1 | /**************************************************************************/ |
2 | /* rasterizer_canvas_gles3.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "rasterizer_canvas_gles3.h" |
32 | |
33 | #ifdef GLES3_ENABLED |
34 | |
35 | #include "core/os/os.h" |
36 | #include "rasterizer_scene_gles3.h" |
37 | |
38 | #include "core/config/project_settings.h" |
39 | #include "core/math/geometry_2d.h" |
40 | #include "servers/rendering/rendering_server_default.h" |
41 | #include "storage/config.h" |
42 | #include "storage/material_storage.h" |
43 | #include "storage/mesh_storage.h" |
44 | #include "storage/particles_storage.h" |
45 | #include "storage/texture_storage.h" |
46 | |
47 | void RasterizerCanvasGLES3::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) { |
48 | p_mat4[0] = p_transform.columns[0][0]; |
49 | p_mat4[1] = p_transform.columns[0][1]; |
50 | p_mat4[2] = 0; |
51 | p_mat4[3] = 0; |
52 | p_mat4[4] = p_transform.columns[1][0]; |
53 | p_mat4[5] = p_transform.columns[1][1]; |
54 | p_mat4[6] = 0; |
55 | p_mat4[7] = 0; |
56 | p_mat4[8] = 0; |
57 | p_mat4[9] = 0; |
58 | p_mat4[10] = 1; |
59 | p_mat4[11] = 0; |
60 | p_mat4[12] = p_transform.columns[2][0]; |
61 | p_mat4[13] = p_transform.columns[2][1]; |
62 | p_mat4[14] = 0; |
63 | p_mat4[15] = 1; |
64 | } |
65 | |
66 | void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) { |
67 | p_mat2x4[0] = p_transform.columns[0][0]; |
68 | p_mat2x4[1] = p_transform.columns[1][0]; |
69 | p_mat2x4[2] = 0; |
70 | p_mat2x4[3] = p_transform.columns[2][0]; |
71 | |
72 | p_mat2x4[4] = p_transform.columns[0][1]; |
73 | p_mat2x4[5] = p_transform.columns[1][1]; |
74 | p_mat2x4[6] = 0; |
75 | p_mat2x4[7] = p_transform.columns[2][1]; |
76 | } |
77 | |
78 | void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) { |
79 | p_mat2x3[0] = p_transform.columns[0][0]; |
80 | p_mat2x3[1] = p_transform.columns[0][1]; |
81 | p_mat2x3[2] = p_transform.columns[1][0]; |
82 | p_mat2x3[3] = p_transform.columns[1][1]; |
83 | p_mat2x3[4] = p_transform.columns[2][0]; |
84 | p_mat2x3[5] = p_transform.columns[2][1]; |
85 | } |
86 | |
87 | void RasterizerCanvasGLES3::_update_transform_to_mat4(const Transform3D &p_transform, float *p_mat4) { |
88 | p_mat4[0] = p_transform.basis.rows[0][0]; |
89 | p_mat4[1] = p_transform.basis.rows[1][0]; |
90 | p_mat4[2] = p_transform.basis.rows[2][0]; |
91 | p_mat4[3] = 0; |
92 | p_mat4[4] = p_transform.basis.rows[0][1]; |
93 | p_mat4[5] = p_transform.basis.rows[1][1]; |
94 | p_mat4[6] = p_transform.basis.rows[2][1]; |
95 | p_mat4[7] = 0; |
96 | p_mat4[8] = p_transform.basis.rows[0][2]; |
97 | p_mat4[9] = p_transform.basis.rows[1][2]; |
98 | p_mat4[10] = p_transform.basis.rows[2][2]; |
99 | p_mat4[11] = 0; |
100 | p_mat4[12] = p_transform.origin.x; |
101 | p_mat4[13] = p_transform.origin.y; |
102 | p_mat4[14] = p_transform.origin.z; |
103 | p_mat4[15] = 1; |
104 | } |
105 | |
106 | void RasterizerCanvasGLES3::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, Light *p_directional_light_list, const Transform2D &p_canvas_transform, RS::CanvasItemTextureFilter p_default_filter, RS::CanvasItemTextureRepeat p_default_repeat, bool p_snap_2d_vertices_to_pixel, bool &r_sdf_used) { |
107 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
108 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
109 | GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); |
110 | |
111 | Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse(); |
112 | |
113 | // Clear out any state that may have been left from the 3D pass. |
114 | reset_canvas(); |
115 | |
116 | if (state.canvas_instance_data_buffers[state.current_data_buffer_index].fence != GLsync()) { |
117 | GLint syncStatus; |
118 | glGetSynciv(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence, GL_SYNC_STATUS, 1, nullptr, &syncStatus); |
119 | if (syncStatus == GL_UNSIGNALED) { |
120 | // If older than 2 frames, wait for sync OpenGL can have up to 3 frames in flight, any more and we need to sync anyway. |
121 | if (state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used < RSG::rasterizer->get_frame_number() - 2) { |
122 | #ifndef WEB_ENABLED |
123 | // On web, we do nothing as the glSubBufferData will force a sync anyway and WebGL does not like waiting. |
124 | glClientWaitSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence, 0, 100000000); // wait for up to 100ms |
125 | #endif |
126 | state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used = RSG::rasterizer->get_frame_number(); |
127 | glDeleteSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence); |
128 | state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = GLsync(); |
129 | } else { |
130 | // Used in last frame or frame before that. OpenGL can get up to two frames behind, so these buffers may still be in use |
131 | // Allocate a new buffer and use that. |
132 | _allocate_instance_data_buffer(); |
133 | } |
134 | } else { |
135 | // Already finished all rendering commands, we can use it. |
136 | state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used = RSG::rasterizer->get_frame_number(); |
137 | glDeleteSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence); |
138 | state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = GLsync(); |
139 | } |
140 | } |
141 | |
142 | //setup directional lights if exist |
143 | |
144 | uint32_t light_count = 0; |
145 | uint32_t directional_light_count = 0; |
146 | { |
147 | Light *l = p_directional_light_list; |
148 | uint32_t index = 0; |
149 | |
150 | while (l) { |
151 | if (index == data.max_lights_per_render) { |
152 | l->render_index_cache = -1; |
153 | l = l->next_ptr; |
154 | continue; |
155 | } |
156 | |
157 | CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal); |
158 | if (!clight) { //unused or invalid texture |
159 | l->render_index_cache = -1; |
160 | l = l->next_ptr; |
161 | ERR_CONTINUE(!clight); |
162 | } |
163 | |
164 | Vector2 canvas_light_dir = l->xform_cache.columns[1].normalized(); |
165 | |
166 | state.light_uniforms[index].position[0] = -canvas_light_dir.x; |
167 | state.light_uniforms[index].position[1] = -canvas_light_dir.y; |
168 | |
169 | _update_transform_2d_to_mat2x4(clight->shadow.directional_xform, state.light_uniforms[index].shadow_matrix); |
170 | |
171 | state.light_uniforms[index].height = l->height; //0..1 here |
172 | |
173 | for (int i = 0; i < 4; i++) { |
174 | state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255)); |
175 | state.light_uniforms[index].color[i] = l->color[i]; |
176 | } |
177 | |
178 | state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate |
179 | |
180 | if (state.shadow_fb != 0) { |
181 | state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth); |
182 | state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far; |
183 | state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset; |
184 | } else { |
185 | state.light_uniforms[index].shadow_pixel_size = 1.0; |
186 | state.light_uniforms[index].shadow_z_far_inv = 1.0; |
187 | state.light_uniforms[index].shadow_y_ofs = 0; |
188 | } |
189 | |
190 | state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT; |
191 | state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT; |
192 | |
193 | if (clight->shadow.enabled) { |
194 | state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW; |
195 | } |
196 | |
197 | l->render_index_cache = index; |
198 | |
199 | index++; |
200 | l = l->next_ptr; |
201 | } |
202 | |
203 | light_count = index; |
204 | directional_light_count = light_count; |
205 | state.using_directional_lights = directional_light_count > 0; |
206 | } |
207 | |
208 | //setup lights if exist |
209 | |
210 | { |
211 | Light *l = p_light_list; |
212 | uint32_t index = light_count; |
213 | |
214 | while (l) { |
215 | if (index == data.max_lights_per_render) { |
216 | l->render_index_cache = -1; |
217 | l = l->next_ptr; |
218 | continue; |
219 | } |
220 | |
221 | CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal); |
222 | if (!clight) { //unused or invalid texture |
223 | l->render_index_cache = -1; |
224 | l = l->next_ptr; |
225 | ERR_CONTINUE(!clight); |
226 | } |
227 | |
228 | Vector2 canvas_light_pos = p_canvas_transform.xform(l->xform.get_origin()); //convert light position to canvas coordinates, as all computation is done in canvas coords to avoid precision loss |
229 | state.light_uniforms[index].position[0] = canvas_light_pos.x; |
230 | state.light_uniforms[index].position[1] = canvas_light_pos.y; |
231 | |
232 | _update_transform_2d_to_mat2x4(l->light_shader_xform.affine_inverse(), state.light_uniforms[index].matrix); |
233 | _update_transform_2d_to_mat2x4(l->xform_cache.affine_inverse(), state.light_uniforms[index].shadow_matrix); |
234 | |
235 | state.light_uniforms[index].height = l->height * (p_canvas_transform.columns[0].length() + p_canvas_transform.columns[1].length()) * 0.5; //approximate height conversion to the canvas size, since all calculations are done in canvas coords to avoid precision loss |
236 | for (int i = 0; i < 4; i++) { |
237 | state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255)); |
238 | state.light_uniforms[index].color[i] = l->color[i]; |
239 | } |
240 | |
241 | state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate |
242 | |
243 | if (state.shadow_fb != 0) { |
244 | state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth); |
245 | state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far; |
246 | state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset; |
247 | } else { |
248 | state.light_uniforms[index].shadow_pixel_size = 1.0; |
249 | state.light_uniforms[index].shadow_z_far_inv = 1.0; |
250 | state.light_uniforms[index].shadow_y_ofs = 0; |
251 | } |
252 | |
253 | state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT; |
254 | state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT; |
255 | |
256 | if (clight->shadow.enabled) { |
257 | state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW; |
258 | } |
259 | |
260 | if (clight->texture.is_valid()) { |
261 | Rect2 atlas_rect = GLES3::TextureStorage::get_singleton()->texture_atlas_get_texture_rect(clight->texture); |
262 | state.light_uniforms[index].atlas_rect[0] = atlas_rect.position.x; |
263 | state.light_uniforms[index].atlas_rect[1] = atlas_rect.position.y; |
264 | state.light_uniforms[index].atlas_rect[2] = atlas_rect.size.width; |
265 | state.light_uniforms[index].atlas_rect[3] = atlas_rect.size.height; |
