_index_count >= (index_count * 0.75f))) { |
476 | break; |
477 | } |
478 | |
479 | new_indices.resize(new_index_count); |
480 | |
481 | LocalVector<LocalVector<int>> vertex_corners; |
482 | vertex_corners.resize(vertex_count); |
483 | { |
484 | int *ptrw = new_indices.ptrw(); |
485 | for (unsigned int j = 0; j < new_index_count; j++) { |
486 | const int &remapped = vertex_inverse_remap[ptrw[j]]; |
487 | vertex_corners[remapped].push_back(j); |
488 | ptrw[j] = remapped; |
489 | } |
490 | } |
491 | |
492 | if (raycaster.is_valid()) { |
493 | float error_factor = 1.0f / (scale * MAX(mesh_error, 0.15)); |
494 | const float ray_bias = 0.05; |
495 | float ray_length = ray_bias + mesh_error * scale * 3.0f; |
496 | |
497 | Vector<StaticRaycaster::Ray> rays; |
498 | LocalVector<Vector2> ray_uvs; |
499 | |
500 | int32_t *new_indices_ptr = new_indices.ptrw(); |
501 | |
502 | int current_ray_count = 0; |
503 | for (unsigned int j = 0; j < new_index_count; j += 3) { |
504 | const Vector3 &v0 = vertices_ptr[new_indices_ptr[j + 0]]; |
505 | const Vector3 &v1 = vertices_ptr[new_indices_ptr[j + 1]]; |
506 | const Vector3 &v2 = vertices_ptr[new_indices_ptr[j + 2]]; |
507 | Vector3 face_normal = vec3_cross(v0 - v2, v0 - v1); |
508 | float face_area = face_normal.length(); // Actually twice the face area, since it's the same error_factor on all faces, we don't care |
509 | |
510 | Vector3 dir = face_normal / face_area; |
511 | int ray_count = CLAMP(5.0 * face_area * error_factor, 16, 64); |
512 | |
513 | rays.resize(current_ray_count + ray_count); |
514 | StaticRaycaster::Ray *rays_ptr = rays.ptrw(); |
515 | |
516 | ray_uvs.resize(current_ray_count + ray_count); |
517 | Vector2 *ray_uvs_ptr = ray_uvs.ptr(); |
518 | |
519 | for (int k = 0; k < ray_count; k++) { |
520 | float u = pcg.randf(); |
521 | float v = pcg.randf(); |
522 | |
523 | if (u + v >= 1.0f) { |
524 | u = 1.0f - u; |
525 | v = 1.0f - v; |
526 | } |
527 | |
528 | u = 0.9f * u + 0.05f / 3.0f; // Give barycentric coordinates some padding, we don't want to sample right on the edge |
529 | v = 0.9f * v + 0.05f / 3.0f; // v = (v - one_third) * 0.95f + one_third; |
530 | float w = 1.0f - u - v; |
531 | |
532 | Vector3 org = v0 * w + v1 * u + v2 * v; |
533 | org -= dir * ray_bias; |
534 | rays_ptr[current_ray_count + k] = StaticRaycaster::Ray(org, dir, 0.0f, ray_length); |
535 | rays_ptr[current_ray_count + k].id = j / 3; |
536 | ray_uvs_ptr[current_ray_count + k] = Vector2(u, v); |
537 | } |
538 | |
539 | current_ray_count += ray_count; |
540 | } |
541 | |
542 | raycaster->intersect(rays); |
543 | |
544 | LocalVector<Vector3> ray_normals; |
545 | LocalVector<real_t> ray_normal_weights; |
546 | |
547 | ray_normals.resize(new_index_count); |
548 | ray_normal_weights.resize(new_index_count); |
549 | |
550 | for (unsigned int j = 0; j < new_index_count; j++) { |
551 | ray_normal_weights[j] = 0.0f; |
552 | } |
553 | |
554 | const StaticRaycaster::Ray *rp = rays.ptr(); |
555 | for (int j = 0; j < rays.size(); j++) { |
556 | if (rp[j].geomID != 0) { // Ray missed |
557 | continue; |
558 | } |
559 | |
560 | if (rp[j].normal.normalized().dot(rp[j].dir) > 0.0f) { // Hit a back face. |
561 | continue; |
562 | } |
563 | |
564 | const float &u = rp[j].u; |
565 | const float &v = rp[j].v; |
566 | const float w = 1.0f - u - v; |
567 | |
568 | const unsigned int &hit_tri_id = rp[j].primID; |
569 | const unsigned int &orig_tri_id = rp[j].id; |
570 | |
571 | const Vector3 &n0 = normals_ptr[indices_ptr[hit_tri_id * 3 + 0]]; |
572 | const Vector3 &n1 = normals_ptr[indices_ptr[hit_tri_id * 3 + 1]]; |
573 | const Vector3 &n2 = normals_ptr[indices_ptr[hit_tri_id * 3 + 2]]; |
574 | Vector3 normal = n0 * w + n1 * u + n2 * v; |
575 | |
576 | Vector2 orig_uv = ray_uvs[j]; |
577 | const real_t orig_bary[3] = { 1.0f - orig_uv.x - orig_uv.y, orig_uv.x, orig_uv.y }; |
578 | for (int k = 0; k < 3; k++) { |
579 | int idx = orig_tri_id * 3 + k; |
580 | real_t weight = orig_bary[k]; |
581 | ray_normals[idx] += normal * weight; |
582 | ray_normal_weights[idx] += weight; |
583 | } |
584 | } |
585 | |
586 | for (unsigned int j = 0; j < new_index_count; j++) { |
