| 1 | /**************************************************************************/ |
| 2 | /* rasterizer_canvas_gles3.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "rasterizer_canvas_gles3.h" |
| 32 | |
| 33 | #ifdef GLES3_ENABLED |
| 34 | |
| 35 | #include "core/os/os.h" |
| 36 | #include "rasterizer_scene_gles3.h" |
| 37 | |
| 38 | #include "core/config/project_settings.h" |
| 39 | #include "core/math/geometry_2d.h" |
| 40 | #include "servers/rendering/rendering_server_default.h" |
| 41 | #include "storage/config.h" |
| 42 | #include "storage/material_storage.h" |
| 43 | #include "storage/mesh_storage.h" |
| 44 | #include "storage/particles_storage.h" |
| 45 | #include "storage/texture_storage.h" |
| 46 | |
| 47 | void RasterizerCanvasGLES3::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) { |
| 48 | p_mat4[0] = p_transform.columns[0][0]; |
| 49 | p_mat4[1] = p_transform.columns[0][1]; |
| 50 | p_mat4[2] = 0; |
| 51 | p_mat4[3] = 0; |
| 52 | p_mat4[4] = p_transform.columns[1][0]; |
| 53 | p_mat4[5] = p_transform.columns[1][1]; |
| 54 | p_mat4[6] = 0; |
| 55 | p_mat4[7] = 0; |
| 56 | p_mat4[8] = 0; |
| 57 | p_mat4[9] = 0; |
| 58 | p_mat4[10] = 1; |
| 59 | p_mat4[11] = 0; |
| 60 | p_mat4[12] = p_transform.columns[2][0]; |
| 61 | p_mat4[13] = p_transform.columns[2][1]; |
| 62 | p_mat4[14] = 0; |
| 63 | p_mat4[15] = 1; |
| 64 | } |
| 65 | |
| 66 | void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) { |
| 67 | p_mat2x4[0] = p_transform.columns[0][0]; |
| 68 | p_mat2x4[1] = p_transform.columns[1][0]; |
| 69 | p_mat2x4[2] = 0; |
| 70 | p_mat2x4[3] = p_transform.columns[2][0]; |
| 71 | |
| 72 | p_mat2x4[4] = p_transform.columns[0][1]; |
| 73 | p_mat2x4[5] = p_transform.columns[1][1]; |
| 74 | p_mat2x4[6] = 0; |
| 75 | p_mat2x4[7] = p_transform.columns[2][1]; |
| 76 | } |
| 77 | |
| 78 | void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) { |
| 79 | p_mat2x3[0] = p_transform.columns[0][0]; |
| 80 | p_mat2x3[1] = p_transform.columns[0][1]; |
| 81 | p_mat2x3[2] = p_transform.columns[1][0]; |
| 82 | p_mat2x3[3] = p_transform.columns[1][1]; |
| 83 | p_mat2x3[4] = p_transform.columns[2][0]; |
| 84 | p_mat2x3[5] = p_transform.columns[2][1]; |
| 85 | } |
| 86 | |
| 87 | void RasterizerCanvasGLES3::_update_transform_to_mat4(const Transform3D &p_transform, float *p_mat4) { |
| 88 | p_mat4[0] = p_transform.basis.rows[0][0]; |
| 89 | p_mat4[1] = p_transform.basis.rows[1][0]; |
| 90 | p_mat4[2] = p_transform.basis.rows[2][0]; |
| 91 | p_mat4[3] = 0; |
| 92 | p_mat4[4] = p_transform.basis.rows[0][1]; |
| 93 | p_mat4[5] = p_transform.basis.rows[1][1]; |
| 94 | p_mat4[6] = p_transform.basis.rows[2][1]; |
| 95 | p_mat4[7] = 0; |
| 96 | p_mat4[8] = p_transform.basis.rows[0][2]; |
| 97 | p_mat4[9] = p_transform.basis.rows[1][2]; |
| 98 | p_mat4[10] = p_transform.basis.rows[2][2]; |
| 99 | p_mat4[11] = 0; |
| 100 | p_mat4[12] = p_transform.origin.x; |
| 101 | p_mat4[13] = p_transform.origin.y; |
| 102 | p_mat4[14] = p_transform.origin.z; |
| 103 | p_mat4[15] = 1; |
| 104 | } |
| 105 | |
| 106 | void RasterizerCanvasGLES3::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, Light *p_directional_light_list, const Transform2D &p_canvas_transform, RS::CanvasItemTextureFilter p_default_filter, RS::CanvasItemTextureRepeat p_default_repeat, bool p_snap_2d_vertices_to_pixel, bool &r_sdf_used) { |
| 107 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
| 108 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
| 109 | GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); |
| 110 | |
| 111 | Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse(); |
| 112 | |
| 113 | // Clear out any state that may have been left from the 3D pass. |
| 114 | reset_canvas(); |
| 115 | |
| 116 | if (state.canvas_instance_data_buffers[state.current_data_buffer_index].fence != GLsync()) { |
| 117 | GLint syncStatus; |
| 118 | glGetSynciv(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence, GL_SYNC_STATUS, 1, nullptr, &syncStatus); |
| 119 | if (syncStatus == GL_UNSIGNALED) { |
| 120 | // If older than 2 frames, wait for sync OpenGL can have up to 3 frames in flight, any more and we need to sync anyway. |
| 121 | if (state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used < RSG::rasterizer->get_frame_number() - 2) { |
| 122 | #ifndef WEB_ENABLED |
| 123 | // On web, we do nothing as the glSubBufferData will force a sync anyway and WebGL does not like waiting. |
| 124 | glClientWaitSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence, 0, 100000000); // wait for up to 100ms |
| 125 | #endif |
| 126 | state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used = RSG::rasterizer->get_frame_number(); |
| 127 | glDeleteSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence); |
| 128 | state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = GLsync(); |
| 129 | } else { |
| 130 | // Used in last frame or frame before that. OpenGL can get up to two frames behind, so these buffers may still be in use |
| 131 | // Allocate a new buffer and use that. |
| 132 | _allocate_instance_data_buffer(); |
| 133 | } |
| 134 | } else { |
| 135 | // Already finished all rendering commands, we can use it. |
| 136 | state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used = RSG::rasterizer->get_frame_number(); |
| 137 | glDeleteSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence); |
| 138 | state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = GLsync(); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | //setup directional lights if exist |
| 143 | |
| 144 | uint32_t light_count = 0; |
| 145 | uint32_t directional_light_count = 0; |
| 146 | { |
| 147 | Light *l = p_directional_light_list; |
| 148 | uint32_t index = 0; |
| 149 | |
| 150 | while (l) { |
| 151 | if (index == data.max_lights_per_render) { |
| 152 | l->render_index_cache = -1; |
| 153 | l = l->next_ptr; |
| 154 | continue; |
| 155 | } |
| 156 | |
| 157 | CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal); |
| 158 | if (!clight) { //unused or invalid texture |
| 159 | l->render_index_cache = -1; |
| 160 | l = l->next_ptr; |
| 161 | ERR_CONTINUE(!clight); |
| 162 | } |
| 163 | |
| 164 | Vector2 canvas_light_dir = l->xform_cache.columns[1].normalized(); |
| 165 | |
| 166 | state.light_uniforms[index].position[0] = -canvas_light_dir.x; |
| 167 | state.light_uniforms[index].position[1] = -canvas_light_dir.y; |
| 168 | |
| 169 | _update_transform_2d_to_mat2x4(clight->shadow.directional_xform, state.light_uniforms[index].shadow_matrix); |
| 170 | |
| 171 | state.light_uniforms[index].height = l->height; //0..1 here |
| 172 | |
| 173 | for (int i = 0; i < 4; i++) { |
| 174 | state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255)); |
| 175 | state.light_uniforms[index].color[i] = l->color[i]; |
| 176 | } |
| 177 | |
| 178 | state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate |
| 179 | |
| 180 | if (state.shadow_fb != 0) { |
| 181 | state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth); |
| 182 | state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far; |
| 183 | state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset; |
| 184 | } else { |
| 185 | state.light_uniforms[index].shadow_pixel_size = 1.0; |
| 186 | state.light_uniforms[index].shadow_z_far_inv = 1.0; |
| 187 | state.light_uniforms[index].shadow_y_ofs = 0; |
| 188 | } |
| 189 | |
| 190 | state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT; |
| 191 | state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT; |
| 192 | |
| 193 | if (clight->shadow.enabled) { |
| 194 | state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW; |
| 195 | } |
| 196 | |
| 197 | l->render_index_cache = index; |
| 198 | |
| 199 | index++; |
| 200 | l = l->next_ptr; |
| 201 | } |
| 202 | |
| 203 | light_count = index; |
| 204 | directional_light_count = light_count; |
| 205 | state.using_directional_lights = directional_light_count > 0; |
| 206 | } |
| 207 | |
| 208 | //setup lights if exist |
| 209 | |
| 210 | { |
| 211 | Light *l = p_light_list; |
| 212 | uint32_t index = light_count; |
| 213 | |
| 214 | while (l) { |
| 215 | if (index == data.max_lights_per_render) { |
| 216 | l->render_index_cache = -1; |
| 217 | l = l->next_ptr; |
| 218 | continue; |
| 219 | } |
| 220 | |
| 221 | CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal); |
| 222 | if (!clight) { //unused or invalid texture |
| 223 | l->render_index_cache = -1; |
| 224 | l = l->next_ptr; |
| 225 | ERR_CONTINUE(!clight); |
| 226 | } |
| 227 | |
| 228 | Vector2 canvas_light_pos = p_canvas_transform.xform(l->xform.get_origin()); //convert light position to canvas coordinates, as all computation is done in canvas coords to avoid precision loss |
| 229 | state.light_uniforms[index].position[0] = canvas_light_pos.x; |
| 230 | state.light_uniforms[index].position[1] = canvas_light_pos.y; |
| 231 | |
| 232 | _update_transform_2d_to_mat2x4(l->light_shader_xform.affine_inverse(), state.light_uniforms[index].matrix); |
| 233 | _update_transform_2d_to_mat2x4(l->xform_cache.affine_inverse(), state.light_uniforms[index].shadow_matrix); |
| 234 | |
| 235 | state.light_uniforms[index].height = l->height * (p_canvas_transform.columns[0].length() + p_canvas_transform.columns[1].length()) * 0.5; //approximate height conversion to the canvas size, since all calculations are done in canvas coords to avoid precision loss |
| 236 | for (int i = 0; i < 4; i++) { |
| 237 | state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255)); |
| 238 | state.light_uniforms[index].color[i] = l->color[i]; |
| 239 | } |
| 240 | |
| 241 | state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate |
| 242 | |
| 243 | if (state.shadow_fb != 0) { |
| 244 | state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth); |
| 245 | state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far; |
| 246 | state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset; |
| 247 | } else { |
| 248 | state.light_uniforms[index].shadow_pixel_size = 1.0; |
| 249 | state.light_uniforms[index].shadow_z_far_inv = 1.0; |
| 250 | state.light_uniforms[index].shadow_y_ofs = 0; |
| 251 | } |
| 252 | |
| 253 | state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT; |
| 254 | state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT; |
| 255 | |
| 256 | if (clight->shadow.enabled) { |
| 257 | state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW; |
| 258 | } |
| 259 | |
| 260 | if (clight->texture.is_valid()) { |
| 261 | Rect2 atlas_rect = GLES3::TextureStorage::get_singleton()->texture_atlas_get_texture_rect(clight->texture); |
| 262 | state.light_uniforms[index].atlas_rect[0] = atlas_rect.position.x; |
| 263 | state.light_uniforms[index].atlas_rect[1] = atlas_rect.position.y; |
| 264 | state.light_uniforms[index].atlas_rect[2] = atlas_rect.size.width; |
| 265 | state.light_uniforms[index].atlas_rect[3] = atlas_rect.size.height; |
| 266 | |
| 267 | } else { |
| 268 | state.light_uniforms[index].atlas_rect[0] = 0; |
| 269 | state.light_uniforms[index].atlas_rect[1] = 0; |
| 270 | state.light_uniforms[index].atlas_rect[2] = 0; |
| 271 | state.light_uniforms[index].atlas_rect[3] = 0; |
| 272 | } |
| 273 | |
| 274 | l->render_index_cache = index; |
| 275 | |
| 276 | index++; |
| 277 | l = l->next_ptr; |
| 278 | } |
| 279 | |
| 280 | light_count = index; |
| 281 | } |
| 282 | |
| 283 | if (light_count > 0) { |
| 284 | glBindBufferBase(GL_UNIFORM_BUFFER, LIGHT_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_data_buffer_index].light_ubo); |
| 285 | |
| 286 | #ifdef WEB_ENABLED |
| 287 | glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightUniform) * light_count, state.light_uniforms); |
| 288 | #else |
| 289 | // On Desktop and mobile we map the memory without synchronizing for maximum speed. |
| 290 | void *ubo = glMapBufferRange(GL_UNIFORM_BUFFER, 0, sizeof(LightUniform) * light_count, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); |
| 291 | memcpy(ubo, state.light_uniforms, sizeof(LightUniform) * light_count); |
| 292 | glUnmapBuffer(GL_UNIFORM_BUFFER); |
| 293 | #endif |
| 294 | |
| 295 | GLuint texture_atlas = texture_storage->texture_atlas_get_texture(); |
| 296 | if (texture_atlas == 0) { |
| 297 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
| 298 | texture_atlas = tex->tex_id; |
| 299 | } |
| 300 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 2); |
| 301 | glBindTexture(GL_TEXTURE_2D, texture_atlas); |
| 302 | GLuint shadow_tex = state.shadow_texture; |
| 303 | if (shadow_tex == 0) { |
| 304 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
| 305 | shadow_tex = tex->tex_id; |
| 306 | } |
| 307 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 3); |
| 308 | glBindTexture(GL_TEXTURE_2D, shadow_tex); |
| 309 | } |
| 310 | |
| 311 | { |
| 312 | //update canvas state uniform buffer |
| 313 | StateBuffer state_buffer; |
| 314 | |
| 315 | Size2i ssize = texture_storage->render_target_get_size(p_to_render_target); |
| 316 | |
| 317 | // If we've overridden the render target's color texture, then we need |
| 318 | // to invert the Y axis, so 2D texture appear right side up. |
| 319 | // We're probably rendering directly to an XR device. |
| 320 | float y_scale = texture_storage->render_target_get_override_color(p_to_render_target).is_valid() ? -2.0f : 2.0f; |
| 321 | |
| 322 | Transform3D screen_transform; |
| 323 | screen_transform.translate_local(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f); |
| 324 | screen_transform.scale(Vector3(2.0f / ssize.width, y_scale / ssize.height, 1.0f)); |
| 325 | _update_transform_to_mat4(screen_transform, state_buffer.screen_transform); |
| 326 | _update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform); |
| 327 | |
| 328 | Transform2D normal_transform = p_canvas_transform; |
| 329 | normal_transform.columns[0].normalize(); |
| 330 | normal_transform.columns[1].normalize(); |
| 331 | normal_transform.columns[2] = Vector2(); |
| 332 | _update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform); |
| 333 | |
| 334 | state_buffer.canvas_modulate[0] = p_modulate.r; |
| 335 | state_buffer.canvas_modulate[1] = p_modulate.g; |
| 336 | state_buffer.canvas_modulate[2] = p_modulate.b; |
| 337 | state_buffer.canvas_modulate[3] = p_modulate.a; |
| 338 | |
| 339 | Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target); |
| 340 | state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x; |
| 341 | state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y; |
| 342 | |
| 343 | state_buffer.time = state.time; |
| 344 | state_buffer.use_pixel_snap = p_snap_2d_vertices_to_pixel; |
| 345 | |
| 346 | state_buffer.directional_light_count = directional_light_count; |
| 347 | |
| 348 | Vector2 canvas_scale = p_canvas_transform.get_scale(); |
| 349 | |
| 350 | state_buffer.sdf_to_screen[0] = render_target_size.width / canvas_scale.x; |
| 351 | state_buffer.sdf_to_screen[1] = render_target_size.height / canvas_scale.y; |
| 352 | |
| 353 | state_buffer.screen_to_sdf[0] = 1.0 / state_buffer.sdf_to_screen[0]; |
| 354 | state_buffer.screen_to_sdf[1] = 1.0 / state_buffer.sdf_to_screen[1]; |
| 355 | |
| 356 | Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_to_render_target); |
| 357 | Rect2 sdf_tex_rect(sdf_rect.position / canvas_scale, sdf_rect.size / canvas_scale); |
| 358 | |
| 359 | state_buffer.sdf_to_tex[0] = 1.0 / sdf_tex_rect.size.width; |
| 360 | state_buffer.sdf_to_tex[1] = 1.0 / sdf_tex_rect.size.height; |
| 361 | state_buffer.sdf_to_tex[2] = -sdf_tex_rect.position.x / sdf_tex_rect.size.width; |
| 362 | state_buffer.sdf_to_tex[3] = -sdf_tex_rect.position.y / sdf_tex_rect.size.height; |
| 363 | |
| 364 | state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5); |
| 365 | |
| 366 | glBindBufferBase(GL_UNIFORM_BUFFER, BASE_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_data_buffer_index].state_ubo); |
| 367 | glBufferData(GL_UNIFORM_BUFFER, sizeof(StateBuffer), &state_buffer, GL_STREAM_DRAW); |