266 | |
267 | } else { |
268 | state.light_uniforms[index].atlas_rect[0] = 0; |
269 | state.light_uniforms[index].atlas_rect[1] = 0; |
270 | state.light_uniforms[index].atlas_rect[2] = 0; |
271 | state.light_uniforms[index].atlas_rect[3] = 0; |
272 | } |
273 | |
274 | l->render_index_cache = index; |
275 | |
276 | index++; |
277 | l = l->next_ptr; |
278 | } |
279 | |
280 | light_count = index; |
281 | } |
282 | |
283 | if (light_count > 0) { |
284 | glBindBufferBase(GL_UNIFORM_BUFFER, LIGHT_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_data_buffer_index].light_ubo); |
285 | |
286 | #ifdef WEB_ENABLED |
287 | glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightUniform) * light_count, state.light_uniforms); |
288 | #else |
289 | // On Desktop and mobile we map the memory without synchronizing for maximum speed. |
290 | void *ubo = glMapBufferRange(GL_UNIFORM_BUFFER, 0, sizeof(LightUniform) * light_count, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); |
291 | memcpy(ubo, state.light_uniforms, sizeof(LightUniform) * light_count); |
292 | glUnmapBuffer(GL_UNIFORM_BUFFER); |
293 | #endif |
294 | |
295 | GLuint texture_atlas = texture_storage->texture_atlas_get_texture(); |
296 | if (texture_atlas == 0) { |
297 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
298 | texture_atlas = tex->tex_id; |
299 | } |
300 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 2); |
301 | glBindTexture(GL_TEXTURE_2D, texture_atlas); |
302 | GLuint shadow_tex = state.shadow_texture; |
303 | if (shadow_tex == 0) { |
304 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
305 | shadow_tex = tex->tex_id; |
306 | } |
307 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 3); |
308 | glBindTexture(GL_TEXTURE_2D, shadow_tex); |
309 | } |
310 | |
311 | { |
312 | //update canvas state uniform buffer |
313 | StateBuffer state_buffer; |
314 | |
315 | Size2i ssize = texture_storage->render_target_get_size(p_to_render_target); |
316 | |
317 | // If we've overridden the render target's color texture, then we need |
318 | // to invert the Y axis, so 2D texture appear right side up. |
319 | // We're probably rendering directly to an XR device. |
320 | float y_scale = texture_storage->render_target_get_override_color(p_to_render_target).is_valid() ? -2.0f : 2.0f; |
321 | |
322 | Transform3D screen_transform; |
323 | screen_transform.translate_local(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f); |
324 | screen_transform.scale(Vector3(2.0f / ssize.width, y_scale / ssize.height, 1.0f)); |
325 | _update_transform_to_mat4(screen_transform, state_buffer.screen_transform); |
326 | _update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform); |
327 | |
328 | Transform2D normal_transform = p_canvas_transform; |
329 | normal_transform.columns[0].normalize(); |
330 | normal_transform.columns[1].normalize(); |
331 | normal_transform.columns[2] = Vector2(); |
332 | _update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform); |
333 | |
334 | state_buffer.canvas_modulate[0] = p_modulate.r; |
335 | state_buffer.canvas_modulate[1] = p_modulate.g; |
336 | state_buffer.canvas_modulate[2] = p_modulate.b; |
337 | state_buffer.canvas_modulate[3] = p_modulate.a; |
338 | |
339 | Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target); |
340 | state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x; |
341 | state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y; |
342 | |
343 | state_buffer.time = state.time; |
344 | state_buffer.use_pixel_snap = p_snap_2d_vertices_to_pixel; |
345 | |
346 | state_buffer.directional_light_count = directional_light_count; |
347 | |
348 | Vector2 canvas_scale = p_canvas_transform.get_scale(); |
349 | |
350 | state_buffer.sdf_to_screen[0] = render_target_size.width / canvas_scale.x; |
351 | state_buffer.sdf_to_screen[1] = render_target_size.height / canvas_scale.y; |
352 | |
353 | state_buffer.screen_to_sdf[0] = 1.0 / state_buffer.sdf_to_screen[0]; |
354 | state_buffer.screen_to_sdf[1] = 1.0 / state_buffer.sdf_to_screen[1]; |
355 | |
356 | Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_to_render_target); |
357 | Rect2 sdf_tex_rect(sdf_rect.position / canvas_scale, sdf_rect.size / canvas_scale); |
358 | |
359 | state_buffer.sdf_to_tex[0] = 1.0 / sdf_tex_rect.size.width; |
360 | state_buffer.sdf_to_tex[1] = 1.0 / sdf_tex_rect.size.height; |
361 | state_buffer.sdf_to_tex[2] = -sdf_tex_rect.position.x / sdf_tex_rect.size.width; |
362 | state_buffer.sdf_to_tex[3] = -sdf_tex_rect.position.y / sdf_tex_rect.size.height; |
363 | |
364 | state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5); |
365 | |
366 | glBindBufferBase(GL_UNIFORM_BUFFER, BASE_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_data_buffer_index].state_ubo); |
367 | glBufferData(GL_UNIFORM_BUFFER, sizeof(StateBuffer), &state_buffer, GL_STREAM_DRAW); |
368 | |
369 | GLuint global_buffer = material_storage->global_shader_parameters_get_uniform_buffer(); |
370 | |
371 | glBindBufferBase(GL_UNIFORM_BUFFER, GLOBAL_UNIFORM_LOCATION, global_buffer); |
372 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
373 | } |
374 | |
375 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 5); |
376 | glBindTexture(GL_TEXTURE_2D, texture_storage->render_target_get_sdf_texture(p_to_render_target)); |
377 | |
378 | { |
379 | state.default_filter = p_default_filter; |
380 | state.default_repeat = p_default_repeat; |
381 | } |
382 | |
383 | Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target); |
384 | glViewport(0, 0, render_target_size.x, render_target_size.y); |
385 | |
386 | r_sdf_used = false; |
387 | int item_count = 0; |
388 | bool backbuffer_cleared = false; |
389 | bool time_used = false; |
390 | bool material_screen_texture_cached = false; |
391 | bool material_screen_texture_mipmaps_cached = false; |
392 | Rect2 back_buffer_rect; |
393 | bool backbuffer_copy = false; |
394 | bool backbuffer_gen_mipmaps = false; |
395 | bool update_skeletons = false; |
396 | |
397 | Item *ci = p_item_list; |
398 | Item *canvas_group_owner = nullptr; |
399 | bool skip_item = false; |
400 | |
401 | state.last_item_index = 0; |
402 | |
403 | while (ci) { |
404 | if (ci->copy_back_buffer && canvas_group_owner == nullptr) { |
405 | backbuffer_copy = true; |
406 | |
407 | if (ci->copy_back_buffer->full) { |
408 | back_buffer_rect = Rect2(); |
409 | } else { |
410 | back_buffer_rect = ci->copy_back_buffer->rect; |
411 | } |
412 | } |
413 | |
414 | // Check material for something that may change flow of rendering, but do not bind for now. |
415 | RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; |
416 | if (material.is_valid()) { |
417 | GLES3::CanvasMaterialData *md = static_cast<GLES3::CanvasMaterialData *>(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM)); |
418 | if (md && md->shader_data->valid) { |
419 | if (md->shader_data->uses_screen_texture && canvas_group_owner == nullptr) { |
420 | if (!material_screen_texture_cached) { |
421 | backbuffer_copy = true; |
422 | back_buffer_rect = Rect2(); |
423 | backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps; |
424 | } else if (!material_screen_texture_mipmaps_cached) { |
425 | backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps; |
426 | } |
427 | } |
428 | |
429 | if (md->shader_data->uses_sdf) { |
430 | r_sdf_used = true; |
431 | } |
432 | if (md->shader_data->uses_time) { |
433 | time_used = true; |
434 | } |
435 | } |
436 | } |
437 | |
438 | if (ci->skeleton.is_valid()) { |
439 | const Item::Command *c = ci->commands; |
440 | |
441 | while (c) { |
442 | if (c->type == Item::Command::TYPE_MESH) { |
443 | const Item::CommandMesh *cm = static_cast<const Item::CommandMesh *>(c); |
444 | if (cm->mesh_instance.is_valid()) { |
445 | mesh_storage->mesh_instance_check_for_update(cm->mesh_instance); |
446 | mesh_storage->mesh_instance_set_canvas_item_transform(cm->mesh_instance, canvas_transform_inverse * ci->final_transform); |
447 | update_skeletons = true; |
448 | } |
449 | } |
450 | c = c->next; |
451 | } |
452 | } |
453 | |
454 | if (ci->canvas_group_owner != nullptr) { |
455 | if (canvas_group_owner == nullptr) { |
456 | if (update_skeletons) { |
457 | mesh_storage->update_mesh_instances(); |
458 | update_skeletons = false; |
459 | } |
460 | // Canvas group begins here, render until before this item |
461 | _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used); |
462 | item_count = 0; |
463 | |
464 | if (ci->canvas_group_owner->canvas_group->mode != RS::CANVAS_GROUP_MODE_TRANSPARENT) { |
465 | Rect2i group_rect = ci->canvas_group_owner->global_rect_cache; |
466 | texture_storage->render_target_copy_to_back_buffer(p_to_render_target, group_rect, false); |
467 | if (ci->canvas_group_owner->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { |
468 | ci->canvas_group_owner->use_canvas_group = false; |
469 | items[item_count++] = ci->canvas_group_owner; |
470 | } |
471 | } else if (!backbuffer_cleared) { |
472 | texture_storage->render_target_clear_back_buffer(p_to_render_target, Rect2i(), Color(0, 0, 0, 0)); |
473 | backbuffer_cleared = true; |
474 | } |
475 | |
476 | backbuffer_copy = false; |
477 | canvas_group_owner = ci->canvas_group_owner; //continue until owner found |
478 | } |
479 | |
480 | ci->canvas_group_owner = nullptr; //must be cleared |
481 | } |
482 | |
483 | if (canvas_group_owner == nullptr && ci->canvas_group != nullptr && ci->canvas_group->mode != RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { |
484 | skip_item = true; |
485 | } |
486 | |
487 | if (ci == canvas_group_owner) { |
488 | if (update_skeletons) { |
489 | mesh_storage->update_mesh_instances(); |
490 | update_skeletons = false; |
491 | } |
492 | _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, true); |
493 | item_count = 0; |
494 | |
495 | if (ci->canvas_group->blur_mipmaps) { |
496 | texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, ci->global_rect_cache); |
497 | } |
498 | |
499 | canvas_group_owner = nullptr; |
500 | // Backbuffer is dirty now and needs to be re-cleared if another CanvasGroup needs it. |
501 | backbuffer_cleared = false; |
502 | |
503 | // Tell the renderer to paint this as a canvas group |
504 | ci->use_canvas_group = true; |
505 | } else { |
506 | ci->use_canvas_group = false; |
507 | } |
508 | |
509 | if (backbuffer_copy) { |
510 | if (update_skeletons) { |
511 | mesh_storage->update_mesh_instances(); |
512 | update_skeletons = false; |
