| 1 | /**************************************************************************/ |
| 2 | /* importer_mesh.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "importer_mesh.h" |
| 32 | |
| 33 | #include "core/io/marshalls.h" |
| 34 | #include "core/math/convex_hull.h" |
| 35 | #include "core/math/random_pcg.h" |
| 36 | #include "core/math/static_raycaster.h" |
| 37 | #include "scene/resources/surface_tool.h" |
| 38 | |
| 39 | #include <cstdint> |
| 40 | |
| 41 | void ImporterMesh::Surface::split_normals(const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) { |
| 42 | _split_normals(arrays, p_indices, p_normals); |
| 43 | |
| 44 | for (BlendShape &blend_shape : blend_shape_data) { |
| 45 | _split_normals(blend_shape.arrays, p_indices, p_normals); |
| 46 | } |
| 47 | } |
| 48 | |
| 49 | void ImporterMesh::Surface::_split_normals(Array &r_arrays, const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) { |
| 50 | ERR_FAIL_COND(r_arrays.size() != RS::ARRAY_MAX); |
| 51 | |
| 52 | const PackedVector3Array &vertices = r_arrays[RS::ARRAY_VERTEX]; |
| 53 | int current_vertex_count = vertices.size(); |
| 54 | int new_vertex_count = p_indices.size(); |
| 55 | int final_vertex_count = current_vertex_count + new_vertex_count; |
| 56 | const int *indices_ptr = p_indices.ptr(); |
| 57 | |
| 58 | for (int i = 0; i < r_arrays.size(); i++) { |
| 59 | if (i == RS::ARRAY_INDEX) { |
| 60 | continue; |
| 61 | } |
| 62 | |
| 63 | if (r_arrays[i].get_type() == Variant::NIL) { |
| 64 | continue; |
| 65 | } |
| 66 | |
| 67 | switch (r_arrays[i].get_type()) { |
| 68 | case Variant::PACKED_VECTOR3_ARRAY: { |
| 69 | PackedVector3Array data = r_arrays[i]; |
| 70 | data.resize(final_vertex_count); |
| 71 | Vector3 *data_ptr = data.ptrw(); |
| 72 | if (i == RS::ARRAY_NORMAL) { |
| 73 | const Vector3 *normals_ptr = p_normals.ptr(); |
| 74 | memcpy(&data_ptr[current_vertex_count], normals_ptr, sizeof(Vector3) * new_vertex_count); |
| 75 | } else { |
| 76 | for (int j = 0; j < new_vertex_count; j++) { |
| 77 | data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; |
| 78 | } |
| 79 | } |
| 80 | r_arrays[i] = data; |
| 81 | } break; |
| 82 | case Variant::PACKED_VECTOR2_ARRAY: { |
| 83 | PackedVector2Array data = r_arrays[i]; |
| 84 | data.resize(final_vertex_count); |
| 85 | Vector2 *data_ptr = data.ptrw(); |
| 86 | for (int j = 0; j < new_vertex_count; j++) { |
| 87 | data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; |
| 88 | } |
| 89 | r_arrays[i] = data; |
| 90 | } break; |
| 91 | case Variant::PACKED_FLOAT32_ARRAY: { |
| 92 | PackedFloat32Array data = r_arrays[i]; |
| 93 | int elements = data.size() / current_vertex_count; |
| 94 | data.resize(final_vertex_count * elements); |
| 95 | float *data_ptr = data.ptrw(); |
| 96 | for (int j = 0; j < new_vertex_count; j++) { |
| 97 | memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(float) * elements); |
| 98 | } |
| 99 | r_arrays[i] = data; |
| 100 | } break; |
| 101 | case Variant::PACKED_INT32_ARRAY: { |
| 102 | PackedInt32Array data = r_arrays[i]; |
| 103 | int elements = data.size() / current_vertex_count; |
| 104 | data.resize(final_vertex_count * elements); |
| 105 | int32_t *data_ptr = data.ptrw(); |
| 106 | for (int j = 0; j < new_vertex_count; j++) { |
| 107 | memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(int32_t) * elements); |
| 108 | } |
| 109 | r_arrays[i] = data; |
| 110 | } break; |
| 111 | case Variant::PACKED_BYTE_ARRAY: { |
| 112 | PackedByteArray data = r_arrays[i]; |
| 113 | int elements = data.size() / current_vertex_count; |
| 114 | data.resize(final_vertex_count * elements); |
| 115 | uint8_t *data_ptr = data.ptrw(); |
| 116 | for (int j = 0; j < new_vertex_count; j++) { |
| 117 | memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(uint8_t) * elements); |
| 118 | } |
| 119 | r_arrays[i] = data; |
| 120 | } break; |
| 121 | case Variant::PACKED_COLOR_ARRAY: { |
| 122 | PackedColorArray data = r_arrays[i]; |
| 123 | data.resize(final_vertex_count); |
| 124 | Color *data_ptr = data.ptrw(); |
| 125 | for (int j = 0; j < new_vertex_count; j++) { |
| 126 | data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]]; |
| 127 | } |
| 128 | r_arrays[i] = data; |
| 129 | } break; |
| 130 | default: { |
| 131 | ERR_FAIL_MSG("Unhandled array type." ); |
| 132 | } break; |
| 133 | } |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | void ImporterMesh::add_blend_shape(const String &p_name) { |
| 138 | ERR_FAIL_COND(surfaces.size() > 0); |
| 139 | blend_shapes.push_back(p_name); |
| 140 | } |
| 141 | |
| 142 | int ImporterMesh::get_blend_shape_count() const { |
| 143 | return blend_shapes.size(); |
| 144 | } |
| 145 | |
| 146 | String ImporterMesh::get_blend_shape_name(int p_blend_shape) const { |
| 147 | ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String()); |
| 148 | return blend_shapes[p_blend_shape]; |
| 149 | } |
| 150 | |
| 151 | void ImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) { |
| 152 | blend_shape_mode = p_blend_shape_mode; |
| 153 | } |
| 154 | |
| 155 | Mesh::BlendShapeMode ImporterMesh::get_blend_shape_mode() const { |
| 156 | return blend_shape_mode; |
| 157 | } |
| 158 | |
| 159 | void ImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const TypedArray<Array> &p_blend_shapes, const Dictionary &p_lods, const Ref<Material> &p_material, const String &p_name, const uint32_t p_flags) { |
| 160 | ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size()); |
| 161 | ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX); |
| 162 | Surface s; |
| 163 | s.primitive = p_primitive; |
| 164 | s.arrays = p_arrays; |
| 165 | s.name = p_name; |
| 166 | s.flags = p_flags; |
| 167 | |
| 168 | Vector<Vector3> vertex_array = p_arrays[Mesh::ARRAY_VERTEX]; |
| 169 | int vertex_count = vertex_array.size(); |
| 170 | ERR_FAIL_COND(vertex_count == 0); |
| 171 | |
| 172 | for (int i = 0; i < blend_shapes.size(); i++) { |
| 173 | Array bsdata = p_blend_shapes[i]; |
| 174 | ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX); |
| 175 | Vector<Vector3> vertex_data = bsdata[Mesh::ARRAY_VERTEX]; |
| 176 | ERR_FAIL_COND(vertex_data.size() != vertex_count); |
| 177 | Surface::BlendShape bs; |
| 178 | bs.arrays = bsdata; |
| 179 | s.blend_shape_data.push_back(bs); |
| 180 | } |
| 181 | |
| 182 | List<Variant> lods; |
| 183 | p_lods.get_key_list(&lods); |
| 184 | for (const Variant &E : lods) { |
| 185 | ERR_CONTINUE(!E.is_num()); |
| 186 | Surface::LOD lod; |
| 187 | lod.distance = E; |
| 188 | lod.indices = p_lods[E]; |
| 189 | ERR_CONTINUE(lod.indices.size() == 0); |
| 190 | s.lods.push_back(lod); |
| 191 | } |
| 192 | |
| 193 | s.material = p_material; |
| 194 | |
| 195 | surfaces.push_back(s); |
| 196 | mesh.unref(); |
| 197 | } |
| 198 | |