| 368 | |
| 369 | GLuint global_buffer = material_storage->global_shader_parameters_get_uniform_buffer(); |
| 370 | |
| 371 | glBindBufferBase(GL_UNIFORM_BUFFER, GLOBAL_UNIFORM_LOCATION, global_buffer); |
| 372 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
| 373 | } |
| 374 | |
| 375 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 5); |
| 376 | glBindTexture(GL_TEXTURE_2D, texture_storage->render_target_get_sdf_texture(p_to_render_target)); |
| 377 | |
| 378 | { |
| 379 | state.default_filter = p_default_filter; |
| 380 | state.default_repeat = p_default_repeat; |
| 381 | } |
| 382 | |
| 383 | Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target); |
| 384 | glViewport(0, 0, render_target_size.x, render_target_size.y); |
| 385 | |
| 386 | r_sdf_used = false; |
| 387 | int item_count = 0; |
| 388 | bool backbuffer_cleared = false; |
| 389 | bool time_used = false; |
| 390 | bool material_screen_texture_cached = false; |
| 391 | bool material_screen_texture_mipmaps_cached = false; |
| 392 | Rect2 back_buffer_rect; |
| 393 | bool backbuffer_copy = false; |
| 394 | bool backbuffer_gen_mipmaps = false; |
| 395 | bool update_skeletons = false; |
| 396 | |
| 397 | Item *ci = p_item_list; |
| 398 | Item *canvas_group_owner = nullptr; |
| 399 | bool skip_item = false; |
| 400 | |
| 401 | state.last_item_index = 0; |
| 402 | |
| 403 | while (ci) { |
| 404 | if (ci->copy_back_buffer && canvas_group_owner == nullptr) { |
| 405 | backbuffer_copy = true; |
| 406 | |
| 407 | if (ci->copy_back_buffer->full) { |
| 408 | back_buffer_rect = Rect2(); |
| 409 | } else { |
| 410 | back_buffer_rect = ci->copy_back_buffer->rect; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | // Check material for something that may change flow of rendering, but do not bind for now. |
| 415 | RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; |
| 416 | if (material.is_valid()) { |
| 417 | GLES3::CanvasMaterialData *md = static_cast<GLES3::CanvasMaterialData *>(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM)); |
| 418 | if (md && md->shader_data->valid) { |
| 419 | if (md->shader_data->uses_screen_texture && canvas_group_owner == nullptr) { |
| 420 | if (!material_screen_texture_cached) { |
| 421 | backbuffer_copy = true; |
| 422 | back_buffer_rect = Rect2(); |
| 423 | backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps; |
| 424 | } else if (!material_screen_texture_mipmaps_cached) { |
| 425 | backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps; |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | if (md->shader_data->uses_sdf) { |
| 430 | r_sdf_used = true; |
| 431 | } |
| 432 | if (md->shader_data->uses_time) { |
| 433 | time_used = true; |
| 434 | } |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | if (ci->skeleton.is_valid()) { |
| 439 | const Item::Command *c = ci->commands; |
| 440 | |
| 441 | while (c) { |
| 442 | if (c->type == Item::Command::TYPE_MESH) { |
| 443 | const Item::CommandMesh *cm = static_cast<const Item::CommandMesh *>(c); |
| 444 | if (cm->mesh_instance.is_valid()) { |
| 445 | mesh_storage->mesh_instance_check_for_update(cm->mesh_instance); |
| 446 | mesh_storage->mesh_instance_set_canvas_item_transform(cm->mesh_instance, canvas_transform_inverse * ci->final_transform); |
| 447 | update_skeletons = true; |
| 448 | } |
| 449 | } |
| 450 | c = c->next; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | if (ci->canvas_group_owner != nullptr) { |
| 455 | if (canvas_group_owner == nullptr) { |
| 456 | if (update_skeletons) { |
| 457 | mesh_storage->update_mesh_instances(); |
| 458 | update_skeletons = false; |
| 459 | } |
| 460 | // Canvas group begins here, render until before this item |
| 461 | _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used); |
| 462 | item_count = 0; |
| 463 | |
| 464 | if (ci->canvas_group_owner->canvas_group->mode != RS::CANVAS_GROUP_MODE_TRANSPARENT) { |
| 465 | Rect2i group_rect = ci->canvas_group_owner->global_rect_cache; |
| 466 | texture_storage->render_target_copy_to_back_buffer(p_to_render_target, group_rect, false); |
| 467 | if (ci->canvas_group_owner->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { |
| 468 | ci->canvas_group_owner->use_canvas_group = false; |
| 469 | items[item_count++] = ci->canvas_group_owner; |
| 470 | } |
| 471 | } else if (!backbuffer_cleared) { |
| 472 | texture_storage->render_target_clear_back_buffer(p_to_render_target, Rect2i(), Color(0, 0, 0, 0)); |
| 473 | backbuffer_cleared = true; |
| 474 | } |
| 475 | |
| 476 | backbuffer_copy = false; |
| 477 | canvas_group_owner = ci->canvas_group_owner; //continue until owner found |
| 478 | } |
| 479 | |
| 480 | ci->canvas_group_owner = nullptr; //must be cleared |
| 481 | } |
| 482 | |
| 483 | if (canvas_group_owner == nullptr && ci->canvas_group != nullptr && ci->canvas_group->mode != RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { |
| 484 | skip_item = true; |
| 485 | } |
| 486 | |
| 487 | if (ci == canvas_group_owner) { |
| 488 | if (update_skeletons) { |
| 489 | mesh_storage->update_mesh_instances(); |
| 490 | update_skeletons = false; |
| 491 | } |
| 492 | _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, true); |
| 493 | item_count = 0; |
| 494 | |
| 495 | if (ci->canvas_group->blur_mipmaps) { |
| 496 | texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, ci->global_rect_cache); |
| 497 | } |
| 498 | |
| 499 | canvas_group_owner = nullptr; |
| 500 | // Backbuffer is dirty now and needs to be re-cleared if another CanvasGroup needs it. |
| 501 | backbuffer_cleared = false; |
| 502 | |
| 503 | // Tell the renderer to paint this as a canvas group |
| 504 | ci->use_canvas_group = true; |
| 505 | } else { |
| 506 | ci->use_canvas_group = false; |
| 507 | } |
| 508 | |
| 509 | if (backbuffer_copy) { |
| 510 | if (update_skeletons) { |
| 511 | mesh_storage->update_mesh_instances(); |
| 512 | update_skeletons = false; |
| 513 | } |
| 514 | //render anything pending, including clearing if no items |
| 515 | |
| 516 | _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used); |
| 517 | item_count = 0; |
| 518 | |
| 519 | texture_storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect, backbuffer_gen_mipmaps); |
| 520 | |
| 521 | backbuffer_copy = false; |
| 522 | material_screen_texture_cached = true; // After a backbuffer copy, screen texture makes no further copies. |
| 523 | material_screen_texture_mipmaps_cached = backbuffer_gen_mipmaps; |
| 524 | backbuffer_gen_mipmaps = false; |
| 525 | } |
| 526 | |
| 527 | if (backbuffer_gen_mipmaps) { |
| 528 | texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, back_buffer_rect); |
| 529 | |
| 530 | backbuffer_gen_mipmaps = false; |
| 531 | material_screen_texture_mipmaps_cached = true; |
| 532 | } |
| 533 | |
| 534 | // just add all items for now |
| 535 | if (skip_item) { |
| 536 | skip_item = false; |
| 537 | } else { |
| 538 | items[item_count++] = ci; |
| 539 | } |
| 540 | |
| 541 | if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) { |
| 542 | if (update_skeletons) { |
| 543 | mesh_storage->update_mesh_instances(); |
| 544 | update_skeletons = false; |
| 545 | } |
| 546 | _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, canvas_group_owner != nullptr); |
| 547 | //then reset |
| 548 | item_count = 0; |
| 549 | } |
| 550 | |
| 551 | ci = ci->next; |
| 552 | } |
| 553 | |
| 554 | if (time_used) { |
| 555 | RenderingServerDefault::redraw_request(); |
| 556 | } |
| 557 | |
| 558 | state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); |
| 559 | |
| 560 | // Clear out state used in 2D pass |
| 561 | reset_canvas(); |
| 562 | state.current_data_buffer_index = (state.current_data_buffer_index + 1) % state.canvas_instance_data_buffers.size(); |
| 563 | state.current_instance_buffer_index = 0; |
| 564 | } |
| 565 | |
| 566 | void RasterizerCanvasGLES3::_render_items(RID p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, bool &r_sdf_used, bool p_to_backbuffer) { |
| 567 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
| 568 | |
| 569 | canvas_begin(p_to_render_target, p_to_backbuffer); |
| 570 | |
| 571 | if (p_item_count <= 0) { |
| 572 | // Nothing to draw, just call canvas_begin() to clear the render target and return. |
| 573 | return; |
| 574 | } |
| 575 | |
| 576 | uint32_t index = 0; |
| 577 | Item *current_clip = nullptr; |
| 578 | GLES3::CanvasShaderData *shader_data_cache = nullptr; |
| 579 | |
| 580 | // Record Batches. |
| 581 | // First item always forms its own batch. |
| 582 | bool batch_broken = false; |
| 583 | _new_batch(batch_broken); |
| 584 | |
| 585 | // Override the start position and index as we want to start from where we finished off last time. |
| 586 | state.canvas_instance_batches[state.current_batch_index].start = state.last_item_index; |
| 587 | index = 0; |
| 588 | |
| 589 | for (int i = 0; i < p_item_count; i++) { |
| 590 | Item *ci = items[i]; |
| 591 | |
| 592 | if (ci->final_clip_owner != state.canvas_instance_batches[state.current_batch_index].clip) { |
| 593 | _new_batch(batch_broken); |
| 594 | state.canvas_instance_batches[state.current_batch_index].clip = ci->final_clip_owner; |
| 595 | current_clip = ci->final_clip_owner; |
| 596 | } |
| 597 | |
| 598 | RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; |
| 599 | if (ci->use_canvas_group) { |
| 600 | if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { |
| 601 | material = default_clip_children_material; |
| 602 | } else { |
| 603 | if (material.is_null()) { |
| 604 | if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_ONLY) { |
| 605 | material = default_clip_children_material; |
| 606 | } else { |
| 607 | material = default_canvas_group_material; |
| 608 | } |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | if (material != state.canvas_instance_batches[state.current_batch_index].material) { |
| 614 | _new_batch(batch_broken); |
| 615 | |
| 616 | GLES3::CanvasMaterialData *material_data = nullptr; |
| 617 | if (material.is_valid()) { |
| 618 | material_data = static_cast<GLES3::CanvasMaterialData *>(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM)); |
| 619 | } |
| 620 | shader_data_cache = nullptr; |
| 621 | if (material_data) { |
| 622 | if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { |
| 623 | shader_data_cache = material_data->shader_data; |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | state.canvas_instance_batches[state.current_batch_index].material = material; |
| 628 | state.canvas_instance_batches[state.current_batch_index].material_data = material_data; |
| 629 | } |
| 630 | |
| 631 | GLES3::CanvasShaderData::BlendMode blend_mode = shader_data_cache ? shader_data_cache->blend_mode : GLES3::CanvasShaderData::BLEND_MODE_MIX; |
| 632 | |
| 633 | _record_item_commands(ci, p_to_render_target, p_canvas_transform_inverse, current_clip, blend_mode, p_lights, index, batch_broken, r_sdf_used); |
| 634 | } |
| 635 | |
| 636 | if (index == 0) { |
| 637 | // Nothing to render, just return. |
| 638 | state.current_batch_index = 0; |
| 639 | state.canvas_instance_batches.clear(); |
| 640 | return; |
| 641 | } |
| 642 | |
| 643 | // Copy over all data needed for rendering. |
| 644 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index]); |
| 645 | #ifdef WEB_ENABLED |
| 646 | glBufferSubData(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), sizeof(InstanceData) * index, state.instance_data_array); |
| 647 | #else |
| 648 | // On Desktop and mobile we map the memory without synchronizing for maximum speed. |
| 649 | void *buffer = glMapBufferRange(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), index * sizeof(InstanceData), GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); |
| 650 | memcpy(buffer, state.instance_data_array, index * sizeof(InstanceData)); |
| 651 | glUnmapBuffer(GL_ARRAY_BUFFER); |
| 652 | #endif |
| 653 | |
| 654 | glDisable(GL_SCISSOR_TEST); |
| 655 | current_clip = nullptr; |
| 656 | |
| 657 | GLES3::CanvasShaderData::BlendMode last_blend_mode = GLES3::CanvasShaderData::BLEND_MODE_MIX; |
| 658 | Color last_blend_color; |
| 659 | |
| 660 | state.current_tex = RID(); |
| 661 | |
| 662 | for (uint32_t i = 0; i <= state.current_batch_index; i++) { |
| 663 | //setup clip |
| 664 | if (current_clip != state.canvas_instance_batches[i].clip) { |
| 665 | current_clip = state.canvas_instance_batches[i].clip; |
| 666 | if (current_clip) { |
| 667 | glEnable(GL_SCISSOR_TEST); |
| 668 | glScissor(current_clip->final_clip_rect.position.x, current_clip->final_clip_rect.position.y, current_clip->final_clip_rect.size.x, current_clip->final_clip_rect.size.y); |
| 669 | } else { |
| 670 | glDisable(GL_SCISSOR_TEST); |
| 671 | } |
| 672 | } |
| 673 | |
| 674 | GLES3::CanvasMaterialData *material_data = state.canvas_instance_batches[i].material_data; |
| 675 | CanvasShaderGLES3::ShaderVariant variant = state.canvas_instance_batches[i].shader_variant; |
| 676 | uint64_t specialization = 0; |
| 677 | specialization |= uint64_t(state.canvas_instance_batches[i].lights_disabled); |
| 678 | specialization |= uint64_t(!GLES3::Config::get_singleton()->float_texture_supported) << 1; |
| 679 | RID shader_version = data.canvas_shader_default_version; |
| 680 | |
| 681 | if (material_data) { |
| 682 | if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { |
| 683 | // Bind uniform buffer and textures |
| 684 | material_data->bind_uniforms(); |
| 685 | shader_version = material_data->shader_data->version; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | bool success = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(shader_version, variant, specialization); |
| 690 | if (!success) { |
| 691 | continue; |
| 692 | } |
| 693 | |
| 694 | GLES3::CanvasShaderData::BlendMode blend_mode = state.canvas_instance_batches[i].blend_mode; |
| 695 | Color blend_color = state.canvas_instance_batches[i].blend_color; |
| 696 | |
| 697 | if (last_blend_mode != blend_mode || last_blend_color != blend_color) { |
| 698 | if (last_blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) { |
| 699 | // re-enable it |
| 700 | glEnable(GL_BLEND); |
| 701 | } else if (blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) { |
| 702 | // disable it |
| 703 | glDisable(GL_BLEND); |
| 704 | } |
| 705 | |
| 706 | switch (blend_mode) { |
| 707 | case GLES3::CanvasShaderData::BLEND_MODE_DISABLED: { |
| 708 | // Nothing to do here. |
| 709 | } break; |
| 710 | case GLES3::CanvasShaderData::BLEND_MODE_LCD: { |
| 711 | glBlendEquation(GL_FUNC_ADD); |
| 712 | if (state.transparent_render_target) { |
| 713 | glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
| 714 | } else { |
| 715 | glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_ZERO, GL_ONE); |
| 716 | } |
| 717 | glBlendColor(blend_color.r, blend_color.g, blend_color.b, blend_color.a); |
| 718 | |
| 719 | } break; |
| 720 | case GLES3::CanvasShaderData::BLEND_MODE_MIX: { |
| 721 | glBlendEquation(GL_FUNC_ADD); |
| 722 | if (state.transparent_render_target) { |
| 723 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
| 724 | } else { |
| 725 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
| 726 | } |
| 727 | |
| 728 | } break; |
| 729 | case GLES3::CanvasShaderData::BLEND_MODE_ADD: { |
| 730 | glBlendEquation(GL_FUNC_ADD); |
| 731 | if (state.transparent_render_target) { |
| 732 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); |
| 733 | } else { |
| 734 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE); |
| 735 | } |
| 736 | |
| 737 | } break; |
| 738 | case GLES3::CanvasShaderData::BLEND_MODE_SUB: { |
| 739 | glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); |
| 740 | if (state.transparent_render_target) { |
| 741 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); |
| 742 | } else { |
| 743 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE); |
| 744 | } |
| 745 | } break; |
| 746 | case GLES3::CanvasShaderData::BLEND_MODE_MUL: { |
| 747 | glBlendEquation(GL_FUNC_ADD); |
