| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "BsLightProbes.h" |
| 4 | #include "Renderer/BsLightProbeVolume.h" |
| 5 | #include "RenderAPI/BsGpuBuffer.h" |
| 6 | #include "BsRendererView.h" |
| 7 | #include "BsRenderBeastIBLUtility.h" |
| 8 | #include "Mesh/BsMesh.h" |
| 9 | #include "RenderAPI/BsVertexDataDesc.h" |
| 10 | #include "Material/BsGpuParamsSet.h" |
| 11 | #include "Renderer/BsRendererUtility.h" |
| 12 | #include "Renderer/BsSkybox.h" |
| 13 | #include "Utility/BsRendererTextures.h" |
| 14 | |
| 15 | namespace bs { namespace ct |
| 16 | { |
| 17 | TetrahedraRenderParamDef gTetrahedraRenderParamDef; |
| 18 | |
| 19 | TetrahedraRenderMat::TetrahedraRenderMat() |
| 20 | { |
| 21 | mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gDepthBufferTex" , mDepthBufferTex); |
| 22 | |
| 23 | SAMPLER_STATE_DESC pointSampDesc; |
| 24 | pointSampDesc.minFilter = FO_POINT; |
| 25 | pointSampDesc.magFilter = FO_POINT; |
| 26 | pointSampDesc.mipFilter = FO_POINT; |
| 27 | pointSampDesc.addressMode.u = TAM_CLAMP; |
| 28 | pointSampDesc.addressMode.v = TAM_CLAMP; |
| 29 | pointSampDesc.addressMode.w = TAM_CLAMP; |
| 30 | |
| 31 | SPtr<SamplerState> pointSampState = SamplerState::create(pointSampDesc); |
| 32 | |
| 33 | if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthBufferSamp" )) |
| 34 | mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthBufferSamp" , pointSampState); |
| 35 | else if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthBufferTex" )) |
| 36 | mParams->setSamplerState(GPT_FRAGMENT_PROGRAM, "gDepthBufferTex" , pointSampState); |
| 37 | |
| 38 | mParamBuffer = gTetrahedraRenderParamDef.createBuffer(); |
| 39 | mParams->setParamBlockBuffer("Params" , mParamBuffer); |
| 40 | } |
| 41 | |
| 42 | void TetrahedraRenderMat::execute(const RendererView& view, const SPtr<Texture>& sceneDepth, const SPtr<Mesh>& mesh, |
| 43 | const SPtr<RenderTexture>& output) |
| 44 | { |
| 45 | BS_RENMAT_PROFILE_BLOCK |
| 46 | |
| 47 | const TextureProperties& texProps = sceneDepth->getProperties(); |
| 48 | |
| 49 | Vector2I texSize(texProps.getWidth(), texProps.getHeight()); |
| 50 | gTetrahedraRenderParamDef.gDepthTexSize.set(mParamBuffer, texSize); |
| 51 | |
| 52 | mDepthBufferTex.set(sceneDepth); |
| 53 | mParams->setParamBlockBuffer("PerCamera" , view.getPerViewBuffer()); |
| 54 | |
| 55 | RenderAPI& rapi = RenderAPI::instance(); |
| 56 | rapi.setRenderTarget(output); |
| 57 | |
| 58 | bind(); |
| 59 | gRendererUtility().draw(mesh); |
| 60 | } |
| 61 | |
| 62 | void TetrahedraRenderMat::getOutputDesc(const RendererView& view, POOLED_RENDER_TEXTURE_DESC& colorDesc, |
| 63 | POOLED_RENDER_TEXTURE_DESC& depthDesc) |
| 64 | { |
| 65 | const RendererViewProperties& viewProps = view.getProperties(); |
| 66 | UINT32 width = viewProps.target.viewRect.width; |
| 67 | UINT32 height = viewProps.target.viewRect.height; |
| 68 | UINT32 numSamples = viewProps.target.numSamples; |
| 69 | |
| 70 | colorDesc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_R16U, width, height, TU_RENDERTARGET, numSamples); |
| 71 | depthDesc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_D32, width, height, TU_DEPTHSTENCIL, numSamples); |
| 72 | } |
| 73 | |
| 74 | TetrahedraRenderMat* TetrahedraRenderMat::getVariation(bool msaa, bool singleSampleMSAA) |
| 75 | { |
| 76 | if (msaa) |
| 77 | { |
| 78 | if (singleSampleMSAA) |
| 79 | return get(getVariation<true, true>()); |
| 80 | |
| 81 | return get(getVariation<true, false>()); |
| 82 | } |
| 83 | |
| 84 | return get(getVariation<false, false>()); |
| 85 | } |
| 86 | |
| 87 | IrradianceEvaluateParamDef gIrradianceEvaluateParamDef; |
| 88 | |
| 89 | IrradianceEvaluateMat::IrradianceEvaluateMat() |
| 90 | :mGBufferParams(GPT_FRAGMENT_PROGRAM, mParams) |
| 91 | { |
| 92 | mSkyOnly = mVariation.getBool("SKY_ONLY" ); |
| 93 | |
| 94 | mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gSkyIrradianceTex" , mParamSkyIrradianceTex); |
| 95 | mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gAmbientOcclusionTex" , mParamAmbientOcclusionTex); |
| 96 | |
| 97 | if(!mSkyOnly) |
| 98 | { |
| 99 | mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gInputTex" , mParamInputTex); |
| 100 | mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gSHCoeffs" , mParamSHCoeffsTexture); |
| 101 | mParams->getBufferParam(GPT_FRAGMENT_PROGRAM, "gTetrahedra" , mParamTetrahedraBuffer); |
| 102 | mParams->getBufferParam(GPT_FRAGMENT_PROGRAM, "gTetFaces" , mParamTetFacesBuffer); |
| 103 | } |
| 104 | |
| 105 | mParamBuffer = gIrradianceEvaluateParamDef.createBuffer(); |
| 106 | mParams->setParamBlockBuffer("Params" , mParamBuffer); |
| 107 | } |
| 108 | |
| 109 | void IrradianceEvaluateMat::execute(const RendererView& view, const GBufferTextures& gbuffer, |
| 110 | const SPtr<Texture>& lightProbeIndices, const LightProbesInfo& lightProbesInfo, const Skybox* skybox, |
| 111 | const SPtr<Texture>& ambientOcclusion, const SPtr<RenderTexture>& output) |
| 112 | { |
| 113 | BS_RENMAT_PROFILE_BLOCK |
| 114 | |
| 115 | const RendererViewProperties& viewProps = view.getProperties(); |
| 116 | |
| 117 | mGBufferParams.bind(gbuffer); |
| 118 | |
| 119 | float skyBrightness = 1.0f; |
| 120 | SPtr<Texture> skyIrradiance; |
| 121 | if (skybox != nullptr) |
| 122 | { |
| 123 | skyIrradiance = skybox->getIrradiance(); |
| 124 | skyBrightness = skybox->getBrightness(); |
| 125 | } |
| 126 | |
| 127 | if(skyIrradiance == nullptr) |
| 128 | skyIrradiance = RendererTextures::defaultIndirect; |
| 129 | |
| 130 | mParamSkyIrradianceTex.set(skyIrradiance); |
| 131 | mParamAmbientOcclusionTex.set(ambientOcclusion); |
| 132 | |
| 133 | RenderSurfaceMask loadMask = RT_COLOR0; |
| 134 | if(!mSkyOnly) |
| 135 | { |
| 136 | mParamInputTex.set(lightProbeIndices); |
| 137 | mParamSHCoeffsTexture.set(lightProbesInfo.shCoefficients); |