| 199 | int ImporterMesh::get_surface_count() const { |
| 200 | return surfaces.size(); |
| 201 | } |
| 202 | |
| 203 | Mesh::PrimitiveType ImporterMesh::get_surface_primitive_type(int p_surface) { |
| 204 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX); |
| 205 | return surfaces[p_surface].primitive; |
| 206 | } |
| 207 | Array ImporterMesh::get_surface_arrays(int p_surface) const { |
| 208 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); |
| 209 | return surfaces[p_surface].arrays; |
| 210 | } |
| 211 | String ImporterMesh::get_surface_name(int p_surface) const { |
| 212 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String()); |
| 213 | return surfaces[p_surface].name; |
| 214 | } |
| 215 | void ImporterMesh::set_surface_name(int p_surface, const String &p_name) { |
| 216 | ERR_FAIL_INDEX(p_surface, surfaces.size()); |
| 217 | surfaces.write[p_surface].name = p_name; |
| 218 | mesh.unref(); |
| 219 | } |
| 220 | |
| 221 | Array ImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const { |
| 222 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); |
| 223 | ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array()); |
| 224 | return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays; |
| 225 | } |
| 226 | int ImporterMesh::get_surface_lod_count(int p_surface) const { |
| 227 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); |
| 228 | return surfaces[p_surface].lods.size(); |
| 229 | } |
| 230 | Vector<int> ImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const { |
| 231 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector<int>()); |
| 232 | ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector<int>()); |
| 233 | |
| 234 | return surfaces[p_surface].lods[p_lod].indices; |
| 235 | } |
| 236 | |
| 237 | float ImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const { |
| 238 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); |
| 239 | ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0); |
| 240 | return surfaces[p_surface].lods[p_lod].distance; |
| 241 | } |
| 242 | |
| 243 | uint32_t ImporterMesh::get_surface_format(int p_surface) const { |
| 244 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0); |
| 245 | return surfaces[p_surface].flags; |
| 246 | } |
| 247 | |
| 248 | Ref<Material> ImporterMesh::get_surface_material(int p_surface) const { |
| 249 | ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref<Material>()); |
| 250 | return surfaces[p_surface].material; |
| 251 | } |
| 252 | |
| 253 | void ImporterMesh::set_surface_material(int p_surface, const Ref<Material> &p_material) { |
| 254 | ERR_FAIL_INDEX(p_surface, surfaces.size()); |
| 255 | surfaces.write[p_surface].material = p_material; |
| 256 | mesh.unref(); |
| 257 | } |
| 258 | |
| 259 | #define VERTEX_SKIN_FUNC(bone_count, vert_idx, read_array, write_array, transform_array, bone_array, weight_array) \ |
| 260 | Vector3 transformed_vert; \ |
| 261 | for (unsigned int weight_idx = 0; weight_idx < bone_count; weight_idx++) { \ |
| 262 | int bone_idx = bone_array[vert_idx * bone_count + weight_idx]; \ |
| 263 | float w = weight_array[vert_idx * bone_count + weight_idx]; \ |
| 264 | if (w < FLT_EPSILON) { \ |
| 265 | continue; \ |
| 266 | } \ |
| 267 | ERR_FAIL_INDEX(bone_idx, static_cast<int>(transform_array.size())); \ |
| 268 | transformed_vert += transform_array[bone_idx].xform(read_array[vert_idx]) * w; \ |
| 269 | } \ |
| 270 | write_array[vert_idx] = transformed_vert; |
| 271 | |
| 272 | void ImporterMesh::generate_lods(float p_normal_merge_angle, float p_normal_split_angle, Array p_bone_transform_array) { |
| 273 | if (!SurfaceTool::simplify_scale_func) { |
| 274 | return; |
| 275 | } |
| 276 | if (!SurfaceTool::simplify_with_attrib_func) { |
| 277 | return; |
| 278 | } |
| 279 | if (!SurfaceTool::optimize_vertex_cache_func) { |
| 280 | return; |
| 281 | } |
| 282 | |
| 283 | LocalVector<Transform3D> bone_transform_vector; |
| 284 | for (int i = 0; i < p_bone_transform_array.size(); i++) { |
| 285 | ERR_FAIL_COND(p_bone_transform_array[i].get_type() != Variant::TRANSFORM3D); |
| 286 | bone_transform_vector.push_back(p_bone_transform_array[i]); |
| 287 | } |
| 288 | |
| 289 | for (int i = 0; i < surfaces.size(); i++) { |
| 290 | if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) { |
| 291 | continue; |
| 292 | } |
| 293 | |
| 294 | surfaces.write[i].lods.clear(); |
| 295 | Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX]; |
| 296 | PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX]; |
| 297 | Vector<Vector3> normals = surfaces[i].arrays[RS::ARRAY_NORMAL]; |
| 298 | Vector<Vector2> uvs = surfaces[i].arrays[RS::ARRAY_TEX_UV]; |
| 299 | Vector<Vector2> uv2s = surfaces[i].arrays[RS::ARRAY_TEX_UV2]; |
| 300 | Vector<int> bones = surfaces[i].arrays[RS::ARRAY_BONES]; |
| 301 | Vector<float> weights = surfaces[i].arrays[RS::ARRAY_WEIGHTS]; |
| 302 | |
| 303 | unsigned int index_count = indices.size(); |
| 304 | unsigned int vertex_count = vertices.size(); |
| 305 | |
| 306 | if (index_count == 0) { |
| 307 | continue; //no lods if no indices |
| 308 | } |
| 309 | |
| 310 | const Vector3 *vertices_ptr = vertices.ptr(); |
| 311 | const int *indices_ptr = indices.ptr(); |
| 312 | |
| 313 | if (normals.is_empty()) { |
| 314 | normals.resize(index_count); |
| 315 | Vector3 *n_ptr = normals.ptrw(); |
| 316 | for (unsigned int j = 0; j < index_count; j += 3) { |
| 317 | const Vector3 &v0 = vertices_ptr[indices_ptr[j + 0]]; |
| 318 | const Vector3 &v1 = vertices_ptr[indices_ptr[j + 1]]; |
| 319 | const Vector3 &v2 = vertices_ptr[indices_ptr[j + 2]]; |
| 320 | Vector3 n = vec3_cross(v0 - v2, v0 - v1).normalized(); |
| 321 | n_ptr[j + 0] = n; |
| 322 | n_ptr[j + 1] = n; |
| 323 | n_ptr[j + 2] = n; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | if (bones.size() > 0 && weights.size() && bone_transform_vector.size() > 0) { |
| 328 | Vector3 *vertices_ptrw = vertices.ptrw(); |
| 329 | |
| 330 | // Apply bone transforms to regular surface. |
| 331 | unsigned int bone_weight_length = surfaces[i].flags & Mesh::ARRAY_FLAG_USE_8_BONE_WEIGHTS ? 8 : 4; |
| 332 | |
| 333 | const int *bo = bones.ptr(); |
| 334 | const float *we = weights.ptr(); |
| 335 | |
| 336 | for (unsigned int j = 0; j < vertex_count; j++) { |
| 337 | VERTEX_SKIN_FUNC(bone_weight_length, j, vertices_ptr, vertices_ptrw, bone_transform_vector, bo, we) |
| 338 | } |
| 339 | |
| 340 | vertices_ptr = vertices.ptr(); |
| 341 | } |
| 342 | |
| 343 | float normal_merge_threshold = Math::cos(Math::deg_to_rad(p_normal_merge_angle)); |
| 344 | float normal_pre_split_threshold = Math::cos(Math::deg_to_rad(MIN(180.0f, p_normal_split_angle * 2.0f))); |
| 345 | float normal_split_threshold = Math::cos(Math::deg_to_rad(p_normal_split_angle)); |