513 | } |
514 | //render anything pending, including clearing if no items |
515 | |
516 | _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used); |
517 | item_count = 0; |
518 | |
519 | texture_storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect, backbuffer_gen_mipmaps); |
520 | |
521 | backbuffer_copy = false; |
522 | material_screen_texture_cached = true; // After a backbuffer copy, screen texture makes no further copies. |
523 | material_screen_texture_mipmaps_cached = backbuffer_gen_mipmaps; |
524 | backbuffer_gen_mipmaps = false; |
525 | } |
526 | |
527 | if (backbuffer_gen_mipmaps) { |
528 | texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, back_buffer_rect); |
529 | |
530 | backbuffer_gen_mipmaps = false; |
531 | material_screen_texture_mipmaps_cached = true; |
532 | } |
533 | |
534 | // just add all items for now |
535 | if (skip_item) { |
536 | skip_item = false; |
537 | } else { |
538 | items[item_count++] = ci; |
539 | } |
540 | |
541 | if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) { |
542 | if (update_skeletons) { |
543 | mesh_storage->update_mesh_instances(); |
544 | update_skeletons = false; |
545 | } |
546 | _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, canvas_group_owner != nullptr); |
547 | //then reset |
548 | item_count = 0; |
549 | } |
550 | |
551 | ci = ci->next; |
552 | } |
553 | |
554 | if (time_used) { |
555 | RenderingServerDefault::redraw_request(); |
556 | } |
557 | |
558 | state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); |
559 | |
560 | // Clear out state used in 2D pass |
561 | reset_canvas(); |
562 | state.current_data_buffer_index = (state.current_data_buffer_index + 1) % state.canvas_instance_data_buffers.size(); |
563 | state.current_instance_buffer_index = 0; |
564 | } |
565 | |
566 | void RasterizerCanvasGLES3::_render_items(RID p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, bool &r_sdf_used, bool p_to_backbuffer) { |
567 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
568 | |
569 | canvas_begin(p_to_render_target, p_to_backbuffer); |
570 | |
571 | if (p_item_count <= 0) { |
572 | // Nothing to draw, just call canvas_begin() to clear the render target and return. |
573 | return; |
574 | } |
575 | |
576 | uint32_t index = 0; |
577 | Item *current_clip = nullptr; |
578 | GLES3::CanvasShaderData *shader_data_cache = nullptr; |
579 | |
580 | // Record Batches. |
581 | // First item always forms its own batch. |
582 | bool batch_broken = false; |
583 | _new_batch(batch_broken); |
584 | |
585 | // Override the start position and index as we want to start from where we finished off last time. |
586 | state.canvas_instance_batches[state.current_batch_index].start = state.last_item_index; |
587 | index = 0; |
588 | |
589 | for (int i = 0; i < p_item_count; i++) { |
590 | Item *ci = items[i]; |
591 | |
592 | if (ci->final_clip_owner != state.canvas_instance_batches[state.current_batch_index].clip) { |
593 | _new_batch(batch_broken); |
594 | state.canvas_instance_batches[state.current_batch_index].clip = ci->final_clip_owner; |
595 | current_clip = ci->final_clip_owner; |
596 | } |
597 | |
598 | RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; |
599 | if (ci->use_canvas_group) { |
600 | if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { |
601 | material = default_clip_children_material; |
602 | } else { |
603 | if (material.is_null()) { |
604 | if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_ONLY) { |
605 | material = default_clip_children_material; |
606 | } else { |
607 | material = default_canvas_group_material; |
608 | } |
609 | } |
610 | } |
611 | } |
612 | |
613 | if (material != state.canvas_instance_batches[state.current_batch_index].material) { |
614 | _new_batch(batch_broken); |
615 | |
616 | GLES3::CanvasMaterialData *material_data = nullptr; |
617 | if (material.is_valid()) { |
618 | material_data = static_cast<GLES3::CanvasMaterialData *>(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM)); |
619 | } |
620 | shader_data_cache = nullptr; |
621 | if (material_data) { |
622 | if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { |
623 | shader_data_cache = material_data->shader_data; |
624 | } |
625 | } |
626 | |
627 | state.canvas_instance_batches[state.current_batch_index].material = material; |
628 | state.canvas_instance_batches[state.current_batch_index].material_data = material_data; |
629 | } |
630 | |
631 | GLES3::CanvasShaderData::BlendMode blend_mode = shader_data_cache ? shader_data_cache->blend_mode : GLES3::CanvasShaderData::BLEND_MODE_MIX; |
632 | |
633 | _record_item_commands(ci, p_to_render_target, p_canvas_transform_inverse, current_clip, blend_mode, p_lights, index, batch_broken, r_sdf_used); |
634 | } |
635 | |
636 | if (index == 0) { |
637 | // Nothing to render, just return. |
638 | state.current_batch_index = 0; |
639 | state.canvas_instance_batches.clear(); |
640 | return; |
641 | } |
642 | |
643 | // Copy over all data needed for rendering. |
644 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index]); |
645 | #ifdef WEB_ENABLED |
646 | glBufferSubData(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), sizeof(InstanceData) * index, state.instance_data_array); |
647 | #else |
648 | // On Desktop and mobile we map the memory without synchronizing for maximum speed. |
649 | void *buffer = glMapBufferRange(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), index * sizeof(InstanceData), GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); |
650 | memcpy(buffer, state.instance_data_array, index * sizeof(InstanceData)); |
651 | glUnmapBuffer(GL_ARRAY_BUFFER); |
652 | #endif |
653 | |
654 | glDisable(GL_SCISSOR_TEST); |
655 | current_clip = nullptr; |
656 | |
657 | GLES3::CanvasShaderData::BlendMode last_blend_mode = GLES3::CanvasShaderData::BLEND_MODE_MIX; |
658 | Color last_blend_color; |
659 | |
660 | state.current_tex = RID(); |
661 | |
662 | for (uint32_t i = 0; i <= state.current_batch_index; i++) { |
663 | //setup clip |
664 | if (current_clip != state.canvas_instance_batches[i].clip) { |
665 | current_clip = state.canvas_instance_batches[i].clip; |
666 | if (current_clip) { |
667 | glEnable(GL_SCISSOR_TEST); |
668 | glScissor(current_clip->final_clip_rect.position.x, current_clip->final_clip_rect.position.y, current_clip->final_clip_rect.size.x, current_clip->final_clip_rect.size.y); |
669 | } else { |
670 | glDisable(GL_SCISSOR_TEST); |
671 | } |
672 | } |
673 | |
674 | GLES3::CanvasMaterialData *material_data = state.canvas_instance_batches[i].material_data; |
675 | CanvasShaderGLES3::ShaderVariant variant = state.canvas_instance_batches[i].shader_variant; |
676 | uint64_t specialization = 0; |
677 | specialization |= uint64_t(state.canvas_instance_batches[i].lights_disabled); |
678 | specialization |= uint64_t(!GLES3::Config::get_singleton()->float_texture_supported) << 1; |
679 | RID shader_version = data.canvas_shader_default_version; |
680 | |
681 | if (material_data) { |
682 | if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { |
683 | // Bind uniform buffer and textures |
684 | material_data->bind_uniforms(); |
685 | shader_version = material_data->shader_data->version; |
686 | } |
687 | } |
688 | |
689 | bool success = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(shader_version, variant, specialization); |
690 | if (!success) { |
691 | continue; |
692 | } |
693 | |
694 | GLES3::CanvasShaderData::BlendMode blend_mode = state.canvas_instance_batches[i].blend_mode; |
695 | Color blend_color = state.canvas_instance_batches[i].blend_color; |
696 | |
697 | if (last_blend_mode != blend_mode || last_blend_color != blend_color) { |
698 | if (last_blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) { |
699 | // re-enable it |
700 | glEnable(GL_BLEND); |
701 | } else if (blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) { |
702 | // disable it |
703 | glDisable(GL_BLEND); |
704 | } |
705 | |
706 | switch (blend_mode) { |
707 | case GLES3::CanvasShaderData::BLEND_MODE_DISABLED: { |
708 | // Nothing to do here. |
709 | } break; |
710 | case GLES3::CanvasShaderData::BLEND_MODE_LCD: { |
711 | glBlendEquation(GL_FUNC_ADD); |
712 | if (state.transparent_render_target) { |
713 | glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
714 | } else { |
715 | glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_ZERO, GL_ONE); |
716 | } |
717 | glBlendColor(blend_color.r, blend_color.g, blend_color.b, blend_color.a); |
718 | |
719 | } break; |
720 | case GLES3::CanvasShaderData::BLEND_MODE_MIX: { |
721 | glBlendEquation(GL_FUNC_ADD); |
722 | if (state.transparent_render_target) { |
723 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
724 | } else { |
725 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
726 | } |
727 | |
728 | } break; |
729 | case GLES3::CanvasShaderData::BLEND_MODE_ADD: { |
730 | glBlendEquation(GL_FUNC_ADD); |
731 | if (state.transparent_render_target) { |
732 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); |
733 | } else { |
734 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE); |
735 | } |
736 | |
737 | } break; |
738 | case GLES3::CanvasShaderData::BLEND_MODE_SUB: { |
739 | glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); |
740 | if (state.transparent_render_target) { |
741 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); |
742 | } else { |
743 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE); |
744 | } |
745 | } break; |
746 | case GLES3::CanvasShaderData::BLEND_MODE_MUL: { |
747 | glBlendEquation(GL_FUNC_ADD); |
748 | if (state.transparent_render_target) { |
749 | glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); |
750 | } else { |
751 | glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); |
752 | } |
753 | |
754 | } break; |
755 | case GLES3::CanvasShaderData::BLEND_MODE_PMALPHA: { |
756 | glBlendEquation(GL_FUNC_ADD); |
757 | if (state.transparent_render_target) { |
758 | glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
759 | } else { |
760 | glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
761 | } |
762 | |
763 | } break; |
764 | } |
765 | last_blend_mode = blend_mode; |
766 | last_blend_color = blend_color; |
767 | } |
768 | |
769 | _render_batch(p_lights, i); |
770 | } |
771 | |
772 | state.current_batch_index = 0; |
773 | state.canvas_instance_batches.clear(); |
774 | state.last_item_index += index; |
775 | } |
776 | |