| 748 | if (state.transparent_render_target) { |
| 749 | glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); |
| 750 | } else { |
| 751 | glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); |
| 752 | } |
| 753 | |
| 754 | } break; |
| 755 | case GLES3::CanvasShaderData::BLEND_MODE_PMALPHA: { |
| 756 | glBlendEquation(GL_FUNC_ADD); |
| 757 | if (state.transparent_render_target) { |
| 758 | glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
| 759 | } else { |
| 760 | glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
| 761 | } |
| 762 | |
| 763 | } break; |
| 764 | } |
| 765 | last_blend_mode = blend_mode; |
| 766 | last_blend_color = blend_color; |
| 767 | } |
| 768 | |
| 769 | _render_batch(p_lights, i); |
| 770 | } |
| 771 | |
| 772 | state.current_batch_index = 0; |
| 773 | state.canvas_instance_batches.clear(); |
| 774 | state.last_item_index += index; |
| 775 | } |
| 776 | |
| 777 | void RasterizerCanvasGLES3::_record_item_commands(const Item *p_item, RID p_render_target, const Transform2D &p_canvas_transform_inverse, Item *¤t_clip, GLES3::CanvasShaderData::BlendMode p_blend_mode, Light *p_lights, uint32_t &r_index, bool &r_batch_broken, bool &r_sdf_used) { |
| 778 | RenderingServer::CanvasItemTextureFilter texture_filter = p_item->texture_filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? state.default_filter : p_item->texture_filter; |
| 779 | |
| 780 | if (texture_filter != state.canvas_instance_batches[state.current_batch_index].filter) { |
| 781 | _new_batch(r_batch_broken); |
| 782 | |
| 783 | state.canvas_instance_batches[state.current_batch_index].filter = texture_filter; |
| 784 | } |
| 785 | |
| 786 | RenderingServer::CanvasItemTextureRepeat texture_repeat = p_item->texture_repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? state.default_repeat : p_item->texture_repeat; |
| 787 | |
| 788 | if (texture_repeat != state.canvas_instance_batches[state.current_batch_index].repeat) { |
| 789 | _new_batch(r_batch_broken); |
| 790 | |
| 791 | state.canvas_instance_batches[state.current_batch_index].repeat = texture_repeat; |
| 792 | } |
| 793 | |
| 794 | Transform2D base_transform = p_canvas_transform_inverse * p_item->final_transform; |
| 795 | Transform2D draw_transform; // Used by transform command |
| 796 | |
| 797 | Color base_color = p_item->final_modulate; |
| 798 | uint32_t base_flags = 0; |
| 799 | Size2 texpixel_size; |
| 800 | |
| 801 | bool reclip = false; |
| 802 | |
| 803 | bool skipping = false; |
| 804 | |
| 805 | // TODO: consider making lights a per-batch property and then baking light operations in the shader for better performance. |
| 806 | uint32_t lights[4] = { 0, 0, 0, 0 }; |
| 807 | |
| 808 | uint16_t light_count = 0; |
| 809 | |
| 810 | { |
| 811 | Light *light = p_lights; |
| 812 | |
| 813 | while (light) { |
| 814 | if (light->render_index_cache >= 0 && p_item->light_mask & light->item_mask && p_item->z_final >= light->z_min && p_item->z_final <= light->z_max && p_item->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) { |
| 815 | uint32_t light_index = light->render_index_cache; |
| 816 | lights[light_count >> 2] |= light_index << ((light_count & 3) * 8); |
| 817 | |
| 818 | light_count++; |
| 819 | |
| 820 | if (light_count == data.max_lights_per_item - 1) { |
| 821 | break; |
| 822 | } |
| 823 | } |
| 824 | light = light->next_ptr; |
| 825 | } |
| 826 | |
| 827 | base_flags |= light_count << FLAGS_LIGHT_COUNT_SHIFT; |
| 828 | } |
| 829 | |
| 830 | bool lights_disabled = light_count == 0 && !state.using_directional_lights; |
| 831 | |
| 832 | if (lights_disabled != state.canvas_instance_batches[state.current_batch_index].lights_disabled) { |
| 833 | _new_batch(r_batch_broken); |
| 834 | state.canvas_instance_batches[state.current_batch_index].lights_disabled = lights_disabled; |
| 835 | } |
| 836 | |
| 837 | const Item::Command *c = p_item->commands; |
| 838 | while (c) { |
| 839 | if (skipping && c->type != Item::Command::TYPE_ANIMATION_SLICE) { |
| 840 | c = c->next; |
| 841 | continue; |
| 842 | } |
| 843 | |
| 844 | if (c->type != Item::Command::TYPE_MESH) { |
| 845 | // For Meshes, this gets updated below. |
| 846 | _update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world); |
| 847 | } |
| 848 | |
| 849 | // Zero out most fields. |
| 850 | for (int i = 0; i < 4; i++) { |
| 851 | state.instance_data_array[r_index].modulation[i] = 0.0; |
| 852 | state.instance_data_array[r_index].ninepatch_margins[i] = 0.0; |
| 853 | state.instance_data_array[r_index].src_rect[i] = 0.0; |
| 854 | state.instance_data_array[r_index].dst_rect[i] = 0.0; |
| 855 | state.instance_data_array[r_index].lights[i] = uint32_t(0); |
| 856 | } |
| 857 | state.instance_data_array[r_index].color_texture_pixel_size[0] = 0.0; |
| 858 | state.instance_data_array[r_index].color_texture_pixel_size[1] = 0.0; |
| 859 | |
| 860 | state.instance_data_array[r_index].pad[0] = 0.0; |
| 861 | state.instance_data_array[r_index].pad[1] = 0.0; |
| 862 | |
| 863 | state.instance_data_array[r_index].lights[0] = lights[0]; |
| 864 | state.instance_data_array[r_index].lights[1] = lights[1]; |
| 865 | state.instance_data_array[r_index].lights[2] = lights[2]; |
| 866 | state.instance_data_array[r_index].lights[3] = lights[3]; |
| 867 | |
| 868 | state.instance_data_array[r_index].flags = base_flags | (state.instance_data_array[r_index == 0 ? 0 : r_index - 1].flags & (FLAGS_DEFAULT_NORMAL_MAP_USED | FLAGS_DEFAULT_SPECULAR_MAP_USED)); //reset on each command for sanity, keep canvastexture binding config |
| 869 | |
| 870 | Color blend_color = base_color; |
| 871 | GLES3::CanvasShaderData::BlendMode blend_mode = p_blend_mode; |
| 872 | if (c->type == Item::Command::TYPE_RECT) { |
| 873 | const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c); |
| 874 | if (rect->flags & CANVAS_RECT_LCD) { |
| 875 | blend_mode = GLES3::CanvasShaderData::BLEND_MODE_LCD; |
| 876 | blend_color = rect->modulate * base_color; |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | if (blend_mode != state.canvas_instance_batches[state.current_batch_index].blend_mode || blend_color != state.canvas_instance_batches[state.current_batch_index].blend_color) { |
| 881 | _new_batch(r_batch_broken); |
| 882 | state.canvas_instance_batches[state.current_batch_index].blend_mode = blend_mode; |
| 883 | state.canvas_instance_batches[state.current_batch_index].blend_color = blend_color; |
| 884 | } |
| 885 | |
| 886 | switch (c->type) { |
| 887 | case Item::Command::TYPE_RECT: { |
| 888 | const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c); |
| 889 | |
| 890 | if (rect->flags & CANVAS_RECT_TILE && state.canvas_instance_batches[state.current_batch_index].repeat != RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED) { |
| 891 | _new_batch(r_batch_broken); |
| 892 | state.canvas_instance_batches[state.current_batch_index].repeat = RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED; |
| 893 | } |
| 894 | |
| 895 | if (rect->texture != state.canvas_instance_batches[state.current_batch_index].tex || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_RECT) { |
| 896 | _new_batch(r_batch_broken); |
| 897 | state.canvas_instance_batches[state.current_batch_index].tex = rect->texture; |
| 898 | state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_RECT; |
| 899 | state.canvas_instance_batches[state.current_batch_index].command = c; |
| 900 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_QUAD; |
| 901 | } |
| 902 | |
| 903 | _prepare_canvas_texture(rect->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
| 904 | |
| 905 | Rect2 src_rect; |
| 906 | Rect2 dst_rect; |
| 907 | |
| 908 | if (rect->texture != RID()) { |
| 909 | src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * texpixel_size, rect->source.size * texpixel_size) : Rect2(0, 0, 1, 1); |
| 910 | dst_rect = Rect2(rect->rect.position, rect->rect.size); |
| 911 | |
| 912 | if (dst_rect.size.width < 0) { |
| 913 | dst_rect.position.x += dst_rect.size.width; |
| 914 | dst_rect.size.width *= -1; |
| 915 | } |
| 916 | if (dst_rect.size.height < 0) { |
| 917 | dst_rect.position.y += dst_rect.size.height; |
| 918 | dst_rect.size.height *= -1; |
| 919 | } |
| 920 | |
| 921 | if (rect->flags & CANVAS_RECT_FLIP_H) { |
| 922 | src_rect.size.x *= -1; |
| 923 | state.instance_data_array[r_index].flags |= FLAGS_FLIP_H; |
| 924 | } |
| 925 | |
| 926 | if (rect->flags & CANVAS_RECT_FLIP_V) { |
| 927 | src_rect.size.y *= -1; |
| 928 | state.instance_data_array[r_index].flags |= FLAGS_FLIP_V; |
| 929 | } |
| 930 | |
| 931 | if (rect->flags & CANVAS_RECT_TRANSPOSE) { |
| 932 | state.instance_data_array[r_index].flags |= FLAGS_TRANSPOSE_RECT; |
| 933 | } |
| 934 | |
| 935 | if (rect->flags & CANVAS_RECT_CLIP_UV) { |
| 936 | state.instance_data_array[r_index].flags |= FLAGS_CLIP_RECT_UV; |
| 937 | } |
| 938 | |
| 939 | } else { |
| 940 | dst_rect = Rect2(rect->rect.position, rect->rect.size); |
| 941 | |
| 942 | if (dst_rect.size.width < 0) { |
| 943 | dst_rect.position.x += dst_rect.size.width; |
| 944 | dst_rect.size.width *= -1; |
| 945 | } |
| 946 | if (dst_rect.size.height < 0) { |
| 947 | dst_rect.position.y += dst_rect.size.height; |
| 948 | dst_rect.size.height *= -1; |
| 949 | } |
| 950 | |
| 951 | src_rect = Rect2(0, 0, 1, 1); |
| 952 | } |
| 953 | |
| 954 | if (rect->flags & CANVAS_RECT_MSDF) { |
| 955 | state.instance_data_array[r_index].flags |= FLAGS_USE_MSDF; |
| 956 | state.instance_data_array[r_index].msdf[0] = rect->px_range; // Pixel range. |
| 957 | state.instance_data_array[r_index].msdf[1] = rect->outline; // Outline size. |
| 958 | state.instance_data_array[r_index].msdf[2] = 0.f; // Reserved. |
| 959 | state.instance_data_array[r_index].msdf[3] = 0.f; // Reserved. |
| 960 | } else if (rect->flags & CANVAS_RECT_LCD) { |
| 961 | state.instance_data_array[r_index].flags |= FLAGS_USE_LCD; |
| 962 | } |
| 963 | |
| 964 | state.instance_data_array[r_index].modulation[0] = rect->modulate.r * base_color.r; |
| 965 | state.instance_data_array[r_index].modulation[1] = rect->modulate.g * base_color.g; |
| 966 | state.instance_data_array[r_index].modulation[2] = rect->modulate.b * base_color.b; |
| 967 | state.instance_data_array[r_index].modulation[3] = rect->modulate.a * base_color.a; |
| 968 | |
| 969 | state.instance_data_array[r_index].src_rect[0] = src_rect.position.x; |
| 970 | state.instance_data_array[r_index].src_rect[1] = src_rect.position.y; |
| 971 | state.instance_data_array[r_index].src_rect[2] = src_rect.size.width; |
| 972 | state.instance_data_array[r_index].src_rect[3] = src_rect.size.height; |
| 973 | |
| 974 | state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x; |
| 975 | state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y; |
| 976 | state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width; |
| 977 | state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height; |
| 978 | |
| 979 | _add_to_batch(r_index, r_batch_broken); |
| 980 | } break; |
| 981 | |
| 982 | case Item::Command::TYPE_NINEPATCH: { |
| 983 | const Item::CommandNinePatch *np = static_cast<const Item::CommandNinePatch *>(c); |
| 984 | |
| 985 | if (np->texture != state.canvas_instance_batches[state.current_batch_index].tex || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_NINEPATCH) { |
| 986 | _new_batch(r_batch_broken); |
| 987 | state.canvas_instance_batches[state.current_batch_index].tex = np->texture; |
| 988 | state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_NINEPATCH; |
| 989 | state.canvas_instance_batches[state.current_batch_index].command = c; |
| 990 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_NINEPATCH; |
| 991 | } |
| 992 | |
| 993 | _prepare_canvas_texture(np->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
| 994 | |
| 995 | Rect2 src_rect; |
| 996 | Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y); |
| 997 | |
| 998 | if (np->texture == RID()) { |
| 999 | texpixel_size = Size2(1, 1); |
| 1000 | src_rect = Rect2(0, 0, 1, 1); |
| 1001 | |
| 1002 | } else { |
| 1003 | if (np->source != Rect2()) { |
| 1004 | src_rect = Rect2(np->source.position.x * texpixel_size.width, np->source.position.y * texpixel_size.height, np->source.size.x * texpixel_size.width, np->source.size.y * texpixel_size.height); |
| 1005 | state.instance_data_array[r_index].color_texture_pixel_size[0] = 1.0 / np->source.size.width; |
| 1006 | state.instance_data_array[r_index].color_texture_pixel_size[1] = 1.0 / np->source.size.height; |
| 1007 | |
| 1008 | } else { |
| 1009 | src_rect = Rect2(0, 0, 1, 1); |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | state.instance_data_array[r_index].modulation[0] = np->color.r * base_color.r; |
| 1014 | state.instance_data_array[r_index].modulation[1] = np->color.g * base_color.g; |
| 1015 | state.instance_data_array[r_index].modulation[2] = np->color.b * base_color.b; |
| 1016 | state.instance_data_array[r_index].modulation[3] = np->color.a * base_color.a; |
| 1017 | |
| 1018 | state.instance_data_array[r_index].src_rect[0] = src_rect.position.x; |
| 1019 | state.instance_data_array[r_index].src_rect[1] = src_rect.position.y; |
| 1020 | state.instance_data_array[r_index].src_rect[2] = src_rect.size.width; |
| 1021 | state.instance_data_array[r_index].src_rect[3] = src_rect.size.height; |
| 1022 | |
| 1023 | state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x; |
| 1024 | state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y; |
| 1025 | state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width; |
| 1026 | state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height; |
| 1027 | |
| 1028 | state.instance_data_array[r_index].flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT; |
| 1029 | state.instance_data_array[r_index].flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT; |
| 1030 | |
| 1031 | if (np->draw_center) { |
| 1032 | state.instance_data_array[r_index].flags |= FLAGS_NINEPACH_DRAW_CENTER; |
| 1033 | } |
| 1034 | |
| 1035 | state.instance_data_array[r_index].ninepatch_margins[0] = np->margin[SIDE_LEFT]; |
| 1036 | state.instance_data_array[r_index].ninepatch_margins[1] = np->margin[SIDE_TOP]; |
| 1037 | state.instance_data_array[r_index].ninepatch_margins[2] = np->margin[SIDE_RIGHT]; |
| 1038 | state.instance_data_array[r_index].ninepatch_margins[3] = np->margin[SIDE_BOTTOM]; |
| 1039 | |
| 1040 | _add_to_batch(r_index, r_batch_broken); |
| 1041 | |
| 1042 | // Restore if overridden. |
| 1043 | state.instance_data_array[r_index].color_texture_pixel_size[0] = texpixel_size.x; |
| 1044 | state.instance_data_array[r_index].color_texture_pixel_size[1] = texpixel_size.y; |
| 1045 | } break; |
| 1046 | |
| 1047 | case Item::Command::TYPE_POLYGON: { |
| 1048 | const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(c); |
| 1049 | |
| 1050 | // Polygon's can't be batched, so always create a new batch |
| 1051 | _new_batch(r_batch_broken); |
| 1052 | |
| 1053 | state.canvas_instance_batches[state.current_batch_index].tex = polygon->texture; |
| 1054 | state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_POLYGON; |
| 1055 | state.canvas_instance_batches[state.current_batch_index].command = c; |
| 1056 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_ATTRIBUTES; |
| 1057 | |
| 1058 | _prepare_canvas_texture(polygon->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
| 1059 | |
| 1060 | state.instance_data_array[r_index].modulation[0] = base_color.r; |
| 1061 | state.instance_data_array[r_index].modulation[1] = base_color.g; |
| 1062 | state.instance_data_array[r_index].modulation[2] = base_color.b; |
| 1063 | state.instance_data_array[r_index].modulation[3] = base_color.a; |
| 1064 | |
| 1065 | for (int j = 0; j < 4; j++) { |
| 1066 | state.instance_data_array[r_index].src_rect[j] = 0; |
| 1067 | state.instance_data_array[r_index].dst_rect[j] = 0; |
| 1068 | state.instance_data_array[r_index].ninepatch_margins[j] = 0; |
| 1069 | } |
| 1070 | |
| 1071 | _add_to_batch(r_index, r_batch_broken); |