| 346 | const Vector3 *normals_ptr = normals.ptr(); |
| 347 | |
| 348 | HashMap<Vector3, LocalVector<Pair<int, int>>> unique_vertices; |
| 349 | |
| 350 | LocalVector<int> vertex_remap; |
| 351 | LocalVector<int> vertex_inverse_remap; |
| 352 | LocalVector<Vector3> merged_vertices; |
| 353 | LocalVector<Vector3> merged_normals; |
| 354 | LocalVector<int> merged_normals_counts; |
| 355 | const Vector2 *uvs_ptr = uvs.ptr(); |
| 356 | const Vector2 *uv2s_ptr = uv2s.ptr(); |
| 357 | |
| 358 | for (unsigned int j = 0; j < vertex_count; j++) { |
| 359 | const Vector3 &v = vertices_ptr[j]; |
| 360 | const Vector3 &n = normals_ptr[j]; |
| 361 | |
| 362 | HashMap<Vector3, LocalVector<Pair<int, int>>>::Iterator E = unique_vertices.find(v); |
| 363 | |
| 364 | if (E) { |
| 365 | const LocalVector<Pair<int, int>> &close_verts = E->value; |
| 366 | |
| 367 | bool found = false; |
| 368 | for (const Pair<int, int> &idx : close_verts) { |
| 369 | bool is_uvs_close = (!uvs_ptr || uvs_ptr[j].distance_squared_to(uvs_ptr[idx.second]) < CMP_EPSILON2); |
| 370 | bool is_uv2s_close = (!uv2s_ptr || uv2s_ptr[j].distance_squared_to(uv2s_ptr[idx.second]) < CMP_EPSILON2); |
| 371 | ERR_FAIL_INDEX(idx.second, normals.size()); |
| 372 | bool is_normals_close = normals[idx.second].dot(n) > normal_merge_threshold; |
| 373 | if (is_uvs_close && is_uv2s_close && is_normals_close) { |
| 374 | vertex_remap.push_back(idx.first); |
| 375 | merged_normals[idx.first] += normals[idx.second]; |
| 376 | merged_normals_counts[idx.first]++; |
| 377 | found = true; |
| 378 | break; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | if (!found) { |
| 383 | int vcount = merged_vertices.size(); |
| 384 | unique_vertices[v].push_back(Pair<int, int>(vcount, j)); |
| 385 | vertex_inverse_remap.push_back(j); |
| 386 | merged_vertices.push_back(v); |
| 387 | vertex_remap.push_back(vcount); |
| 388 | merged_normals.push_back(normals_ptr[j]); |
| 389 | merged_normals_counts.push_back(1); |
| 390 | } |
| 391 | } else { |
| 392 | int vcount = merged_vertices.size(); |
| 393 | unique_vertices[v] = LocalVector<Pair<int, int>>(); |
| 394 | unique_vertices[v].push_back(Pair<int, int>(vcount, j)); |
| 395 | vertex_inverse_remap.push_back(j); |
| 396 | merged_vertices.push_back(v); |
| 397 | vertex_remap.push_back(vcount); |
| 398 | merged_normals.push_back(normals_ptr[j]); |
| 399 | merged_normals_counts.push_back(1); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | LocalVector<int> merged_indices; |
| 404 | merged_indices.resize(index_count); |
| 405 | for (unsigned int j = 0; j < index_count; j++) { |
| 406 | merged_indices[j] = vertex_remap[indices[j]]; |
| 407 | } |
| 408 | |
| 409 | unsigned int merged_vertex_count = merged_vertices.size(); |
| 410 | const Vector3 *merged_vertices_ptr = merged_vertices.ptr(); |
| 411 | const int32_t *merged_indices_ptr = merged_indices.ptr(); |
| 412 | |
| 413 | { |
| 414 | const int *counts_ptr = merged_normals_counts.ptr(); |
| 415 | Vector3 *merged_normals_ptrw = merged_normals.ptr(); |
| 416 | for (unsigned int j = 0; j < merged_vertex_count; j++) { |
| 417 | merged_normals_ptrw[j] /= counts_ptr[j]; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | LocalVector<float> normal_weights; |
| 422 | normal_weights.resize(merged_vertex_count); |
| 423 | for (unsigned int j = 0; j < merged_vertex_count; j++) { |
| 424 | normal_weights[j] = 2.0; // Give some weight to normal preservation, may be worth exposing as an import setting |
| 425 | } |
| 426 | |
| 427 | Vector<float> merged_vertices_f32 = vector3_to_float32_array(merged_vertices_ptr, merged_vertex_count); |
| 428 | float scale = SurfaceTool::simplify_scale_func(merged_vertices_f32.ptr(), merged_vertex_count, sizeof(float) * 3); |
| 429 | |
| 430 | unsigned int index_target = 12; // Start with the smallest target, 4 triangles |
| 431 | unsigned int last_index_count = 0; |
| 432 | |
| 433 | int split_vertex_count = vertex_count; |
| 434 | LocalVector<Vector3> split_vertex_normals; |
| 435 | LocalVector<int> split_vertex_indices; |
| 436 | split_vertex_normals.reserve(index_count / 3); |
| 437 | split_vertex_indices.reserve(index_count / 3); |
| 438 | |
| 439 | RandomPCG pcg; |
| 440 | pcg.seed(123456789); // Keep seed constant across imports |
| 441 | |
| 442 | Ref<StaticRaycaster> raycaster = StaticRaycaster::create(); |
| 443 | if (raycaster.is_valid()) { |
| 444 | raycaster->add_mesh(vertices, indices, 0); |
| 445 | raycaster->commit(); |
| 446 | } |
| 447 | |
| 448 | const float max_mesh_error = FLT_MAX; // We don't want to limit by error, just by index target |
| 449 | float mesh_error = 0.0f; |
| 450 | |
| 451 | while (index_target < index_count) { |
| 452 | PackedInt32Array new_indices; |
| 453 | new_indices.resize(index_count); |
| 454 | |
| 455 | Vector<float> merged_normals_f32 = vector3_to_float32_array(merged_normals.ptr(), merged_normals.size()); |
| 456 | const int simplify_options = SurfaceTool::SIMPLIFY_LOCK_BORDER; |
| 457 | |
| 458 | size_t new_index_count = SurfaceTool::simplify_with_attrib_func( |
| 459 | (unsigned int *)new_indices.ptrw(), |
| 460 | (const uint32_t *)merged_indices_ptr, index_count, |
| 461 | merged_vertices_f32.ptr(), merged_vertex_count, |
| 462 | sizeof(float) * 3, // Vertex stride |
| 463 | index_target, |
| 464 | max_mesh_error, |
| 465 | simplify_options, |
| 466 | &mesh_error, |
| 467 | merged_normals_f32.ptr(), |
| 468 | normal_weights.ptr(), 3); |
| 469 | |
| 470 | if (new_index_count < last_index_count * 1.5f) { |
| 471 | index_target = index_target * 1.5f; |
| 472 | continue; |
| 473 | } |
| 474 | |
| 475 | if (new_index_count == 0 || (new_index_count >= (index_count * 0.75f))) { |
| 476 | break; |
| 477 | } |
| 478 | |
| 479 | new_indices.resize(new_index_count); |
| 480 | |
| 481 | LocalVector<LocalVector<int>> vertex_corners; |
| 482 | vertex_corners.resize(vertex_count); |
| 483 | { |
| 484 | int *ptrw = new_indices.ptrw(); |
| 485 | for (unsigned int j = 0; j < new_index_count; j++) { |
| 486 | const int &remapped = vertex_inverse_remap[ptrw[j]]; |
| 487 | vertex_corners[remapped].push_back(j); |
| 488 | ptrw[j] = remapped; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | if (raycaster.is_valid()) { |
| 493 | float error_factor = 1.0f / (scale * MAX(mesh_error, 0.15)); |
| 494 | const float ray_bias = 0.05; |
| 495 | float ray_length = ray_bias + mesh_error * scale * 3.0f; |
| 496 | |
| 497 | Vector<StaticRaycaster::Ray> rays; |
| 498 | LocalVector<Vector2> ray_uvs; |
| 499 | |
| 500 | int32_t *new_indices_ptr = new_indices.ptrw(); |
| 501 | |
| 502 | int current_ray_count = 0; |
| 503 | for (unsigned int j = 0; j < new_index_count; j += 3) { |
| 504 | const Vector3 &v0 = vertices_ptr[new_indices_ptr[j + 0]]; |
| 505 | const Vector3 &v1 = vertices_ptr[new_indices_ptr[j + 1]]; |