777 | void RasterizerCanvasGLES3::_record_item_commands(const Item *p_item, RID p_render_target, const Transform2D &p_canvas_transform_inverse, Item *¤t_clip, GLES3::CanvasShaderData::BlendMode p_blend_mode, Light *p_lights, uint32_t &r_index, bool &r_batch_broken, bool &r_sdf_used) { |
778 | RenderingServer::CanvasItemTextureFilter texture_filter = p_item->texture_filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? state.default_filter : p_item->texture_filter; |
779 | |
780 | if (texture_filter != state.canvas_instance_batches[state.current_batch_index].filter) { |
781 | _new_batch(r_batch_broken); |
782 | |
783 | state.canvas_instance_batches[state.current_batch_index].filter = texture_filter; |
784 | } |
785 | |
786 | RenderingServer::CanvasItemTextureRepeat texture_repeat = p_item->texture_repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? state.default_repeat : p_item->texture_repeat; |
787 | |
788 | if (texture_repeat != state.canvas_instance_batches[state.current_batch_index].repeat) { |
789 | _new_batch(r_batch_broken); |
790 | |
791 | state.canvas_instance_batches[state.current_batch_index].repeat = texture_repeat; |
792 | } |
793 | |
794 | Transform2D base_transform = p_canvas_transform_inverse * p_item->final_transform; |
795 | Transform2D draw_transform; // Used by transform command |
796 | |
797 | Color base_color = p_item->final_modulate; |
798 | uint32_t base_flags = 0; |
799 | Size2 texpixel_size; |
800 | |
801 | bool reclip = false; |
802 | |
803 | bool skipping = false; |
804 | |
805 | // TODO: consider making lights a per-batch property and then baking light operations in the shader for better performance. |
806 | uint32_t lights[4] = { 0, 0, 0, 0 }; |
807 | |
808 | uint16_t light_count = 0; |
809 | |
810 | { |
811 | Light *light = p_lights; |
812 | |
813 | while (light) { |
814 | if (light->render_index_cache >= 0 && p_item->light_mask & light->item_mask && p_item->z_final >= light->z_min && p_item->z_final <= light->z_max && p_item->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) { |
815 | uint32_t light_index = light->render_index_cache; |
816 | lights[light_count >> 2] |= light_index << ((light_count & 3) * 8); |
817 | |
818 | light_count++; |
819 | |
820 | if (light_count == data.max_lights_per_item - 1) { |
821 | break; |
822 | } |
823 | } |
824 | light = light->next_ptr; |
825 | } |
826 | |
827 | base_flags |= light_count << FLAGS_LIGHT_COUNT_SHIFT; |
828 | } |
829 | |
830 | bool lights_disabled = light_count == 0 && !state.using_directional_lights; |
831 | |
832 | if (lights_disabled != state.canvas_instance_batches[state.current_batch_index].lights_disabled) { |
833 | _new_batch(r_batch_broken); |
834 | state.canvas_instance_batches[state.current_batch_index].lights_disabled = lights_disabled; |
835 | } |
836 | |
837 | const Item::Command *c = p_item->commands; |
838 | while (c) { |
839 | if (skipping && c->type != Item::Command::TYPE_ANIMATION_SLICE) { |
840 | c = c->next; |
841 | continue; |
842 | } |
843 | |
844 | if (c->type != Item::Command::TYPE_MESH) { |
845 | // For Meshes, this gets updated below. |
846 | _update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world); |
847 | } |
848 | |
849 | // Zero out most fields. |
850 | for (int i = 0; i < 4; i++) { |
851 | state.instance_data_array[r_index].modulation[i] = 0.0; |
852 | state.instance_data_array[r_index].ninepatch_margins[i] = 0.0; |
853 | state.instance_data_array[r_index].src_rect[i] = 0.0; |
854 | state.instance_data_array[r_index].dst_rect[i] = 0.0; |
855 | state.instance_data_array[r_index].lights[i] = uint32_t(0); |
856 | } |
857 | state.instance_data_array[r_index].color_texture_pixel_size[0] = 0.0; |
858 | state.instance_data_array[r_index].color_texture_pixel_size[1] = 0.0; |
859 | |
860 | state.instance_data_array[r_index].pad[0] = 0.0; |
861 | state.instance_data_array[r_index].pad[1] = 0.0; |
862 | |
863 | state.instance_data_array[r_index].lights[0] = lights[0]; |
864 | state.instance_data_array[r_index].lights[1] = lights[1]; |
865 | state.instance_data_array[r_index].lights[2] = lights[2]; |
866 | state.instance_data_array[r_index].lights[3] = lights[3]; |
867 | |
868 | state.instance_data_array[r_index].flags = base_flags | (state.instance_data_array[r_index == 0 ? 0 : r_index - 1].flags & (FLAGS_DEFAULT_NORMAL_MAP_USED | FLAGS_DEFAULT_SPECULAR_MAP_USED)); //reset on each command for sanity, keep canvastexture binding config |
869 | |
870 | Color blend_color = base_color; |
871 | GLES3::CanvasShaderData::BlendMode blend_mode = p_blend_mode; |
872 | if (c->type == Item::Command::TYPE_RECT) { |
873 | const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c); |
874 | if (rect->flags & CANVAS_RECT_LCD) { |
875 | blend_mode = GLES3::CanvasShaderData::BLEND_MODE_LCD; |
876 | blend_color = rect->modulate * base_color; |
877 | } |
878 | } |
879 | |
880 | if (blend_mode != state.canvas_instance_batches[state.current_batch_index].blend_mode || blend_color != state.canvas_instance_batches[state.current_batch_index].blend_color) { |
881 | _new_batch(r_batch_broken); |
882 | state.canvas_instance_batches[state.current_batch_index].blend_mode = blend_mode; |
883 | state.canvas_instance_batches[state.current_batch_index].blend_color = blend_color; |
884 | } |
885 | |
886 | switch (c->type) { |
887 | case Item::Command::TYPE_RECT: { |
888 | const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c); |
889 | |
890 | if (rect->flags & CANVAS_RECT_TILE && state.canvas_instance_batches[state.current_batch_index].repeat != RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED) { |
891 | _new_batch(r_batch_broken); |
892 | state.canvas_instance_batches[state.current_batch_index].repeat = RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED; |
893 | } |
894 | |
895 | if (rect->texture != state.canvas_instance_batches[state.current_batch_index].tex || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_RECT) { |
896 | _new_batch(r_batch_broken); |
897 | state.canvas_instance_batches[state.current_batch_index].tex = rect->texture; |
898 | state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_RECT; |
899 | state.canvas_instance_batches[state.current_batch_index].command = c; |
900 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_QUAD; |
901 | } |
902 | |
903 | _prepare_canvas_texture(rect->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
904 | |
905 | Rect2 src_rect; |
906 | Rect2 dst_rect; |
907 | |
908 | if (rect->texture != RID()) { |
909 | src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * texpixel_size, rect->source.size * texpixel_size) : Rect2(0, 0, 1, 1); |
910 | dst_rect = Rect2(rect->rect.position, rect->rect.size); |
911 | |
912 | if (dst_rect.size.width < 0) { |
913 | dst_rect.position.x += dst_rect.size.width; |
914 | dst_rect.size.width *= -1; |
915 | } |
916 | if (dst_rect.size.height < 0) { |
917 | dst_rect.position.y += dst_rect.size.height; |
918 | dst_rect.size.height *= -1; |
919 | } |
920 | |
921 | if (rect->flags & CANVAS_RECT_FLIP_H) { |
922 | src_rect.size.x *= -1; |
923 | state.instance_data_array[r_index].flags |= FLAGS_FLIP_H; |
924 | } |
925 | |
926 | if (rect->flags & CANVAS_RECT_FLIP_V) { |
927 | src_rect.size.y *= -1; |
928 | state.instance_data_array[r_index].flags |= FLAGS_FLIP_V; |
929 | } |
930 | |
931 | if (rect->flags & CANVAS_RECT_TRANSPOSE) { |
932 | state.instance_data_array[r_index].flags |= FLAGS_TRANSPOSE_RECT; |
933 | } |
934 | |
935 | if (rect->flags & CANVAS_RECT_CLIP_UV) { |
936 | state.instance_data_array[r_index].flags |= FLAGS_CLIP_RECT_UV; |
937 | } |
938 | |
939 | } else { |
940 | dst_rect = Rect2(rect->rect.position, rect->rect.size); |
941 | |
942 | if (dst_rect.size.width < 0) { |
943 | dst_rect.position.x += dst_rect.size.width; |
944 | dst_rect.size.width *= -1; |
945 | } |
946 | if (dst_rect.size.height < 0) { |
947 | dst_rect.position.y += dst_rect.size.height; |
948 | dst_rect.size.height *= -1; |
949 | } |
950 | |
951 | src_rect = Rect2(0, 0, 1, 1); |
952 | } |
953 | |
954 | if (rect->flags & CANVAS_RECT_MSDF) { |
955 | state.instance_data_array[r_index].flags |= FLAGS_USE_MSDF; |
956 | state.instance_data_array[r_index].msdf[0] = rect->px_range; // Pixel range. |
957 | state.instance_data_array[r_index].msdf[1] = rect->outline; // Outline size. |
958 | state.instance_data_array[r_index].msdf[2] = 0.f; // Reserved. |
959 | state.instance_data_array[r_index].msdf[3] = 0.f; // Reserved. |
960 | } else if (rect->flags & CANVAS_RECT_LCD) { |
961 | state.instance_data_array[r_index].flags |= FLAGS_USE_LCD; |
962 | } |
963 | |
964 | state.instance_data_array[r_index].modulation[0] = rect->modulate.r * base_color.r; |
965 | state.instance_data_array[r_index].modulation[1] = rect->modulate.g * base_color.g; |
966 | state.instance_data_array[r_index].modulation[2] = rect->modulate.b * base_color.b; |
967 | state.instance_data_array[r_index].modulation[3] = rect->modulate.a * base_color.a; |
968 | |
969 | state.instance_data_array[r_index].src_rect[0] = src_rect.position.x; |
970 | state.instance_data_array[r_index].src_rect[1] = src_rect.position.y; |
971 | state.instance_data_array[r_index].src_rect[2] = src_rect.size.width; |
972 | state.instance_data_array[r_index].src_rect[3] = src_rect.size.height; |
973 | |
974 | state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x; |
975 | state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y; |
976 | state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width; |
977 | state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height; |
978 | |
979 | _add_to_batch(r_index, r_batch_broken); |
980 | } break; |
981 | |
982 | case Item::Command::TYPE_NINEPATCH: { |
983 | const Item::CommandNinePatch *np = static_cast<const Item::CommandNinePatch *>(c); |
984 | |
985 | if (np->texture != state.canvas_instance_batches[state.current_batch_index].tex || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_NINEPATCH) { |
986 | _new_batch(r_batch_broken); |
987 | state.canvas_instance_batches[state.current_batch_index].tex = np->texture; |
988 | state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_NINEPATCH; |
989 | state.canvas_instance_batches[state.current_batch_index].command = c; |
990 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_NINEPATCH; |
991 | } |
992 | |
993 | _prepare_canvas_texture(np->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
994 | |
995 | Rect2 src_rect; |