| 1072 | } break; |
| 1073 | |
| 1074 | case Item::Command::TYPE_PRIMITIVE: { |
| 1075 | const Item::CommandPrimitive *primitive = static_cast<const Item::CommandPrimitive *>(c); |
| 1076 | |
| 1077 | if (primitive->point_count != state.canvas_instance_batches[state.current_batch_index].primitive_points || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_PRIMITIVE) { |
| 1078 | _new_batch(r_batch_broken); |
| 1079 | state.canvas_instance_batches[state.current_batch_index].tex = primitive->texture; |
| 1080 | state.canvas_instance_batches[state.current_batch_index].primitive_points = primitive->point_count; |
| 1081 | state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_PRIMITIVE; |
| 1082 | state.canvas_instance_batches[state.current_batch_index].command = c; |
| 1083 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_PRIMITIVE; |
| 1084 | } |
| 1085 | |
| 1086 | _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
| 1087 | |
| 1088 | for (uint32_t j = 0; j < MIN(3u, primitive->point_count); j++) { |
| 1089 | state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j].x; |
| 1090 | state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j].y; |
| 1091 | state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j].x; |
| 1092 | state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j].y; |
| 1093 | Color col = primitive->colors[j] * base_color; |
| 1094 | state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); |
| 1095 | state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); |
| 1096 | } |
| 1097 | |
| 1098 | _add_to_batch(r_index, r_batch_broken); |
| 1099 | |
| 1100 | if (primitive->point_count == 4) { |
| 1101 | // Reset base data. |
| 1102 | _update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world); |
| 1103 | _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
| 1104 | |
| 1105 | for (uint32_t j = 0; j < 3; j++) { |
| 1106 | int offset = j == 0 ? 0 : 1; |
| 1107 | // Second triangle in the quad. Uses vertices 0, 2, 3. |
| 1108 | state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j + offset].x; |
| 1109 | state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j + offset].y; |
| 1110 | state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j + offset].x; |
| 1111 | state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j + offset].y; |
| 1112 | Color col = primitive->colors[j + offset] * base_color; |
| 1113 | state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); |
| 1114 | state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); |
| 1115 | } |
| 1116 | |
| 1117 | _add_to_batch(r_index, r_batch_broken); |
| 1118 | } |
| 1119 | } break; |
| 1120 | |
| 1121 | case Item::Command::TYPE_MESH: |
| 1122 | case Item::Command::TYPE_MULTIMESH: |
| 1123 | case Item::Command::TYPE_PARTICLES: { |
| 1124 | // Mesh's can't be batched, so always create a new batch |
| 1125 | _new_batch(r_batch_broken); |
| 1126 | |
| 1127 | Color modulate(1, 1, 1, 1); |
| 1128 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_ATTRIBUTES; |
| 1129 | if (c->type == Item::Command::TYPE_MESH) { |
| 1130 | const Item::CommandMesh *m = static_cast<const Item::CommandMesh *>(c); |
| 1131 | state.canvas_instance_batches[state.current_batch_index].tex = m->texture; |
| 1132 | _update_transform_2d_to_mat2x3(base_transform * draw_transform * m->transform, state.instance_data_array[r_index].world); |
| 1133 | modulate = m->modulate; |
| 1134 | |
| 1135 | } else if (c->type == Item::Command::TYPE_MULTIMESH) { |
| 1136 | const Item::CommandMultiMesh *mm = static_cast<const Item::CommandMultiMesh *>(c); |
| 1137 | state.canvas_instance_batches[state.current_batch_index].tex = mm->texture; |
| 1138 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_INSTANCED; |
| 1139 | |
| 1140 | if (GLES3::MeshStorage::get_singleton()->multimesh_uses_colors(mm->multimesh)) { |
| 1141 | state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_COLORS; |
| 1142 | } |
| 1143 | if (GLES3::MeshStorage::get_singleton()->multimesh_uses_custom_data(mm->multimesh)) { |
| 1144 | state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA; |
| 1145 | } |
| 1146 | } else if (c->type == Item::Command::TYPE_PARTICLES) { |
| 1147 | GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); |
| 1148 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
| 1149 | |
| 1150 | const Item::CommandParticles *pt = static_cast<const Item::CommandParticles *>(c); |
| 1151 | RID particles = pt->particles; |
| 1152 | state.canvas_instance_batches[state.current_batch_index].tex = pt->texture; |
| 1153 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_INSTANCED; |
| 1154 | state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_COLORS; |
| 1155 | state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA; |
| 1156 | |
| 1157 | if (particles_storage->particles_has_collision(particles) && texture_storage->render_target_is_sdf_enabled(p_render_target)) { |
| 1158 | // Pass collision information. |
| 1159 | Transform2D xform = p_item->final_transform; |
| 1160 | |
| 1161 | GLuint sdf_texture = texture_storage->render_target_get_sdf_texture(p_render_target); |
| 1162 | |
| 1163 | Rect2 to_screen; |
| 1164 | { |
| 1165 | Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_render_target); |
| 1166 | |
| 1167 | to_screen.size = Vector2(1.0 / sdf_rect.size.width, 1.0 / sdf_rect.size.height); |
| 1168 | to_screen.position = -sdf_rect.position * to_screen.size; |
| 1169 | } |
| 1170 | |
| 1171 | particles_storage->particles_set_canvas_sdf_collision(pt->particles, true, xform, to_screen, sdf_texture); |
| 1172 | } else { |
| 1173 | particles_storage->particles_set_canvas_sdf_collision(pt->particles, false, Transform2D(), Rect2(), 0); |
| 1174 | } |
| 1175 | r_sdf_used |= particles_storage->particles_has_collision(particles); |
| 1176 | } |
| 1177 | |
| 1178 | state.canvas_instance_batches[state.current_batch_index].command = c; |
| 1179 | state.canvas_instance_batches[state.current_batch_index].command_type = c->type; |
| 1180 | |
| 1181 | _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
| 1182 | |
| 1183 | state.instance_data_array[r_index].modulation[0] = base_color.r * modulate.r; |
| 1184 | state.instance_data_array[r_index].modulation[1] = base_color.g * modulate.g; |
| 1185 | state.instance_data_array[r_index].modulation[2] = base_color.b * modulate.b; |
| 1186 | state.instance_data_array[r_index].modulation[3] = base_color.a * modulate.a; |
| 1187 | |
| 1188 | for (int j = 0; j < 4; j++) { |
| 1189 | state.instance_data_array[r_index].src_rect[j] = 0; |
| 1190 | state.instance_data_array[r_index].dst_rect[j] = 0; |
| 1191 | state.instance_data_array[r_index].ninepatch_margins[j] = 0; |
| 1192 | } |
| 1193 | _add_to_batch(r_index, r_batch_broken); |
| 1194 | } break; |
| 1195 | |
| 1196 | case Item::Command::TYPE_TRANSFORM: { |
| 1197 | const Item::CommandTransform *transform = static_cast<const Item::CommandTransform *>(c); |
| 1198 | draw_transform = transform->xform; |
| 1199 | } break; |
| 1200 | |
| 1201 | case Item::Command::TYPE_CLIP_IGNORE: { |
| 1202 | const Item::CommandClipIgnore *ci = static_cast<const Item::CommandClipIgnore *>(c); |
| 1203 | if (current_clip) { |
| 1204 | if (ci->ignore != reclip) { |
| 1205 | _new_batch(r_batch_broken); |
| 1206 | if (ci->ignore) { |
| 1207 | state.canvas_instance_batches[state.current_batch_index].clip = nullptr; |
| 1208 | reclip = true; |
| 1209 | } else { |
| 1210 | state.canvas_instance_batches[state.current_batch_index].clip = current_clip; |
| 1211 | reclip = false; |
| 1212 | } |
| 1213 | } |
| 1214 | } |
| 1215 | } break; |
| 1216 | |
| 1217 | case Item::Command::TYPE_ANIMATION_SLICE: { |
| 1218 | const Item::CommandAnimationSlice *as = static_cast<const Item::CommandAnimationSlice *>(c); |
| 1219 | double current_time = RSG::rasterizer->get_total_time(); |
| 1220 | double local_time = Math::fposmod(current_time - as->offset, as->animation_length); |
| 1221 | skipping = !(local_time >= as->slice_begin && local_time < as->slice_end); |
| 1222 | |
| 1223 | RenderingServerDefault::redraw_request(); // animation visible means redraw request |
| 1224 | } break; |
| 1225 | } |
| 1226 | |
| 1227 | c = c->next; |
| 1228 | r_batch_broken = false; |
| 1229 | } |
| 1230 | |
| 1231 | if (current_clip && reclip) { |
| 1232 | //will make it re-enable clipping if needed afterwards |
| 1233 | current_clip = nullptr; |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | void RasterizerCanvasGLES3::_render_batch(Light *p_lights, uint32_t p_index) { |
| 1238 | ERR_FAIL_COND(!state.canvas_instance_batches[state.current_batch_index].command); |
| 1239 | |
| 1240 | // Used by Polygon and Mesh. |
| 1241 | static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP }; |
| 1242 | |
| 1243 | _bind_canvas_texture(state.canvas_instance_batches[p_index].tex, state.canvas_instance_batches[p_index].filter, state.canvas_instance_batches[p_index].repeat); |
| 1244 | |
| 1245 | switch (state.canvas_instance_batches[p_index].command_type) { |
| 1246 | case Item::Command::TYPE_RECT: |
| 1247 | case Item::Command::TYPE_NINEPATCH: { |
| 1248 | glBindVertexArray(data.indexed_quad_array); |
| 1249 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); |
| 1250 | uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); |
| 1251 | _enable_attributes(range_start, false); |
| 1252 | |
| 1253 | glDrawElementsInstanced(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0, state.canvas_instance_batches[p_index].instance_count); |
| 1254 | glBindVertexArray(0); |
| 1255 | |
| 1256 | } break; |
| 1257 | |
| 1258 | case Item::Command::TYPE_POLYGON: { |
| 1259 | const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(state.canvas_instance_batches[p_index].command); |
| 1260 | |
| 1261 | PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id); |
| 1262 | ERR_FAIL_NULL(pb); |
| 1263 | |
| 1264 | glBindVertexArray(pb->vertex_array); |
| 1265 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); |
| 1266 | |
| 1267 | uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); |
| 1268 | _enable_attributes(range_start, false); |
| 1269 | |
| 1270 | if (pb->color_disabled && pb->color != Color(1.0, 1.0, 1.0, 1.0)) { |
| 1271 | glVertexAttrib4f(RS::ARRAY_COLOR, pb->color.r, pb->color.g, pb->color.b, pb->color.a); |
| 1272 | } |
| 1273 | |
| 1274 | if (pb->index_buffer != 0) { |
| 1275 | glDrawElementsInstanced(prim[polygon->primitive], pb->count, GL_UNSIGNED_INT, nullptr, 1); |
| 1276 | } else { |
| 1277 | glDrawArraysInstanced(prim[polygon->primitive], 0, pb->count, 1); |
| 1278 | } |
| 1279 | glBindVertexArray(0); |
| 1280 | |
| 1281 | if (pb->color_disabled && pb->color != Color(1.0, 1.0, 1.0, 1.0)) { |
| 1282 | // Reset so this doesn't pollute other draw calls. |
| 1283 | glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); |
| 1284 | } |
| 1285 | } break; |
| 1286 | |
| 1287 | case Item::Command::TYPE_PRIMITIVE: { |
| 1288 | glBindVertexArray(data.canvas_quad_array); |
| 1289 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); |
| 1290 | uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); |
| 1291 | _enable_attributes(range_start, true); |
| 1292 | |
| 1293 | const GLenum primitive[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLES }; |
| 1294 | int instance_count = state.canvas_instance_batches[p_index].instance_count; |
| 1295 | ERR_FAIL_COND(instance_count <= 0); |
| 1296 | if (instance_count >= 1) { |
| 1297 | glDrawArraysInstanced(primitive[state.canvas_instance_batches[p_index].primitive_points], 0, state.canvas_instance_batches[p_index].primitive_points, instance_count); |
| 1298 | } |
| 1299 | |
| 1300 | } break; |
| 1301 | |
| 1302 | case Item::Command::TYPE_MESH: |
| 1303 | case Item::Command::TYPE_MULTIMESH: |
| 1304 | case Item::Command::TYPE_PARTICLES: { |
| 1305 | GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); |
| 1306 | GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); |
| 1307 | RID mesh; |
| 1308 | RID mesh_instance; |
| 1309 | uint32_t instance_count = 1; |
| 1310 | GLuint instance_buffer = 0; |
| 1311 | uint32_t instance_stride = 0; |
| 1312 | uint32_t instance_color_offset = 0; |
| 1313 | bool instance_uses_color = false; |
| 1314 | bool instance_uses_custom_data = false; |
| 1315 | bool use_instancing = false; |
| 1316 | |
| 1317 | if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_MESH) { |
| 1318 | const Item::CommandMesh *m = static_cast<const Item::CommandMesh *>(state.canvas_instance_batches[p_index].command); |
| 1319 | mesh = m->mesh; |
| 1320 | mesh_instance = m->mesh_instance; |
| 1321 | |
| 1322 | } else if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_MULTIMESH) { |
| 1323 | const Item::CommandMultiMesh *mm = static_cast<const Item::CommandMultiMesh *>(state.canvas_instance_batches[p_index].command); |
| 1324 | RID multimesh = mm->multimesh; |
| 1325 | mesh = mesh_storage->multimesh_get_mesh(multimesh); |
| 1326 | |
| 1327 | if (mesh_storage->multimesh_get_transform_format(multimesh) != RS::MULTIMESH_TRANSFORM_2D) { |
| 1328 | break; |
| 1329 | } |
| 1330 | |
| 1331 | instance_count = mesh_storage->multimesh_get_instances_to_draw(multimesh); |
| 1332 | |
| 1333 | if (instance_count == 0) { |
| 1334 | break; |
| 1335 | } |
| 1336 | |
| 1337 | instance_buffer = mesh_storage->multimesh_get_gl_buffer(multimesh); |
| 1338 | instance_stride = mesh_storage->multimesh_get_stride(multimesh); |
| 1339 | instance_color_offset = mesh_storage->multimesh_get_color_offset(multimesh); |
| 1340 | instance_uses_color = mesh_storage->multimesh_uses_colors(multimesh); |
| 1341 | instance_uses_custom_data = mesh_storage->multimesh_uses_custom_data(multimesh); |
| 1342 | use_instancing = true; |
| 1343 | |
| 1344 | } else if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_PARTICLES) { |
| 1345 | const Item::CommandParticles *pt = static_cast<const Item::CommandParticles *>(state.canvas_instance_batches[p_index].command); |
| 1346 | RID particles = pt->particles; |
| 1347 | mesh = particles_storage->particles_get_draw_pass_mesh(particles, 0); |
| 1348 | |
| 1349 | ERR_BREAK(particles_storage->particles_get_mode(particles) != RS::PARTICLES_MODE_2D); |
| 1350 | particles_storage->particles_request_process(particles); |
| 1351 | |
| 1352 | if (particles_storage->particles_is_inactive(particles)) { |
| 1353 | break; |
| 1354 | } |
| 1355 | |
| 1356 | RenderingServerDefault::redraw_request(); // Active particles means redraw request. |
| 1357 | |
| 1358 | int dpc = particles_storage->particles_get_draw_passes(particles); |
| 1359 | if (dpc == 0) { |
| 1360 | break; // Nothing to draw. |
| 1361 | } |
| 1362 | |
| 1363 | instance_count = particles_storage->particles_get_amount(particles); |
| 1364 | instance_buffer = particles_storage->particles_get_gl_buffer(particles); |
| 1365 | instance_stride = 12; // 8 bytes for instance transform and 4 bytes for packed color and custom. |
| 1366 | instance_color_offset = 8; // 8 bytes for instance transform. |
| 1367 | instance_uses_color = true; |
| 1368 | instance_uses_custom_data = true; |
| 1369 | use_instancing = true; |
| 1370 | } |
| 1371 | |
| 1372 | ERR_FAIL_COND(mesh.is_null()); |
| 1373 | |
| 1374 | uint32_t surf_count = mesh_storage->mesh_get_surface_count(mesh); |
| 1375 | |
| 1376 | for (uint32_t j = 0; j < surf_count; j++) { |
| 1377 | void *surface = mesh_storage->mesh_get_surface(mesh, j); |
| 1378 | |
| 1379 | RS::PrimitiveType primitive = mesh_storage->mesh_surface_get_primitive(surface); |
| 1380 | ERR_CONTINUE(primitive < 0 || primitive >= RS::PRIMITIVE_MAX); |
| 1381 | |
| 1382 | GLuint vertex_array_gl = 0; |
| 1383 | GLuint index_array_gl = 0; |
| 1384 | |
| 1385 | uint32_t input_mask = 0; // 2D meshes always use the same vertex format |
| 1386 | if (mesh_instance.is_valid()) { |
| 1387 | mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(mesh_instance, j, input_mask, vertex_array_gl); |
| 1388 | } else { |