| 138 | mParamTetrahedraBuffer.set(lightProbesInfo.tetrahedra); |
| 139 | mParamTetFacesBuffer.set(lightProbesInfo.faces); |
| 140 | } |
| 141 | else |
| 142 | { |
| 143 | // No need to load depth/stencil when rendering light probes as we'll be using a newly created intermediate |
| 144 | // depth buffer |
| 145 | loadMask |= RT_DEPTH_STENCIL; |
| 146 | } |
| 147 | |
| 148 | gIrradianceEvaluateParamDef.gSkyBrightness.set(mParamBuffer, skyBrightness); |
| 149 | gIrradianceEvaluateParamDef.gNumTetrahedra.set(mParamBuffer, lightProbesInfo.numTetrahedra); |
| 150 | mParamBuffer->flushToGPU(); |
| 151 | |
| 152 | mParams->setParamBlockBuffer("PerCamera" , view.getPerViewBuffer()); |
| 153 | |
| 154 | // Render |
| 155 | RenderAPI& rapi = RenderAPI::instance(); |
| 156 | rapi.setRenderTarget(output, FBT_DEPTH | FBT_STENCIL, loadMask); |
| 157 | |
| 158 | bind(); |
| 159 | |
| 160 | gRendererUtility().drawScreenQuad(Rect2(0.0f, 0.0f, (float)viewProps.target.viewRect.width, |
| 161 | (float)viewProps.target.viewRect.height)); |
| 162 | |
| 163 | rapi.setRenderTarget(nullptr); |
| 164 | } |
| 165 | |
| 166 | IrradianceEvaluateMat* IrradianceEvaluateMat::getVariation(bool msaa, bool singleSampleMSAA, bool skyOnly) |
| 167 | { |
| 168 | if(skyOnly) |
| 169 | { |
| 170 | if (msaa) |
| 171 | { |
| 172 | if (singleSampleMSAA) |
| 173 | return get(getVariation<true, true, true>()); |
| 174 | |
| 175 | return get(getVariation<true, false, true>()); |
| 176 | } |
| 177 | |
| 178 | return get(getVariation<false, false, true>()); |
| 179 | } |
| 180 | else |
| 181 | { |
| 182 | if (msaa) |
| 183 | { |
| 184 | if (singleSampleMSAA) |
| 185 | return get(getVariation<true, true, false>()); |
| 186 | |
| 187 | return get(getVariation<true, false, false>()); |
| 188 | } |
| 189 | |
| 190 | return get(getVariation<false, false, false>()); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /** Hash value generator for std::pair<INT32, INT32>. */ |
| 195 | struct pair_hash |
| 196 | { |
| 197 | size_t operator()(const std::pair<INT32, INT32>& key) const |
| 198 | { |
| 199 | size_t hash = 0; |
| 200 | bs::bs_hash_combine(hash, key.first); |
| 201 | bs::bs_hash_combine(hash, key.second); |
| 202 | |
| 203 | return hash; |
| 204 | } |
| 205 | }; |
| 206 | |
| 207 | /** Information about a single tetrahedron, for use on the GPU. */ |
| 208 | struct TetrahedronDataGPU |
| 209 | { |
| 210 | UINT32 indices[4]; |
| 211 | Vector2I offsets[4]; |
| 212 | Matrix3x4 transform; |
| 213 | }; |
| 214 | |
| 215 | /** Information about a single tetrahedron face, for use on the GPU. */ |
| 216 | struct TetrahedronFaceDataGPU |
| 217 | { |
| 218 | Vector4 corners[3]; |
| 219 | Vector4 normals[3]; |
| 220 | UINT32 isQuadratic; |
| 221 | float padding[3]; |
| 222 | }; |
| 223 | |
| 224 | LightProbes::LightProbes() |
| 225 | :mTetrahedronVolumeDirty(false), mMaxCoefficientRows(0), mMaxTetrahedra(0), mMaxFaces(0), mNumValidTetrahedra(0) |
| 226 | { } |
| 227 | |
| 228 | void LightProbes::notifyAdded(LightProbeVolume* volume) |
| 229 | { |
| 230 | UINT32 handle = (UINT32)mVolumes.size(); |
| 231 | |
| 232 | VolumeInfo info; |
| 233 | info.volume = volume; |
| 234 | info.isDirty = true; |
| 235 | |
| 236 | mVolumes.push_back(info); |
| 237 | volume->setRendererId(handle); |
| 238 | |
| 239 | notifyDirty(volume); |
| 240 | } |
| 241 | |
| 242 | void LightProbes::notifyDirty(LightProbeVolume* volume) |
| 243 | { |
| 244 | UINT32 handle = volume->getRendererId(); |
| 245 | mVolumes[handle].isDirty = true; |
| 246 | |
| 247 | mTetrahedronVolumeDirty = true; |
| 248 | } |
| 249 | |
| 250 | void LightProbes::notifyRemoved(LightProbeVolume* volume) |
| 251 | { |
| 252 | UINT32 handle = volume->getRendererId(); |
| 253 | |
| 254 | LightProbeVolume* lastVolume = mVolumes.back().volume; |
| 255 | UINT32 lastHandle = lastVolume->getRendererId(); |
| 256 | |
| 257 | if (handle != lastHandle) |
| 258 | { |
| 259 | // Swap current last element with the one we want to erase |
| 260 | std::swap(mVolumes[handle], mVolumes[lastHandle]); |
| 261 | lastVolume->setRendererId(handle); |
| 262 | } |
| 263 | |
| 264 | // Erase last (empty) element |
| 265 | mVolumes.erase(mVolumes.end() - 1); |
| 266 | |
| 267 | mTetrahedronVolumeDirty = true; |
| 268 | } |
| 269 | |
| 270 | void LightProbes::updateProbes() |
| 271 | { |
| 272 | if (!mTetrahedronVolumeDirty) |
| 273 | return; |
| 274 | |
| 275 | // Move all coefficients into the global buffer |
| 276 | UINT32 numRows = 0; |
| 277 | for(auto& entry : mVolumes) |
| 278 | { |
| 279 | SPtr<Texture> localTexture = entry.volume->getCoefficientsTexture(); |
| 280 | numRows += localTexture->getProperties().getHeight(); |
| 281 | } |
| 282 | |
| 283 | if(numRows > mMaxCoefficientRows) |
| 284 | resizeCoefficientTexture(numRows + 4); |
| 285 | |
| 286 | UINT32 rowIdx = 0; |
| 287 | for(auto& entry : mVolumes) |
| 288 | { |
| 289 | TEXTURE_COPY_DESC copyDesc; |
| 290 | copyDesc.dstPosition = Vector3I(0, rowIdx, 0); |
| 291 | |
| 292 | SPtr<Texture> localTexture = entry.volume->getCoefficientsTexture(); |
| 293 | localTexture->copy(mProbeCoefficientsGPU, copyDesc); |
| 294 | |
| 295 | rowIdx += localTexture->getProperties().getHeight(); |
| 296 | } |
| 297 | |
| 298 | // Gather all positions |
| 299 | UINT32 bufferOffset = 0; |
| 300 | rowIdx = 0; |
| 301 | for(auto& entry : mVolumes) |
| 302 | { |
| 303 | const Vector<LightProbeInfo>& infos = entry.volume->getLightProbeInfos(); |
| 304 | const Vector<Vector3>& positions = entry.volume->getLightProbePositions(); |
| 305 | |
| 306 | UINT32 numProbes = entry.volume->getNumActiveProbes(); |
| 307 | |
| 308 | if (numProbes == 0) |
| 309 | continue; |
| 310 | |
| 311 | const Transform& tfrm = entry.volume->getTransform(); |
| 312 | Vector3 offset = tfrm.getPosition(); |