996 | Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y); |
997 | |
998 | if (np->texture == RID()) { |
999 | texpixel_size = Size2(1, 1); |
1000 | src_rect = Rect2(0, 0, 1, 1); |
1001 | |
1002 | } else { |
1003 | if (np->source != Rect2()) { |
1004 | src_rect = Rect2(np->source.position.x * texpixel_size.width, np->source.position.y * texpixel_size.height, np->source.size.x * texpixel_size.width, np->source.size.y * texpixel_size.height); |
1005 | state.instance_data_array[r_index].color_texture_pixel_size[0] = 1.0 / np->source.size.width; |
1006 | state.instance_data_array[r_index].color_texture_pixel_size[1] = 1.0 / np->source.size.height; |
1007 | |
1008 | } else { |
1009 | src_rect = Rect2(0, 0, 1, 1); |
1010 | } |
1011 | } |
1012 | |
1013 | state.instance_data_array[r_index].modulation[0] = np->color.r * base_color.r; |
1014 | state.instance_data_array[r_index].modulation[1] = np->color.g * base_color.g; |
1015 | state.instance_data_array[r_index].modulation[2] = np->color.b * base_color.b; |
1016 | state.instance_data_array[r_index].modulation[3] = np->color.a * base_color.a; |
1017 | |
1018 | state.instance_data_array[r_index].src_rect[0] = src_rect.position.x; |
1019 | state.instance_data_array[r_index].src_rect[1] = src_rect.position.y; |
1020 | state.instance_data_array[r_index].src_rect[2] = src_rect.size.width; |
1021 | state.instance_data_array[r_index].src_rect[3] = src_rect.size.height; |
1022 | |
1023 | state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x; |
1024 | state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y; |
1025 | state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width; |
1026 | state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height; |
1027 | |
1028 | state.instance_data_array[r_index].flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT; |
1029 | state.instance_data_array[r_index].flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT; |
1030 | |
1031 | if (np->draw_center) { |
1032 | state.instance_data_array[r_index].flags |= FLAGS_NINEPACH_DRAW_CENTER; |
1033 | } |
1034 | |
1035 | state.instance_data_array[r_index].ninepatch_margins[0] = np->margin[SIDE_LEFT]; |
1036 | state.instance_data_array[r_index].ninepatch_margins[1] = np->margin[SIDE_TOP]; |
1037 | state.instance_data_array[r_index].ninepatch_margins[2] = np->margin[SIDE_RIGHT]; |
1038 | state.instance_data_array[r_index].ninepatch_margins[3] = np->margin[SIDE_BOTTOM]; |
1039 | |
1040 | _add_to_batch(r_index, r_batch_broken); |
1041 | |
1042 | // Restore if overridden. |
1043 | state.instance_data_array[r_index].color_texture_pixel_size[0] = texpixel_size.x; |
1044 | state.instance_data_array[r_index].color_texture_pixel_size[1] = texpixel_size.y; |
1045 | } break; |
1046 | |
1047 | case Item::Command::TYPE_POLYGON: { |
1048 | const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(c); |
1049 | |
1050 | // Polygon's can't be batched, so always create a new batch |
1051 | _new_batch(r_batch_broken); |
1052 | |
1053 | state.canvas_instance_batches[state.current_batch_index].tex = polygon->texture; |
1054 | state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_POLYGON; |
1055 | state.canvas_instance_batches[state.current_batch_index].command = c; |
1056 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_ATTRIBUTES; |
1057 | |
1058 | _prepare_canvas_texture(polygon->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
1059 | |
1060 | state.instance_data_array[r_index].modulation[0] = base_color.r; |
1061 | state.instance_data_array[r_index].modulation[1] = base_color.g; |
1062 | state.instance_data_array[r_index].modulation[2] = base_color.b; |
1063 | state.instance_data_array[r_index].modulation[3] = base_color.a; |
1064 | |
1065 | for (int j = 0; j < 4; j++) { |
1066 | state.instance_data_array[r_index].src_rect[j] = 0; |
1067 | state.instance_data_array[r_index].dst_rect[j] = 0; |
1068 | state.instance_data_array[r_index].ninepatch_margins[j] = 0; |
1069 | } |
1070 | |
1071 | _add_to_batch(r_index, r_batch_broken); |
1072 | } break; |
1073 | |
1074 | case Item::Command::TYPE_PRIMITIVE: { |
1075 | const Item::CommandPrimitive *primitive = static_cast<const Item::CommandPrimitive *>(c); |
1076 | |
1077 | if (primitive->point_count != state.canvas_instance_batches[state.current_batch_index].primitive_points || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_PRIMITIVE) { |
1078 | _new_batch(r_batch_broken); |
1079 | state.canvas_instance_batches[state.current_batch_index].tex = primitive->texture; |
1080 | state.canvas_instance_batches[state.current_batch_index].primitive_points = primitive->point_count; |
1081 | state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_PRIMITIVE; |
1082 | state.canvas_instance_batches[state.current_batch_index].command = c; |
1083 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_PRIMITIVE; |
1084 | } |
1085 | |
1086 | _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
1087 | |
1088 | for (uint32_t j = 0; j < MIN(3u, primitive->point_count); j++) { |
1089 | state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j].x; |
1090 | state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j].y; |
1091 | state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j].x; |
1092 | state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j].y; |
1093 | Color col = primitive->colors[j] * base_color; |
1094 | state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); |
1095 | state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); |
1096 | } |
1097 | |
1098 | _add_to_batch(r_index, r_batch_broken); |
1099 | |
1100 | if (primitive->point_count == 4) { |
1101 | // Reset base data. |
1102 | _update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world); |
1103 | _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
1104 | |
1105 | for (uint32_t j = 0; j < 3; j++) { |
1106 | int offset = j == 0 ? 0 : 1; |
1107 | // Second triangle in the quad. Uses vertices 0, 2, 3. |
1108 | state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j + offset].x; |
1109 | state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j + offset].y; |
1110 | state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j + offset].x; |
1111 | state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j + offset].y; |
1112 | Color col = primitive->colors[j + offset] * base_color; |
1113 | state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); |
1114 | state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); |
1115 | } |
1116 | |
1117 | _add_to_batch(r_index, r_batch_broken); |
1118 | } |
1119 | } break; |
1120 | |
1121 | case Item::Command::TYPE_MESH: |
1122 | case Item::Command::TYPE_MULTIMESH: |
1123 | case Item::Command::TYPE_PARTICLES: { |
1124 | // Mesh's can't be batched, so always create a new batch |
1125 | _new_batch(r_batch_broken); |
1126 | |
1127 | Color modulate(1, 1, 1, 1); |
1128 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_ATTRIBUTES; |
1129 | if (c->type == Item::Command::TYPE_MESH) { |
1130 | const Item::CommandMesh *m = static_cast<const Item::CommandMesh *>(c); |
1131 | state.canvas_instance_batches[state.current_batch_index].tex = m->texture; |
1132 | _update_transform_2d_to_mat2x3(base_transform * draw_transform * m->transform, state.instance_data_array[r_index].world); |
1133 | modulate = m->modulate; |
1134 | |
1135 | } else if (c->type == Item::Command::TYPE_MULTIMESH) { |
1136 | const Item::CommandMultiMesh *mm = static_cast<const Item::CommandMultiMesh *>(c); |
1137 | state.canvas_instance_batches[state.current_batch_index].tex = mm->texture; |
1138 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_INSTANCED; |
1139 | |
1140 | if (GLES3::MeshStorage::get_singleton()->multimesh_uses_colors(mm->multimesh)) { |
1141 | state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_COLORS; |
1142 | } |
1143 | if (GLES3::MeshStorage::get_singleton()->multimesh_uses_custom_data(mm->multimesh)) { |
1144 | state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA; |
1145 | } |
1146 | } else if (c->type == Item::Command::TYPE_PARTICLES) { |
1147 | GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); |
1148 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
1149 | |
1150 | const Item::CommandParticles *pt = static_cast<const Item::CommandParticles *>(c); |
1151 | RID particles = pt->particles; |
1152 | state.canvas_instance_batches[state.current_batch_index].tex = pt->texture; |
1153 | state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_INSTANCED; |
1154 | state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_COLORS; |
1155 | state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA; |
1156 | |
1157 | if (particles_storage->particles_has_collision(particles) && texture_storage->render_target_is_sdf_enabled(p_render_target)) { |
1158 | // Pass collision information. |
1159 | Transform2D xform = p_item->final_transform; |
1160 | |
1161 | GLuint sdf_texture = texture_storage->render_target_get_sdf_texture(p_render_target); |
1162 | |
1163 | Rect2 to_screen; |
1164 | { |
1165 | Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_render_target); |
1166 | |
1167 | to_screen.size = Vector2(1.0 / sdf_rect.size.width, 1.0 / sdf_rect.size.height); |
1168 | to_screen.position = -sdf_rect.position * to_screen.size; |
1169 | } |
1170 | |
1171 | particles_storage->particles_set_canvas_sdf_collision(pt->particles, true, xform, to_screen, sdf_texture); |
1172 | } else { |
1173 | particles_storage->particles_set_canvas_sdf_collision(pt->particles, false, Transform2D(), Rect2(), 0); |
1174 | } |
1175 | r_sdf_used |= particles_storage->particles_has_collision(particles); |
1176 | } |
1177 | |
1178 | state.canvas_instance_batches[state.current_batch_index].command = c; |
1179 | state.canvas_instance_batches[state.current_batch_index].command_type = c->type; |
1180 | |
1181 | _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); |
1182 | |
1183 | state.instance_data_array[r_index].modulation[0] = base_color.r * modulate.r; |
1184 | state.instance_data_array[r_index].modulation[1] = base_color.g * modulate.g; |
1185 | state.instance_data_array[r_index].modulation[2] = base_color.b * modulate.b; |
1186 | state.instance_data_array[r_index].modulation[3] = base_color.a * modulate.a; |
1187 | |
1188 | for (int j = 0; j < 4; j++) { |
1189 | state.instance_data_array[r_index].src_rect[j] = 0; |
1190 | state.instance_data_array[r_index].dst_rect[j] = 0; |