| 1389 | mesh_storage->mesh_surface_get_vertex_arrays_and_format(surface, input_mask, vertex_array_gl); |
| 1390 | } |
| 1391 | |
| 1392 | index_array_gl = mesh_storage->mesh_surface_get_index_buffer(surface, 0); |
| 1393 | bool use_index_buffer = false; |
| 1394 | glBindVertexArray(vertex_array_gl); |
| 1395 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); |
| 1396 | |
| 1397 | uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); |
| 1398 | _enable_attributes(range_start, false, instance_count); |
| 1399 | |
| 1400 | if (index_array_gl != 0) { |
| 1401 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl); |
| 1402 | use_index_buffer = true; |
| 1403 | } |
| 1404 | |
| 1405 | if (use_instancing) { |
| 1406 | if (instance_buffer == 0) { |
| 1407 | break; |
| 1408 | } |
| 1409 | // Bind instance buffers. |
| 1410 | glBindBuffer(GL_ARRAY_BUFFER, instance_buffer); |
| 1411 | glEnableVertexAttribArray(1); |
| 1412 | glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0)); |
| 1413 | glVertexAttribDivisor(1, 1); |
| 1414 | glEnableVertexAttribArray(2); |
| 1415 | glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(4 * 4)); |
| 1416 | glVertexAttribDivisor(2, 1); |
| 1417 | |
| 1418 | if (instance_uses_color || instance_uses_custom_data) { |
| 1419 | glEnableVertexAttribArray(5); |
| 1420 | glVertexAttribIPointer(5, 4, GL_UNSIGNED_INT, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(instance_color_offset * sizeof(float))); |
| 1421 | glVertexAttribDivisor(5, 1); |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | GLenum primitive_gl = prim[int(primitive)]; |
| 1426 | |
| 1427 | if (use_index_buffer) { |
| 1428 | glDrawElementsInstanced(primitive_gl, mesh_storage->mesh_surface_get_vertices_drawn_count(surface), mesh_storage->mesh_surface_get_index_type(surface), 0, instance_count); |
| 1429 | } else { |
| 1430 | glDrawArraysInstanced(primitive_gl, 0, mesh_storage->mesh_surface_get_vertices_drawn_count(surface), instance_count); |
| 1431 | } |
| 1432 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 1433 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
| 1434 | if (use_instancing) { |
| 1435 | glDisableVertexAttribArray(5); |
| 1436 | glDisableVertexAttribArray(6); |
| 1437 | glDisableVertexAttribArray(7); |
| 1438 | glDisableVertexAttribArray(8); |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | } break; |
| 1443 | case Item::Command::TYPE_TRANSFORM: |
| 1444 | case Item::Command::TYPE_CLIP_IGNORE: |
| 1445 | case Item::Command::TYPE_ANIMATION_SLICE: { |
| 1446 | // Can ignore these as they only impact batch creation. |
| 1447 | } break; |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | void RasterizerCanvasGLES3::_add_to_batch(uint32_t &r_index, bool &r_batch_broken) { |
| 1452 | state.canvas_instance_batches[state.current_batch_index].instance_count++; |
| 1453 | r_index++; |
| 1454 | if (r_index + state.last_item_index >= data.max_instances_per_buffer) { |
| 1455 | // Copy over all data needed for rendering right away |
| 1456 | // then go back to recording item commands. |
| 1457 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index]); |
| 1458 | #ifdef WEB_ENABLED |
| 1459 | glBufferSubData(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), sizeof(InstanceData) * r_index, state.instance_data_array); |
| 1460 | #else |
| 1461 | // On Desktop and mobile we map the memory without synchronizing for maximum speed. |
| 1462 | void *buffer = glMapBufferRange(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), r_index * sizeof(InstanceData), GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); |
| 1463 | memcpy(buffer, state.instance_data_array, r_index * sizeof(InstanceData)); |
| 1464 | glUnmapBuffer(GL_ARRAY_BUFFER); |
| 1465 | #endif |
| 1466 | _allocate_instance_buffer(); |
| 1467 | r_index = 0; |
| 1468 | state.last_item_index = 0; |
| 1469 | r_batch_broken = false; // Force a new batch to be created |
| 1470 | _new_batch(r_batch_broken); |
| 1471 | state.canvas_instance_batches[state.current_batch_index].start = 0; |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | void RasterizerCanvasGLES3::_new_batch(bool &r_batch_broken) { |
| 1476 | if (state.canvas_instance_batches.size() == 0) { |
| 1477 | state.canvas_instance_batches.push_back(Batch()); |
| 1478 | return; |
| 1479 | } |
| 1480 | |
| 1481 | if (r_batch_broken || state.canvas_instance_batches[state.current_batch_index].instance_count == 0) { |
| 1482 | return; |
| 1483 | } |
| 1484 | |
| 1485 | r_batch_broken = true; |
| 1486 | |
| 1487 | // Copy the properties of the current batch, we will manually update the things that changed. |
| 1488 | Batch new_batch = state.canvas_instance_batches[state.current_batch_index]; |
| 1489 | new_batch.instance_count = 0; |
| 1490 | new_batch.start = state.canvas_instance_batches[state.current_batch_index].start + state.canvas_instance_batches[state.current_batch_index].instance_count; |
| 1491 | new_batch.instance_buffer_index = state.current_instance_buffer_index; |
| 1492 | state.current_batch_index++; |
| 1493 | state.canvas_instance_batches.push_back(new_batch); |
| 1494 | } |
| 1495 | |
| 1496 | void RasterizerCanvasGLES3::_enable_attributes(uint32_t p_start, bool p_primitive, uint32_t p_rate) { |
| 1497 | uint32_t split = p_primitive ? 11 : 12; |
| 1498 | for (uint32_t i = 6; i < split; i++) { |
| 1499 | glEnableVertexAttribArray(i); |
| 1500 | glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, sizeof(InstanceData), CAST_INT_TO_UCHAR_PTR(p_start + (i - 6) * 4 * sizeof(float))); |
| 1501 | glVertexAttribDivisor(i, p_rate); |
| 1502 | } |
| 1503 | for (uint32_t i = split; i <= 13; i++) { |
| 1504 | glEnableVertexAttribArray(i); |
| 1505 | glVertexAttribIPointer(i, 4, GL_UNSIGNED_INT, sizeof(InstanceData), CAST_INT_TO_UCHAR_PTR(p_start + (i - 6) * 4 * sizeof(float))); |
| 1506 | glVertexAttribDivisor(i, p_rate); |
| 1507 | } |
| 1508 | } |
| 1509 | RID RasterizerCanvasGLES3::light_create() { |
| 1510 | CanvasLight canvas_light; |
| 1511 | return canvas_light_owner.make_rid(canvas_light); |
| 1512 | } |
| 1513 | |
| 1514 | void RasterizerCanvasGLES3::light_set_texture(RID p_rid, RID p_texture) { |
| 1515 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
| 1516 | |
| 1517 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
| 1518 | ERR_FAIL_NULL(cl); |
| 1519 | if (cl->texture == p_texture) { |
| 1520 | return; |
| 1521 | } |
| 1522 | |
| 1523 | ERR_FAIL_COND(p_texture.is_valid() && !texture_storage->owns_texture(p_texture)); |
| 1524 | |
| 1525 | if (cl->texture.is_valid()) { |
| 1526 | texture_storage->texture_remove_from_texture_atlas(cl->texture); |
| 1527 | } |
| 1528 | cl->texture = p_texture; |
| 1529 | |
| 1530 | if (cl->texture.is_valid()) { |
| 1531 | texture_storage->texture_add_to_texture_atlas(cl->texture); |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | void RasterizerCanvasGLES3::light_set_use_shadow(RID p_rid, bool p_enable) { |
| 1536 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
| 1537 | ERR_FAIL_NULL(cl); |
| 1538 | |
| 1539 | cl->shadow.enabled = p_enable; |
| 1540 | } |
| 1541 | |
| 1542 | void RasterizerCanvasGLES3::light_update_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) { |
| 1543 | GLES3::Config *config = GLES3::Config::get_singleton(); |
| 1544 | |
| 1545 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
| 1546 | ERR_FAIL_COND(!cl->shadow.enabled); |
| 1547 | |
| 1548 | _update_shadow_atlas(); |
| 1549 | |
| 1550 | cl->shadow.z_far = p_far; |
| 1551 | cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(data.max_lights_per_render * 2); |
| 1552 | |
| 1553 | glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); |
| 1554 | glViewport(0, p_shadow_index * 2, state.shadow_texture_size, 2); |
| 1555 | |
| 1556 | glDepthMask(GL_TRUE); |
| 1557 | glEnable(GL_DEPTH_TEST); |
| 1558 | glDepthFunc(GL_LESS); |
| 1559 | glDisable(GL_BLEND); |
| 1560 | |
| 1561 | glEnable(GL_SCISSOR_TEST); |
| 1562 | glScissor(0, p_shadow_index * 2, state.shadow_texture_size, 2); |
| 1563 | glClearColor(p_far, p_far, p_far, 1.0); |
| 1564 | glClearDepth(1.0); |
| 1565 | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); |
| 1566 | |
| 1567 | glCullFace(GL_BACK); |
| 1568 | glDisable(GL_CULL_FACE); |
| 1569 | RS::CanvasOccluderPolygonCullMode cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED; |
| 1570 | |
| 1571 | CanvasOcclusionShaderGLES3::ShaderVariant variant = config->float_texture_supported ? CanvasOcclusionShaderGLES3::MODE_SHADOW : CanvasOcclusionShaderGLES3::MODE_SHADOW_RGBA; |
| 1572 | bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); |
| 1573 | if (!success) { |
| 1574 | return; |
| 1575 | } |
| 1576 | |
| 1577 | for (int i = 0; i < 4; i++) { |
| 1578 | glViewport((state.shadow_texture_size / 4) * i, p_shadow_index * 2, (state.shadow_texture_size / 4), 2); |
| 1579 | |
| 1580 | Projection projection; |
| 1581 | { |
| 1582 | real_t fov = 90; |
| 1583 | real_t nearp = p_near; |
| 1584 | real_t farp = p_far; |
| 1585 | real_t aspect = 1.0; |
| 1586 | |
| 1587 | real_t ymax = nearp * Math::tan(Math::deg_to_rad(fov * 0.5)); |
| 1588 | real_t ymin = -ymax; |
| 1589 | real_t xmin = ymin * aspect; |
| 1590 | real_t xmax = ymax * aspect; |
| 1591 | |
| 1592 | projection.set_frustum(xmin, xmax, ymin, ymax, nearp, farp); |
| 1593 | } |
| 1594 | |
| 1595 | Vector3 cam_target = Basis::from_euler(Vector3(0, 0, Math_TAU * ((i + 3) / 4.0))).xform(Vector3(0, 1, 0)); |
| 1596 | |
| 1597 | projection = projection * Projection(Transform3D().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse()); |
| 1598 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, projection, shadow_render.shader_version, variant); |
| 1599 | |
| 1600 | static const Vector2 directions[4] = { Vector2(1, 0), Vector2(0, 1), Vector2(-1, 0), Vector2(0, -1) }; |
| 1601 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, directions[i].x, directions[i].y, shadow_render.shader_version, variant); |
| 1602 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, p_far, shadow_render.shader_version, variant); |
| 1603 | |
| 1604 | LightOccluderInstance *instance = p_occluders; |
| 1605 | |
| 1606 | while (instance) { |
| 1607 | OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); |
| 1608 | |
| 1609 | if (!co || co->vertex_array == 0 || !(p_light_mask & instance->light_mask)) { |
| 1610 | instance = instance->next; |
| 1611 | continue; |
| 1612 | } |
| 1613 | |
| 1614 | Transform2D modelview = p_light_xform * instance->xform_cache; |
| 1615 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); |
| 1616 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); |
| 1617 | |
| 1618 | if (co->cull_mode != cull_mode) { |
| 1619 | if (co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { |
| 1620 | glDisable(GL_CULL_FACE); |
| 1621 | } else { |
| 1622 | if (cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { |
| 1623 | // Last time was disabled, so enable and set proper face. |
| 1624 | glEnable(GL_CULL_FACE); |
| 1625 | } |
| 1626 | glCullFace(co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE ? GL_FRONT : GL_BACK); |
| 1627 | } |
| 1628 | cull_mode = co->cull_mode; |
| 1629 | } |
| 1630 | |
| 1631 | glBindVertexArray(co->vertex_array); |
| 1632 | glDrawElements(GL_TRIANGLES, 3 * co->line_point_count, GL_UNSIGNED_SHORT, 0); |
| 1633 | |
| 1634 | instance = instance->next; |
| 1635 | } |
| 1636 | } |
| 1637 | |
| 1638 | glBindVertexArray(0); |
| 1639 | glBindFramebuffer(GL_FRAMEBUFFER, 0); |
| 1640 | glDepthMask(GL_FALSE); |
| 1641 | glDisable(GL_DEPTH_TEST); |
| 1642 | glDisable(GL_SCISSOR_TEST); |
| 1643 | } |
| 1644 | |
| 1645 | void RasterizerCanvasGLES3::light_update_directional_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_cull_distance, const Rect2 &p_clip_rect, LightOccluderInstance *p_occluders) { |
| 1646 | GLES3::Config *config = GLES3::Config::get_singleton(); |
| 1647 | |
| 1648 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
| 1649 | ERR_FAIL_COND(!cl->shadow.enabled); |
| 1650 | |
| 1651 | _update_shadow_atlas(); |
| 1652 | |
| 1653 | Vector2 light_dir = p_light_xform.columns[1].normalized(); |
| 1654 | |
| 1655 | Vector2 center = p_clip_rect.get_center(); |
| 1656 | |
| 1657 | float to_edge_distance = ABS(light_dir.dot(p_clip_rect.get_support(light_dir)) - light_dir.dot(center)); |
| 1658 | |
| 1659 | Vector2 from_pos = center - light_dir * (to_edge_distance + p_cull_distance); |
| 1660 | float distance = to_edge_distance * 2.0 + p_cull_distance; |
| 1661 | float half_size = p_clip_rect.size.length() * 0.5; //shadow length, must keep this no matter the angle |
| 1662 | |
| 1663 | cl->shadow.z_far = distance; |
| 1664 | cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(data.max_lights_per_render * 2); |
| 1665 | |
| 1666 | Transform2D to_light_xform; |
| 1667 | |
| 1668 | to_light_xform[2] = from_pos; |
| 1669 | to_light_xform[1] = light_dir; |
| 1670 | to_light_xform[0] = -light_dir.orthogonal(); |
| 1671 | |
| 1672 | to_light_xform.invert(); |
| 1673 | |
| 1674 | glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); |
| 1675 | glViewport(0, p_shadow_index * 2, state.shadow_texture_size, 2); |
| 1676 | |
| 1677 | glDepthMask(GL_TRUE); |
| 1678 | glEnable(GL_DEPTH_TEST); |
| 1679 | glDepthFunc(GL_LESS); |
| 1680 | glDisable(GL_BLEND); |
| 1681 | |
| 1682 | glEnable(GL_SCISSOR_TEST); |
| 1683 | glScissor(0, p_shadow_index * 2, state.shadow_texture_size, 2); |
| 1684 | glClearColor(1.0, 1.0, 1.0, 1.0); |
| 1685 | glClearDepth(1.0); |
| 1686 | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); |
| 1687 | |
| 1688 | glCullFace(GL_BACK); |
| 1689 | glDisable(GL_CULL_FACE); |
| 1690 | RS::CanvasOccluderPolygonCullMode cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED; |
| 1691 | |
| 1692 | CanvasOcclusionShaderGLES3::ShaderVariant variant = config->float_texture_supported ? CanvasOcclusionShaderGLES3::MODE_SHADOW : CanvasOcclusionShaderGLES3::MODE_SHADOW_RGBA; |
| 1693 | bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); |
| 1694 | if (!success) { |
| 1695 | return; |
| 1696 | } |
| 1697 | |
| 1698 | Projection projection; |
| 1699 | projection.set_orthogonal(-half_size, half_size, -0.5, 0.5, 0.0, distance); |
| 1700 | projection = projection * Projection(Transform3D().looking_at(Vector3(0, 1, 0), Vector3(0, 0, -1)).affine_inverse()); |
| 1701 | |
| 1702 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, projection, shadow_render.shader_version, variant); |
| 1703 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, 0.0, 1.0, shadow_render.shader_version, variant); |
| 1704 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, distance, shadow_render.shader_version, variant); |
| 1705 | |
| 1706 | LightOccluderInstance *instance = p_occluders; |
| 1707 | |
| 1708 | while (instance) { |
| 1709 | OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); |
| 1710 | |
| 1711 | if (!co || co->vertex_array == 0 || !(p_light_mask & instance->light_mask)) { |
| 1712 | instance = instance->next; |
| 1713 | continue; |
| 1714 | } |
| 1715 | |
| 1716 | Transform2D modelview = to_light_xform * instance->xform_cache; |
| 1717 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); |
| 1718 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); |
| 1719 | |
| 1720 | if (co->cull_mode != cull_mode) { |
| 1721 | if (co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { |
| 1722 | glDisable(GL_CULL_FACE); |
| 1723 | } else { |
| 1724 | if (cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { |
| 1725 | // Last time was disabled, so enable and set proper face. |
| 1726 | glEnable(GL_CULL_FACE); |
| 1727 | } |
| 1728 | glCullFace(co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE ? GL_FRONT : GL_BACK); |
| 1729 | } |
| 1730 | cull_mode = co->cull_mode; |
| 1731 | } |
| 1732 | |
| 1733 | glBindVertexArray(co->vertex_array); |
| 1734 | glDrawElements(GL_TRIANGLES, 3 * co->line_point_count, GL_UNSIGNED_SHORT, 0); |
| 1735 | |