| 313 | Quaternion rotation = tfrm.getRotation(); |
| 314 | |
| 315 | for (UINT32 i = 0; i < numProbes; i++) |
| 316 | { |
| 317 | Vector3 localPos = positions[i]; |
| 318 | Vector3 transformedPos = rotation.rotate(localPos) + offset; |
| 319 | mTempTetrahedronPositions.push_back(transformedPos); |
| 320 | |
| 321 | mTempTetrahedronBufferIndices.push_back(bufferOffset + infos[i].bufferIdx); |
| 322 | |
| 323 | Vector2I offset = IBLUtility::getSHCoeffXYFromIdx(infos[i].bufferIdx, 3); |
| 324 | mTempTetrahedronBufferOffsets.push_back(offset); |
| 325 | } |
| 326 | |
| 327 | SPtr<Texture> localTexture = entry.volume->getCoefficientsTexture(); |
| 328 | rowIdx += localTexture->getProperties().getHeight(); |
| 329 | bufferOffset += (UINT32)positions.size(); |
| 330 | } |
| 331 | |
| 332 | mTetrahedronInfos.clear(); |
| 333 | |
| 334 | Vector<TetrahedronFaceData> outerFaces; |
| 335 | generateTetrahedronData(mTempTetrahedronPositions, mTetrahedronInfos, outerFaces, true); |
| 336 | |
| 337 | // Find valid tetrahedrons |
| 338 | UINT32 numTetrahedra = (UINT32)mTetrahedronInfos.size(); |
| 339 | |
| 340 | bool* validTets = (bool*)bs_stack_alloc(sizeof(bool) * numTetrahedra); |
| 341 | mNumValidTetrahedra = 0; |
| 342 | for (UINT32 i = 0; i < (UINT32)mTetrahedronInfos.size(); i++) |
| 343 | { |
| 344 | const TetrahedronData& entry = mTetrahedronInfos[i]; |
| 345 | |
| 346 | const Vector3& P1 = mTempTetrahedronPositions[entry.volume.vertices[0]]; |
| 347 | const Vector3& P2 = mTempTetrahedronPositions[entry.volume.vertices[1]]; |
| 348 | const Vector3& P3 = mTempTetrahedronPositions[entry.volume.vertices[2]]; |
| 349 | const Vector3& P4 = mTempTetrahedronPositions[entry.volume.vertices[3]]; |
| 350 | |
| 351 | Vector3 E1 = P1 - P4; |
| 352 | Vector3 E2 = P2 - P4; |
| 353 | Vector3 E3 = P3 - P4; |
| 354 | |
| 355 | // If tetrahedron is co-planar just ignore it, shader will use some other nearby one instead. We can't |
| 356 | // handle coplanar tetrahedrons because the matrix is not invertible, and for nearly co-planar ones the |
| 357 | // math breaks down because of precision issues. |
| 358 | validTets[i] = fabs(Vector3::dot(Vector3::normalize(Vector3::cross(E1, E2)), E3)) > 0.0001f; |
| 359 | |
| 360 | if (validTets[i]) |
| 361 | mNumValidTetrahedra++; |
| 362 | } |
| 363 | |
| 364 | UINT32 numValidFaces = 0; |
| 365 | for(auto& entry : outerFaces) |
| 366 | { |
| 367 | if (validTets[entry.tetrahedron]) |
| 368 | numValidFaces++; |
| 369 | } |
| 370 | |
| 371 | // Generate a mesh out of all the tetrahedron triangles |
| 372 | // Note: Currently the entire volume is rendered as a single large mesh, which will isn't optimal as we can't |
| 373 | // perform frustum culling. A better option would be to split the mesh into multiple smaller volumes, do |
| 374 | // frustum culling and possibly even sort by distance from camera. |
| 375 | UINT32 numVertices = mNumValidTetrahedra * 4 * 3 + numValidFaces * 9 * 3; |
| 376 | |
| 377 | SPtr<VertexDataDesc> vertexDesc = bs_shared_ptr_new<VertexDataDesc>(); |
| 378 | vertexDesc->addVertElem(VET_FLOAT3, VES_POSITION); |
| 379 | vertexDesc->addVertElem(VET_UINT1, VES_TEXCOORD); |
| 380 | |
| 381 | SPtr<MeshData> meshData = MeshData::create(numVertices, numVertices, vertexDesc); |
| 382 | auto posIter = meshData->getVec3DataIter(VES_POSITION); |
| 383 | auto idIter = meshData->getDWORDDataIter(VES_TEXCOORD); |
| 384 | UINT32* indices = meshData->getIndices32(); |
| 385 | |
| 386 | // Insert inner tetrahedron triangles |
| 387 | UINT32 tetIdx = 0; |
| 388 | for (UINT32 i = 0; i < (UINT32)mTetrahedronInfos.size(); i++) |
| 389 | { |
| 390 | if (!validTets[i]) |
| 391 | continue; |
| 392 | |
| 393 | const Tetrahedron& volume = mTetrahedronInfos[i].volume; |
| 394 | |
| 395 | Vector3 center(BsZero); |
| 396 | for(UINT32 j = 0; j < 4; j++) |
| 397 | center += mTempTetrahedronPositions[volume.vertices[j]]; |
| 398 | |
| 399 | center /= 4.0f; |
| 400 | |
| 401 | static const UINT32 Permutations[4][3] = |
| 402 | { |
| 403 | { 0, 1, 2 }, |
| 404 | { 0, 1, 3 }, |
| 405 | { 0, 2, 3 }, |
| 406 | { 1, 2, 3 } |
| 407 | }; |
| 408 | |
| 409 | for(UINT32 j = 0; j < 4; j++) |
| 410 | { |
| 411 | Vector3 A = mTempTetrahedronPositions[volume.vertices[Permutations[j][0]]]; |
| 412 | Vector3 B = mTempTetrahedronPositions[volume.vertices[Permutations[j][1]]]; |
| 413 | Vector3 C = mTempTetrahedronPositions[volume.vertices[Permutations[j][2]]]; |
| 414 | |
| 415 | // Make sure the triangle is clockwise, facing away from the center |
| 416 | Vector3 e0 = A - C; |
| 417 | Vector3 e1 = B - C; |
| 418 | |
| 419 | Vector3 normal = e0.cross(e1); |
| 420 | if (normal.dot(A - center) > 0.0f) |
| 421 | std::swap(B, C); |
| 422 | |
| 423 | posIter.addValue(A); |
| 424 | posIter.addValue(B); |
| 425 | posIter.addValue(C); |
| 426 | |
| 427 | idIter.addValue(tetIdx); |
| 428 | idIter.addValue(tetIdx); |
| 429 | idIter.addValue(tetIdx); |
| 430 | |
| 431 | indices[0] = tetIdx * 4 * 3 + j * 3 + 0; |
| 432 | indices[1] = tetIdx * 4 * 3 + j * 3 + 1; |
| 433 | indices[2] = tetIdx * 4 * 3 + j * 3 + 2; |
| 434 | |
| 435 | indices += 3; |
| 436 | } |
| 437 | |
| 438 | tetIdx++; |
| 439 | } |
| 440 | |
| 441 | // Generate an edge map for outer faces (required for step below) |
| 442 | struct Edge |
| 443 | { |
| 444 | UINT32 vertInner[2]; |
| 445 | UINT32 vertOuter[2]; |
| 446 | UINT32 face[2]; |
| 447 | }; |
| 448 | |
| 449 | FrameUnorderedMap<std::pair<INT32, INT32>, Edge, pair_hash> edgeMap; |
| 450 | for(UINT32 i = 0; i < (UINT32)outerFaces.size(); i++) |
| 451 | { |
| 452 | if (!validTets[outerFaces[i].tetrahedron]) |
| 453 | continue; |
| 454 | |
| 455 | for (UINT32 j = 0; j < 3; ++j) |
| 456 | { |
| 457 | UINT32 v0 = outerFaces[i].innerVertices[j]; |
| 458 | UINT32 v1 = outerFaces[i].innerVertices[(j + 1) % 3]; |
| 459 | |