| 506 | const Vector3 &v2 = vertices_ptr[new_indices_ptr[j + 2]]; |
| 507 | Vector3 face_normal = vec3_cross(v0 - v2, v0 - v1); |
| 508 | float face_area = face_normal.length(); // Actually twice the face area, since it's the same error_factor on all faces, we don't care |
| 509 | |
| 510 | Vector3 dir = face_normal / face_area; |
| 511 | int ray_count = CLAMP(5.0 * face_area * error_factor, 16, 64); |
| 512 | |
| 513 | rays.resize(current_ray_count + ray_count); |
| 514 | StaticRaycaster::Ray *rays_ptr = rays.ptrw(); |
| 515 | |
| 516 | ray_uvs.resize(current_ray_count + ray_count); |
| 517 | Vector2 *ray_uvs_ptr = ray_uvs.ptr(); |
| 518 | |
| 519 | for (int k = 0; k < ray_count; k++) { |
| 520 | float u = pcg.randf(); |
| 521 | float v = pcg.randf(); |
| 522 | |
| 523 | if (u + v >= 1.0f) { |
| 524 | u = 1.0f - u; |
| 525 | v = 1.0f - v; |
| 526 | } |
| 527 | |
| 528 | u = 0.9f * u + 0.05f / 3.0f; // Give barycentric coordinates some padding, we don't want to sample right on the edge |
| 529 | v = 0.9f * v + 0.05f / 3.0f; // v = (v - one_third) * 0.95f + one_third; |
| 530 | float w = 1.0f - u - v; |
| 531 | |
| 532 | Vector3 org = v0 * w + v1 * u + v2 * v; |
| 533 | org -= dir * ray_bias; |
| 534 | rays_ptr[current_ray_count + k] = StaticRaycaster::Ray(org, dir, 0.0f, ray_length); |
| 535 | rays_ptr[current_ray_count + k].id = j / 3; |
| 536 | ray_uvs_ptr[current_ray_count + k] = Vector2(u, v); |
| 537 | } |
| 538 | |
| 539 | current_ray_count += ray_count; |
| 540 | } |
| 541 | |
| 542 | raycaster->intersect(rays); |
| 543 | |
| 544 | LocalVector<Vector3> ray_normals; |
| 545 | LocalVector<real_t> ray_normal_weights; |
| 546 | |
| 547 | ray_normals.resize(new_index_count); |
| 548 | ray_normal_weights.resize(new_index_count); |
| 549 | |
| 550 | for (unsigned int j = 0; j < new_index_count; j++) { |
| 551 | ray_normal_weights[j] = 0.0f; |
| 552 | } |
| 553 | |
| 554 | const StaticRaycaster::Ray *rp = rays.ptr(); |
| 555 | for (int j = 0; j < rays.size(); j++) { |
| 556 | if (rp[j].geomID != 0) { // Ray missed |
| 557 | continue; |
| 558 | } |
| 559 | |
| 560 | if (rp[j].normal.normalized().dot(rp[j].dir) > 0.0f) { // Hit a back face. |
| 561 | continue; |
| 562 | } |
| 563 | |
| 564 | const float &u = rp[j].u; |
| 565 | const float &v = rp[j].v; |
| 566 | const float w = 1.0f - u - v; |
| 567 | |
| 568 | const unsigned int &hit_tri_id = rp[j].primID; |
| 569 | const unsigned int &orig_tri_id = rp[j].id; |
| 570 | |
| 571 | const Vector3 &n0 = normals_ptr[indices_ptr[hit_tri_id * 3 + 0]]; |
| 572 | const Vector3 &n1 = normals_ptr[indices_ptr[hit_tri_id * 3 + 1]]; |
| 573 | const Vector3 &n2 = normals_ptr[indices_ptr[hit_tri_id * 3 + 2]]; |
| 574 | Vector3 normal = n0 * w + n1 * u + n2 * v; |
| 575 | |
| 576 | Vector2 orig_uv = ray_uvs[j]; |
| 577 | const real_t orig_bary[3] = { 1.0f - orig_uv.x - orig_uv.y, orig_uv.x, orig_uv.y }; |
| 578 | for (int k = 0; k < 3; k++) { |
| 579 | int idx = orig_tri_id * 3 + k; |
| 580 | real_t weight = orig_bary[k]; |
| 581 | ray_normals[idx] += normal * weight; |
| 582 | ray_normal_weights[idx] += weight; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | for (unsigned int j = 0; j < new_index_count; j++) { |
| 587 | if (ray_normal_weights[j] < 1.0f) { // Not enough data, the new normal would be just a bad guess |
| 588 | ray_normals[j] = Vector3(); |
| 589 | } else { |
| 590 | ray_normals[j] /= ray_normal_weights[j]; |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | LocalVector<LocalVector<int>> normal_group_indices; |
| 595 | LocalVector<Vector3> normal_group_averages; |
| 596 | normal_group_indices.reserve(24); |
| 597 | normal_group_averages.reserve(24); |
| 598 | |
| 599 | for (unsigned int j = 0; j < vertex_count; j++) { |
| 600 | const LocalVector<int> &corners = vertex_corners[j]; |
| 601 | const Vector3 &vertex_normal = normals_ptr[j]; |
| 602 | |
| 603 | for (const int &corner_idx : corners) { |
| 604 | const Vector3 &ray_normal = ray_normals[corner_idx]; |
| 605 | |
| 606 | if (ray_normal.length_squared() < CMP_EPSILON2) { |
| 607 | continue; |
| 608 | } |
| 609 | |
| 610 | bool found = false; |
| 611 | for (unsigned int l = 0; l < normal_group_indices.size(); l++) { |
| 612 | LocalVector<int> &group_indices = normal_group_indices[l]; |
| 613 | Vector3 n = normal_group_averages[l] / group_indices.size(); |
| 614 | if (n.dot(ray_normal) > normal_pre_split_threshold) { |
| 615 | found = true; |
| 616 | group_indices.push_back(corner_idx); |
| 617 | normal_group_averages[l] += ray_normal; |
| 618 | break; |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | if (!found) { |
| 623 | normal_group_indices.push_back({ corner_idx }); |
| 624 | normal_group_averages.push_back(ray_normal); |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | for (unsigned int k = 0; k < normal_group_indices.size(); k++) { |
| 629 | LocalVector<int> &group_indices = normal_group_indices[k]; |
| 630 | Vector3 n = normal_group_averages[k] / group_indices.size(); |
| 631 | |
| 632 | if (vertex_normal.dot(n) < normal_split_threshold) { |
| 633 | split_vertex_indices.push_back(j); |
| 634 | split_vertex_normals.push_back(n); |
| 635 | int new_idx = split_vertex_count++; |
| 636 | for (const int &index : group_indices) { |
| 637 | new_indices_ptr[index] = new_idx; |
| 638 | } |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | normal_group_indices.clear(); |
| 643 | normal_group_averages.clear(); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | Surface::LOD lod; |
| 648 | lod.distance = MAX(mesh_error * scale, CMP_EPSILON2); |
| 649 | lod.indices = new_indices; |
| 650 | surfaces.write[i].lods.push_back(lod); |
| 651 | index_target = MAX(new_index_count, index_target) * 2; |
| 652 | last_index_count = new_index_count; |
| 653 | |
| 654 | if (mesh_error == 0.0f) { |
| 655 | break; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | surfaces.write[i].split_normals(split_vertex_indices, split_vertex_normals); |
| 660 | surfaces.write[i].lods.sort_custom<Surface::LODComparator>(); |
| 661 | |
| 662 | for (int j = 0; j < surfaces.write[i].lods.size(); j++) { |
| 663 | Surface::LOD &lod = surfaces.write[i].lods.write[j]; |
| 664 | unsigned int *lod_indices_ptr = (unsigned int *)lod.indices.ptrw(); |
| 665 | SurfaceTool::optimize_vertex_cache_func(lod_indices_ptr, lod_indices_ptr, lod.indices.size(), split_vertex_count); |
| 666 | } |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | bool ImporterMesh::has_mesh() const { |
| 671 | return mesh.is_valid(); |
| 672 | } |
| 673 | |
| 674 | Ref<ArrayMesh> ImporterMesh::get_mesh(const Ref<ArrayMesh> &p_base) { |
| 675 | ERR_FAIL_COND_V(surfaces.size() == 0, Ref<ArrayMesh>()); |
| 676 | |
| 677 | if (mesh.is_null()) { |
| 678 | if (p_base.is_valid()) { |