1191 | state.instance_data_array[r_index].ninepatch_margins[j] = 0; |
1192 | } |
1193 | _add_to_batch(r_index, r_batch_broken); |
1194 | } break; |
1195 | |
1196 | case Item::Command::TYPE_TRANSFORM: { |
1197 | const Item::CommandTransform *transform = static_cast<const Item::CommandTransform *>(c); |
1198 | draw_transform = transform->xform; |
1199 | } break; |
1200 | |
1201 | case Item::Command::TYPE_CLIP_IGNORE: { |
1202 | const Item::CommandClipIgnore *ci = static_cast<const Item::CommandClipIgnore *>(c); |
1203 | if (current_clip) { |
1204 | if (ci->ignore != reclip) { |
1205 | _new_batch(r_batch_broken); |
1206 | if (ci->ignore) { |
1207 | state.canvas_instance_batches[state.current_batch_index].clip = nullptr; |
1208 | reclip = true; |
1209 | } else { |
1210 | state.canvas_instance_batches[state.current_batch_index].clip = current_clip; |
1211 | reclip = false; |
1212 | } |
1213 | } |
1214 | } |
1215 | } break; |
1216 | |
1217 | case Item::Command::TYPE_ANIMATION_SLICE: { |
1218 | const Item::CommandAnimationSlice *as = static_cast<const Item::CommandAnimationSlice *>(c); |
1219 | double current_time = RSG::rasterizer->get_total_time(); |
1220 | double local_time = Math::fposmod(current_time - as->offset, as->animation_length); |
1221 | skipping = !(local_time >= as->slice_begin && local_time < as->slice_end); |
1222 | |
1223 | RenderingServerDefault::redraw_request(); // animation visible means redraw request |
1224 | } break; |
1225 | } |
1226 | |
1227 | c = c->next; |
1228 | r_batch_broken = false; |
1229 | } |
1230 | |
1231 | if (current_clip && reclip) { |
1232 | //will make it re-enable clipping if needed afterwards |
1233 | current_clip = nullptr; |
1234 | } |
1235 | } |
1236 | |
1237 | void RasterizerCanvasGLES3::_render_batch(Light *p_lights, uint32_t p_index) { |
1238 | ERR_FAIL_COND(!state.canvas_instance_batches[state.current_batch_index].command); |
1239 | |
1240 | // Used by Polygon and Mesh. |
1241 | static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP }; |
1242 | |
1243 | _bind_canvas_texture(state.canvas_instance_batches[p_index].tex, state.canvas_instance_batches[p_index].filter, state.canvas_instance_batches[p_index].repeat); |
1244 | |
1245 | switch (state.canvas_instance_batches[p_index].command_type) { |
1246 | case Item::Command::TYPE_RECT: |
1247 | case Item::Command::TYPE_NINEPATCH: { |
1248 | glBindVertexArray(data.indexed_quad_array); |
1249 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); |
1250 | uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); |
1251 | _enable_attributes(range_start, false); |
1252 | |
1253 | glDrawElementsInstanced(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0, state.canvas_instance_batches[p_index].instance_count); |
1254 | glBindVertexArray(0); |
1255 | |
1256 | } break; |
1257 | |
1258 | case Item::Command::TYPE_POLYGON: { |
1259 | const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(state.canvas_instance_batches[p_index].command); |
1260 | |
1261 | PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id); |
1262 | ERR_FAIL_NULL(pb); |
1263 | |
1264 | glBindVertexArray(pb->vertex_array); |
1265 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); |
1266 | |
1267 | uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); |
1268 | _enable_attributes(range_start, false); |
1269 | |
1270 | if (pb->color_disabled && pb->color != Color(1.0, 1.0, 1.0, 1.0)) { |
1271 | glVertexAttrib4f(RS::ARRAY_COLOR, pb->color.r, pb->color.g, pb->color.b, pb->color.a); |
1272 | } |
1273 | |
1274 | if (pb->index_buffer != 0) { |
1275 | glDrawElementsInstanced(prim[polygon->primitive], pb->count, GL_UNSIGNED_INT, nullptr, 1); |
1276 | } else { |
1277 | glDrawArraysInstanced(prim[polygon->primitive], 0, pb->count, 1); |
1278 | } |
1279 | glBindVertexArray(0); |
1280 | |
1281 | if (pb->color_disabled && pb->color != Color(1.0, 1.0, 1.0, 1.0)) { |
1282 | // Reset so this doesn't pollute other draw calls. |
1283 | glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); |
1284 | } |
1285 | } break; |
1286 | |
1287 | case Item::Command::TYPE_PRIMITIVE: { |
1288 | glBindVertexArray(data.canvas_quad_array); |
1289 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); |
1290 | uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); |
1291 | _enable_attributes(range_start, true); |
1292 | |
1293 | const GLenum primitive[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLES }; |
1294 | int instance_count = state.canvas_instance_batches[p_index].instance_count; |
1295 | ERR_FAIL_COND(instance_count <= 0); |
1296 | if (instance_count >= 1) { |
1297 | glDrawArraysInstanced(primitive[state.canvas_instance_batches[p_index].primitive_points], 0, state.canvas_instance_batches[p_index].primitive_points, instance_count); |
1298 | } |
1299 | |
1300 | } break; |
1301 | |
1302 | case Item::Command::TYPE_MESH: |
1303 | case Item::Command::TYPE_MULTIMESH: |
1304 | case Item::Command::TYPE_PARTICLES: { |
1305 | GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); |
1306 | GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); |
1307 | RID mesh; |
1308 | RID mesh_instance; |
1309 | uint32_t instance_count = 1; |
1310 | GLuint instance_buffer = 0; |
1311 | uint32_t instance_stride = 0; |
1312 | uint32_t instance_color_offset = 0; |
1313 | bool instance_uses_color = false; |
1314 | bool instance_uses_custom_data = false; |
1315 | bool use_instancing = false; |
1316 | |
1317 | if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_MESH) { |
1318 | const Item::CommandMesh *m = static_cast<const Item::CommandMesh *>(state.canvas_instance_batches[p_index].command); |
1319 | mesh = m->mesh; |
1320 | mesh_instance = m->mesh_instance; |
1321 | |
1322 | } else if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_MULTIMESH) { |
1323 | const Item::CommandMultiMesh *mm = static_cast<const Item::CommandMultiMesh *>(state.canvas_instance_batches[p_index].command); |
1324 | RID multimesh = mm->multimesh; |
1325 | mesh = mesh_storage->multimesh_get_mesh(multimesh); |
1326 | |
1327 | if (mesh_storage->multimesh_get_transform_format(multimesh) != RS::MULTIMESH_TRANSFORM_2D) { |
1328 | break; |
1329 | } |
1330 | |
1331 | instance_count = mesh_storage->multimesh_get_instances_to_draw(multimesh); |
1332 | |
1333 | if (instance_count == 0) { |
1334 | break; |
1335 | } |
1336 | |
1337 | instance_buffer = mesh_storage->multimesh_get_gl_buffer(multimesh); |
1338 | instance_stride = mesh_storage->multimesh_get_stride(multimesh); |
1339 | instance_color_offset = mesh_storage->multimesh_get_color_offset(multimesh); |
1340 | instance_uses_color = mesh_storage->multimesh_uses_colors(multimesh); |
1341 | instance_uses_custom_data = mesh_storage->multimesh_uses_custom_data(multimesh); |
1342 | use_instancing = true; |
1343 | |
1344 | } else if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_PARTICLES) { |
1345 | const Item::CommandParticles *pt = static_cast<const Item::CommandParticles *>(state.canvas_instance_batches[p_index].command); |
1346 | RID particles = pt->particles; |
1347 | mesh = particles_storage->particles_get_draw_pass_mesh(particles, 0); |
1348 | |
1349 | ERR_BREAK(particles_storage->particles_get_mode(particles) != RS::PARTICLES_MODE_2D); |
1350 | particles_storage->particles_request_process(particles); |
1351 | |
1352 | if (particles_storage->particles_is_inactive(particles)) { |
1353 | break; |
1354 | } |
1355 | |
1356 | RenderingServerDefault::redraw_request(); // Active particles means redraw request. |
1357 | |
1358 | int dpc = particles_storage->particles_get_draw_passes(particles); |
1359 | if (dpc == 0) { |
1360 | break; // Nothing to draw. |
1361 | } |
1362 | |
1363 | instance_count = particles_storage->particles_get_amount(particles); |
1364 | instance_buffer = particles_storage->particles_get_gl_buffer(particles); |
1365 | instance_stride = 12; // 8 bytes for instance transform and 4 bytes for packed color and custom. |
1366 | instance_color_offset = 8; // 8 bytes for instance transform. |
1367 | instance_uses_color = true; |
1368 | instance_uses_custom_data = true; |
1369 | use_instancing = true; |
1370 | } |
1371 | |
1372 | ERR_FAIL_COND(mesh.is_null()); |
1373 | |
1374 | uint32_t surf_count = mesh_storage->mesh_get_surface_count(mesh); |
1375 | |
1376 | for (uint32_t j = 0; j < surf_count; j++) { |
1377 | void *surface = mesh_storage->mesh_get_surface(mesh, j); |
1378 | |
1379 | RS::PrimitiveType primitive = mesh_storage->mesh_surface_get_primitive(surface); |
1380 | ERR_CONTINUE(primitive < 0 || primitive >= RS::PRIMITIVE_MAX); |
1381 | |
1382 | GLuint vertex_array_gl = 0; |
1383 | GLuint index_array_gl = 0; |
1384 | |
1385 | uint32_t input_mask = 0; // 2D meshes always use the same vertex format |
1386 | if (mesh_instance.is_valid()) { |
1387 | mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(mesh_instance, j, input_mask, vertex_array_gl); |
1388 | } else { |
1389 | mesh_storage->mesh_surface_get_vertex_arrays_and_format(surface, input_mask, vertex_array_gl); |
1390 | } |
1391 | |
1392 | index_array_gl = mesh_storage->mesh_surface_get_index_buffer(surface, 0); |
1393 | bool use_index_buffer = false; |
1394 | glBindVertexArray(vertex_array_gl); |
1395 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); |
1396 | |
1397 | uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); |
1398 | _enable_attributes(range_start, false, instance_count); |
1399 | |
1400 | if (index_array_gl != 0) { |
1401 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl); |
1402 | use_index_buffer = true; |
1403 | } |
1404 | |
1405 | if (use_instancing) { |
1406 | if (instance_buffer == 0) { |
1407 | break; |
1408 | } |
1409 | // Bind instance buffers. |
1410 | glBindBuffer(GL_ARRAY_BUFFER, instance_buffer); |
1411 | glEnableVertexAttribArray(1); |
1412 | glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0)); |
1413 | glVertexAttribDivisor(1, 1); |
1414 | glEnableVertexAttribArray(2); |
1415 | glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(4 * 4)); |
1416 | glVertexAttribDivisor(2, 1); |
1417 | |
1418 | if (instance_uses_color || instance_uses_custom_data) { |
1419 | glEnableVertexAttribArray(5); |
1420 | glVertexAttribIPointer(5, 4, GL_UNSIGNED_INT, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(instance_color_offset * sizeof(float))); |
1421 | glVertexAttribDivisor(5, 1); |
1422 | } |
1423 | } |
1424 | |
1425 | GLenum primitive_gl = prim[int(primitive)]; |