| 460 | // Keep the same ordering so other faces can find the same edge |
| 461 | if (v0 > v1) |
| 462 | std::swap(v0, v1); |
| 463 | |
| 464 | auto iterFind = edgeMap.find(std::make_pair((INT32)v0, (INT32)v1)); |
| 465 | if (iterFind != edgeMap.end()) |
| 466 | { |
| 467 | iterFind->second.face[1] = i; |
| 468 | } |
| 469 | else |
| 470 | { |
| 471 | Edge edge; |
| 472 | edge.vertInner[0] = outerFaces[i].innerVertices[j]; |
| 473 | edge.vertInner[1] = outerFaces[i].innerVertices[(j + 1) % 3]; |
| 474 | edge.vertOuter[0] = outerFaces[i].outerVertices[j]; |
| 475 | edge.vertOuter[1] = outerFaces[i].outerVertices[(j + 1) % 3]; |
| 476 | edge.face[0] = i; |
| 477 | edge.face[1] = -1; |
| 478 | |
| 479 | edgeMap.insert(std::make_pair(std::make_pair((INT32)v0, (INT32)v1), edge)); |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | // Generate front and back triangles for extruded outer faces |
| 485 | UINT32 faceIdx = 0; |
| 486 | for(UINT32 i = 0; i < (UINT32)outerFaces.size(); i++) |
| 487 | { |
| 488 | if (!validTets[outerFaces[i].tetrahedron]) |
| 489 | continue; |
| 490 | |
| 491 | const TetrahedronFaceData& entry = outerFaces[i]; |
| 492 | |
| 493 | static const UINT32 Permutations[2][3] = { {0, 1, 2 }, { 3, 4, 5} }; |
| 494 | |
| 495 | // Make sure the triangle is clockwise, facing away from the center |
| 496 | Vector3 center(BsZero); |
| 497 | for (UINT32 k = 0; k < 3; k++) |
| 498 | { |
| 499 | center += mTempTetrahedronPositions[entry.innerVertices[k]]; |
| 500 | center += mTempTetrahedronPositions[entry.outerVertices[k]]; |
| 501 | } |
| 502 | |
| 503 | center /= 6.0f; |
| 504 | |
| 505 | for(UINT32 j = 0; j < 2; ++j) |
| 506 | { |
| 507 | UINT32 idxA = Permutations[j][0]; |
| 508 | UINT32 idxB = Permutations[j][1]; |
| 509 | UINT32 idxC = Permutations[j][2]; |
| 510 | |
| 511 | idxA = idxA > 2 ? entry.outerVertices[idxA - 3] : entry.innerVertices[idxA]; |
| 512 | idxB = idxB > 2 ? entry.outerVertices[idxB - 3] : entry.innerVertices[idxB]; |
| 513 | idxC = idxC > 2 ? entry.outerVertices[idxC - 3] : entry.innerVertices[idxC]; |
| 514 | |
| 515 | Vector3 A = mTempTetrahedronPositions[idxA]; |
| 516 | Vector3 B = mTempTetrahedronPositions[idxB]; |
| 517 | Vector3 C = mTempTetrahedronPositions[idxC]; |
| 518 | |
| 519 | Vector3 e0 = A - C; |
| 520 | Vector3 e1 = B - C; |
| 521 | |
| 522 | Vector3 normal = e0.cross(e1); |
| 523 | if (normal.dot(A - center) > 0.0f) |
| 524 | std::swap(A, B); |
| 525 | |
| 526 | posIter.addValue(A); |
| 527 | posIter.addValue(B); |
| 528 | posIter.addValue(C); |
| 529 | |
| 530 | idIter.addValue(tetIdx + faceIdx); |
| 531 | idIter.addValue(tetIdx + faceIdx); |
| 532 | idIter.addValue(tetIdx + faceIdx); |
| 533 | |
| 534 | indices[0] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + j * 3 + 0; |
| 535 | indices[1] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + j * 3 + 1; |
| 536 | indices[2] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + j * 3 + 2; |
| 537 | |
| 538 | indices += 3; |
| 539 | } |
| 540 | |
| 541 | faceIdx++; |
| 542 | } |
| 543 | |
| 544 | // Generate sides for extruded outer faces |
| 545 | UINT32 sideIdx = 0; |
| 546 | for(auto& entry : edgeMap) |
| 547 | { |
| 548 | const Edge& edge = entry.second; |
| 549 | |
| 550 | for (UINT32 i = 0; i < 2; i++) |
| 551 | { |
| 552 | const TetrahedronFaceData& face = outerFaces[edge.face[i]]; |
| 553 | |
| 554 | // Make sure the triangle is clockwise, facing away from the center |
| 555 | Vector3 center(BsZero); |
| 556 | for (UINT32 k = 0; k < 3; k++) |
| 557 | { |
| 558 | center += mTempTetrahedronPositions[face.innerVertices[k]]; |
| 559 | center += mTempTetrahedronPositions[face.outerVertices[k]]; |
| 560 | } |
| 561 | |
| 562 | center /= 6.0f; |
| 563 | |
| 564 | static const UINT32 Permutations[2][3] = { {0, 1, 2 }, { 1, 2, 3} }; |
| 565 | for(UINT32 j = 0; j < 2; ++j) |
| 566 | { |
| 567 | UINT32 idxA = Permutations[j][0]; |
| 568 | UINT32 idxB = Permutations[j][1]; |
| 569 | UINT32 idxC = Permutations[j][2]; |
| 570 | |
| 571 | idxA = idxA > 1 ? edge.vertOuter[idxA - 2] : edge.vertInner[idxA]; |
| 572 | idxB = idxB > 1 ? edge.vertOuter[idxB - 2] : edge.vertInner[idxB]; |
| 573 | idxC = idxC > 1 ? edge.vertOuter[idxC - 2] : edge.vertInner[idxC]; |
| 574 | |
| 575 | Vector3 A = mTempTetrahedronPositions[idxA]; |
| 576 | Vector3 B = mTempTetrahedronPositions[idxB]; |
| 577 | Vector3 C = mTempTetrahedronPositions[idxC]; |
| 578 | |
| 579 | Vector3 e0 = A - C; |
| 580 | Vector3 e1 = B - C; |
| 581 | |
| 582 | Vector3 normal = e0.cross(e1); |
| 583 | if (normal.dot(A - center) > 0.0f) |
| 584 | std::swap(A, B); |
| 585 | |
| 586 | posIter.addValue(A); |
| 587 | posIter.addValue(B); |
| 588 | posIter.addValue(C); |
| 589 | |
| 590 | idIter.addValue(tetIdx + edge.face[i]); |
| 591 | idIter.addValue(tetIdx + edge.face[i]); |
| 592 | idIter.addValue(tetIdx + edge.face[i]); |
| 593 | |
| 594 | indices[0] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + sideIdx * 2 * 3 + j * 3 + 0; |
| 595 | indices[1] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + sideIdx * 2 * 3 + j * 3 + 1; |
| 596 | indices[2] = tetIdx * 4 * 3 + faceIdx * 2 * 3 + sideIdx * 2 * 3 + j * 3 + 2; |
| 597 | |
| 598 | indices += 3; |
| 599 | } |
| 600 | |
| 601 | sideIdx++; |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | // Generate "caps" on the end of the extruded volume |
| 606 | UINT32 capIdx = 0; |
| 607 | for(UINT32 i = 0; i < (UINT32)outerFaces.size(); i++) |
| 608 | { |
| 609 | if (!validTets[outerFaces[i].tetrahedron]) |
| 610 | continue; |
| 611 | |
| 612 | const TetrahedronFaceData& entry = outerFaces[i]; |
| 613 | |
| 614 | Vector3 A = mTempTetrahedronPositions[entry.outerVertices[0]]; |
| 615 | Vector3 B = mTempTetrahedronPositions[entry.outerVertices[1]]; |
| 616 | Vector3 C = mTempTetrahedronPositions[entry.outerVertices[2]]; |