| 679 | mesh = p_base; |
| 680 | } |
| 681 | if (mesh.is_null()) { |
| 682 | mesh.instantiate(); |
| 683 | } |
| 684 | mesh->set_name(get_name()); |
| 685 | if (has_meta("import_id" )) { |
| 686 | mesh->set_meta("import_id" , get_meta("import_id" )); |
| 687 | } |
| 688 | for (int i = 0; i < blend_shapes.size(); i++) { |
| 689 | mesh->add_blend_shape(blend_shapes[i]); |
| 690 | } |
| 691 | mesh->set_blend_shape_mode(blend_shape_mode); |
| 692 | for (int i = 0; i < surfaces.size(); i++) { |
| 693 | Array bs_data; |
| 694 | if (surfaces[i].blend_shape_data.size()) { |
| 695 | for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) { |
| 696 | bs_data.push_back(surfaces[i].blend_shape_data[j].arrays); |
| 697 | } |
| 698 | } |
| 699 | Dictionary lods; |
| 700 | if (surfaces[i].lods.size()) { |
| 701 | for (int j = 0; j < surfaces[i].lods.size(); j++) { |
| 702 | lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices; |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods, surfaces[i].flags); |
| 707 | if (surfaces[i].material.is_valid()) { |
| 708 | mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material); |
| 709 | } |
| 710 | if (!surfaces[i].name.is_empty()) { |
| 711 | mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | mesh->set_lightmap_size_hint(lightmap_size_hint); |
| 716 | |
| 717 | if (shadow_mesh.is_valid()) { |
| 718 | Ref<ArrayMesh> shadow = shadow_mesh->get_mesh(); |
| 719 | mesh->set_shadow_mesh(shadow); |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | return mesh; |
| 724 | } |
| 725 | |
| 726 | void ImporterMesh::clear() { |
| 727 | surfaces.clear(); |
| 728 | blend_shapes.clear(); |
| 729 | mesh.unref(); |
| 730 | } |
| 731 | |
| 732 | void ImporterMesh::create_shadow_mesh() { |
| 733 | if (shadow_mesh.is_valid()) { |
| 734 | shadow_mesh.unref(); |
| 735 | } |
| 736 | |
| 737 | //no shadow mesh for blendshapes |
| 738 | if (blend_shapes.size() > 0) { |
| 739 | return; |
| 740 | } |
| 741 | //no shadow mesh for skeletons |
| 742 | for (int i = 0; i < surfaces.size(); i++) { |
| 743 | if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) { |
| 744 | return; |
| 745 | } |
| 746 | if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) { |
| 747 | return; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | shadow_mesh.instantiate(); |
| 752 | |
| 753 | for (int i = 0; i < surfaces.size(); i++) { |
| 754 | LocalVector<int> vertex_remap; |
| 755 | Vector<Vector3> new_vertices; |
| 756 | Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX]; |
| 757 | int vertex_count = vertices.size(); |
| 758 | { |
| 759 | HashMap<Vector3, int> unique_vertices; |
| 760 | const Vector3 *vptr = vertices.ptr(); |
| 761 | for (int j = 0; j < vertex_count; j++) { |
| 762 | const Vector3 &v = vptr[j]; |
| 763 | |
| 764 | HashMap<Vector3, int>::Iterator E = unique_vertices.find(v); |
| 765 | |
| 766 | if (E) { |
| 767 | vertex_remap.push_back(E->value); |
| 768 | } else { |
| 769 | int vcount = unique_vertices.size(); |
| 770 | unique_vertices[v] = vcount; |
| 771 | vertex_remap.push_back(vcount); |
| 772 | new_vertices.push_back(v); |
| 773 | } |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | Array new_surface; |
| 778 | new_surface.resize(RS::ARRAY_MAX); |
| 779 | Dictionary lods; |
| 780 | |
| 781 | // print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size())); |
| 782 | |
| 783 | new_surface[RS::ARRAY_VERTEX] = new_vertices; |
| 784 | |
| 785 | Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX]; |
| 786 | if (indices.size()) { |
| 787 | int index_count = indices.size(); |
| 788 | const int *index_rptr = indices.ptr(); |
| 789 | Vector<int> new_indices; |
| 790 | new_indices.resize(indices.size()); |
| 791 | int *index_wptr = new_indices.ptrw(); |
| 792 | |
| 793 | for (int j = 0; j < index_count; j++) { |
| 794 | int index = index_rptr[j]; |
| 795 | ERR_FAIL_INDEX(index, vertex_count); |
| 796 | index_wptr[j] = vertex_remap[index]; |
| 797 | } |
| 798 | |
| 799 | new_surface[RS::ARRAY_INDEX] = new_indices; |
| 800 | |
| 801 | // Make sure the same LODs as the full version are used. |
| 802 | // This makes it more coherent between rendered model and its shadows. |
| 803 | for (int j = 0; j < surfaces[i].lods.size(); j++) { |
| 804 | indices = surfaces[i].lods[j].indices; |
| 805 | |
| 806 | index_count = indices.size(); |
| 807 | index_rptr = indices.ptr(); |
| 808 | new_indices.resize(indices.size()); |
| 809 | index_wptr = new_indices.ptrw(); |
| 810 | |
| 811 | for (int k = 0; k < index_count; k++) { |
| 812 | int index = index_rptr[k]; |
| 813 | ERR_FAIL_INDEX(index, vertex_count); |
| 814 | index_wptr[k] = vertex_remap[index]; |
| 815 | } |
| 816 | |
| 817 | lods[surfaces[i].lods[j].distance] = new_indices; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref<Material>(), surfaces[i].name, surfaces[i].flags); |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | Ref<ImporterMesh> ImporterMesh::get_shadow_mesh() const { |
| 826 | return shadow_mesh; |
| 827 | } |
| 828 | |
| 829 | void ImporterMesh::_set_data(const Dictionary &p_data) { |
| 830 | clear(); |
| 831 | if (p_data.has("blend_shape_names" )) { |
| 832 | blend_shapes = p_data["blend_shape_names" ]; |
| 833 | } |
| 834 | if (p_data.has("surfaces" )) { |
| 835 | Array surface_arr = p_data["surfaces" ]; |
| 836 | for (int i = 0; i < surface_arr.size(); i++) { |
| 837 | Dictionary s = surface_arr[i]; |
| 838 | ERR_CONTINUE(!s.has("primitive" )); |
| 839 | ERR_CONTINUE(!s.has("arrays" )); |
| 840 | Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive" ])); |
| 841 | ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX); |
| 842 | Array arr = s["arrays" ]; |
| 843 | Dictionary lods; |
| 844 | String surf_name; |
| 845 | if (s.has("name" )) { |
| 846 | surf_name = s["name" ]; |
| 847 | } |
| 848 | if (s.has("lods" )) { |
| 849 | lods = s["lods" ]; |
| 850 | } |
| 851 | Array b_shapes; |
| 852 | if (s.has("b_shapes" )) { |
| 853 | b_shapes = s["b_shapes" ]; |
| 854 | } |
| 855 | Ref<Material> material; |
| 856 | if (s.has("material" )) { |
| 857 | material = s["material" ]; |
| 858 | } |
| 859 | uint32_t flags = 0; |
| 860 | if (s.has("flags" )) { |
| 861 | flags = s["flags" ]; |
| 862 | } |
| 863 | add_surface(prim, arr, b_shapes, lods, material, surf_name, flags); |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | Dictionary ImporterMesh::_get_data() const { |
| 868 | Dictionary data; |
| 869 | if (blend_shapes.size()) { |
| 870 | data["blend_shape_names" ] = blend_shapes; |
| 871 | } |
| 872 | Array surface_arr; |
| 873 | for (int i = 0; i < surfaces.size(); i++) { |
| 874 | Dictionary d; |
| 875 | d["primitive" ] = surfaces[i].primitive; |
| 876 | d["arrays" ] = surfaces[i].arrays; |
| 877 | if (surfaces[i].blend_shape_data.size()) { |