587 | if (ray_normal_weights[j] < 1.0f) { // Not enough data, the new normal would be just a bad guess |
588 | ray_normals[j] = Vector3(); |
589 | } else { |
590 | ray_normals[j] /= ray_normal_weights[j]; |
591 | } |
592 | } |
593 | |
594 | LocalVector<LocalVector<int>> normal_group_indices; |
595 | LocalVector<Vector3> normal_group_averages; |
596 | normal_group_indices.reserve(24); |
597 | normal_group_averages.reserve(24); |
598 | |
599 | for (unsigned int j = 0; j < vertex_count; j++) { |
600 | const LocalVector<int> &corners = vertex_corners[j]; |
601 | const Vector3 &vertex_normal = normals_ptr[j]; |
602 | |
603 | for (const int &corner_idx : corners) { |
604 | const Vector3 &ray_normal = ray_normals[corner_idx]; |
605 | |
606 | if (ray_normal.length_squared() < CMP_EPSILON2) { |
607 | continue; |
608 | } |
609 | |
610 | bool found = false; |
611 | for (unsigned int l = 0; l < normal_group_indices.size(); l++) { |
612 | LocalVector<int> &group_indices = normal_group_indices[l]; |
613 | Vector3 n = normal_group_averages[l] / group_indices.size(); |
614 | if (n.dot(ray_normal) > normal_pre_split_threshold) { |
615 | found = true; |
616 | group_indices.push_back(corner_idx); |
617 | normal_group_averages[l] += ray_normal; |
618 | break; |
619 | } |
620 | } |
621 | |
622 | if (!found) { |
623 | normal_group_indices.push_back({ corner_idx }); |
624 | normal_group_averages.push_back(ray_normal); |
625 | } |
626 | } |
627 | |
628 | for (unsigned int k = 0; k < normal_group_indices.size(); k++) { |
629 | LocalVector<int> &group_indices = normal_group_indices[k]; |
630 | Vector3 n = normal_group_averages[k] / group_indices.size(); |
631 | |
632 | if (vertex_normal.dot(n) < normal_split_threshold) { |
633 | split_vertex_indices.push_back(j); |
634 | split_vertex_normals.push_back(n); |
635 | int new_idx = split_vertex_count++; |
636 | for (const int &index : group_indices) { |
637 | new_indices_ptr[index] = new_idx; |
638 | } |
639 | } |
640 | } |
641 | |
642 | normal_group_indices.clear(); |
643 | normal_group_averages.clear(); |
644 | } |
645 | } |
646 | |
647 | Surface::LOD lod; |
648 | lod.distance = MAX(mesh_error * scale, CMP_EPSILON2); |
649 | lod.indices = new_indices; |
650 | surfaces.write[i].lods.push_back(lod); |
651 | index_target = MAX(new_index_count, index_target) * 2; |
652 | last_index_count = new_index_count; |
653 | |
654 | if (mesh_error == 0.0f) { |
655 | break; |
656 | } |
657 | } |
658 | |
659 | surfaces.write[i].split_normals(split_vertex_indices, split_vertex_normals); |
660 | surfaces.write[i].lods.sort_custom<Surface::LODComparator>(); |
661 | |
662 | for (int j = 0; j < surfaces.write[i].lods.size(); j++) { |
663 | Surface::LOD &lod = surfaces.write[i].lods.write[j]; |
664 | unsigned int *lod_indices_ptr = (unsigned int *)lod.indices.ptrw(); |
665 | SurfaceTool::optimize_vertex_cache_func(lod_indices_ptr, lod_indices_ptr, lod.indices.size(), split_vertex_count); |
666 | } |
667 | } |
668 | } |
669 | |
670 | bool ImporterMesh::has_mesh() const { |
671 | return mesh.is_valid(); |
672 | } |
673 | |
674 | Ref<ArrayMesh> ImporterMesh::get_mesh(const Ref<ArrayMesh> &p_base) { |
675 | ERR_FAIL_COND_V(surfaces.size() == 0, Ref<ArrayMesh>()); |
676 | |
677 | if (mesh.is_null()) { |
678 | if (p_base.is_valid()) { |
679 | mesh = p_base; |
680 | } |
681 | if (mesh.is_null()) { |
682 | mesh.instantiate(); |
683 | } |
684 | mesh->set_name(get_name()); |
685 | if (has_meta("import_id" )) { |
686 | mesh->set_meta("import_id" , get_meta("import_id" )); |
687 | } |
688 | for (int i = 0; i < blend_shapes.size(); i++) { |
689 | mesh->add_blend_shape(blend_shapes[i]); |
690 | } |
691 | mesh->set_blend_shape_mode(blend_shape_mode); |
692 | for (int i = 0; i < surfaces.size(); i++) { |
693 | Array bs_data; |
694 | if (surfaces[i].blend_shape_data.size()) { |
695 | for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) { |
696 | bs_data.push_back(surfaces[i].blend_shape_data[j].arrays); |
697 | } |
698 | } |
699 | Dictionary lods; |
700 | if (surfaces[i].lods.size()) { |
701 | for (int j = 0; j < surfaces[i].lods.size(); j++) { |
702 | lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices; |