| 617 | |
| 618 | // Make sure the triangle is clockwise, facing toward the center |
| 619 | const Tetrahedron& tet = mTetrahedronInfos[entry.tetrahedron].volume; |
| 620 | |
| 621 | Vector3 center(BsZero); |
| 622 | for(UINT32 j = 0; j < 4; j++) |
| 623 | center += mTempTetrahedronPositions[tet.vertices[j]]; |
| 624 | |
| 625 | center /= 4.0f; |
| 626 | |
| 627 | Vector3 e0 = A - C; |
| 628 | Vector3 e1 = B - C; |
| 629 | |
| 630 | Vector3 normal = e0.cross(e1); |
| 631 | if (normal.dot(A - center) < 0.0f) |
| 632 | std::swap(B, C); |
| 633 | |
| 634 | posIter.addValue(A); |
| 635 | posIter.addValue(B); |
| 636 | posIter.addValue(C); |
| 637 | |
| 638 | idIter.addValue(-1); |
| 639 | idIter.addValue(-1); |
| 640 | idIter.addValue(-1); |
| 641 | |
| 642 | indices[0] = tetIdx * 4 * 3 + faceIdx * 8 * 3 + capIdx * 3 + 0; |
| 643 | indices[1] = tetIdx * 4 * 3 + faceIdx * 8 * 3 + capIdx * 3 + 1; |
| 644 | indices[2] = tetIdx * 4 * 3 + faceIdx * 8 * 3 + capIdx * 3 + 2; |
| 645 | |
| 646 | indices += 3; |
| 647 | capIdx++; |
| 648 | } |
| 649 | |
| 650 | mVolumeMesh = Mesh::create(meshData); |
| 651 | |
| 652 | // Map vertices to actual SH coefficient indices, and write GPU buffer with tetrahedron information |
| 653 | if ((mNumValidTetrahedra + numValidFaces) > mMaxTetrahedra) |
| 654 | { |
| 655 | UINT32 newSize = Math::divideAndRoundUp(mNumValidTetrahedra + numValidFaces, 64U) * 64U; |
| 656 | resizeTetrahedronBuffer(newSize); |
| 657 | } |
| 658 | |
| 659 | TetrahedronDataGPU* dst = (TetrahedronDataGPU*)mTetrahedronInfosGPU->lock(0, mTetrahedronInfosGPU->getSize(), |
| 660 | GBL_WRITE_ONLY_DISCARD); |
| 661 | |
| 662 | // Write inner tetrahedron data |
| 663 | for (UINT32 i = 0; i < (UINT32)mTetrahedronInfos.size(); i++) |
| 664 | { |
| 665 | if (!validTets[i]) |
| 666 | continue; |
| 667 | |
| 668 | TetrahedronData& entry = mTetrahedronInfos[i]; |
| 669 | |
| 670 | Vector2I offsets[4]; |
| 671 | for(UINT32 j = 0; j < 4; ++j) |
| 672 | { |
| 673 | entry.volume.vertices[j] = mTempTetrahedronBufferIndices[entry.volume.vertices[j]]; |
| 674 | offsets[j] = mTempTetrahedronBufferOffsets[entry.volume.vertices[j]]; |
| 675 | } |
| 676 | |
| 677 | memcpy(dst->indices, entry.volume.vertices, sizeof(UINT32) * 4); |
| 678 | memcpy(dst->offsets, &offsets, sizeof(offsets)); |
| 679 | memcpy(&dst->transform, &entry.transform, sizeof(float) * 12); |
| 680 | |
| 681 | dst++; |
| 682 | } |
| 683 | |
| 684 | // Write extruded face data |
| 685 | for (UINT32 i = 0; i < (UINT32)outerFaces.size(); i++) |
| 686 | { |
| 687 | if (!validTets[outerFaces[i].tetrahedron]) |
| 688 | continue; |
| 689 | |
| 690 | const TetrahedronFaceData& entry = outerFaces[i]; |
| 691 | |
| 692 | UINT32 indices[4]; |
| 693 | Vector2I offsets[4]; |
| 694 | for(UINT32 j = 0; j < 3; j++) |
| 695 | { |
| 696 | indices[j] = mTempTetrahedronBufferIndices[entry.innerVertices[j]]; |
| 697 | offsets[j] = mTempTetrahedronBufferOffsets[entry.innerVertices[j]]; |
| 698 | } |
| 699 | |
| 700 | indices[3] = -1; |
| 701 | |
| 702 | memcpy(dst->indices, indices, sizeof(UINT32) * 4); |
| 703 | memcpy(dst->offsets, offsets, sizeof(offsets)); |
| 704 | memcpy(&dst->transform, &entry.transform, sizeof(float) * 12); |
| 705 | |
| 706 | dst++; |
| 707 | } |
| 708 | |
| 709 | mTetrahedronInfosGPU->unlock(); |
| 710 | |
| 711 | // Write data specific to faces |
| 712 | if (numValidFaces > mMaxFaces) |
| 713 | { |
| 714 | UINT32 newSize = Math::divideAndRoundUp(numValidFaces, 64U) * 64U; |
| 715 | resizeTetrahedronFaceBuffer(newSize); |
| 716 | } |
| 717 | |
| 718 | TetrahedronFaceDataGPU* faceDst = (TetrahedronFaceDataGPU*)mTetrahedronFaceInfosGPU->lock(0, |
| 719 | mTetrahedronFaceInfosGPU->getSize(), GBL_WRITE_ONLY_DISCARD); |
| 720 | |
| 721 | for (UINT32 i = 0; i < (UINT32)outerFaces.size(); i++) |
| 722 | { |
| 723 | if (!validTets[outerFaces[i].tetrahedron]) |
| 724 | continue; |
| 725 | |
| 726 | const TetrahedronFaceData& entry = outerFaces[i]; |
| 727 | |
| 728 | for (UINT32 j = 0; j < 3; j++) |
| 729 | { |
| 730 | faceDst->corners[j] = mTempTetrahedronPositions[entry.innerVertices[j]]; |
| 731 | faceDst->normals[j] = entry.normals[j]; |
| 732 | } |
| 733 | |
| 734 | faceDst->isQuadratic = entry.quadratic ? 1 : 0; |
| 735 | faceDst++; |
| 736 | } |
| 737 | |
| 738 | mTetrahedronFaceInfosGPU->unlock(); |
| 739 | |
| 740 | bs_stack_free(validTets); |
| 741 | |
| 742 | mTempTetrahedronPositions.clear(); |
| 743 | mTempTetrahedronBufferIndices.clear(); |
| 744 | mTetrahedronVolumeDirty = false; |
| 745 | } |
| 746 | |
| 747 | bool LightProbes::hasAnyProbes() const |
| 748 | { |
| 749 | for(auto& entry : mVolumes) |
| 750 | { |
| 751 | UINT32 numProbes = entry.volume->getNumActiveProbes(); |
| 752 | if (numProbes > 0) |
| 753 | return true; |
| 754 | } |
| 755 | |
| 756 | return false; |
| 757 | } |
| 758 | |
| 759 | LightProbesInfo LightProbes::getInfo() const |
| 760 | { |
| 761 | LightProbesInfo info; |
| 762 | info.shCoefficients = mProbeCoefficientsGPU; |
| 763 | info.tetrahedra = mTetrahedronInfosGPU; |
| 764 | info.faces = mTetrahedronFaceInfosGPU; |
| 765 | info.tetrahedraVolume = mVolumeMesh; |
| 766 | info.numTetrahedra = mNumValidTetrahedra; |
| 767 | |
| 768 | return info; |
| 769 | } |
| 770 | |
| 771 | void LightProbes::resizeTetrahedronBuffer(UINT32 count) |
| 772 | { |
| 773 | static constexpr UINT32 ELEMENT_SIZE = Math::divideAndRoundUp((UINT32)sizeof(TetrahedronDataGPU), 4U); |
| 774 | |
| 775 | GPU_BUFFER_DESC desc; |
| 776 | desc.type = GBT_STANDARD; |
| 777 | desc.elementSize = 0; |
| 778 | desc.elementCount = count * ELEMENT_SIZE; |
| 779 | desc.usage = GBU_STATIC; |
| 780 | desc.format = BF_32X4U; |
| 781 | |
| 782 | mTetrahedronInfosGPU = GpuBuffer::create(desc); |
| 783 | mMaxTetrahedra = count; |
| 784 | } |
| 785 | |