| 878 | Array bs_data; |
| 879 | for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) { |
| 880 | bs_data.push_back(surfaces[i].blend_shape_data[j].arrays); |
| 881 | } |
| 882 | d["blend_shapes" ] = bs_data; |
| 883 | } |
| 884 | if (surfaces[i].lods.size()) { |
| 885 | Dictionary lods; |
| 886 | for (int j = 0; j < surfaces[i].lods.size(); j++) { |
| 887 | lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices; |
| 888 | } |
| 889 | d["lods" ] = lods; |
| 890 | } |
| 891 | |
| 892 | if (surfaces[i].material.is_valid()) { |
| 893 | d["material" ] = surfaces[i].material; |
| 894 | } |
| 895 | |
| 896 | if (!surfaces[i].name.is_empty()) { |
| 897 | d["name" ] = surfaces[i].name; |
| 898 | } |
| 899 | |
| 900 | if (surfaces[i].flags != 0) { |
| 901 | d["flags" ] = surfaces[i].flags; |
| 902 | } |
| 903 | |
| 904 | surface_arr.push_back(d); |
| 905 | } |
| 906 | data["surfaces" ] = surface_arr; |
| 907 | return data; |
| 908 | } |
| 909 | |
| 910 | Vector<Face3> ImporterMesh::get_faces() const { |
| 911 | Vector<Face3> faces; |
| 912 | for (int i = 0; i < surfaces.size(); i++) { |
| 913 | if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) { |
| 914 | Vector<Vector3> vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX]; |
| 915 | Vector<int> indices = surfaces[i].arrays[Mesh::ARRAY_INDEX]; |
| 916 | if (indices.size()) { |
| 917 | for (int j = 0; j < indices.size(); j += 3) { |
| 918 | Face3 f; |
| 919 | f.vertex[0] = vertices[indices[j + 0]]; |
| 920 | f.vertex[1] = vertices[indices[j + 1]]; |
| 921 | f.vertex[2] = vertices[indices[j + 2]]; |
| 922 | faces.push_back(f); |
| 923 | } |
| 924 | } else { |
| 925 | for (int j = 0; j < vertices.size(); j += 3) { |
| 926 | Face3 f; |
| 927 | f.vertex[0] = vertices[j + 0]; |
| 928 | f.vertex[1] = vertices[j + 1]; |
| 929 | f.vertex[2] = vertices[j + 2]; |
| 930 | faces.push_back(f); |
| 931 | } |
| 932 | } |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | return faces; |
| 937 | } |
| 938 | |
| 939 | Vector<Ref<Shape3D>> ImporterMesh::convex_decompose(const Ref<MeshConvexDecompositionSettings> &p_settings) const { |
| 940 | ERR_FAIL_NULL_V(Mesh::convex_decomposition_function, Vector<Ref<Shape3D>>()); |
| 941 | |
| 942 | const Vector<Face3> faces = get_faces(); |
| 943 | int face_count = faces.size(); |
| 944 | |
| 945 | Vector<Vector3> vertices; |
| 946 | uint32_t vertex_count = 0; |
| 947 | vertices.resize(face_count * 3); |
| 948 | Vector<uint32_t> indices; |
| 949 | indices.resize(face_count * 3); |
| 950 | { |
| 951 | HashMap<Vector3, uint32_t> vertex_map; |
| 952 | Vector3 *vertex_w = vertices.ptrw(); |
| 953 | uint32_t *index_w = indices.ptrw(); |
| 954 | for (int i = 0; i < face_count; i++) { |
| 955 | for (int j = 0; j < 3; j++) { |
| 956 | const Vector3 &vertex = faces[i].vertex[j]; |
| 957 | HashMap<Vector3, uint32_t>::Iterator found_vertex = vertex_map.find(vertex); |
| 958 | uint32_t index; |
| 959 | if (found_vertex) { |
| 960 | index = found_vertex->value; |
| 961 | } else { |
| 962 | index = ++vertex_count; |
| 963 | vertex_map[vertex] = index; |
| 964 | vertex_w[index] = vertex; |
| 965 | } |
| 966 | index_w[i * 3 + j] = index; |
| 967 | } |
| 968 | } |
| 969 | } |
| 970 | vertices.resize(vertex_count); |
| 971 | |
| 972 | Vector<Vector<Vector3>> decomposed = Mesh::convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), face_count, p_settings, nullptr); |
| 973 | |
| 974 | Vector<Ref<Shape3D>> ret; |
| 975 | |
| 976 | for (int i = 0; i < decomposed.size(); i++) { |
| 977 | Ref<ConvexPolygonShape3D> shape; |
| 978 | shape.instantiate(); |
| 979 | shape->set_points(decomposed[i]); |
| 980 | ret.push_back(shape); |
| 981 | } |
| 982 | |
| 983 | return ret; |
| 984 | } |
| 985 | |
| 986 | Ref<ConvexPolygonShape3D> ImporterMesh::create_convex_shape(bool p_clean, bool p_simplify) const { |
| 987 | if (p_simplify) { |
| 988 | Ref<MeshConvexDecompositionSettings> settings; |
| 989 | settings.instantiate(); |
| 990 | settings->set_max_convex_hulls(1); |
| 991 | Vector<Ref<Shape3D>> decomposed = convex_decompose(settings); |
| 992 | if (decomposed.size() == 1) { |
| 993 | return decomposed[0]; |
| 994 | } else { |
| 995 | ERR_PRINT("Convex shape simplification failed, falling back to simpler process." ); |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | Vector<Vector3> vertices; |
| 1000 | for (int i = 0; i < get_surface_count(); i++) { |
| 1001 | Array a = get_surface_arrays(i); |
| 1002 | ERR_FAIL_COND_V(a.is_empty(), Ref<ConvexPolygonShape3D>()); |
| 1003 | Vector<Vector3> v = a[Mesh::ARRAY_VERTEX]; |
| 1004 | vertices.append_array(v); |
| 1005 | } |
| 1006 | |
| 1007 | Ref<ConvexPolygonShape3D> shape = memnew(ConvexPolygonShape3D); |
| 1008 | |
| 1009 | if (p_clean) { |
| 1010 | Geometry3D::MeshData md; |
| 1011 | Error err = ConvexHullComputer::convex_hull(vertices, md); |
| 1012 | if (err == OK) { |
| 1013 | shape->set_points(md.vertices); |
| 1014 | return shape; |
| 1015 | } else { |
| 1016 | ERR_PRINT("Convex shape cleaning failed, falling back to simpler process." ); |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | shape->set_points(vertices); |
| 1021 | return shape; |
| 1022 | } |
| 1023 | |
| 1024 | Ref<ConcavePolygonShape3D> ImporterMesh::create_trimesh_shape() const { |
| 1025 | Vector<Face3> faces = get_faces(); |
| 1026 | if (faces.size() == 0) { |
| 1027 | return Ref<ConcavePolygonShape3D>(); |
| 1028 | } |
| 1029 | |
| 1030 | Vector<Vector3> face_points; |
| 1031 | face_points.resize(faces.size() * 3); |
| 1032 | |
| 1033 | for (int i = 0; i < face_points.size(); i += 3) { |
| 1034 | Face3 f = faces.get(i / 3); |
| 1035 | face_points.set(i, f.vertex[0]); |
| 1036 | face_points.set(i + 1, f.vertex[1]); |
| 1037 | face_points.set(i + 2, f.vertex[2]); |
| 1038 | } |
| 1039 | |
| 1040 | Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D); |
| 1041 | shape->set_faces(face_points); |
| 1042 | return shape; |
| 1043 | } |
| 1044 | |
| 1045 | Ref<NavigationMesh> ImporterMesh::create_navigation_mesh() { |
| 1046 | Vector<Face3> faces = get_faces(); |
| 1047 | if (faces.size() == 0) { |
| 1048 | return Ref<NavigationMesh>(); |
| 1049 | } |
| 1050 | |
| 1051 | HashMap<Vector3, int> unique_vertices; |
| 1052 | LocalVector<int> face_indices; |
| 1053 | |
| 1054 | for (int i = 0; i < faces.size(); i++) { |
| 1055 | for (int j = 0; j < 3; j++) { |
| 1056 | Vector3 v = faces[i].vertex[j]; |
| 1057 | int idx; |
| 1058 | if (unique_vertices.has(v)) { |
| 1059 | idx = unique_vertices[v]; |
| 1060 | } else { |
| 1061 | idx = unique_vertices.size(); |
| 1062 | unique_vertices[v] = idx; |
| 1063 | } |
| 1064 | face_indices.push_back(idx); |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | Vector<Vector3> vertices; |
| 1069 | vertices.resize(unique_vertices.size()); |