| 1736 | instance = instance->next; |
| 1737 | } |
| 1738 | |
| 1739 | Transform2D to_shadow; |
| 1740 | to_shadow.columns[0].x = 1.0 / -(half_size * 2.0); |
| 1741 | to_shadow.columns[2].x = 0.5; |
| 1742 | |
| 1743 | cl->shadow.directional_xform = to_shadow * to_light_xform; |
| 1744 | |
| 1745 | glBindVertexArray(0); |
| 1746 | glBindFramebuffer(GL_FRAMEBUFFER, 0); |
| 1747 | glDepthMask(GL_FALSE); |
| 1748 | glDisable(GL_DEPTH_TEST); |
| 1749 | glDisable(GL_SCISSOR_TEST); |
| 1750 | glDisable(GL_CULL_FACE); |
| 1751 | } |
| 1752 | |
| 1753 | void RasterizerCanvasGLES3::_update_shadow_atlas() { |
| 1754 | GLES3::Config *config = GLES3::Config::get_singleton(); |
| 1755 | |
| 1756 | if (state.shadow_fb == 0) { |
| 1757 | glActiveTexture(GL_TEXTURE0); |
| 1758 | |
| 1759 | glGenFramebuffers(1, &state.shadow_fb); |
| 1760 | glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); |
| 1761 | |
| 1762 | glGenRenderbuffers(1, &state.shadow_depth_buffer); |
| 1763 | glBindRenderbuffer(GL_RENDERBUFFER, state.shadow_depth_buffer); |
| 1764 | glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, state.shadow_texture_size, data.max_lights_per_render * 2); |
| 1765 | glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, state.shadow_depth_buffer); |
| 1766 | |
| 1767 | glGenTextures(1, &state.shadow_texture); |
| 1768 | glBindTexture(GL_TEXTURE_2D, state.shadow_texture); |
| 1769 | if (config->float_texture_supported) { |
| 1770 | glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, state.shadow_texture_size, data.max_lights_per_render * 2, 0, GL_RED, GL_FLOAT, nullptr); |
| 1771 | } else { |
| 1772 | glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, state.shadow_texture_size, data.max_lights_per_render * 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); |
| 1773 | } |
| 1774 | |
| 1775 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
| 1776 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); |
| 1777 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); |
| 1778 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); |
| 1779 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); |
| 1780 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); |
| 1781 | glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, state.shadow_texture, 0); |
| 1782 | |
| 1783 | GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); |
| 1784 | if (status != GL_FRAMEBUFFER_COMPLETE) { |
| 1785 | glDeleteFramebuffers(1, &state.shadow_fb); |
| 1786 | glDeleteTextures(1, &state.shadow_texture); |
| 1787 | glDeleteRenderbuffers(1, &state.shadow_depth_buffer); |
| 1788 | state.shadow_fb = 0; |
| 1789 | state.shadow_texture = 0; |
| 1790 | state.shadow_depth_buffer = 0; |
| 1791 | WARN_PRINT("Could not create CanvasItem shadow atlas, status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status)); |
| 1792 | } |
| 1793 | GLES3::Utilities::get_singleton()->texture_allocated_data(state.shadow_texture, state.shadow_texture_size * data.max_lights_per_render * 2 * 4, "2D shadow atlas texture" ); |
| 1794 | glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); |
| 1795 | } |
| 1796 | } |
| 1797 | |
| 1798 | void RasterizerCanvasGLES3::render_sdf(RID p_render_target, LightOccluderInstance *p_occluders) { |
| 1799 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
| 1800 | |
| 1801 | GLuint fb = texture_storage->render_target_get_sdf_framebuffer(p_render_target); |
| 1802 | Rect2i rect = texture_storage->render_target_get_sdf_rect(p_render_target); |
| 1803 | |
| 1804 | Transform2D to_sdf; |
| 1805 | to_sdf.columns[0] *= rect.size.width; |
| 1806 | to_sdf.columns[1] *= rect.size.height; |
| 1807 | to_sdf.columns[2] = rect.position; |
| 1808 | |
| 1809 | Transform2D to_clip; |
| 1810 | to_clip.columns[0] *= 2.0; |
| 1811 | to_clip.columns[1] *= 2.0; |
| 1812 | to_clip.columns[2] = -Vector2(1.0, 1.0); |
| 1813 | |
| 1814 | to_clip = to_clip * to_sdf.affine_inverse(); |
| 1815 | |
| 1816 | glBindFramebuffer(GL_FRAMEBUFFER, fb); |
| 1817 | glViewport(0, 0, rect.size.width, rect.size.height); |
| 1818 | |
| 1819 | glDepthMask(GL_FALSE); |
| 1820 | glDisable(GL_DEPTH_TEST); |
| 1821 | glDisable(GL_BLEND); |
| 1822 | glDisable(GL_CULL_FACE); |
| 1823 | glDisable(GL_SCISSOR_TEST); |
| 1824 | |
| 1825 | glClearColor(0.0, 0.0, 0.0, 0.0); |
| 1826 | glClear(GL_COLOR_BUFFER_BIT); |
| 1827 | |
| 1828 | CanvasOcclusionShaderGLES3::ShaderVariant variant = CanvasOcclusionShaderGLES3::MODE_SDF; |
| 1829 | bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); |
| 1830 | if (!success) { |
| 1831 | return; |
| 1832 | } |
| 1833 | |
| 1834 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, Projection(), shadow_render.shader_version, variant); |
| 1835 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, 0.0, 0.0, shadow_render.shader_version, variant); |
| 1836 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, 0.0, shadow_render.shader_version, variant); |
| 1837 | |
| 1838 | LightOccluderInstance *instance = p_occluders; |
| 1839 | |
| 1840 | while (instance) { |
| 1841 | OccluderPolygon *oc = occluder_polygon_owner.get_or_null(instance->occluder); |
| 1842 | |
| 1843 | if (!oc || oc->sdf_vertex_array == 0) { |
| 1844 | instance = instance->next; |
| 1845 | continue; |
| 1846 | } |
| 1847 | |
| 1848 | Transform2D modelview = to_clip * instance->xform_cache; |
| 1849 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); |
| 1850 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); |
| 1851 | |
| 1852 | glBindVertexArray(oc->sdf_vertex_array); |
| 1853 | glDrawElements(oc->sdf_is_lines ? GL_LINES : GL_TRIANGLES, oc->sdf_index_count, GL_UNSIGNED_INT, 0); |
| 1854 | |
| 1855 | instance = instance->next; |
| 1856 | } |
| 1857 | |
| 1858 | texture_storage->render_target_sdf_process(p_render_target); //done rendering, process it |
| 1859 | glBindVertexArray(0); |
| 1860 | glBindFramebuffer(GL_FRAMEBUFFER, 0); |
| 1861 | } |
| 1862 | |
| 1863 | RID RasterizerCanvasGLES3::occluder_polygon_create() { |
| 1864 | OccluderPolygon occluder; |
| 1865 | |
| 1866 | return occluder_polygon_owner.make_rid(occluder); |
| 1867 | } |
| 1868 | |
| 1869 | void RasterizerCanvasGLES3::occluder_polygon_set_shape(RID p_occluder, const Vector<Vector2> &p_points, bool p_closed) { |
| 1870 | OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder); |
| 1871 | ERR_FAIL_NULL(oc); |
| 1872 | |
| 1873 | Vector<Vector2> lines; |
| 1874 | |
| 1875 | if (p_points.size()) { |
| 1876 | int lc = p_points.size() * 2; |
| 1877 | |
| 1878 | lines.resize(lc - (p_closed ? 0 : 2)); |
| 1879 | { |
| 1880 | Vector2 *w = lines.ptrw(); |
| 1881 | const Vector2 *r = p_points.ptr(); |
| 1882 | |
| 1883 | int max = lc / 2; |
| 1884 | if (!p_closed) { |
| 1885 | max--; |
| 1886 | } |
| 1887 | for (int i = 0; i < max; i++) { |
| 1888 | Vector2 a = r[i]; |
| 1889 | Vector2 b = r[(i + 1) % (lc / 2)]; |
| 1890 | w[i * 2 + 0] = a; |
| 1891 | w[i * 2 + 1] = b; |
| 1892 | } |
| 1893 | } |
| 1894 | } |
| 1895 | |
| 1896 | if (oc->line_point_count != lines.size() && oc->vertex_array != 0) { |
| 1897 | glDeleteVertexArrays(1, &oc->vertex_array); |
| 1898 | GLES3::Utilities::get_singleton()->buffer_free_data(oc->vertex_buffer); |
| 1899 | GLES3::Utilities::get_singleton()->buffer_free_data(oc->index_buffer); |
| 1900 | |
| 1901 | oc->vertex_array = 0; |
| 1902 | oc->vertex_buffer = 0; |
| 1903 | oc->index_buffer = 0; |
| 1904 | } |
| 1905 | |
| 1906 | if (lines.size()) { |
| 1907 | Vector<uint8_t> geometry; |
| 1908 | Vector<uint8_t> indices; |
| 1909 | int lc = lines.size(); |
| 1910 | |
| 1911 | geometry.resize(lc * 6 * sizeof(float)); |
| 1912 | indices.resize(lc * 3 * sizeof(uint16_t)); |
| 1913 | |
| 1914 | { |
| 1915 | uint8_t *vw = geometry.ptrw(); |
| 1916 | float *vwptr = reinterpret_cast<float *>(vw); |
| 1917 | uint8_t *iw = indices.ptrw(); |
| 1918 | uint16_t *iwptr = (uint16_t *)iw; |
| 1919 | |
| 1920 | const Vector2 *lr = lines.ptr(); |
| 1921 | |
| 1922 | const int POLY_HEIGHT = 16384; |
| 1923 | |
| 1924 | for (int i = 0; i < lc / 2; i++) { |
| 1925 | vwptr[i * 12 + 0] = lr[i * 2 + 0].x; |
| 1926 | vwptr[i * 12 + 1] = lr[i * 2 + 0].y; |
| 1927 | vwptr[i * 12 + 2] = POLY_HEIGHT; |
| 1928 | |
| 1929 | vwptr[i * 12 + 3] = lr[i * 2 + 1].x; |
| 1930 | vwptr[i * 12 + 4] = lr[i * 2 + 1].y; |
| 1931 | vwptr[i * 12 + 5] = POLY_HEIGHT; |
| 1932 | |
| 1933 | vwptr[i * 12 + 6] = lr[i * 2 + 1].x; |
| 1934 | vwptr[i * 12 + 7] = lr[i * 2 + 1].y; |
| 1935 | vwptr[i * 12 + 8] = -POLY_HEIGHT; |
| 1936 | |
| 1937 | vwptr[i * 12 + 9] = lr[i * 2 + 0].x; |
| 1938 | vwptr[i * 12 + 10] = lr[i * 2 + 0].y; |
| 1939 | vwptr[i * 12 + 11] = -POLY_HEIGHT; |
| 1940 | |
| 1941 | iwptr[i * 6 + 0] = i * 4 + 0; |
| 1942 | iwptr[i * 6 + 1] = i * 4 + 1; |
| 1943 | iwptr[i * 6 + 2] = i * 4 + 2; |
| 1944 | |
| 1945 | iwptr[i * 6 + 3] = i * 4 + 2; |
| 1946 | iwptr[i * 6 + 4] = i * 4 + 3; |
| 1947 | iwptr[i * 6 + 5] = i * 4 + 0; |
| 1948 | } |
| 1949 | } |
| 1950 | |
| 1951 | if (oc->vertex_array == 0) { |
| 1952 | oc->line_point_count = lc; |
| 1953 | glGenVertexArrays(1, &oc->vertex_array); |
| 1954 | glBindVertexArray(oc->vertex_array); |
| 1955 | glGenBuffers(1, &oc->vertex_buffer); |
| 1956 | glBindBuffer(GL_ARRAY_BUFFER, oc->vertex_buffer); |
| 1957 | |
| 1958 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, oc->vertex_buffer, lc * 6 * sizeof(float), geometry.ptr(), GL_STATIC_DRAW, "Occluder polygon vertex buffer" ); |
| 1959 | |
| 1960 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
| 1961 | glVertexAttribPointer(RS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), nullptr); |
| 1962 | |
| 1963 | glGenBuffers(1, &oc->index_buffer); |
| 1964 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer); |
| 1965 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer, 3 * lc * sizeof(uint16_t), indices.ptr(), GL_STATIC_DRAW, "Occluder polygon index buffer" ); |
| 1966 | |
| 1967 | glBindVertexArray(0); |
| 1968 | } else { |
| 1969 | glBindBuffer(GL_ARRAY_BUFFER, oc->vertex_buffer); |
| 1970 | glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(float), geometry.ptr(), GL_STATIC_DRAW); |
| 1971 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer); |
| 1972 | glBufferData(GL_ELEMENT_ARRAY_BUFFER, 3 * lc * sizeof(uint16_t), indices.ptr(), GL_STATIC_DRAW); |
| 1973 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 1974 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
| 1975 | } |
| 1976 | } |
| 1977 | |
| 1978 | // sdf |
| 1979 | |
| 1980 | Vector<int> sdf_indices; |
| 1981 | |
| 1982 | if (p_points.size()) { |
| 1983 | if (p_closed) { |
| 1984 | sdf_indices = Geometry2D::triangulate_polygon(p_points); |
| 1985 | oc->sdf_is_lines = false; |
| 1986 | } else { |
| 1987 | int max = p_points.size(); |
| 1988 | sdf_indices.resize(max * 2); |
| 1989 | |
| 1990 | int *iw = sdf_indices.ptrw(); |
| 1991 | for (int i = 0; i < max; i++) { |
| 1992 | iw[i * 2 + 0] = i; |
| 1993 | iw[i * 2 + 1] = (i + 1) % max; |
| 1994 | } |
| 1995 | oc->sdf_is_lines = true; |
| 1996 | } |
| 1997 | } |
| 1998 | |
| 1999 | if (oc->sdf_index_count != sdf_indices.size() && oc->sdf_point_count != p_points.size() && oc->sdf_vertex_array != 0) { |
| 2000 | glDeleteVertexArrays(1, &oc->sdf_vertex_array); |
| 2001 | GLES3::Utilities::get_singleton()->buffer_free_data(oc->sdf_vertex_buffer); |
| 2002 | GLES3::Utilities::get_singleton()->buffer_free_data(oc->sdf_index_buffer); |
| 2003 | |
| 2004 | oc->sdf_vertex_array = 0; |
| 2005 | oc->sdf_vertex_buffer = 0; |
| 2006 | oc->sdf_index_buffer = 0; |
| 2007 | |
| 2008 | oc->sdf_index_count = sdf_indices.size(); |
| 2009 | oc->sdf_point_count = p_points.size(); |
| 2010 | } |
| 2011 | |
| 2012 | if (sdf_indices.size()) { |
| 2013 | if (oc->sdf_vertex_array == 0) { |
| 2014 | oc->sdf_index_count = sdf_indices.size(); |
| 2015 | oc->sdf_point_count = p_points.size(); |
| 2016 | glGenVertexArrays(1, &oc->sdf_vertex_array); |
| 2017 | glBindVertexArray(oc->sdf_vertex_array); |
| 2018 | glGenBuffers(1, &oc->sdf_vertex_buffer); |
| 2019 | glBindBuffer(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer); |
| 2020 | |
| 2021 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer, oc->sdf_point_count * 2 * sizeof(float), p_points.to_byte_array().ptr(), GL_STATIC_DRAW, "Occluder polygon SDF vertex buffer" ); |
| 2022 | |
| 2023 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
| 2024 | glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), nullptr); |
| 2025 | |
| 2026 | glGenBuffers(1, &oc->sdf_index_buffer); |
| 2027 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer); |
| 2028 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer, oc->sdf_index_count * sizeof(uint32_t), sdf_indices.to_byte_array().ptr(), GL_STATIC_DRAW, "Occluder polygon SDF index buffer" ); |
| 2029 | |
| 2030 | glBindVertexArray(0); |
| 2031 | } else { |
| 2032 | glBindBuffer(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer); |
| 2033 | glBufferData(GL_ARRAY_BUFFER, p_points.size() * 2 * sizeof(float), p_points.to_byte_array().ptr(), GL_STATIC_DRAW); |
| 2034 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer); |
| 2035 | glBufferData(GL_ELEMENT_ARRAY_BUFFER, sdf_indices.size() * sizeof(uint32_t), sdf_indices.to_byte_array().ptr(), GL_STATIC_DRAW); |
| 2036 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 2037 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
| 2038 | } |
| 2039 | } |
| 2040 | } |
| 2041 | |
| 2042 | void RasterizerCanvasGLES3::occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) { |
| 2043 | OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder); |
| 2044 | ERR_FAIL_NULL(oc); |
| 2045 | oc->cull_mode = p_mode; |
| 2046 | } |
| 2047 | |
| 2048 | void RasterizerCanvasGLES3::set_shadow_texture_size(int p_size) { |
| 2049 | GLES3::Config *config = GLES3::Config::get_singleton(); |
| 2050 | p_size = nearest_power_of_2_templated(p_size); |
| 2051 | |
| 2052 | if (p_size > config->max_texture_size) { |
| 2053 | p_size = config->max_texture_size; |
| 2054 | WARN_PRINT("Attempting to set CanvasItem shadow atlas size to " + itos(p_size) + " which is beyond limit of " + itos(config->max_texture_size) + "supported by hardware." ); |
| 2055 | } |
| 2056 | |
| 2057 | if (p_size == state.shadow_texture_size) { |
| 2058 | return; |
| 2059 | } |
| 2060 | state.shadow_texture_size = p_size; |
| 2061 | |
| 2062 | if (state.shadow_fb != 0) { |
| 2063 | glDeleteFramebuffers(1, &state.shadow_fb); |
| 2064 | GLES3::Utilities::get_singleton()->texture_free_data(state.shadow_texture); |
| 2065 | glDeleteRenderbuffers(1, &state.shadow_depth_buffer); |
| 2066 | state.shadow_fb = 0; |
| 2067 | state.shadow_texture = 0; |
| 2068 | state.shadow_depth_buffer = 0; |
| 2069 | } |
| 2070 | _update_shadow_atlas(); |
| 2071 | } |
| 2072 | |
| 2073 | bool RasterizerCanvasGLES3::free(RID p_rid) { |
| 2074 | if (canvas_light_owner.owns(p_rid)) { |
| 2075 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
| 2076 | ERR_FAIL_NULL_V(cl, false); |
| 2077 | canvas_light_owner.free(p_rid); |
| 2078 | } else if (occluder_polygon_owner.owns(p_rid)) { |
| 2079 | occluder_polygon_set_shape(p_rid, Vector<Vector2>(), false); |
| 2080 | occluder_polygon_owner.free(p_rid); |
| 2081 | } else { |
| 2082 | return false; |
| 2083 | } |
| 2084 | |
| 2085 | return true; |
| 2086 | } |
| 2087 | |
| 2088 | void RasterizerCanvasGLES3::update() { |
| 2089 | } |
| 2090 | |
| 2091 | void RasterizerCanvasGLES3::canvas_begin(RID p_to_render_target, bool p_to_backbuffer) { |
| 2092 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
| 2093 | GLES3::Config *config = GLES3::Config::get_singleton(); |
| 2094 | |
| 2095 | GLES3::RenderTarget *render_target = texture_storage->get_render_target(p_to_render_target); |
| 2096 | |
| 2097 | if (p_to_backbuffer) { |
| 2098 | glBindFramebuffer(GL_FRAMEBUFFER, render_target->backbuffer_fbo); |
| 2099 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); |
| 2100 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