| 786 | void LightProbes::resizeTetrahedronFaceBuffer(UINT32 count) |
| 787 | { |
| 788 | static constexpr UINT32 ELEMENT_SIZE = Math::divideAndRoundUp((UINT32)sizeof(TetrahedronFaceDataGPU), 4U); |
| 789 | |
| 790 | GPU_BUFFER_DESC desc; |
| 791 | desc.type = GBT_STANDARD; |
| 792 | desc.elementSize = 0; |
| 793 | desc.elementCount = count * ELEMENT_SIZE; |
| 794 | desc.usage = GBU_STATIC; |
| 795 | desc.format = BF_32X4F; |
| 796 | |
| 797 | mTetrahedronFaceInfosGPU = GpuBuffer::create(desc); |
| 798 | mMaxFaces = count; |
| 799 | } |
| 800 | |
| 801 | void LightProbes::resizeCoefficientTexture(UINT32 numRows) |
| 802 | { |
| 803 | TEXTURE_DESC desc; |
| 804 | desc.width = 4096; |
| 805 | desc.height = numRows; |
| 806 | desc.usage = TU_LOADSTORE | TU_RENDERTARGET; |
| 807 | desc.format = PF_RGBA32F; |
| 808 | |
| 809 | SPtr<Texture> newTexture = Texture::create(desc); |
| 810 | if (mProbeCoefficientsGPU) |
| 811 | mProbeCoefficientsGPU->copy(newTexture); |
| 812 | |
| 813 | mProbeCoefficientsGPU = newTexture; |
| 814 | mMaxCoefficientRows = numRows; |
| 815 | } |
| 816 | |
| 817 | void LightProbes::generateTetrahedronData(Vector<Vector3>& positions, Vector<TetrahedronData>& tetrahedra, |
| 818 | Vector<TetrahedronFaceData>& faces, bool ) |
| 819 | { |
| 820 | bs_frame_mark(); |
| 821 | { |
| 822 | TetrahedronVolume volume = Triangulation::tetrahedralize(positions); |
| 823 | |
| 824 | if (generateExtrapolationVolume) |
| 825 | { |
| 826 | // Add geometry so we can handle the case when the interpolation position falls outside of the tetrahedra |
| 827 | // volume. We use this geometry to project the position to the nearest face. |
| 828 | UINT32 numOuterFaces = (UINT32)volume.outerFaces.size(); |
| 829 | |
| 830 | // Calculate face normals for outer faces |
| 831 | //// Make an edge map |
| 832 | struct Edge |
| 833 | { |
| 834 | INT32 faces[2]; |
| 835 | INT32 oppositeVerts[2]; |
| 836 | }; |
| 837 | |
| 838 | FrameUnorderedMap<std::pair<INT32, INT32>, Edge, pair_hash> edgeMap; |
| 839 | for (UINT32 i = 0; i < numOuterFaces; ++i) |
| 840 | { |
| 841 | for (UINT32 j = 0; j < 3; ++j) |
| 842 | { |
| 843 | INT32 v0 = volume.outerFaces[i].vertices[j]; |
| 844 | INT32 v1 = volume.outerFaces[i].vertices[(j + 1) % 3]; |
| 845 | |
| 846 | // Keep the same ordering so other faces can find the same edge |
| 847 | if (v0 > v1) |
| 848 | std::swap(v0, v1); |
| 849 | |
| 850 | auto iterFind = edgeMap.find(std::make_pair(v0, v1)); |
| 851 | if (iterFind != edgeMap.end()) |
| 852 | { |
| 853 | iterFind->second.faces[1] = i; |
| 854 | iterFind->second.oppositeVerts[1] = (j + 2) % 3; |
| 855 | } |
| 856 | else |
| 857 | { |
| 858 | Edge edge; |
| 859 | edge.faces[0] = i; |
| 860 | edge.oppositeVerts[0] = (j + 2) % 3; |
| 861 | |
| 862 | edgeMap.insert(std::make_pair(std::make_pair(v0, v1), edge)); |
| 863 | } |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | //// Generate face normals |
| 868 | struct FaceVertex |
| 869 | { |
| 870 | Vector3 normal = Vector3::ZERO; |
| 871 | UINT32 outerIdx = -1; |
| 872 | }; |
| 873 | |
| 874 | FrameVector<Vector3> faceNormals(volume.outerFaces.size()); |
| 875 | for (UINT32 i = 0; i < (UINT32)volume.outerFaces.size(); ++i) |
| 876 | { |
| 877 | const Vector3& v0 = positions[volume.outerFaces[i].vertices[0]]; |
| 878 | const Vector3& v1 = positions[volume.outerFaces[i].vertices[1]]; |
| 879 | const Vector3& v2 = positions[volume.outerFaces[i].vertices[2]]; |
| 880 | |
| 881 | Vector3 e0 = v1 - v0; |
| 882 | Vector3 e1 = v2 - v0; |
| 883 | |
| 884 | // Make sure the normal is facing away from the center |
| 885 | const Tetrahedron& tet = volume.tetrahedra[volume.outerFaces[i].tetrahedron]; |
| 886 | |
| 887 | Vector3 center(BsZero); |
| 888 | for(UINT32 j = 0; j < 4; j++) |
| 889 | center += positions[tet.vertices[j]]; |
| 890 | |
| 891 | center /= 4.0f; |
| 892 | |
| 893 | Vector3 normal = Vector3::normalize(e0.cross(e1)); |
| 894 | if (normal.dot(v0 - center) < 0.0f) |
| 895 | normal = -normal; |
| 896 | |
| 897 | faceNormals[i] = normal; |
| 898 | } |
| 899 | |
| 900 | //// Generate vertex normals |
| 901 | FrameUnorderedMap<INT32, FaceVertex> faceVertices; |
| 902 | for (auto& entry : edgeMap) |
| 903 | { |
| 904 | const Edge& edge = entry.second; |
| 905 | |
| 906 | auto accumulateNormalForEdgeVertex = [&](UINT32 v0Idx, UINT32 v1Idx) |
| 907 | { |
| 908 | auto iter = faceVertices.insert(std::make_pair(v0Idx, FaceVertex())); |
| 909 | |
| 910 | FaceVertex& accum = iter.first->second; |
| 911 | const Vector3& v0 = positions[v0Idx]; |
| 912 | |
| 913 | auto accumulateNormalForFace = [&](INT32 faceIdx, INT32 v2LocIdx) |
| 914 | { |
| 915 | const TetrahedronFace& face = volume.outerFaces[faceIdx]; |
| 916 | |
| 917 | // Vertices on the face, that aren't the vertex we're calculating the normal for |
| 918 | const Vector3& v1 = positions[v1Idx]; |
| 919 | const Vector3& v2 = positions[face.vertices[v2LocIdx]]; |
| 920 | |
| 921 | // Weight the contribution to the normal based on the angle spanned by the triangle |
| 922 | Vector3 e0 = Vector3::normalize(v1 - v0); |
| 923 | Vector3 e1 = Vector3::normalize(v2 - v0); |
| 924 | |
| 925 | float weight = acos(e0.dot(e1)); |
| 926 | accum.normal += weight * faceNormals[faceIdx]; |
| 927 | }; |
| 928 | |
| 929 | accumulateNormalForFace(edge.faces[0], entry.second.oppositeVerts[0]); |
| 930 | accumulateNormalForFace(edge.faces[1], entry.second.oppositeVerts[1]); |
| 931 | }; |
| 932 | |
| 933 | accumulateNormalForEdgeVertex(entry.first.first, entry.first.second); |
| 934 | accumulateNormalForEdgeVertex(entry.first.second, entry.first.first); |
| 935 | } |
| 936 | |
| 937 | for (auto& entry : faceVertices) |
| 938 | entry.second.normal.normalize(); |
| 939 | |
| 940 | // For each face vertex, generate an outer vertex along its normal |
| 941 | static const float = 5.0f; |