1426 | |
1427 | if (use_index_buffer) { |
1428 | glDrawElementsInstanced(primitive_gl, mesh_storage->mesh_surface_get_vertices_drawn_count(surface), mesh_storage->mesh_surface_get_index_type(surface), 0, instance_count); |
1429 | } else { |
1430 | glDrawArraysInstanced(primitive_gl, 0, mesh_storage->mesh_surface_get_vertices_drawn_count(surface), instance_count); |
1431 | } |
1432 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
1433 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
1434 | if (use_instancing) { |
1435 | glDisableVertexAttribArray(5); |
1436 | glDisableVertexAttribArray(6); |
1437 | glDisableVertexAttribArray(7); |
1438 | glDisableVertexAttribArray(8); |
1439 | } |
1440 | } |
1441 | |
1442 | } break; |
1443 | case Item::Command::TYPE_TRANSFORM: |
1444 | case Item::Command::TYPE_CLIP_IGNORE: |
1445 | case Item::Command::TYPE_ANIMATION_SLICE: { |
1446 | // Can ignore these as they only impact batch creation. |
1447 | } break; |
1448 | } |
1449 | } |
1450 | |
1451 | void RasterizerCanvasGLES3::_add_to_batch(uint32_t &r_index, bool &r_batch_broken) { |
1452 | state.canvas_instance_batches[state.current_batch_index].instance_count++; |
1453 | r_index++; |
1454 | if (r_index + state.last_item_index >= data.max_instances_per_buffer) { |
1455 | // Copy over all data needed for rendering right away |
1456 | // then go back to recording item commands. |
1457 | glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index]); |
1458 | #ifdef WEB_ENABLED |
1459 | glBufferSubData(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), sizeof(InstanceData) * r_index, state.instance_data_array); |
1460 | #else |
1461 | // On Desktop and mobile we map the memory without synchronizing for maximum speed. |
1462 | void *buffer = glMapBufferRange(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), r_index * sizeof(InstanceData), GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); |
1463 | memcpy(buffer, state.instance_data_array, r_index * sizeof(InstanceData)); |
1464 | glUnmapBuffer(GL_ARRAY_BUFFER); |
1465 | #endif |
1466 | _allocate_instance_buffer(); |
1467 | r_index = 0; |
1468 | state.last_item_index = 0; |
1469 | r_batch_broken = false; // Force a new batch to be created |
1470 | _new_batch(r_batch_broken); |
1471 | state.canvas_instance_batches[state.current_batch_index].start = 0; |
1472 | } |
1473 | } |
1474 | |
1475 | void RasterizerCanvasGLES3::_new_batch(bool &r_batch_broken) { |
1476 | if (state.canvas_instance_batches.size() == 0) { |
1477 | state.canvas_instance_batches.push_back(Batch()); |
1478 | return; |
1479 | } |
1480 | |
1481 | if (r_batch_broken || state.canvas_instance_batches[state.current_batch_index].instance_count == 0) { |
1482 | return; |
1483 | } |
1484 | |
1485 | r_batch_broken = true; |
1486 | |
1487 | // Copy the properties of the current batch, we will manually update the things that changed. |
1488 | Batch new_batch = state.canvas_instance_batches[state.current_batch_index]; |
1489 | new_batch.instance_count = 0; |
1490 | new_batch.start = state.canvas_instance_batches[state.current_batch_index].start + state.canvas_instance_batches[state.current_batch_index].instance_count; |
1491 | new_batch.instance_buffer_index = state.current_instance_buffer_index; |
1492 | state.current_batch_index++; |
1493 | state.canvas_instance_batches.push_back(new_batch); |
1494 | } |
1495 | |
1496 | void RasterizerCanvasGLES3::_enable_attributes(uint32_t p_start, bool p_primitive, uint32_t p_rate) { |
1497 | uint32_t split = p_primitive ? 11 : 12; |
1498 | for (uint32_t i = 6; i < split; i++) { |
1499 | glEnableVertexAttribArray(i); |
1500 | glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, sizeof(InstanceData), CAST_INT_TO_UCHAR_PTR(p_start + (i - 6) * 4 * sizeof(float))); |
1501 | glVertexAttribDivisor(i, p_rate); |
1502 | } |
1503 | for (uint32_t i = split; i <= 13; i++) { |
1504 | glEnableVertexAttribArray(i); |
1505 | glVertexAttribIPointer(i, 4, GL_UNSIGNED_INT, sizeof(InstanceData), CAST_INT_TO_UCHAR_PTR(p_start + (i - 6) * 4 * sizeof(float))); |
1506 | glVertexAttribDivisor(i, p_rate); |
1507 | } |
1508 | } |
1509 | RID RasterizerCanvasGLES3::light_create() { |
1510 | CanvasLight canvas_light; |
1511 | return canvas_light_owner.make_rid(canvas_light); |
1512 | } |
1513 | |
1514 | void RasterizerCanvasGLES3::light_set_texture(RID p_rid, RID p_texture) { |
1515 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
1516 | |
1517 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
1518 | ERR_FAIL_NULL(cl); |
1519 | if (cl->texture == p_texture) { |
1520 | return; |
1521 | } |
1522 | |
1523 | ERR_FAIL_COND(p_texture.is_valid() && !texture_storage->owns_texture(p_texture)); |
1524 | |
1525 | if (cl->texture.is_valid()) { |
1526 | texture_storage->texture_remove_from_texture_atlas(cl->texture); |
1527 | } |
1528 | cl->texture = p_texture; |
1529 | |
1530 | if (cl->texture.is_valid()) { |
1531 | texture_storage->texture_add_to_texture_atlas(cl->texture); |
1532 | } |
1533 | } |
1534 | |
1535 | void RasterizerCanvasGLES3::light_set_use_shadow(RID p_rid, bool p_enable) { |
1536 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
1537 | ERR_FAIL_NULL(cl); |
1538 | |
1539 | cl->shadow.enabled = p_enable; |
1540 | } |
1541 | |
1542 | void RasterizerCanvasGLES3::light_update_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) { |
1543 | GLES3::Config *config = GLES3::Config::get_singleton(); |
1544 | |
1545 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
1546 | ERR_FAIL_COND(!cl->shadow.enabled); |
1547 | |
1548 | _update_shadow_atlas(); |
1549 | |
1550 | cl->shadow.z_far = p_far; |
1551 | cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(data.max_lights_per_render * 2); |
1552 | |
1553 | glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); |
1554 | glViewport(0, p_shadow_index * 2, state.shadow_texture_size, 2); |
1555 | |
1556 | glDepthMask(GL_TRUE); |
1557 | glEnable(GL_DEPTH_TEST); |
1558 | glDepthFunc(GL_LESS); |
1559 | glDisable(GL_BLEND); |
1560 | |
1561 | glEnable(GL_SCISSOR_TEST); |
1562 | glScissor(0, p_shadow_index * 2, state.shadow_texture_size, 2); |
1563 | glClearColor(p_far, p_far, p_far, 1.0); |
1564 | glClearDepth(1.0); |
1565 | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); |
1566 | |
1567 | glCullFace(GL_BACK); |
1568 | glDisable(GL_CULL_FACE); |
1569 | RS::CanvasOccluderPolygonCullMode cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED; |
1570 | |
1571 | CanvasOcclusionShaderGLES3::ShaderVariant variant = config->float_texture_supported ? CanvasOcclusionShaderGLES3::MODE_SHADOW : CanvasOcclusionShaderGLES3::MODE_SHADOW_RGBA; |
1572 | bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); |
1573 | if (!success) { |
1574 | return; |
1575 | } |
1576 | |
1577 | for (int i = 0; i < 4; i++) { |
1578 | glViewport((state.shadow_texture_size / 4) * i, p_shadow_index * 2, (state.shadow_texture_size / 4), 2); |
1579 | |
1580 | Projection projection; |
1581 | { |
1582 | real_t fov = 90; |
1583 | real_t nearp = p_near; |
1584 | real_t farp = p_far; |
1585 | real_t aspect = 1.0; |
1586 | |
1587 | real_t ymax = nearp * Math::tan(Math::deg_to_rad(fov * 0.5)); |
1588 | real_t ymin = -ymax; |
1589 | real_t xmin = ymin * aspect; |
1590 | real_t xmax = ymax * aspect; |
1591 | |
1592 | projection.set_frustum(xmin, xmax, ymin, ymax, nearp, farp); |
1593 | } |
1594 | |
1595 | Vector3 cam_target = Basis::from_euler(Vector3(0, 0, Math_TAU * ((i + 3) / 4.0))).xform(Vector3(0, 1, 0)); |
1596 | |
1597 | projection = projection * Projection(Transform3D().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse()); |
1598 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, projection, shadow_render.shader_version, variant); |
1599 | |
1600 | static const Vector2 directions[4] = { Vector2(1, 0), Vector2(0, 1), Vector2(-1, 0), Vector2(0, -1) }; |
1601 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, directions[i].x, directions[i].y, shadow_render.shader_version, variant); |
1602 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, p_far, shadow_render.shader_version, variant); |
1603 | |
1604 | LightOccluderInstance *instance = p_occluders; |
1605 | |
1606 | while (instance) { |
1607 | OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); |
1608 | |
1609 | if (!co || co->vertex_array == 0 || !(p_light_mask & instance->light_mask)) { |
1610 | instance = instance->next; |
1611 | continue; |
1612 | } |
1613 | |
1614 | Transform2D modelview = p_light_xform * instance->xform_cache; |
1615 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); |
1616 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); |
1617 | |
1618 | if (co->cull_mode != cull_mode) { |
1619 | if (co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { |
1620 | glDisable(GL_CULL_FACE); |
1621 | } else { |
1622 | if (cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { |
1623 | // Last time was disabled, so enable and set proper face. |
1624 | glEnable(GL_CULL_FACE); |
1625 | } |
1626 | glCullFace(co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE ? GL_FRONT : GL_BACK); |
1627 | } |
1628 | cull_mode = co->cull_mode; |
1629 | } |
1630 | |
1631 | glBindVertexArray(co->vertex_array); |
1632 | glDrawElements(GL_TRIANGLES, 3 * co->line_point_count, GL_UNSIGNED_SHORT, 0); |
1633 | |
1634 | instance = instance->next; |
1635 | } |
1636 | } |
1637 | |
1638 | glBindVertexArray(0); |
1639 | glBindFramebuffer(GL_FRAMEBUFFER, 0); |
1640 | glDepthMask(GL_FALSE); |
1641 | glDisable(GL_DEPTH_TEST); |
1642 | glDisable(GL_SCISSOR_TEST); |
1643 | } |
1644 | |
1645 | void RasterizerCanvasGLES3::light_update_directional_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_cull_distance, const Rect2 &p_clip_rect, LightOccluderInstance *p_occluders) { |
1646 | GLES3::Config *config = GLES3::Config::get_singleton(); |
1647 | |
1648 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
1649 | ERR_FAIL_COND(!cl->shadow.enabled); |
1650 | |
1651 | _update_shadow_atlas(); |
1652 | |
1653 | Vector2 light_dir = p_light_xform.columns[1].normalized(); |
1654 | |
1655 | Vector2 center = p_clip_rect.get_center(); |
1656 | |
1657 | float to_edge_distance = ABS(light_dir.dot(p_clip_rect.get_support(light_dir)) - light_dir.dot(center)); |
1658 | |
1659 | Vector2 from_pos = center - light_dir * (to_edge_distance + p_cull_distance); |
1660 | float distance = to_edge_distance * 2.0 + p_cull_distance; |