703 | } |
704 | } |
705 | |
706 | mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods, surfaces[i].flags); |
707 | if (surfaces[i].material.is_valid()) { |
708 | mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material); |
709 | } |
710 | if (!surfaces[i].name.is_empty()) { |
711 | mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name); |
712 | } |
713 | } |
714 | |
715 | mesh->set_lightmap_size_hint(lightmap_size_hint); |
716 | |
717 | if (shadow_mesh.is_valid()) { |
718 | Ref<ArrayMesh> shadow = shadow_mesh->get_mesh(); |
719 | mesh->set_shadow_mesh(shadow); |
720 | } |
721 | } |
722 | |
723 | return mesh; |
724 | } |
725 | |
726 | void ImporterMesh::clear() { |
727 | surfaces.clear(); |
728 | blend_shapes.clear(); |
729 | mesh.unref(); |
730 | } |
731 | |
732 | void ImporterMesh::create_shadow_mesh() { |
733 | if (shadow_mesh.is_valid()) { |
734 | shadow_mesh.unref(); |
735 | } |
736 | |
737 | //no shadow mesh for blendshapes |
738 | if (blend_shapes.size() > 0) { |
739 | return; |
740 | } |
741 | //no shadow mesh for skeletons |
742 | for (int i = 0; i < surfaces.size(); i++) { |
743 | if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) { |
744 | return; |
745 | } |
746 | if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) { |
747 | return; |
748 | } |
749 | } |
750 | |
751 | shadow_mesh.instantiate(); |
752 | |
753 | for (int i = 0; i < surfaces.size(); i++) { |
754 | LocalVector<int> vertex_remap; |
755 | Vector<Vector3> new_vertices; |
756 | Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX]; |
757 | int vertex_count = vertices.size(); |
758 | { |
759 | HashMap<Vector3, int> unique_vertices; |
760 | const Vector3 *vptr = vertices.ptr(); |
761 | for (int j = 0; j < vertex_count; j++) { |
762 | const Vector3 &v = vptr[j]; |
763 | |
764 | HashMap<Vector3, int>::Iterator E = unique_vertices.find(v); |
765 | |
766 | if (E) { |
767 | vertex_remap.push_back(E->value); |
768 | } else { |
769 | int vcount = unique_vertices.size(); |
770 | unique_vertices[v] = vcount; |
771 | vertex_remap.push_back(vcount); |
772 | new_vertices.push_back(v); |
773 | } |
774 | } |
775 | } |
776 | |
777 | Array new_surface; |
778 | new_surface.resize(RS::ARRAY_MAX); |
779 | Dictionary lods; |
780 | |
781 | // print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size())); |
782 | |
783 | new_surface[RS::ARRAY_VERTEX] = new_vertices; |
784 | |
785 | Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX]; |
786 | if (indices.size()) { |
787 | int index_count = indices.size(); |
788 | const int *index_rptr = indices.ptr(); |
789 | Vector<int> new_indices; |
790 | new_indices.resize(indices.size()); |
791 | int *index_wptr = new_indices.ptrw(); |
792 | |
793 | for (int j = 0; j < index_count; j++) { |
794 | int index = index_rptr[j]; |
795 | ERR_FAIL_INDEX(index, vertex_count); |
796 | index_wptr[j] = vertex_remap[index]; |
797 | } |
798 | |
799 | new_surface[RS::ARRAY_INDEX] = new_indices; |
800 | |
801 | // Make sure the same LODs as the full version are used. |
802 | // This makes it more coherent between rendered model and its shadows. |
803 | for (int j = 0; j < surfaces[i].lods.size(); j++) { |
804 | indices = surfaces[i].lods[j].indices; |
805 | |
806 | index_count = indices.size(); |
807 | index_rptr = indices.ptr(); |
808 | new_indices.resize(indices.size()); |
809 | index_wptr = new_indices.ptrw(); |
810 | |
811 | for (int k = 0; k < index_count; k++) { |
812 | int index = index_rptr[k]; |
813 | ERR_FAIL_INDEX(index, vertex_count); |
814 | index_wptr[k] = vertex_remap[index]; |
815 | } |
816 | |
817 | lods[surfaces[i].lods[j].distance] = new_indices; |
818 | } |
819 | } |
820 | |
821 | shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref<Material>(), surfaces[i].name, surfaces[i].flags); |
822 | } |
823 | } |
824 | |
825 | Ref<ImporterMesh> ImporterMesh::get_shadow_mesh() const { |
826 | return shadow_mesh; |
827 | } |
828 | |
829 | void ImporterMesh::_set_data(const Dictionary &p_data) { |
830 | clear(); |
831 | if (p_data.has("blend_shape_names" )) { |
832 | blend_shapes = p_data["blend_shape_names" ]; |
833 | } |
834 | if (p_data.has("surfaces" )) { |