| 942 | for(auto& entry : faceVertices) |
| 943 | { |
| 944 | entry.second.outerIdx = (UINT32)positions.size(); |
| 945 | |
| 946 | Vector3 outerPos = positions[entry.first] + entry.second.normal * ExtrapolationDistance; |
| 947 | positions.push_back(outerPos); |
| 948 | } |
| 949 | |
| 950 | // Generate face data |
| 951 | for (UINT32 i = 0; i < numOuterFaces; ++i) |
| 952 | { |
| 953 | const TetrahedronFace& face = volume.outerFaces[i]; |
| 954 | |
| 955 | TetrahedronFaceData faceData; |
| 956 | faceData.tetrahedron = face.tetrahedron; |
| 957 | |
| 958 | for (UINT32 j = 0; j < 3; j++) |
| 959 | { |
| 960 | const FaceVertex& faceVertex = faceVertices[face.vertices[j]]; |
| 961 | |
| 962 | faceData.innerVertices[j] = face.vertices[j]; |
| 963 | faceData.outerVertices[j] = faceVertex.outerIdx; |
| 964 | faceData.normals[j] = faceVertex.normal; |
| 965 | } |
| 966 | |
| 967 | // Add a link on the source tetrahedron to the face data |
| 968 | Tetrahedron& innerTet = volume.tetrahedra[face.tetrahedron]; |
| 969 | for(UINT32 j = 0; j < 4; j++) |
| 970 | { |
| 971 | if (innerTet.neighbors[j] == -1) |
| 972 | { |
| 973 | // Note: Not searching for opposite neighbor here. If tet. has multiple free faces then we |
| 974 | // can't just pick the first one |
| 975 | innerTet.neighbors[j] = (UINT32)volume.tetrahedra.size() + (UINT32)faces.size(); |
| 976 | break; |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | // We need a way to project a point outside the tetrahedron volume onto an outer face, then calculate |
| 981 | // triangle's barycentric coordinates. Use use the per-vertex normals to extrude the triangle face into |
| 982 | // infinity. |
| 983 | |
| 984 | // Our point can be represented as: |
| 985 | // p == a (p0 + t*v0) + b (p1 + t*v1) + c (p2 + t*v2) |
| 986 | // |
| 987 | // where a, b and c are barycentric coordinates, |
| 988 | // p0, p1, p2 are the corners of the face |
| 989 | // v0, v1, v2 are the vertex normals, per corner |
| 990 | // t is the distance from the triangle to the point |
| 991 | // |
| 992 | // Essentially we're calculating the corners of a bigger triangle that's "t" units away from the |
| 993 | // face, and its corners lie along the per-vertex normals. Point "p" will lie on that triangle, for which |
| 994 | // we can then calculate barycentric coordinates normally. |
| 995 | // |
| 996 | // First we substitute: c = 1 - a - b |
| 997 | // p == a (p0 + t v0) + b (p1 + t v1) + (1 - a - b) (p2 + t v2) |
| 998 | // p == a (p0 + t v0) + b (p1 + t v1) + (p2 + t v2) - a (p2 + t v2) - b (p2 + t v2) |
| 999 | // p == a (p0 - p2 + t v0 - t v2) + b (p1 - p2 + t v1 - t v2) + (p2 + t v2) |
| 1000 | // |
| 1001 | // And move everything to one side: |
| 1002 | // p - p2 - t v2 == a (p0 - p2 + t ( v0 - v2)) + b (p1 - p2 + t ( v1 - v2)) |
| 1003 | // a (p0 - p2 + t ( v0 - v2)) + b (p1 - p2 + t ( v1 - v2)) - (p - p2 - t v2) == 0 |
| 1004 | // |
| 1005 | // We rewrite it using: |
| 1006 | // Ap = p0 - p2 |
| 1007 | // Av = v0 - v2 |
| 1008 | // Bp = p1 - p2 |
| 1009 | // Bv = v1 - v2 |
| 1010 | // Cp = p - p2 |
| 1011 | // Cv = -v2 |
| 1012 | // |
| 1013 | // Which yields: |
| 1014 | // a (Ap + t Av) + b (Bp + t Bv) - (Cp + t Cv) == 0 |
| 1015 | // |
| 1016 | // Which can be written in matrix form: |
| 1017 | // |
| 1018 | // M = {Ap + t Av, Bp + t Bv, Cp + t Cv} |
| 1019 | // a 0 |
| 1020 | // M * [ b ] = [0] |
| 1021 | // -1 0 |
| 1022 | // |
| 1023 | // From that we can tell that matrix M cannot be inverted, because if we multiply the zero vector with the |
| 1024 | // inverted matrix the result would be zero, and not [a, b, -1]. Since the matrix cannot be inverted |
| 1025 | // det(M) == 0. |
| 1026 | // |
| 1027 | // We can use that fact to calculate "t". After we have "t" we can calculate barycentric coordinates |
| 1028 | // normally. |
| 1029 | // |
| 1030 | // Solving equation det(M) == 0 yields a cubic in form: |
| 1031 | // p t^3 + q t^2 + r t + s = 0 |
| 1032 | // |
| 1033 | // We'll convert this to monic form, by dividing by p: |
| 1034 | // t^3 + q/p t^2 + r/p t + s/p = 0 |
| 1035 | // |
| 1036 | // Or if p ends up being zero, we end up with a quadratic instead: |
| 1037 | // q t^2 + r t + s = 0 |
| 1038 | // |
| 1039 | // We want to create a matrix that when multiplied with the position, yields us the three coefficients, |
| 1040 | // which we can then use to solve for "t". For this we create a 4x3 matrix, where each row represents |
| 1041 | // a solution for one of the coefficients. We factor contributons to each coefficient whether they depend on |
| 1042 | // position x, y, z, or don't depend on position (row columns, in that order respectively). |
| 1043 | |
| 1044 | const Vector3& p0 = positions[faceData.innerVertices[0]]; |
| 1045 | const Vector3& p1 = positions[faceData.innerVertices[1]]; |
| 1046 | const Vector3& p2 = positions[faceData.innerVertices[2]]; |
| 1047 | |
| 1048 | const Vector3& v0 = faceVertices[faceData.innerVertices[0]].normal; |
| 1049 | const Vector3& v1 = faceVertices[faceData.innerVertices[1]].normal; |
| 1050 | const Vector3& v2 = faceVertices[faceData.innerVertices[2]].normal; |
| 1051 | |
| 1052 | float p = |
| 1053 | v2.x * v1.y * v0.z - |
| 1054 | v1.x * v2.y * v0.z - |
| 1055 | v2.x * v0.y * v1.z + |
| 1056 | v0.x * v2.y * v1.z + |
| 1057 | v1.x * v0.y * v2.z - |
| 1058 | v0.x * v1.y * v2.z; |
| 1059 | |
| 1060 | float qx = -v1.y * v0.z + v2.y * v0.z + v0.y * v1.z - v2.y * v1.z - v0.y * v2.z + v1.y * v2.z; |
| 1061 | float qy = v1.x * v0.z - v2.x * v0.z - v0.x * v1.z + v2.x * v1.z + v0.x * v2.z - v1.x * v2.z; |
| 1062 | float qz = -v1.x * v0.y + v2.x * v0.y + v0.x * v1.y - v2.x * v1.y - v0.x * v2.y + v1.x * v2.y; |
| 1063 | float qw = v2.y * v1.z * p0.x - v1.y * v2.z * p0.x - v2.y * v0.z * p1.x + v0.y * v2.z * p1.x + |