| 1070 | for (const KeyValue<Vector3, int> &E : unique_vertices) { |
| 1071 | vertices.write[E.value] = E.key; |
| 1072 | } |
| 1073 | |
| 1074 | Ref<NavigationMesh> nm; |
| 1075 | nm.instantiate(); |
| 1076 | nm->set_vertices(vertices); |
| 1077 | |
| 1078 | Vector<int> v3; |
| 1079 | v3.resize(3); |
| 1080 | for (uint32_t i = 0; i < face_indices.size(); i += 3) { |
| 1081 | v3.write[0] = face_indices[i + 0]; |
| 1082 | v3.write[1] = face_indices[i + 1]; |
| 1083 | v3.write[2] = face_indices[i + 2]; |
| 1084 | nm->add_polygon(v3); |
| 1085 | } |
| 1086 | |
| 1087 | return nm; |
| 1088 | } |
| 1089 | |
| 1090 | extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y); |
| 1091 | |
| 1092 | struct EditorSceneFormatImporterMeshLightmapSurface { |
| 1093 | Ref<Material> material; |
| 1094 | LocalVector<SurfaceTool::Vertex> vertices; |
| 1095 | Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX; |
| 1096 | uint32_t format = 0; |
| 1097 | String name; |
| 1098 | }; |
| 1099 | |
| 1100 | static const uint32_t custom_shift[RS::ARRAY_CUSTOM_COUNT] = { Mesh::ARRAY_FORMAT_CUSTOM0_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM1_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM2_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM3_SHIFT }; |
| 1101 | |
| 1102 | Error ImporterMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache) { |
| 1103 | ERR_FAIL_NULL_V(array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED); |
| 1104 | ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes." ); |
| 1105 | |
| 1106 | LocalVector<float> vertices; |
| 1107 | LocalVector<float> normals; |
| 1108 | LocalVector<int> indices; |
| 1109 | LocalVector<float> uv; |
| 1110 | LocalVector<Pair<int, int>> uv_indices; |
| 1111 | |
| 1112 | Vector<EditorSceneFormatImporterMeshLightmapSurface> lightmap_surfaces; |
| 1113 | |
| 1114 | // Keep only the scale |
| 1115 | Basis basis = p_base_transform.get_basis(); |
| 1116 | Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length()); |
| 1117 | |
| 1118 | Transform3D transform; |
| 1119 | transform.scale(scale); |
| 1120 | |
| 1121 | Basis normal_basis = transform.basis.inverse().transposed(); |
| 1122 | |
| 1123 | for (int i = 0; i < get_surface_count(); i++) { |
| 1124 | EditorSceneFormatImporterMeshLightmapSurface s; |
| 1125 | s.primitive = get_surface_primitive_type(i); |
| 1126 | |
| 1127 | ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap." ); |
| 1128 | Array arrays = get_surface_arrays(i); |
| 1129 | s.material = get_surface_material(i); |
| 1130 | s.name = get_surface_name(i); |
| 1131 | |
| 1132 | SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format); |
| 1133 | |
| 1134 | PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX]; |
| 1135 | int vc = rvertices.size(); |
| 1136 | |
| 1137 | PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL]; |
| 1138 | |
| 1139 | if (!rnormals.size()) { |
| 1140 | continue; |
| 1141 | } |
| 1142 | |
| 1143 | int vertex_ofs = vertices.size() / 3; |
| 1144 | |
| 1145 | vertices.resize((vertex_ofs + vc) * 3); |
| 1146 | normals.resize((vertex_ofs + vc) * 3); |
| 1147 | uv_indices.resize(vertex_ofs + vc); |
| 1148 | |
| 1149 | for (int j = 0; j < vc; j++) { |
| 1150 | Vector3 v = transform.xform(rvertices[j]); |
| 1151 | Vector3 n = normal_basis.xform(rnormals[j]).normalized(); |
| 1152 | |
| 1153 | vertices[(j + vertex_ofs) * 3 + 0] = v.x; |
| 1154 | vertices[(j + vertex_ofs) * 3 + 1] = v.y; |
| 1155 | vertices[(j + vertex_ofs) * 3 + 2] = v.z; |
| 1156 | normals[(j + vertex_ofs) * 3 + 0] = n.x; |
| 1157 | normals[(j + vertex_ofs) * 3 + 1] = n.y; |
| 1158 | normals[(j + vertex_ofs) * 3 + 2] = n.z; |
| 1159 | uv_indices[j + vertex_ofs] = Pair<int, int>(i, j); |
| 1160 | } |
| 1161 | |
| 1162 | PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX]; |
| 1163 | int ic = rindices.size(); |
| 1164 | |
| 1165 | float eps = 1.19209290e-7F; // Taken from xatlas.h |
| 1166 | if (ic == 0) { |
| 1167 | for (int j = 0; j < vc / 3; j++) { |
| 1168 | Vector3 p0 = transform.xform(rvertices[j * 3 + 0]); |
| 1169 | Vector3 p1 = transform.xform(rvertices[j * 3 + 1]); |
| 1170 | Vector3 p2 = transform.xform(rvertices[j * 3 + 2]); |
| 1171 | |
| 1172 | if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { |
| 1173 | continue; |
| 1174 | } |
| 1175 | |
| 1176 | indices.push_back(vertex_ofs + j * 3 + 0); |
| 1177 | indices.push_back(vertex_ofs + j * 3 + 1); |
| 1178 | indices.push_back(vertex_ofs + j * 3 + 2); |
| 1179 | } |
| 1180 | |
| 1181 | } else { |
| 1182 | for (int j = 0; j < ic / 3; j++) { |
| 1183 | ERR_FAIL_INDEX_V(rindices[j * 3 + 0], rvertices.size(), ERR_INVALID_DATA); |
| 1184 | ERR_FAIL_INDEX_V(rindices[j * 3 + 1], rvertices.size(), ERR_INVALID_DATA); |
| 1185 | ERR_FAIL_INDEX_V(rindices[j * 3 + 2], rvertices.size(), ERR_INVALID_DATA); |
| 1186 | Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]); |
| 1187 | Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]); |
| 1188 | Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]); |
| 1189 | |
| 1190 | if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { |
| 1191 | continue; |
| 1192 | } |
| 1193 | |
| 1194 | indices.push_back(vertex_ofs + rindices[j * 3 + 0]); |
| 1195 | indices.push_back(vertex_ofs + rindices[j * 3 + 1]); |
| 1196 | indices.push_back(vertex_ofs + rindices[j * 3 + 2]); |
| 1197 | } |
| 1198 | } |
| 1199 | |
| 1200 | lightmap_surfaces.push_back(s); |
| 1201 | } |
| 1202 | |
| 1203 | //unwrap |
| 1204 | |
| 1205 | bool use_cache = true; // Used to request cache generation and to know if cache was used |
| 1206 | uint8_t *gen_cache; |
| 1207 | int gen_cache_size; |
| 1208 | float *gen_uvs; |
| 1209 | int *gen_vertices; |
| 1210 | int *gen_indices; |
| 1211 | int gen_vertex_count; |
| 1212 | int gen_index_count; |
| 1213 | int size_x; |
| 1214 | int size_y; |
| 1215 | |
| 1216 | bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y); |
| 1217 | |
| 1218 | if (!ok) { |
| 1219 | return ERR_CANT_CREATE; |
| 1220 | } |
| 1221 | |
| 1222 | //create surfacetools for each surface.. |
| 1223 | LocalVector<Ref<SurfaceTool>> surfaces_tools; |
| 1224 | |
| 1225 | for (int i = 0; i < lightmap_surfaces.size(); i++) { |
| 1226 | Ref<SurfaceTool> st; |
| 1227 | st.instantiate(); |
| 1228 | st->begin(Mesh::PRIMITIVE_TRIANGLES); |
| 1229 | st->set_material(lightmap_surfaces[i].material); |
| 1230 | st->set_meta("name" , lightmap_surfaces[i].name); |
| 1231 | |
| 1232 | for (int custom_i = 0; custom_i < RS::ARRAY_CUSTOM_COUNT; custom_i++) { |
| 1233 | st->set_custom_format(custom_i, (SurfaceTool::CustomFormat)((lightmap_surfaces[i].format >> custom_shift[custom_i]) & RS::ARRAY_FORMAT_CUSTOM_MASK)); |
| 1234 | } |
| 1235 | surfaces_tools.push_back(st); //stay there |
| 1236 | } |
| 1237 | |