835 | Array surface_arr = p_data["surfaces" ]; |
836 | for (int i = 0; i < surface_arr.size(); i++) { |
837 | Dictionary s = surface_arr[i]; |
838 | ERR_CONTINUE(!s.has("primitive" )); |
839 | ERR_CONTINUE(!s.has("arrays" )); |
840 | Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive" ])); |
841 | ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX); |
842 | Array arr = s["arrays" ]; |
843 | Dictionary lods; |
844 | String surf_name; |
845 | if (s.has("name" )) { |
846 | surf_name = s["name" ]; |
847 | } |
848 | if (s.has("lods" )) { |
849 | lods = s["lods" ]; |
850 | } |
851 | Array b_shapes; |
852 | if (s.has("b_shapes" )) { |
853 | b_shapes = s["b_shapes" ]; |
854 | } |
855 | Ref<Material> material; |
856 | if (s.has("material" )) { |
857 | material = s["material" ]; |
858 | } |
859 | uint32_t flags = 0; |
860 | if (s.has("flags" )) { |
861 | flags = s["flags" ]; |
862 | } |
863 | add_surface(prim, arr, b_shapes, lods, material, surf_name, flags); |
864 | } |
865 | } |
866 | } |
867 | Dictionary ImporterMesh::_get_data() const { |
868 | Dictionary data; |
869 | if (blend_shapes.size()) { |
870 | data["blend_shape_names" ] = blend_shapes; |
871 | } |
872 | Array surface_arr; |
873 | for (int i = 0; i < surfaces.size(); i++) { |
874 | Dictionary d; |
875 | d["primitive" ] = surfaces[i].primitive; |
876 | d["arrays" ] = surfaces[i].arrays; |
877 | if (surfaces[i].blend_shape_data.size()) { |
878 | Array bs_data; |
879 | for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) { |
880 | bs_data.push_back(surfaces[i].blend_shape_data[j].arrays); |
881 | } |
882 | d["blend_shapes" ] = bs_data; |
883 | } |
884 | if (surfaces[i].lods.size()) { |
885 | Dictionary lods; |
886 | for (int j = 0; j < surfaces[i].lods.size(); j++) { |
887 | lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices; |
888 | } |
889 | d["lods" ] = lods; |
890 | } |
891 | |
892 | if (surfaces[i].material.is_valid()) { |
893 | d["material" ] = surfaces[i].material; |
894 | } |
895 | |
896 | if (!surfaces[i].name.is_empty()) { |
897 | d["name" ] = surfaces[i].name; |
898 | } |
899 | |
900 | if (surfaces[i].flags != 0) { |
901 | d["flags" ] = surfaces[i].flags; |
902 | } |
903 | |
904 | surface_arr.push_back(d); |
905 | } |
906 | data["surfaces" ] = surface_arr; |
907 | return data; |
908 | } |
909 | |
910 | Vector<Face3> ImporterMesh::get_faces() const { |
911 | Vector<Face3> faces; |
912 | for (int i = 0; i < surfaces.size(); i++) { |
913 | if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) { |
914 | Vector<Vector3> vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX]; |
915 | Vector<int> indices = surfaces[i].arrays[Mesh::ARRAY_INDEX]; |
916 | if (indices.size()) { |
917 | for (int j = 0; j < indices.size(); j += 3) { |
918 | Face3 f; |
919 | f.vertex[0] = vertices[indices[j + 0]]; |
920 | f.vertex[1] = vertices[indices[j + 1]]; |
921 | f.vertex[2] = vertices[indices[j + 2]]; |
922 | faces.push_back(f); |
923 | } |
924 | } else { |
925 | for (int j = 0; j < vertices.size(); j += 3) { |
926 | Face3 f; |
927 | f.vertex[0] = vertices[j + 0]; |
928 | f.vertex[1] = vertices[j + 1]; |
929 | f.vertex[2] = vertices[j + 2]; |
930 | faces.push_back(f); |
931 | } |
932 | } |
933 | } |
934 | } |
935 | |
936 | return faces; |
937 | } |
938 | |
939 | Vector<Ref<Shape3D>> ImporterMesh::convex_decompose(const Ref<MeshConvexDecompositionSettings> &p_settings) const { |
940 | ERR_FAIL_NULL_V(Mesh::convex_decomposition_function, Vector<Ref<Shape3D>>()); |
941 | |
942 | const Vector<Face3> faces = get_faces(); |
943 | int face_count = faces.size(); |
944 | |
945 | Vector<Vector3> vertices; |
946 | uint32_t vertex_count = 0; |
947 | vertices.resize(face_count * 3); |
948 | Vector<uint32_t> indices; |
949 | indices.resize(face_count * 3); |
950 | { |
951 | HashMap<Vector3, uint32_t> vertex_map; |
952 | Vector3 *vertex_w = vertices.ptrw(); |
953 | uint32_t *index_w = indices.ptrw(); |
954 | for (int i = 0; i < face_count; i++) { |
955 | for (int j = 0; j < 3; j++) { |
956 | const Vector3 &vertex = faces[i].vertex[j]; |
957 | HashMap<Vector3, uint32_t>::Iterator found_vertex = vertex_map.find(vertex); |
958 | uint32_t index; |