| 1064 | v1.y * v0.z * p2.x - v0.y * v1.z * p2.x - v2.x * v1.z * p0.y + v1.x * v2.z * p0.y + |
| 1065 | v2.x * v0.z * p1.y - v0.x * v2.z * p1.y - v1.x * v0.z * p2.y + v0.x * v1.z * p2.y + |
| 1066 | v2.x * v1.y * p0.z - v1.x * v2.y * p0.z - v2.x * v0.y * p1.z + v0.x * v2.y * p1.z + |
| 1067 | v1.x * v0.y * p2.z - v0.x * v1.y * p2.z; |
| 1068 | |
| 1069 | float rx = v1.z * p0.y - v2.z * p0.y - v0.z * p1.y + v2.z * p1.y + v0.z * p2.y - v1.z * p2.y - |
| 1070 | v1.y * p0.z + v2.y * p0.z + v0.y * p1.z - v2.y * p1.z - v0.y * p2.z + v1.y * p2.z; |
| 1071 | float ry = -v1.z * p0.x + v2.z * p0.x + v0.z * p1.x - v2.z * p1.x - v0.z * p2.x + v1.z * p2.x + |
| 1072 | v1.x * p0.z - v2.x * p0.z - v0.x * p1.z + v2.x * p1.z + v0.x * p2.z - v1.x * p2.z; |
| 1073 | float rz = v1.y * p0.x - v2.y * p0.x - v0.y * p1.x + v2.y * p1.x + v0.y * p2.x - v1.y * p2.x - |
| 1074 | v1.x * p0.y + v2.x * p0.y + v0.x * p1.y - v2.x * p1.y - v0.x * p2.y + v1.x * p2.y; |
| 1075 | float rw = v2.z * p1.x * p0.y - v1.z * p2.x * p0.y - v2.z * p0.x * p1.y + v0.z * p2.x * p1.y + |
| 1076 | v1.z * p0.x * p2.y - v0.z * p1.x * p2.y - v2.y * p1.x * p0.z + v1.y * p2.x * p0.z + |
| 1077 | v2.x * p1.y * p0.z - v1.x * p2.y * p0.z + v2.y * p0.x * p1.z - v0.y * p2.x * p1.z - |
| 1078 | v2.x * p0.y * p1.z + v0.x * p2.y * p1.z - v1.y * p0.x * p2.z + v0.y * p1.x * p2.z + |
| 1079 | v1.x * p0.y * p2.z - v0.x * p1.y * p2.z; |
| 1080 | |
| 1081 | float sx = -p1.y * p0.z + p2.y * p0.z + p0.y * p1.z - p2.y * p1.z - p0.y * p2.z + p1.y * p2.z; |
| 1082 | float sy = p1.x * p0.z - p2.x * p0.z - p0.x * p1.z + p2.x * p1.z + p0.x * p2.z - p1.x * p2.z; |
| 1083 | float sz = -p1.x * p0.y + p2.x * p0.y + p0.x * p1.y - p2.x * p1.y - p0.x * p2.y + p1.x * p2.y; |
| 1084 | float sw = p2.x * p1.y * p0.z - p1.x * p2.y * p0.z - p2.x * p0.y * p1.z + |
| 1085 | p0.x * p2.y * p1.z + p1.x * p0.y * p2.z - p0.x * p1.y * p2.z; |
| 1086 | |
| 1087 | faceData.transform[0][0] = qx; |
| 1088 | faceData.transform[0][1] = qy; |
| 1089 | faceData.transform[0][2] = qz; |
| 1090 | faceData.transform[0][3] = qw; |
| 1091 | |
| 1092 | faceData.transform[1][0] = rx; |
| 1093 | faceData.transform[1][1] = ry; |
| 1094 | faceData.transform[1][2] = rz; |
| 1095 | faceData.transform[1][3] = rw; |
| 1096 | |
| 1097 | faceData.transform[2][0] = sx; |
| 1098 | faceData.transform[2][1] = sy; |
| 1099 | faceData.transform[2][2] = sz; |
| 1100 | faceData.transform[2][3] = sw; |
| 1101 | |
| 1102 | // Unused |
| 1103 | faceData.transform[3][0] = 0.0f; |
| 1104 | faceData.transform[3][1] = 0.0f; |
| 1105 | faceData.transform[3][2] = 0.0f; |
| 1106 | faceData.transform[3][3] = 0.0f; |
| 1107 | |
| 1108 | if (fabs(p) > 0.00001f) |
| 1109 | { |
| 1110 | faceData.transform = faceData.transform * (1.0f / p); |
| 1111 | faceData.quadratic = false; |
| 1112 | } |
| 1113 | else // Quadratic |
| 1114 | { |
| 1115 | faceData.quadratic = true; |
| 1116 | } |
| 1117 | |
| 1118 | faces.push_back(faceData); |
| 1119 | } |
| 1120 | } |
| 1121 | else |
| 1122 | { |
| 1123 | for (UINT32 i = 0; i < (UINT32)volume.outerFaces.size(); ++i) |
| 1124 | { |
| 1125 | const TetrahedronFace& face = volume.outerFaces[i]; |
| 1126 | TetrahedronFaceData faceData; |
| 1127 | |
| 1128 | for (UINT32 j = 0; j < 3; j++) |
| 1129 | { |
| 1130 | faceData.innerVertices[j] = face.vertices[j]; |
| 1131 | faceData.outerVertices[j] = -1; |
| 1132 | faceData.normals[j] = Vector3::ZERO; |
| 1133 | } |
| 1134 | |
| 1135 | faceData.tetrahedron = face.tetrahedron; |
| 1136 | faceData.transform = Matrix4::IDENTITY; |
| 1137 | faceData.quadratic = false; |
| 1138 | |
| 1139 | faces.push_back(faceData); |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | // Generate matrices |
| 1144 | UINT32 numOutputTets = (UINT32)volume.tetrahedra.size(); |
| 1145 | tetrahedra.reserve(numOutputTets); |
| 1146 | |
| 1147 | //// For inner tetrahedrons |
| 1148 | for(UINT32 i = 0; i < (UINT32)numOutputTets; ++i) |
| 1149 | { |
| 1150 | TetrahedronData entry; |
| 1151 | entry.volume = volume.tetrahedra[i]; |
| 1152 | |
| 1153 | // Generate a matrix that can be used for calculating barycentric coordinates |
| 1154 | // To determine a point within a tetrahedron, using barycentric coordinates, we use: |
| 1155 | // P = (P1 - P4) * a + (P2 - P4) * b + (P3 - P4) * c + P4 |
| 1156 | // |
| 1157 | // Where P1, P2, P3, P4 are the corners of the tetrahedron. |
| 1158 | // |
| 1159 | // Expanded for each coordinate this is: |
| 1160 | // x = (x1 - x4) * a + (x2 - x4) * b + (x3 - x4) * c + x4 |
| 1161 | // y = (y1 - y4) * a + (y2 - y4) * b + (y3 - y4) * c + y4 |
| 1162 | // z = (z1 - z4) * a + (z2 - z4) * b + (z3 - z4) * c + z4 |
| 1163 | // |
| 1164 | // In matrix form this is: |
| 1165 | // a |
| 1166 | // P = [P1 - P4, P2 - P4, P3 - P4, P4] [b] |
| 1167 | // c |
| 1168 | // 1 |
| 1169 | // |
| 1170 | // Solved for barycentric coordinates: |
| 1171 | // a |
| 1172 | // [b] = Minv * P |
| 1173 | // c |
| 1174 | // 1 |
| 1175 | // |
| 1176 | // Where Minv is the inverse of the matrix above. |
| 1177 | |
| 1178 | const Vector3& P1 = positions[volume.tetrahedra[i].vertices[0]]; |
| 1179 | const Vector3& P2 = positions[volume.tetrahedra[i].vertices[1]]; |
| 1180 | const Vector3& P3 = positions[volume.tetrahedra[i].vertices[2]]; |
| 1181 | const Vector3& P4 = positions[volume.tetrahedra[i].vertices[3]]; |
| 1182 | |
| 1183 | Vector3 E1 = P1 - P4; |
| 1184 | Vector3 E2 = P2 - P4; |
| 1185 | Vector3 E3 = P3 - P4; |
| 1186 | |
| 1187 | Matrix4 mat; |
| 1188 | mat.setColumn(0, Vector4(E1, 0.0f)); |
| 1189 | mat.setColumn(1, Vector4(E2, 0.0f)); |
| 1190 | mat.setColumn(2, Vector4(E3, 0.0f)); |
| 1191 | mat.setColumn(3, Vector4(P4, 1.0f)); |
| 1192 | |
| 1193 | entry.transform = mat.inverse(); |
| 1194 | |
| 1195 | tetrahedra.push_back(entry); |
| 1196 | } |
| 1197 | } |
| 1198 | bs_frame_clear(); |
| 1199 | } |
| 1200 | }} |
| 1201 | |