| 2101 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
| 2102 | } else { |
| 2103 | glBindFramebuffer(GL_FRAMEBUFFER, render_target->fbo); |
| 2104 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); |
| 2105 | glBindTexture(GL_TEXTURE_2D, render_target->backbuffer); |
| 2106 | } |
| 2107 | |
| 2108 | if (render_target->is_transparent || p_to_backbuffer) { |
| 2109 | state.transparent_render_target = true; |
| 2110 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
| 2111 | } else { |
| 2112 | state.transparent_render_target = false; |
| 2113 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
| 2114 | } |
| 2115 | |
| 2116 | if (render_target && render_target->clear_requested) { |
| 2117 | const Color &col = render_target->clear_color; |
| 2118 | glClearColor(col.r, col.g, col.b, render_target->is_transparent ? col.a : 1.0f); |
| 2119 | |
| 2120 | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); |
| 2121 | render_target->clear_requested = false; |
| 2122 | } |
| 2123 | |
| 2124 | glActiveTexture(GL_TEXTURE0); |
| 2125 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
| 2126 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
| 2127 | } |
| 2128 | |
| 2129 | void RasterizerCanvasGLES3::_bind_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat) { |
| 2130 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
| 2131 | GLES3::Config *config = GLES3::Config::get_singleton(); |
| 2132 | |
| 2133 | if (p_texture == RID()) { |
| 2134 | p_texture = default_canvas_texture; |
| 2135 | } |
| 2136 | |
| 2137 | if (state.current_tex == p_texture && state.current_filter_mode == p_base_filter && state.current_repeat_mode == p_base_repeat) { |
| 2138 | return; |
| 2139 | } |
| 2140 | |
| 2141 | state.current_tex = p_texture; |
| 2142 | state.current_filter_mode = p_base_filter; |
| 2143 | state.current_repeat_mode = p_base_repeat; |
| 2144 | |
| 2145 | GLES3::CanvasTexture *ct = nullptr; |
| 2146 | |
| 2147 | GLES3::Texture *t = texture_storage->get_texture(p_texture); |
| 2148 | |
| 2149 | if (t) { |
| 2150 | ERR_FAIL_COND(!t->canvas_texture); |
| 2151 | ct = t->canvas_texture; |
| 2152 | if (t->render_target) { |
| 2153 | t->render_target->used_in_frame = true; |
| 2154 | } |
| 2155 | } else { |
| 2156 | ct = texture_storage->get_canvas_texture(p_texture); |
| 2157 | } |
| 2158 | |
| 2159 | if (!ct) { |
| 2160 | // Invalid Texture RID. |
| 2161 | _bind_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat); |
| 2162 | return; |
| 2163 | } |
| 2164 | |
| 2165 | RS::CanvasItemTextureFilter filter = ct->texture_filter != RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? ct->texture_filter : p_base_filter; |
| 2166 | ERR_FAIL_COND(filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT); |
| 2167 | |
| 2168 | RS::CanvasItemTextureRepeat repeat = ct->texture_repeat != RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? ct->texture_repeat : p_base_repeat; |
| 2169 | ERR_FAIL_COND(repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT); |
| 2170 | |
| 2171 | GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse); |
| 2172 | |
| 2173 | if (!texture) { |
| 2174 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
| 2175 | glActiveTexture(GL_TEXTURE0); |
| 2176 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
| 2177 | } else { |
| 2178 | glActiveTexture(GL_TEXTURE0); |
| 2179 | glBindTexture(GL_TEXTURE_2D, texture->tex_id); |
| 2180 | texture->gl_set_filter(filter); |
| 2181 | texture->gl_set_repeat(repeat); |
| 2182 | if (texture->render_target) { |
| 2183 | texture->render_target->used_in_frame = true; |
| 2184 | } |
| 2185 | } |
| 2186 | |
| 2187 | GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map); |
| 2188 | |
| 2189 | if (!normal_map) { |
| 2190 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); |
| 2191 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_NORMAL)); |
| 2192 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
| 2193 | } else { |
| 2194 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); |
| 2195 | glBindTexture(GL_TEXTURE_2D, normal_map->tex_id); |
| 2196 | normal_map->gl_set_filter(filter); |
| 2197 | normal_map->gl_set_repeat(repeat); |
| 2198 | if (normal_map->render_target) { |
| 2199 | normal_map->render_target->used_in_frame = true; |
| 2200 | } |
| 2201 | } |
| 2202 | |
| 2203 | GLES3::Texture *specular_map = texture_storage->get_texture(ct->specular); |
| 2204 | |
| 2205 | if (!specular_map) { |
| 2206 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7); |
| 2207 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
| 2208 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
| 2209 | } else { |
| 2210 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7); |
| 2211 | glBindTexture(GL_TEXTURE_2D, specular_map->tex_id); |
| 2212 | specular_map->gl_set_filter(filter); |
| 2213 | specular_map->gl_set_repeat(repeat); |
| 2214 | if (specular_map->render_target) { |
| 2215 | specular_map->render_target->used_in_frame = true; |
| 2216 | } |
| 2217 | } |
| 2218 | } |
| 2219 | |
| 2220 | void RasterizerCanvasGLES3::_prepare_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, uint32_t &r_index, Size2 &r_texpixel_size) { |
| 2221 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
| 2222 | |
| 2223 | if (p_texture == RID()) { |
| 2224 | p_texture = default_canvas_texture; |
| 2225 | } |
| 2226 | |
| 2227 | GLES3::CanvasTexture *ct = nullptr; |
| 2228 | |
| 2229 | GLES3::Texture *t = texture_storage->get_texture(p_texture); |
| 2230 | |
| 2231 | if (t) { |
| 2232 | //regular texture |
| 2233 | if (!t->canvas_texture) { |
| 2234 | t->canvas_texture = memnew(GLES3::CanvasTexture); |
| 2235 | t->canvas_texture->diffuse = p_texture; |
| 2236 | } |
| 2237 | |
| 2238 | ct = t->canvas_texture; |
| 2239 | } else { |
| 2240 | ct = texture_storage->get_canvas_texture(p_texture); |
| 2241 | } |
| 2242 | |
| 2243 | if (!ct) { |
| 2244 | // Invalid Texture RID. |
| 2245 | _prepare_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat, r_index, r_texpixel_size); |
| 2246 | return; |
| 2247 | } |
| 2248 | |
| 2249 | GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse); |
| 2250 | Size2i size_cache; |
| 2251 | if (!texture) { |
| 2252 | ct->diffuse = texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE); |
| 2253 | GLES3::Texture *tex = texture_storage->get_texture(ct->diffuse); |
| 2254 | size_cache = Size2i(tex->width, tex->height); |
| 2255 | } else { |
| 2256 | size_cache = Size2i(texture->width, texture->height); |
| 2257 | } |
| 2258 | |
| 2259 | GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map); |
| 2260 | |
| 2261 | if (ct->specular_color.a < 0.999) { |
| 2262 | state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED; |
| 2263 | } else { |
| 2264 | state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_SPECULAR_MAP_USED; |
| 2265 | } |
| 2266 | |
| 2267 | if (normal_map) { |
| 2268 | state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_NORMAL_MAP_USED; |
| 2269 | } else { |
| 2270 | state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_NORMAL_MAP_USED; |
| 2271 | } |
| 2272 | |
| 2273 | state.instance_data_array[r_index].specular_shininess = uint32_t(CLAMP(ct->specular_color.a * 255.0, 0, 255)) << 24; |
| 2274 | state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.b * 255.0, 0, 255)) << 16; |
| 2275 | state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.g * 255.0, 0, 255)) << 8; |
| 2276 | state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.r * 255.0, 0, 255)); |
| 2277 | |
| 2278 | r_texpixel_size.x = 1.0 / float(size_cache.x); |
| 2279 | r_texpixel_size.y = 1.0 / float(size_cache.y); |
| 2280 | |
| 2281 | state.instance_data_array[r_index].color_texture_pixel_size[0] = r_texpixel_size.x; |
| 2282 | state.instance_data_array[r_index].color_texture_pixel_size[1] = r_texpixel_size.y; |
| 2283 | } |
| 2284 | |
| 2285 | void RasterizerCanvasGLES3::reset_canvas() { |
| 2286 | glDisable(GL_CULL_FACE); |
| 2287 | glDisable(GL_DEPTH_TEST); |
| 2288 | glDisable(GL_SCISSOR_TEST); |
| 2289 | glEnable(GL_BLEND); |
| 2290 | glBlendEquation(GL_FUNC_ADD); |
| 2291 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
| 2292 | |
| 2293 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 2); |
| 2294 | glBindTexture(GL_TEXTURE_2D, 0); |
| 2295 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 3); |
| 2296 | glBindTexture(GL_TEXTURE_2D, 0); |
| 2297 | glActiveTexture(GL_TEXTURE0); |
| 2298 | |
| 2299 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 2300 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
| 2301 | } |
| 2302 | |
| 2303 | void RasterizerCanvasGLES3::draw_lens_distortion_rect(const Rect2 &p_rect, float p_k1, float p_k2, const Vector2 &p_eye_center, float p_oversample) { |
| 2304 | } |
| 2305 | |
| 2306 | RendererCanvasRender::PolygonID RasterizerCanvasGLES3::request_polygon(const Vector<int> &p_indices, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, const Vector<int> &p_bones, const Vector<float> &p_weights) { |
| 2307 | // We interleave the vertex data into one big VBO to improve cache coherence |
| 2308 | uint32_t vertex_count = p_points.size(); |
| 2309 | uint32_t stride = 2; |
| 2310 | if ((uint32_t)p_colors.size() == vertex_count) { |
| 2311 | stride += 4; |
| 2312 | } |
| 2313 | if ((uint32_t)p_uvs.size() == vertex_count) { |
| 2314 | stride += 2; |
| 2315 | } |
| 2316 | if ((uint32_t)p_bones.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { |
| 2317 | stride += 4; |
| 2318 | } |
| 2319 | |
| 2320 | PolygonBuffers pb; |
| 2321 | glGenBuffers(1, &pb.vertex_buffer); |
| 2322 | glGenVertexArrays(1, &pb.vertex_array); |
| 2323 | glBindVertexArray(pb.vertex_array); |
| 2324 | pb.count = vertex_count; |
| 2325 | pb.index_buffer = 0; |
| 2326 | |
| 2327 | uint32_t buffer_size = stride * p_points.size(); |
| 2328 | |
| 2329 | Vector<uint8_t> polygon_buffer; |
| 2330 | polygon_buffer.resize(buffer_size * sizeof(float)); |
| 2331 | { |
| 2332 | glBindBuffer(GL_ARRAY_BUFFER, pb.vertex_buffer); |
| 2333 | uint8_t *r = polygon_buffer.ptrw(); |
| 2334 | float *fptr = reinterpret_cast<float *>(r); |
| 2335 | uint32_t *uptr = (uint32_t *)r; |
| 2336 | uint32_t base_offset = 0; |
| 2337 | { |
| 2338 | // Always uses vertex positions |
| 2339 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
| 2340 | glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), nullptr); |
| 2341 | const Vector2 *points_ptr = p_points.ptr(); |
| 2342 | |
| 2343 | for (uint32_t i = 0; i < vertex_count; i++) { |
| 2344 | fptr[base_offset + i * stride + 0] = points_ptr[i].x; |
| 2345 | fptr[base_offset + i * stride + 1] = points_ptr[i].y; |
| 2346 | } |
| 2347 | |
| 2348 | base_offset += 2; |
| 2349 | } |
| 2350 | |
| 2351 | // Next add colors |
| 2352 | if ((uint32_t)p_colors.size() == vertex_count) { |
| 2353 | glEnableVertexAttribArray(RS::ARRAY_COLOR); |
| 2354 | glVertexAttribPointer(RS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); |
| 2355 | |
| 2356 | const Color *color_ptr = p_colors.ptr(); |
| 2357 | |
| 2358 | for (uint32_t i = 0; i < vertex_count; i++) { |
| 2359 | fptr[base_offset + i * stride + 0] = color_ptr[i].r; |
| 2360 | fptr[base_offset + i * stride + 1] = color_ptr[i].g; |
| 2361 | fptr[base_offset + i * stride + 2] = color_ptr[i].b; |
| 2362 | fptr[base_offset + i * stride + 3] = color_ptr[i].a; |
| 2363 | } |
| 2364 | base_offset += 4; |
| 2365 | } else { |
| 2366 | glDisableVertexAttribArray(RS::ARRAY_COLOR); |
| 2367 | pb.color_disabled = true; |
| 2368 | pb.color = p_colors.size() == 1 ? p_colors[0] : Color(1.0, 1.0, 1.0, 1.0); |
| 2369 | } |
| 2370 | |
| 2371 | if ((uint32_t)p_uvs.size() == vertex_count) { |
| 2372 | glEnableVertexAttribArray(RS::ARRAY_TEX_UV); |
| 2373 | glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); |
| 2374 | |
| 2375 | const Vector2 *uv_ptr = p_uvs.ptr(); |
| 2376 | |
| 2377 | for (uint32_t i = 0; i < vertex_count; i++) { |
| 2378 | fptr[base_offset + i * stride + 0] = uv_ptr[i].x; |
| 2379 | fptr[base_offset + i * stride + 1] = uv_ptr[i].y; |
| 2380 | } |
| 2381 | |
| 2382 | base_offset += 2; |
| 2383 | } else { |
| 2384 | glDisableVertexAttribArray(RS::ARRAY_TEX_UV); |
| 2385 | } |
| 2386 | |
| 2387 | if ((uint32_t)p_indices.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { |
| 2388 | glEnableVertexAttribArray(RS::ARRAY_BONES); |
| 2389 | glVertexAttribPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_INT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); |
| 2390 | |
| 2391 | const int *bone_ptr = p_bones.ptr(); |
| 2392 | |
| 2393 | for (uint32_t i = 0; i < vertex_count; i++) { |
| 2394 | uint16_t *bone16w = (uint16_t *)&uptr[base_offset + i * stride]; |
| 2395 | |
| 2396 | bone16w[0] = bone_ptr[i * 4 + 0]; |
| 2397 | bone16w[1] = bone_ptr[i * 4 + 1]; |
| 2398 | bone16w[2] = bone_ptr[i * 4 + 2]; |
| 2399 | bone16w[3] = bone_ptr[i * 4 + 3]; |
| 2400 | } |
| 2401 | |
| 2402 | base_offset += 2; |
| 2403 | } else { |
| 2404 | glDisableVertexAttribArray(RS::ARRAY_BONES); |
| 2405 | } |
| 2406 | |
| 2407 | if ((uint32_t)p_weights.size() == vertex_count * 4) { |
| 2408 | glEnableVertexAttribArray(RS::ARRAY_WEIGHTS); |
| 2409 | glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); |
| 2410 | |
| 2411 | const float *weight_ptr = p_weights.ptr(); |
| 2412 | |
| 2413 | for (uint32_t i = 0; i < vertex_count; i++) { |
| 2414 | uint16_t *weight16w = (uint16_t *)&uptr[base_offset + i * stride]; |
| 2415 | |
| 2416 | weight16w[0] = CLAMP(weight_ptr[i * 4 + 0] * 65535, 0, 65535); |
| 2417 | weight16w[1] = CLAMP(weight_ptr[i * 4 + 1] * 65535, 0, 65535); |
| 2418 | weight16w[2] = CLAMP(weight_ptr[i * 4 + 2] * 65535, 0, 65535); |
| 2419 | weight16w[3] = CLAMP(weight_ptr[i * 4 + 3] * 65535, 0, 65535); |
| 2420 | } |
| 2421 | |
| 2422 | base_offset += 2; |
| 2423 | } else { |
| 2424 | glDisableVertexAttribArray(RS::ARRAY_WEIGHTS); |
| 2425 | } |
| 2426 | |
| 2427 | ERR_FAIL_COND_V(base_offset != stride, 0); |
| 2428 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, pb.vertex_buffer, vertex_count * stride * sizeof(float), polygon_buffer.ptr(), GL_STATIC_DRAW, "Polygon 2D vertex buffer" ); |
| 2429 | } |
| 2430 | |
| 2431 | if (p_indices.size()) { |
| 2432 | //create indices, as indices were requested |
| 2433 | Vector<uint8_t> index_buffer; |
| 2434 | index_buffer.resize(p_indices.size() * sizeof(int32_t)); |
| 2435 | { |
| 2436 | uint8_t *w = index_buffer.ptrw(); |
| 2437 | memcpy(w, p_indices.ptr(), sizeof(int32_t) * p_indices.size()); |
| 2438 | } |
| 2439 | glGenBuffers(1, &pb.index_buffer); |
| 2440 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer); |
| 2441 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer, p_indices.size() * 4, index_buffer.ptr(), GL_STATIC_DRAW, "Polygon 2D index buffer" ); |
| 2442 | pb.count = p_indices.size(); |
| 2443 | } |
| 2444 | |
| 2445 | glBindVertexArray(0); |
| 2446 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 2447 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
| 2448 | |
| 2449 | PolygonID id = polygon_buffers.last_id++; |
| 2450 | |
| 2451 | polygon_buffers.polygons[id] = pb; |
| 2452 | |
| 2453 | return id; |
| 2454 | } |
| 2455 | |
| 2456 | void RasterizerCanvasGLES3::free_polygon(PolygonID p_polygon) { |
| 2457 | PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon); |
| 2458 | ERR_FAIL_NULL(pb_ptr); |
| 2459 | |
| 2460 | PolygonBuffers &pb = *pb_ptr; |
| 2461 | |
| 2462 | if (pb.index_buffer != 0) { |
| 2463 | GLES3::Utilities::get_singleton()->buffer_free_data(pb.index_buffer); |
| 2464 | } |
| 2465 | |
| 2466 | glDeleteVertexArrays(1, &pb.vertex_array); |
| 2467 | GLES3::Utilities::get_singleton()->buffer_free_data(pb.vertex_buffer); |
| 2468 | |
| 2469 | polygon_buffers.polygons.erase(p_polygon); |
| 2470 | } |
| 2471 | |
| 2472 | // Creates a new uniform buffer and uses it right away |
| 2473 | // This expands the instance buffer continually |
| 2474 | // In theory allocations can reach as high as number of windows * 3 frames |