959 | if (found_vertex) { |
960 | index = found_vertex->value; |
961 | } else { |
962 | index = ++vertex_count; |
963 | vertex_map[vertex] = index; |
964 | vertex_w[index] = vertex; |
965 | } |
966 | index_w[i * 3 + j] = index; |
967 | } |
968 | } |
969 | } |
970 | vertices.resize(vertex_count); |
971 | |
972 | Vector<Vector<Vector3>> decomposed = Mesh::convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), face_count, p_settings, nullptr); |
973 | |
974 | Vector<Ref<Shape3D>> ret; |
975 | |
976 | for (int i = 0; i < decomposed.size(); i++) { |
977 | Ref<ConvexPolygonShape3D> shape; |
978 | shape.instantiate(); |
979 | shape->set_points(decomposed[i]); |
980 | ret.push_back(shape); |
981 | } |
982 | |
983 | return ret; |
984 | } |
985 | |
986 | Ref<ConvexPolygonShape3D> ImporterMesh::create_convex_shape(bool p_clean, bool p_simplify) const { |
987 | if (p_simplify) { |
988 | Ref<MeshConvexDecompositionSettings> settings; |
989 | settings.instantiate(); |
990 | settings->set_max_convex_hulls(1); |
991 | Vector<Ref<Shape3D>> decomposed = convex_decompose(settings); |
992 | if (decomposed.size() == 1) { |
993 | return decomposed[0]; |
994 | } else { |
995 | ERR_PRINT("Convex shape simplification failed, falling back to simpler process." ); |
996 | } |
997 | } |
998 | |
999 | Vector<Vector3> vertices; |
1000 | for (int i = 0; i < get_surface_count(); i++) { |
1001 | Array a = get_surface_arrays(i); |
1002 | ERR_FAIL_COND_V(a.is_empty(), Ref<ConvexPolygonShape3D>()); |
1003 | Vector<Vector3> v = a[Mesh::ARRAY_VERTEX]; |
1004 | vertices.append_array(v); |
1005 | } |
1006 | |
1007 | Ref<ConvexPolygonShape3D> shape = memnew(ConvexPolygonShape3D); |
1008 | |
1009 | if (p_clean) { |
1010 | Geometry3D::MeshData md; |
1011 | Error err = ConvexHullComputer::convex_hull(vertices, md); |
1012 | if (err == OK) { |
1013 | shape->set_points(md.vertices); |
1014 | return shape; |
1015 | } else { |
1016 | ERR_PRINT("Convex shape cleaning failed, falling back to simpler process." ); |
1017 | } |
1018 | } |
1019 | |
1020 | shape->set_points(vertices); |
1021 | return shape; |
1022 | } |
1023 | |
1024 | Ref<ConcavePolygonShape3D> ImporterMesh::create_trimesh_shape() const { |
1025 | Vector<Face3> faces = get_faces(); |
1026 | if (faces.size() == 0) { |
1027 | return Ref<ConcavePolygonShape3D>(); |
1028 | } |
1029 | |
1030 | Vector<Vector3> face_points; |
1031 | face_points.resize(faces.size() * 3); |
1032 | |
1033 | for (int i = 0; i < face_points.size(); i += 3) { |
1034 | Face3 f = faces.get(i / 3); |
1035 | face_points.set(i, f.vertex[0]); |
1036 | face_points.set(i + 1, f.vertex[1]); |
1037 | face_points.set(i + 2, f.vertex[2]); |
1038 | } |
1039 | |
1040 | Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D); |
1041 | shape->set_faces(face_points); |
1042 | return shape; |
1043 | } |
1044 | |
1045 | Ref<NavigationMesh> ImporterMesh::create_navigation_mesh() { |
1046 | Vector<Face3> faces = get_faces(); |
1047 | if (faces.size() == 0) { |
1048 | return Ref<NavigationMesh>(); |
1049 | } |
1050 | |
1051 | HashMap<Vector3, int> unique_vertices; |
1052 | LocalVector<int> face_indices; |
1053 | |
1054 | for (int i = 0; i < faces.size(); i++) { |
1055 | for (int j = 0; j < 3; j++) { |
1056 | Vector3 v = faces[i].vertex[j]; |
1057 | int idx; |
1058 | if (unique_vertices.has(v)) { |
1059 | idx = unique_vertices[v]; |
1060 | } else { |
1061 | idx = unique_vertices.size(); |
1062 | unique_vertices[v] = idx; |
1063 | } |
1064 | face_indices.push_back(idx); |
1065 | } |
1066 | } |
1067 | |
1068 | Vector<Vector3> vertices; |
1069 | vertices.resize(unique_vertices.size()); |
1070 | for (const KeyValue<Vector3, int> &E : unique_vertices) { |
1071 | vertices.write[E.value] = E.key; |
1072 | } |
1073 | |
1074 | Ref<NavigationMesh> nm; |
1075 | nm.instantiate(); |
1076 | nm->set_vertices(vertices); |
1077 | |
1078 | Vector<int> v3; |
1079 | v3.resize(3); |
1080 | for (uint32_t i = 0; i < face_indices.size(); i += 3) { |
1081 | v3.write[0] = face_indices[i + 0]; |
1082 | v3.write[1] = face_indices[i + 1]; |
1083 | v3.write[2] = face_indices[i + 2]; |
1084 | nm->add_polygon(v3); |
1085 | } |
1086 | |