| 1238 | //remove surfaces |
| 1239 | clear(); |
| 1240 | |
| 1241 | print_verbose("Mesh: Gen indices: " + itos(gen_index_count)); |
| 1242 | |
| 1243 | //go through all indices |
| 1244 | for (int i = 0; i < gen_index_count; i += 3) { |
| 1245 | ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG); |
| 1246 | ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG); |
| 1247 | ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG); |
| 1248 | |
| 1249 | ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG); |
| 1250 | |
| 1251 | int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first; |
| 1252 | |
| 1253 | for (int j = 0; j < 3; j++) { |
| 1254 | SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second]; |
| 1255 | |
| 1256 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) { |
| 1257 | surfaces_tools[surface]->set_color(v.color); |
| 1258 | } |
| 1259 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) { |
| 1260 | surfaces_tools[surface]->set_uv(v.uv); |
| 1261 | } |
| 1262 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) { |
| 1263 | surfaces_tools[surface]->set_normal(v.normal); |
| 1264 | } |
| 1265 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) { |
| 1266 | Plane t; |
| 1267 | t.normal = v.tangent; |
| 1268 | t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1; |
| 1269 | surfaces_tools[surface]->set_tangent(t); |
| 1270 | } |
| 1271 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) { |
| 1272 | surfaces_tools[surface]->set_bones(v.bones); |
| 1273 | } |
| 1274 | if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) { |
| 1275 | surfaces_tools[surface]->set_weights(v.weights); |
| 1276 | } |
| 1277 | for (int custom_i = 0; custom_i < RS::ARRAY_CUSTOM_COUNT; custom_i++) { |
| 1278 | if ((lightmap_surfaces[surface].format >> custom_shift[custom_i]) & RS::ARRAY_FORMAT_CUSTOM_MASK) { |
| 1279 | surfaces_tools[surface]->set_custom(custom_i, v.custom[custom_i]); |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]); |
| 1284 | surfaces_tools[surface]->set_uv2(uv2); |
| 1285 | |
| 1286 | surfaces_tools[surface]->add_vertex(v.vertex); |
| 1287 | } |
| 1288 | } |
| 1289 | |
| 1290 | //generate surfaces |
| 1291 | for (int i = 0; i < lightmap_surfaces.size(); i++) { |
| 1292 | Ref<SurfaceTool> &tool = surfaces_tools[i]; |
| 1293 | tool->index(); |
| 1294 | Array arrays = tool->commit_to_arrays(); |
| 1295 | add_surface(tool->get_primitive_type(), arrays, Array(), Dictionary(), tool->get_material(), tool->get_meta("name" ), lightmap_surfaces[i].format); |
| 1296 | } |
| 1297 | |
| 1298 | set_lightmap_size_hint(Size2(size_x, size_y)); |
| 1299 | |
| 1300 | if (gen_cache_size > 0) { |
| 1301 | r_dst_cache.resize(gen_cache_size); |
| 1302 | memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size); |
| 1303 | memfree(gen_cache); |
| 1304 | } |
| 1305 | |
| 1306 | if (!use_cache) { |
| 1307 | // Cache was not used, free the buffers |
| 1308 | memfree(gen_vertices); |
| 1309 | memfree(gen_indices); |
| 1310 | memfree(gen_uvs); |
| 1311 | } |
| 1312 | |
| 1313 | return OK; |
| 1314 | } |
| 1315 | |
| 1316 | void ImporterMesh::set_lightmap_size_hint(const Size2i &p_size) { |
| 1317 | lightmap_size_hint = p_size; |
| 1318 | } |
| 1319 | |
| 1320 | Size2i ImporterMesh::get_lightmap_size_hint() const { |
| 1321 | return lightmap_size_hint; |
| 1322 | } |
| 1323 | |
| 1324 | void ImporterMesh::_bind_methods() { |
| 1325 | ClassDB::bind_method(D_METHOD("add_blend_shape" , "name" ), &ImporterMesh::add_blend_shape); |
| 1326 | ClassDB::bind_method(D_METHOD("get_blend_shape_count" ), &ImporterMesh::get_blend_shape_count); |
| 1327 | ClassDB::bind_method(D_METHOD("get_blend_shape_name" , "blend_shape_idx" ), &ImporterMesh::get_blend_shape_name); |
| 1328 | |
| 1329 | ClassDB::bind_method(D_METHOD("set_blend_shape_mode" , "mode" ), &ImporterMesh::set_blend_shape_mode); |
| 1330 | ClassDB::bind_method(D_METHOD("get_blend_shape_mode" ), &ImporterMesh::get_blend_shape_mode); |
| 1331 | |
| 1332 | ClassDB::bind_method(D_METHOD("add_surface" , "primitive" , "arrays" , "blend_shapes" , "lods" , "material" , "name" , "flags" ), &ImporterMesh::add_surface, DEFVAL(TypedArray<Array>()), DEFVAL(Dictionary()), DEFVAL(Ref<Material>()), DEFVAL(String()), DEFVAL(0)); |
| 1333 | |
| 1334 | ClassDB::bind_method(D_METHOD("get_surface_count" ), &ImporterMesh::get_surface_count); |
| 1335 | ClassDB::bind_method(D_METHOD("get_surface_primitive_type" , "surface_idx" ), &ImporterMesh::get_surface_primitive_type); |
| 1336 | ClassDB::bind_method(D_METHOD("get_surface_name" , "surface_idx" ), &ImporterMesh::get_surface_name); |
| 1337 | ClassDB::bind_method(D_METHOD("get_surface_arrays" , "surface_idx" ), &ImporterMesh::get_surface_arrays); |
| 1338 | ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays" , "surface_idx" , "blend_shape_idx" ), &ImporterMesh::get_surface_blend_shape_arrays); |
| 1339 | ClassDB::bind_method(D_METHOD("get_surface_lod_count" , "surface_idx" ), &ImporterMesh::get_surface_lod_count); |
| 1340 | ClassDB::bind_method(D_METHOD("get_surface_lod_size" , "surface_idx" , "lod_idx" ), &ImporterMesh::get_surface_lod_size); |
| 1341 | ClassDB::bind_method(D_METHOD("get_surface_lod_indices" , "surface_idx" , "lod_idx" ), &ImporterMesh::get_surface_lod_indices); |
| 1342 | ClassDB::bind_method(D_METHOD("get_surface_material" , "surface_idx" ), &ImporterMesh::get_surface_material); |
| 1343 | ClassDB::bind_method(D_METHOD("get_surface_format" , "surface_idx" ), &ImporterMesh::get_surface_format); |
| 1344 | |
| 1345 | ClassDB::bind_method(D_METHOD("set_surface_name" , "surface_idx" , "name" ), &ImporterMesh::set_surface_name); |
| 1346 | ClassDB::bind_method(D_METHOD("set_surface_material" , "surface_idx" , "material" ), &ImporterMesh::set_surface_material); |
| 1347 | |
| 1348 | ClassDB::bind_method(D_METHOD("generate_lods" , "normal_merge_angle" , "normal_split_angle" , "bone_transform_array" ), &ImporterMesh::generate_lods); |
| 1349 | ClassDB::bind_method(D_METHOD("get_mesh" , "base_mesh" ), &ImporterMesh::get_mesh, DEFVAL(Ref<ArrayMesh>())); |
| 1350 | ClassDB::bind_method(D_METHOD("clear" ), &ImporterMesh::clear); |
| 1351 | |
| 1352 | ClassDB::bind_method(D_METHOD("_set_data" , "data" ), &ImporterMesh::_set_data); |
| 1353 | ClassDB::bind_method(D_METHOD("_get_data" ), &ImporterMesh::_get_data); |
| 1354 | |
| 1355 | ClassDB::bind_method(D_METHOD("set_lightmap_size_hint" , "size" ), &ImporterMesh::set_lightmap_size_hint); |
| 1356 | ClassDB::bind_method(D_METHOD("get_lightmap_size_hint" ), &ImporterMesh::get_lightmap_size_hint); |
| 1357 | |
| 1358 | ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data" , PROPERTY_HINT_NONE, "" , PROPERTY_USAGE_NO_EDITOR), "_set_data" , "_get_data" ); |
| 1359 | } |
| 1360 | |