| 2475 | // because OpenGL can start rendering subsequent frames before finishing the current one |
| 2476 | void RasterizerCanvasGLES3::_allocate_instance_data_buffer() { |
| 2477 | GLuint new_buffers[3]; |
| 2478 | glGenBuffers(3, new_buffers); |
| 2479 | // Batch UBO. |
| 2480 | glBindBuffer(GL_ARRAY_BUFFER, new_buffers[0]); |
| 2481 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffers[0], data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "2D Batch UBO[" + itos(state.current_data_buffer_index) + "][0]" ); |
| 2482 | // Light uniform buffer. |
| 2483 | glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[1]); |
| 2484 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[1], sizeof(LightUniform) * data.max_lights_per_render, nullptr, GL_STREAM_DRAW, "2D Lights UBO[" + itos(state.current_data_buffer_index) + "]" ); |
| 2485 | // State buffer. |
| 2486 | glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[2]); |
| 2487 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[2], sizeof(StateBuffer), nullptr, GL_STREAM_DRAW, "2D State UBO[" + itos(state.current_data_buffer_index) + "]" ); |
| 2488 | |
| 2489 | state.current_data_buffer_index = (state.current_data_buffer_index + 1); |
| 2490 | DataBuffer db; |
| 2491 | db.instance_buffers.push_back(new_buffers[0]); |
| 2492 | db.light_ubo = new_buffers[1]; |
| 2493 | db.state_ubo = new_buffers[2]; |
| 2494 | db.last_frame_used = RSG::rasterizer->get_frame_number(); |
| 2495 | state.canvas_instance_data_buffers.insert(state.current_data_buffer_index, db); |
| 2496 | state.current_data_buffer_index = state.current_data_buffer_index % state.canvas_instance_data_buffers.size(); |
| 2497 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 2498 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
| 2499 | } |
| 2500 | void RasterizerCanvasGLES3::_allocate_instance_buffer() { |
| 2501 | state.current_instance_buffer_index++; |
| 2502 | |
| 2503 | if (int(state.current_instance_buffer_index) < state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) { |
| 2504 | // We already allocated another buffer in a previous frame, so we can just use it. |
| 2505 | return; |
| 2506 | } |
| 2507 | |
| 2508 | GLuint new_buffer; |
| 2509 | glGenBuffers(1, &new_buffer); |
| 2510 | |
| 2511 | glBindBuffer(GL_ARRAY_BUFFER, new_buffer); |
| 2512 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffer, data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "Batch UBO[" + itos(state.current_data_buffer_index) + "][" + itos(state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) + "]" ); |
| 2513 | |
| 2514 | state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.push_back(new_buffer); |
| 2515 | |
| 2516 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 2517 | } |
| 2518 | |
| 2519 | void RasterizerCanvasGLES3::set_time(double p_time) { |
| 2520 | state.time = p_time; |
| 2521 | } |
| 2522 | |
| 2523 | RasterizerCanvasGLES3 *RasterizerCanvasGLES3::singleton = nullptr; |
| 2524 | |
| 2525 | RasterizerCanvasGLES3 *RasterizerCanvasGLES3::get_singleton() { |
| 2526 | return singleton; |
| 2527 | } |
| 2528 | |
| 2529 | RasterizerCanvasGLES3::RasterizerCanvasGLES3() { |
| 2530 | singleton = this; |
| 2531 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
| 2532 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
| 2533 | GLES3::Config *config = GLES3::Config::get_singleton(); |
| 2534 | |
| 2535 | glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); |
| 2536 | |
| 2537 | polygon_buffers.last_id = 1; |
| 2538 | // quad buffer |
| 2539 | { |
| 2540 | glGenBuffers(1, &data.canvas_quad_vertices); |
| 2541 | glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); |
| 2542 | |
| 2543 | const float qv[8] = { |
| 2544 | 0, 0, |
| 2545 | 0, 1, |
| 2546 | 1, 1, |
| 2547 | 1, 0 |
| 2548 | }; |
| 2549 | |
| 2550 | glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 8, qv, GL_STATIC_DRAW); |
| 2551 | |
| 2552 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 2553 | |
| 2554 | glGenVertexArrays(1, &data.canvas_quad_array); |
| 2555 | glBindVertexArray(data.canvas_quad_array); |
| 2556 | glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); |
| 2557 | glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr); |
| 2558 | glEnableVertexAttribArray(0); |
| 2559 | glBindVertexArray(0); |
| 2560 | glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind |
| 2561 | } |
| 2562 | |
| 2563 | { |
| 2564 | //particle quad buffers |
| 2565 | |
| 2566 | glGenBuffers(1, &data.particle_quad_vertices); |
| 2567 | glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices); |
| 2568 | { |
| 2569 | //quad of size 1, with pivot on the center for particles, then regular UVS. Color is general plus fetched from particle |
| 2570 | const float qv[16] = { |
| 2571 | -0.5, -0.5, |
| 2572 | 0.0, 0.0, |
| 2573 | -0.5, 0.5, |
| 2574 | 0.0, 1.0, |
| 2575 | 0.5, 0.5, |
| 2576 | 1.0, 1.0, |
| 2577 | 0.5, -0.5, |
| 2578 | 1.0, 0.0 |
| 2579 | }; |
| 2580 | |
| 2581 | glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW); |
| 2582 | } |
| 2583 | |
| 2584 | glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind |
| 2585 | |
| 2586 | glGenVertexArrays(1, &data.particle_quad_array); |
| 2587 | glBindVertexArray(data.particle_quad_array); |
| 2588 | glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices); |
| 2589 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
| 2590 | glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr); |
| 2591 | glEnableVertexAttribArray(RS::ARRAY_TEX_UV); |
| 2592 | glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8)); |
| 2593 | glBindVertexArray(0); |
| 2594 | glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind |
| 2595 | } |
| 2596 | |
| 2597 | // ninepatch buffers |
| 2598 | { |
| 2599 | // array buffer |
| 2600 | glGenBuffers(1, &data.ninepatch_vertices); |
| 2601 | glBindBuffer(GL_ARRAY_BUFFER, data.ninepatch_vertices); |
| 2602 | |
| 2603 | glBufferData(GL_ARRAY_BUFFER, sizeof(float) * (16 + 16) * 2, nullptr, GL_DYNAMIC_DRAW); |
| 2604 | |
| 2605 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 2606 | |
| 2607 | // element buffer |
| 2608 | glGenBuffers(1, &data.ninepatch_elements); |
| 2609 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ninepatch_elements); |
| 2610 | |
| 2611 | #define _EIDX(y, x) (y * 4 + x) |
| 2612 | uint8_t elems[3 * 2 * 9] = { |
| 2613 | // first row |
| 2614 | |
| 2615 | _EIDX(0, 0), _EIDX(0, 1), _EIDX(1, 1), |
| 2616 | _EIDX(1, 1), _EIDX(1, 0), _EIDX(0, 0), |
| 2617 | |
| 2618 | _EIDX(0, 1), _EIDX(0, 2), _EIDX(1, 2), |
| 2619 | _EIDX(1, 2), _EIDX(1, 1), _EIDX(0, 1), |
| 2620 | |
| 2621 | _EIDX(0, 2), _EIDX(0, 3), _EIDX(1, 3), |
| 2622 | _EIDX(1, 3), _EIDX(1, 2), _EIDX(0, 2), |
| 2623 | |
| 2624 | // second row |
| 2625 | |
| 2626 | _EIDX(1, 0), _EIDX(1, 1), _EIDX(2, 1), |
| 2627 | _EIDX(2, 1), _EIDX(2, 0), _EIDX(1, 0), |
| 2628 | |
| 2629 | // the center one would be here, but we'll put it at the end |
| 2630 | // so it's easier to disable the center and be able to use |
| 2631 | // one draw call for both |
| 2632 | |
| 2633 | _EIDX(1, 2), _EIDX(1, 3), _EIDX(2, 3), |
| 2634 | _EIDX(2, 3), _EIDX(2, 2), _EIDX(1, 2), |
| 2635 | |
| 2636 | // third row |
| 2637 | |
| 2638 | _EIDX(2, 0), _EIDX(2, 1), _EIDX(3, 1), |
| 2639 | _EIDX(3, 1), _EIDX(3, 0), _EIDX(2, 0), |
| 2640 | |
| 2641 | _EIDX(2, 1), _EIDX(2, 2), _EIDX(3, 2), |
| 2642 | _EIDX(3, 2), _EIDX(3, 1), _EIDX(2, 1), |
| 2643 | |
| 2644 | _EIDX(2, 2), _EIDX(2, 3), _EIDX(3, 3), |
| 2645 | _EIDX(3, 3), _EIDX(3, 2), _EIDX(2, 2), |
| 2646 | |
| 2647 | // center field |
| 2648 | |
| 2649 | _EIDX(1, 1), _EIDX(1, 2), _EIDX(2, 2), |
| 2650 | _EIDX(2, 2), _EIDX(2, 1), _EIDX(1, 1) |
| 2651 | }; |
| 2652 | #undef _EIDX |
| 2653 | |
| 2654 | glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elems), elems, GL_STATIC_DRAW); |
| 2655 | |
| 2656 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
| 2657 | } |
| 2658 | |
| 2659 | int uniform_max_size = config->max_uniform_buffer_size; |
| 2660 | if (uniform_max_size < 65536) { |
| 2661 | data.max_lights_per_render = 64; |
| 2662 | } else { |
| 2663 | data.max_lights_per_render = 256; |
| 2664 | } |
| 2665 | |
| 2666 | // Reserve 3 Uniform Buffers for instance data Frame N, N+1 and N+2 |
| 2667 | data.max_instances_per_buffer = uint32_t(GLOBAL_GET("rendering/gl_compatibility/item_buffer_size" )); |
| 2668 | data.max_instance_buffer_size = data.max_instances_per_buffer * sizeof(InstanceData); // 16,384 instances * 128 bytes = 2,097,152 bytes = 2,048 kb |
| 2669 | state.canvas_instance_data_buffers.resize(3); |
| 2670 | state.canvas_instance_batches.reserve(200); |
| 2671 | |
| 2672 | for (int i = 0; i < 3; i++) { |
| 2673 | GLuint new_buffers[3]; |
| 2674 | glGenBuffers(3, new_buffers); |
| 2675 | // Batch UBO. |
| 2676 | glBindBuffer(GL_ARRAY_BUFFER, new_buffers[0]); |
| 2677 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffers[0], data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "Batch UBO[0][0]" ); |
| 2678 | // Light uniform buffer. |
| 2679 | glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[1]); |
| 2680 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[1], sizeof(LightUniform) * data.max_lights_per_render, nullptr, GL_STREAM_DRAW, "2D lights UBO[0]" ); |
| 2681 | // State buffer. |
| 2682 | glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[2]); |
| 2683 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[2], sizeof(StateBuffer), nullptr, GL_STREAM_DRAW, "2D state UBO[0]" ); |
| 2684 | DataBuffer db; |
| 2685 | db.instance_buffers.push_back(new_buffers[0]); |
| 2686 | db.light_ubo = new_buffers[1]; |
| 2687 | db.state_ubo = new_buffers[2]; |
| 2688 | db.last_frame_used = 0; |
| 2689 | db.fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); |
| 2690 | state.canvas_instance_data_buffers[i] = db; |
| 2691 | } |
| 2692 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
| 2693 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
| 2694 | |
| 2695 | state.instance_data_array = memnew_arr(InstanceData, data.max_instances_per_buffer); |
| 2696 | state.light_uniforms = memnew_arr(LightUniform, data.max_lights_per_render); |
| 2697 | |
| 2698 | { |
| 2699 | const uint32_t indices[6] = { 0, 2, 1, 3, 2, 0 }; |
| 2700 | glGenVertexArrays(1, &data.indexed_quad_array); |
| 2701 | glBindVertexArray(data.indexed_quad_array); |
| 2702 | glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); |
| 2703 | glGenBuffers(1, &data.indexed_quad_buffer); |
| 2704 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.indexed_quad_buffer); |
| 2705 | glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(uint32_t) * 6, indices, GL_STATIC_DRAW); |
| 2706 | glBindVertexArray(0); |
| 2707 | } |
| 2708 | |
| 2709 | String global_defines; |
| 2710 | global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n" ; // TODO: this is arbitrary for now |
| 2711 | global_defines += "#define MAX_LIGHTS " + itos(data.max_lights_per_render) + "\n" ; |
| 2712 | |
| 2713 | GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.initialize(global_defines, 1); |
| 2714 | data.canvas_shader_default_version = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_create(); |
| 2715 | |
| 2716 | state.shadow_texture_size = GLOBAL_GET("rendering/2d/shadow_atlas/size" ); |
| 2717 | shadow_render.shader.initialize(); |
| 2718 | shadow_render.shader_version = shadow_render.shader.version_create(); |
| 2719 | |
| 2720 | { |
| 2721 | default_canvas_group_shader = material_storage->shader_allocate(); |
| 2722 | material_storage->shader_initialize(default_canvas_group_shader); |
| 2723 | |
| 2724 | material_storage->shader_set_code(default_canvas_group_shader, R"( |
| 2725 | // Default CanvasGroup shader. |
| 2726 | |
| 2727 | shader_type canvas_item; |
| 2728 | render_mode unshaded; |
| 2729 | |
| 2730 | uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest; |
| 2731 | |
| 2732 | void fragment() { |
| 2733 | vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0); |
| 2734 | |
| 2735 | if (c.a > 0.0001) { |
| 2736 | c.rgb /= c.a; |
| 2737 | } |
| 2738 | |
| 2739 | COLOR *= c; |
| 2740 | } |
| 2741 | )" ); |
| 2742 | default_canvas_group_material = material_storage->material_allocate(); |
| 2743 | material_storage->material_initialize(default_canvas_group_material); |
| 2744 | |
| 2745 | material_storage->material_set_shader(default_canvas_group_material, default_canvas_group_shader); |
| 2746 | } |
| 2747 | |
| 2748 | { |
| 2749 | default_clip_children_shader = material_storage->shader_allocate(); |
| 2750 | material_storage->shader_initialize(default_clip_children_shader); |
| 2751 | |
| 2752 | material_storage->shader_set_code(default_clip_children_shader, R"( |
| 2753 | // Default clip children shader. |
| 2754 | |
| 2755 | shader_type canvas_item; |
| 2756 | render_mode unshaded; |
| 2757 | |
| 2758 | uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest; |
| 2759 | |
| 2760 | void fragment() { |
| 2761 | vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0); |
| 2762 | COLOR.rgb = c.rgb; |
| 2763 | } |
| 2764 | )" ); |
| 2765 | default_clip_children_material = material_storage->material_allocate(); |
| 2766 | material_storage->material_initialize(default_clip_children_material); |
| 2767 | |
| 2768 | material_storage->material_set_shader(default_clip_children_material, default_clip_children_shader); |
| 2769 | } |
| 2770 | |
| 2771 | default_canvas_texture = texture_storage->canvas_texture_allocate(); |
| 2772 | texture_storage->canvas_texture_initialize(default_canvas_texture); |
| 2773 | |
| 2774 | state.time = 0.0; |
| 2775 | } |
| 2776 | |
| 2777 | RasterizerCanvasGLES3::~RasterizerCanvasGLES3() { |
| 2778 | singleton = nullptr; |
| 2779 | |
| 2780 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
| 2781 | material_storage->shaders.canvas_shader.version_free(data.canvas_shader_default_version); |
| 2782 | shadow_render.shader.version_free(shadow_render.shader_version); |
| 2783 | material_storage->material_free(default_canvas_group_material); |
| 2784 | material_storage->shader_free(default_canvas_group_shader); |
| 2785 | material_storage->material_free(default_clip_children_material); |
| 2786 | material_storage->shader_free(default_clip_children_shader); |
| 2787 | singleton = nullptr; |
| 2788 | |
| 2789 | glDeleteBuffers(1, &data.canvas_quad_vertices); |
| 2790 | glDeleteVertexArrays(1, &data.canvas_quad_array); |
| 2791 | |
| 2792 | glDeleteBuffers(1, &data.canvas_quad_vertices); |
| 2793 | glDeleteVertexArrays(1, &data.canvas_quad_array); |
| 2794 | |
| 2795 | GLES3::TextureStorage::get_singleton()->canvas_texture_free(default_canvas_texture); |
| 2796 | memdelete_arr(state.instance_data_array); |
| 2797 | memdelete_arr(state.light_uniforms); |
| 2798 | |
| 2799 | if (state.shadow_fb != 0) { |
| 2800 | glDeleteFramebuffers(1, &state.shadow_fb); |
| 2801 | GLES3::Utilities::get_singleton()->texture_free_data(state.shadow_texture); |
| 2802 | glDeleteRenderbuffers(1, &state.shadow_depth_buffer); |
| 2803 | state.shadow_fb = 0; |
| 2804 | state.shadow_texture = 0; |
| 2805 | state.shadow_depth_buffer = 0; |
| 2806 | } |
| 2807 | |
| 2808 | for (uint32_t i = 0; i < state.canvas_instance_data_buffers.size(); i++) { |
| 2809 | for (int j = 0; j < state.canvas_instance_data_buffers[i].instance_buffers.size(); j++) { |
| 2810 | if (state.canvas_instance_data_buffers[i].instance_buffers[j]) { |
| 2811 | GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].instance_buffers[j]); |
| 2812 | } |
| 2813 | } |
| 2814 | if (state.canvas_instance_data_buffers[i].light_ubo) { |
| 2815 | GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].light_ubo); |
| 2816 | } |
| 2817 | if (state.canvas_instance_data_buffers[i].state_ubo) { |
| 2818 | GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].state_ubo); |
| 2819 | } |
| 2820 | } |
| 2821 | } |
| 2822 | |
| 2823 | #endif // GLES3_ENABLED |
| 2824 | |