1087 | return nm; |
1088 | } |
1089 | |
1090 | extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y); |
1091 | |
1092 | struct EditorSceneFormatImporterMeshLightmapSurface { |
1093 | Ref<Material> material; |
1094 | LocalVector<SurfaceTool::Vertex> vertices; |
1095 | Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX; |
1096 | uint32_t format = 0; |
1097 | String name; |
1098 | }; |
1099 | |
1100 | static const uint32_t custom_shift[RS::ARRAY_CUSTOM_COUNT] = { Mesh::ARRAY_FORMAT_CUSTOM0_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM1_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM2_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM3_SHIFT }; |
1101 | |
1102 | Error ImporterMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache) { |
1103 | ERR_FAIL_NULL_V(array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED); |
1104 | ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes." ); |
1105 | |
1106 | LocalVector<float> vertices; |
1107 | LocalVector<float> normals; |
1108 | LocalVector<int> indices; |
1109 | LocalVector<float> uv; |
1110 | LocalVector<Pair<int, int>> uv_indices; |
1111 | |
1112 | Vector<EditorSceneFormatImporterMeshLightmapSurface> lightmap_surfaces; |
1113 | |
1114 | // Keep only the scale |
1115 | Basis basis = p_base_transform.get_basis(); |
1116 | Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length()); |
1117 | |
1118 | Transform3D transform; |
1119 | transform.scale(scale); |
1120 | |
1121 | Basis normal_basis = transform.basis.inverse().transposed(); |
1122 | |
1123 | for (int i = 0; i < get_surface_count(); i++) { |
1124 | EditorSceneFormatImporterMeshLightmapSurface s; |
1125 | s.primitive = get_surface_primitive_type(i); |
1126 | |
1127 | ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap." ); |
1128 | Array arrays = get_surface_arrays(i); |
1129 | s.material = get_surface_material(i); |
1130 | s.name = get_surface_name(i); |
1131 | |
1132 | SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format); |
1133 | |
1134 | PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX]; |
1135 | int vc = rvertices.size(); |
1136 | |
1137 | PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL]; |
1138 | |
1139 | if (!rnormals.size()) { |
1140 | continue; |
1141 | } |
1142 | |
1143 | int vertex_ofs = vertices.size() / 3; |
1144 | |
1145 | vertices.resize((vertex_ofs + vc) * 3); |
1146 | normals.resize((vertex_ofs + vc) * 3); |
1147 | uv_indices.resize(vertex_ofs + vc); |
1148 | |
1149 | for (int j = 0; j < vc; j++) { |
1150 | Vector3 v = transform.xform(rvertices[j]); |
1151 | Vector3 n = normal_basis.xform(rnormals[j]).normalized(); |
1152 | |
1153 | vertices[(j + vertex_ofs) * 3 + 0] = v.x; |
1154 | vertices[(j + vertex_ofs) * 3 + 1] = v.y; |
1155 | vertices[(j + vertex_ofs) * 3 + 2] = v.z; |
1156 | normals[(j + vertex_ofs) * 3 + 0] = n.x; |
1157 | normals[(j + vertex_ofs) * 3 + 1] = n.y; |
1158 | normals[(j + vertex_ofs) * 3 + 2] = n.z; |
1159 | uv_indices[j + vertex_ofs] = Pair<int, int>(i, j); |
1160 | } |
1161 | |
1162 | PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX]; |
1163 | int ic = rindices.size(); |
1164 | |
1165 | float eps = 1.19209290e-7F; // Taken from xatlas.h |
1166 | if (ic == 0) { |
1167 | for (int j = 0; j < vc / 3; j++) { |
1168 | Vector3 p0 = transform.xform(rvertices[j * 3 + 0]); |
1169 | Vector3 p1 = transform.xform(rvertices[j * 3 + 1]); |
1170 | Vector3 p2 = transform.xform(rvertices[j * 3 + 2]); |
1171 | |
1172 | if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { |
1173 | continue; |
1174 | } |
1175 | |
1176 | indices.push_back(vertex_ofs + j * 3 + 0); |
1177 | indices.push_back(vertex_ofs + j * 3 + 1); |
1178 | indices.push_back(vertex_ofs + j * 3 + 2); |
1179 | } |
1180 | |
1181 | } else { |
1182 | for (int j = 0; j < ic / 3; j++) { |
1183 | ERR_FAIL_INDEX_V(rindices[j * 3 + 0], rvertices.size(), ERR_INVALID_DATA); |
1184 | ERR_FAIL_INDEX_V(rindices[j * 3 + 1], rvertices.size(), ERR_INVALID_DATA); |
1185 | ERR_FAIL_INDEX_V(rindices[j * 3 + 2], rvertices.size(), ERR_INVALID_DATA); |
1186 | Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]); |
1187 | Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]); |
1188 | Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]); |
1189 | |
1190 | if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { |
1191 | continue; |
1192 | } |
1193 | |
1194 | indices.push_back(vertex_ofs + rindices[j * 3 + 0]); |
1195 | indices.push_back(vertex_ofs + rindices[j * 3 + 1]); |
1196 | indices.push_back(vertex_ofs + rindices[j * 3 + 2]); |
1197 | } |
1198 | } |
1199 | |
1200 | lightmap_surfaces.push_back(s); |
1201 | } |
1202 | |
1203 | //unwrap |
1204 | |
1205 | bool use_cache = true; // Used to request cache generation and to know if cache was used |
1206 | uint8_t *gen_cache; |
1207 | int gen_cache_size; |
1208 | float *gen_uvs; |
1209 | int *gen_vertices; |
1210 | int *gen_indices; |
1211 | int gen_vertex_count; |
1212 | int gen_index_count; |
1213 | int size_x; |
1214 | int size_y; |
1215 | |
1216 | bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y); |
1217 | |
1218 | if (!ok) { |
1219 | return ERR_CANT_CREATE; |
1220 | } |
1221 | |
1222 | //create surfacetools for each surface.. |
1223 | LocalVector<Ref<SurfaceTool>> surfaces_tools; |
1224 | |
1225 | for (int i = 0; i < lightmap_surfaces.size(); i++) { |
1226 | Ref<SurfaceTool> st; |
1227 | st.instantiate(); |
1228 | st->begin(Mesh::PRIMITIVE_TRIANGLES); |
1229 | st->set_material(lightmap_surfaces[i].material); |
1230 | st->set_meta("name" , lightmap_surfaces[i].name); |
1231 | |
1232 | for (int custom_i = 0; custom_i < RS::ARRAY_CUSTOM_COUNT; custom_i++) { |
1233 | st->set_custom_format(custom_i, (SurfaceTool::CustomFormat)((lightmap_surfaces[i].format >> custom_shift[custom_i]) & RS::ARRAY_FORMAT_CUSTOM_MASK)); |
1234 | } |
1235 | surfaces_tools.push_back(st); //stay there |
1236 | } |
1237 | |
1238 | //remove surfaces |
1239 | clear(); |
1240 | |
1241 | print_verbose("Mesh: Gen indices: " + itos(gen_index_count)); |
1242 | |
1243 | //go through all indices |
1244 | for (int i = 0; i < gen_index_count; i += 3) { |
1245 | ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG); |
1246 | ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG); |
1247 | ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG); |
1248 | |
1249 | ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG); |
1250 | |
1251 | int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first; |
1252 | |
1253 | for (int j = 0; j < 3; j++) { |
1254 | SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second]; |
1255 | |
1256 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) { |
1257 | surfaces_tools[surface]->set_color(v.color); |
1258 | } |
1259 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) { |
1260 | surfaces_tools[surface]->set_uv(v.uv); |
1261 | } |
1262 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) { |
1263 | surfaces_tools[surface]->set_normal(v.normal); |
1264 | } |
1265 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) { |
1266 | Plane t; |
1267 | t.normal = v.tangent; |
1268 | t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1; |
1269 | surfaces_tools[surface]->set_tangent(t); |
1270 | } |
1271 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) { |
1272 | surfaces_tools[surface]->set_bones(v.bones); |
1273 | } |
1274 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) { |
1275 | surfaces_tools[surface]->set_weights(v.weights); |
1276 | } |
1277 | for (int custom_i = 0; custom_i < RS::ARRAY_CUSTOM_COUNT; custom_i++) { |
1278 | if ((lightmap_surfaces[surface].format >> custom_shift[custom_i]) & RS::ARRAY_FORMAT_CUSTOM_MASK) { |
1279 | surfaces_tools[surface]->set_custom(custom_i, v.custom[custom_i]); |
1280 | } |
1281 | } |
1282 | |
1283 | Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]); |
1284 | surfaces_tools[surface]->set_uv2(uv2); |
1285 | |
1286 | surfaces_tools[surface]->add_vertex(v.vertex); |
1287 | } |
1288 | } |
1289 | |
1290 | //generate surfaces |
1291 | for (int i = 0; i < lightmap_surfaces.size(); i++) { |
1292 | Ref<SurfaceTool> &tool = surfaces_tools[i]; |
1293 | tool->index(); |
1294 | Array arrays = tool->commit_to_arrays(); |
1295 | add_surface(tool->get_primitive_type(), arrays, Array(), Dictionary(), tool->get_material(), tool->get_meta("name" ), lightmap_surfaces[i].format); |
1296 | } |
1297 | |
1298 | set_lightmap_size_hint(Size2(size_x, size_y)); |
1299 | |
1300 | if (gen_cache_size > 0) { |
1301 | r_dst_cache.resize(gen_cache_size); |
1302 | memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size); |
1303 | memfree(gen_cache); |
1304 | } |
1305 | |
1306 | if (!use_cache) { |
1307 | // Cache was not used, free the buffers |
1308 | memfree(gen_vertices); |
1309 | memfree(gen_indices); |
1310 | memfree(gen_uvs); |
1311 | } |
1312 | |
1313 | return OK; |
1314 | } |
1315 | |
1316 | void ImporterMesh::set_lightmap_size_hint(const Size2i &p_size) { |
1317 | lightmap_size_hint = p_size; |
1318 | } |
1319 | |
1320 | Size2i ImporterMesh::get_lightmap_size_hint() const { |
1321 | return lightmap_size_hint; |
1322 | } |
1323 | |
1324 | void ImporterMesh::_bind_methods() { |
1325 | ClassDB::bind_method(D_METHOD("add_blend_shape" , "name" ), &ImporterMesh::add_blend_shape); |
1326 | ClassDB::bind_method(D_METHOD("get_blend_shape_count" ), &ImporterMesh::get_blend_shape_count); |
1327 | ClassDB::bind_method(D_METHOD("get_blend_shape_name" , "blend_shape_idx" ), &ImporterMesh::get_blend_shape_name); |
1328 | |
1329 | ClassDB::bind_method(D_METHOD("set_blend_shape_mode" , "mode" ), &ImporterMesh::set_blend_shape_mode); |
1330 | ClassDB::bind_method(D_METHOD("get_blend_shape_mode" ), &ImporterMesh::get_blend_shape_mode); |
1331 | |
1332 | ClassDB::bind_method(D_METHOD("add_surface" , "primitive" , "arrays" , "blend_shapes" , "lods" , "material" , "name" , "flags" ), &ImporterMesh::add_surface, DEFVAL(TypedArray<Array>()), DEFVAL(Dictionary()), DEFVAL(Ref<Material>()), DEFVAL(String()), DEFVAL(0)); |
1333 | |
1334 | ClassDB::bind_method(D_METHOD("get_surface_count" ), &ImporterMesh::get_surface_count); |
1335 | ClassDB::bind_method(D_METHOD("get_surface_primitive_type" , "surface_idx" ), &ImporterMesh::get_surface_primitive_type); |
1336 | ClassDB::bind_method(D_METHOD("get_surface_name" , "surface_idx" ), &ImporterMesh::get_surface_name); |
1337 | ClassDB::bind_method(D_METHOD("get_surface_arrays" , "surface_idx" ), &ImporterMesh::get_surface_arrays); |
1338 | ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays" , "surface_idx" , "blend_shape_idx" ), &ImporterMesh::get_surface_blend_shape_arrays); |
1339 | ClassDB::bind_method(D_METHOD("get_surface_lod_count" , "surface_idx" ), &ImporterMesh::get_surface_lod_count); |
1340 | ClassDB::bind_method(D_METHOD("get_surface_lod_size" , "surface_idx" , "lod_idx" ), &ImporterMesh::get_surface_lod_size); |
1341 | ClassDB::bind_method(D_METHOD("get_surface_lod_indices" , "surface_idx" , "lod_idx" ), &ImporterMesh::get_surface_lod_indices); |
1342 | ClassDB::bind_method(D_METHOD("get_surface_material" , "surface_idx" ), &ImporterMesh::get_surface_material); |
1343 | ClassDB::bind_method(D_METHOD("get_surface_format" , "surface_idx" ), &ImporterMesh::get_surface_format); |
1344 | |
1345 | ClassDB::bind_method(D_METHOD("set_surface_name" , "surface_idx" , "name" ), &ImporterMesh::set_surface_name); |
1346 | ClassDB::bind_method(D_METHOD("set_surface_material" , "surface_idx" , "material" ), &ImporterMesh::set_surface_material); |
1347 | |
1348 | ClassDB::bind_method(D_METHOD("generate_lods" , "normal_merge_angle" , "normal_split_angle" , "bone_transform_array" ), &ImporterMesh::generate_lods); |
1349 | ClassDB::bind_method(D_METHOD("get_mesh" , "base_mesh" ), &ImporterMesh::get_mesh, DEFVAL(Ref<ArrayMesh>())); |
1350 | ClassDB::bind_method(D_METHOD("clear" ), &ImporterMesh::clear); |
1351 | |
1352 | ClassDB::bind_method(D_METHOD("_set_data" , "data" ), &ImporterMesh::_set_data); |
1353 | ClassDB::bind_method(D_METHOD("_get_data" ), &ImporterMesh::_get_data); |
1354 | |
1355 | ClassDB::bind_method(D_METHOD("set_lightmap_size_hint" , "size" ), &ImporterMesh::set_lightmap_size_hint); |
1356 | ClassDB::bind_method(D_METHOD("get_lightmap_size_hint" ), &ImporterMesh::get_lightmap_size_hint); |
1357 | |
1358 | ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data" , PROPERTY_HINT_NONE, "" , PROPERTY_USAGE_NO_EDITOR), "_set_data" , "_get_data" ); |
1359 | } |
1360 | |