1661 | float half_size = p_clip_rect.size.length() * 0.5; //shadow length, must keep this no matter the angle |
1662 | |
1663 | cl->shadow.z_far = distance; |
1664 | cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(data.max_lights_per_render * 2); |
1665 | |
1666 | Transform2D to_light_xform; |
1667 | |
1668 | to_light_xform[2] = from_pos; |
1669 | to_light_xform[1] = light_dir; |
1670 | to_light_xform[0] = -light_dir.orthogonal(); |
1671 | |
1672 | to_light_xform.invert(); |
1673 | |
1674 | glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); |
1675 | glViewport(0, p_shadow_index * 2, state.shadow_texture_size, 2); |
1676 | |
1677 | glDepthMask(GL_TRUE); |
1678 | glEnable(GL_DEPTH_TEST); |
1679 | glDepthFunc(GL_LESS); |
1680 | glDisable(GL_BLEND); |
1681 | |
1682 | glEnable(GL_SCISSOR_TEST); |
1683 | glScissor(0, p_shadow_index * 2, state.shadow_texture_size, 2); |
1684 | glClearColor(1.0, 1.0, 1.0, 1.0); |
1685 | glClearDepth(1.0); |
1686 | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); |
1687 | |
1688 | glCullFace(GL_BACK); |
1689 | glDisable(GL_CULL_FACE); |
1690 | RS::CanvasOccluderPolygonCullMode cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED; |
1691 | |
1692 | CanvasOcclusionShaderGLES3::ShaderVariant variant = config->float_texture_supported ? CanvasOcclusionShaderGLES3::MODE_SHADOW : CanvasOcclusionShaderGLES3::MODE_SHADOW_RGBA; |
1693 | bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); |
1694 | if (!success) { |
1695 | return; |
1696 | } |
1697 | |
1698 | Projection projection; |
1699 | projection.set_orthogonal(-half_size, half_size, -0.5, 0.5, 0.0, distance); |
1700 | projection = projection * Projection(Transform3D().looking_at(Vector3(0, 1, 0), Vector3(0, 0, -1)).affine_inverse()); |
1701 | |
1702 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, projection, shadow_render.shader_version, variant); |
1703 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, 0.0, 1.0, shadow_render.shader_version, variant); |
1704 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, distance, shadow_render.shader_version, variant); |
1705 | |
1706 | LightOccluderInstance *instance = p_occluders; |
1707 | |
1708 | while (instance) { |
1709 | OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); |
1710 | |
1711 | if (!co || co->vertex_array == 0 || !(p_light_mask & instance->light_mask)) { |
1712 | instance = instance->next; |
1713 | continue; |
1714 | } |
1715 | |
1716 | Transform2D modelview = to_light_xform * instance->xform_cache; |
1717 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); |
1718 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); |
1719 | |
1720 | if (co->cull_mode != cull_mode) { |
1721 | if (co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { |
1722 | glDisable(GL_CULL_FACE); |
1723 | } else { |
1724 | if (cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { |
1725 | // Last time was disabled, so enable and set proper face. |
1726 | glEnable(GL_CULL_FACE); |
1727 | } |
1728 | glCullFace(co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE ? GL_FRONT : GL_BACK); |
1729 | } |
1730 | cull_mode = co->cull_mode; |
1731 | } |
1732 | |
1733 | glBindVertexArray(co->vertex_array); |
1734 | glDrawElements(GL_TRIANGLES, 3 * co->line_point_count, GL_UNSIGNED_SHORT, 0); |
1735 | |
1736 | instance = instance->next; |
1737 | } |
1738 | |
1739 | Transform2D to_shadow; |
1740 | to_shadow.columns[0].x = 1.0 / -(half_size * 2.0); |
1741 | to_shadow.columns[2].x = 0.5; |
1742 | |
1743 | cl->shadow.directional_xform = to_shadow * to_light_xform; |
1744 | |
1745 | glBindVertexArray(0); |
1746 | glBindFramebuffer(GL_FRAMEBUFFER, 0); |
1747 | glDepthMask(GL_FALSE); |
1748 | glDisable(GL_DEPTH_TEST); |
1749 | glDisable(GL_SCISSOR_TEST); |
1750 | glDisable(GL_CULL_FACE); |
1751 | } |
1752 | |
1753 | void RasterizerCanvasGLES3::_update_shadow_atlas() { |
1754 | GLES3::Config *config = GLES3::Config::get_singleton(); |
1755 | |
1756 | if (state.shadow_fb == 0) { |
1757 | glActiveTexture(GL_TEXTURE0); |
1758 | |
1759 | glGenFramebuffers(1, &state.shadow_fb); |
1760 | glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); |
1761 | |
1762 | glGenRenderbuffers(1, &state.shadow_depth_buffer); |
1763 | glBindRenderbuffer(GL_RENDERBUFFER, state.shadow_depth_buffer); |
1764 | glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, state.shadow_texture_size, data.max_lights_per_render * 2); |
1765 | glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, state.shadow_depth_buffer); |
1766 | |
1767 | glGenTextures(1, &state.shadow_texture); |
1768 | glBindTexture(GL_TEXTURE_2D, state.shadow_texture); |
1769 | if (config->float_texture_supported) { |
1770 | glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, state.shadow_texture_size, data.max_lights_per_render * 2, 0, GL_RED, GL_FLOAT, nullptr); |
1771 | } else { |
1772 | glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, state.shadow_texture_size, data.max_lights_per_render * 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); |
1773 | } |
1774 | |
1775 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
1776 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); |
1777 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); |
1778 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); |
1779 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); |
1780 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); |
1781 | glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, state.shadow_texture, 0); |
1782 | |
1783 | GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); |
1784 | if (status != GL_FRAMEBUFFER_COMPLETE) { |
1785 | glDeleteFramebuffers(1, &state.shadow_fb); |
1786 | glDeleteTextures(1, &state.shadow_texture); |
1787 | glDeleteRenderbuffers(1, &state.shadow_depth_buffer); |
1788 | state.shadow_fb = 0; |
1789 | state.shadow_texture = 0; |
1790 | state.shadow_depth_buffer = 0; |
1791 | WARN_PRINT("Could not create CanvasItem shadow atlas, status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status)); |
1792 | } |
1793 | GLES3::Utilities::get_singleton()->texture_allocated_data(state.shadow_texture, state.shadow_texture_size * data.max_lights_per_render * 2 * 4, "2D shadow atlas texture" ); |
1794 | glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); |
1795 | } |
1796 | } |
1797 | |
1798 | void RasterizerCanvasGLES3::render_sdf(RID p_render_target, LightOccluderInstance *p_occluders) { |
1799 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
1800 | |
1801 | GLuint fb = texture_storage->render_target_get_sdf_framebuffer(p_render_target); |
1802 | Rect2i rect = texture_storage->render_target_get_sdf_rect(p_render_target); |
1803 | |
1804 | Transform2D to_sdf; |
1805 | to_sdf.columns[0] *= rect.size.width; |
1806 | to_sdf.columns[1] *= rect.size.height; |
1807 | to_sdf.columns[2] = rect.position; |
1808 | |
1809 | Transform2D to_clip; |
1810 | to_clip.columns[0] *= 2.0; |
1811 | to_clip.columns[1] *= 2.0; |
1812 | to_clip.columns[2] = -Vector2(1.0, 1.0); |
1813 | |
1814 | to_clip = to_clip * to_sdf.affine_inverse(); |
1815 | |
1816 | glBindFramebuffer(GL_FRAMEBUFFER, fb); |
1817 | glViewport(0, 0, rect.size.width, rect.size.height); |
1818 | |
1819 | glDepthMask(GL_FALSE); |
1820 | glDisable(GL_DEPTH_TEST); |
1821 | glDisable(GL_BLEND); |
1822 | glDisable(GL_CULL_FACE); |
1823 | glDisable(GL_SCISSOR_TEST); |
1824 | |
1825 | glClearColor(0.0, 0.0, 0.0, 0.0); |
1826 | glClear(GL_COLOR_BUFFER_BIT); |
1827 | |
1828 | CanvasOcclusionShaderGLES3::ShaderVariant variant = CanvasOcclusionShaderGLES3::MODE_SDF; |
1829 | bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); |
1830 | if (!success) { |
1831 | return; |
1832 | } |
1833 | |
1834 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, Projection(), shadow_render.shader_version, variant); |
1835 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, 0.0, 0.0, shadow_render.shader_version, variant); |
1836 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, 0.0, shadow_render.shader_version, variant); |
1837 | |
1838 | LightOccluderInstance *instance = p_occluders; |
1839 | |
1840 | while (instance) { |
1841 | OccluderPolygon *oc = occluder_polygon_owner.get_or_null(instance->occluder); |
1842 | |
1843 | if (!oc || oc->sdf_vertex_array == 0) { |
1844 | instance = instance->next; |
1845 | continue; |
1846 | } |
1847 | |
1848 | Transform2D modelview = to_clip * instance->xform_cache; |
1849 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); |
1850 | shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); |
1851 | |
1852 | glBindVertexArray(oc->sdf_vertex_array); |
1853 | glDrawElements(oc->sdf_is_lines ? GL_LINES : GL_TRIANGLES, oc->sdf_index_count, GL_UNSIGNED_INT, 0); |
1854 | |
1855 | instance = instance->next; |
1856 | } |
1857 | |
1858 | texture_storage->render_target_sdf_process(p_render_target); //done rendering, process it |
1859 | glBindVertexArray(0); |
1860 | glBindFramebuffer(GL_FRAMEBUFFER, 0); |
1861 | } |
1862 | |
1863 | RID RasterizerCanvasGLES3::occluder_polygon_create() { |
1864 | OccluderPolygon occluder; |
1865 | |
1866 | return occluder_polygon_owner.make_rid(occluder); |
1867 | } |
1868 | |
1869 | void RasterizerCanvasGLES3::occluder_polygon_set_shape(RID p_occluder, const Vector<Vector2> &p_points, bool p_closed) { |
1870 | OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder); |
1871 | ERR_FAIL_NULL(oc); |
1872 | |
1873 | Vector<Vector2> lines; |
1874 | |
1875 | if (p_points.size()) { |
1876 | int lc = p_points.size() * 2; |
1877 | |
1878 | lines.resize(lc - (p_closed ? 0 : 2)); |
1879 | { |
1880 | Vector2 *w = lines.ptrw(); |
1881 | const Vector2 *r = p_points.ptr(); |
1882 | |
1883 | int max = lc / 2; |
1884 | if (!p_closed) { |
1885 | max--; |
1886 | } |
1887 | for (int i = 0; i < max; i++) { |
1888 | Vector2 a = r[i]; |
1889 | Vector2 b = r[(i + 1) % (lc / 2)]; |
1890 | w[i * 2 + 0] = a; |
1891 | w[i * 2 + 1] = b; |
1892 | } |
1893 | } |
1894 | } |
1895 | |
1896 | if (oc->line_point_count != lines.size() && oc->vertex_array != 0) { |
1897 | glDeleteVertexArrays(1, &oc->vertex_array); |
1898 | GLES3::Utilities::get_singleton()->buffer_free_data(oc->vertex_buffer); |
1899 | GLES3::Utilities::get_singleton()->buffer_free_data(oc->index_buffer); |
1900 | |
1901 | oc->vertex_array = 0; |
1902 | oc->vertex_buffer = 0; |
1903 | oc->index_buffer = 0; |
1904 | } |
1905 | |
1906 | if (lines.size()) { |
1907 | Vector<uint8_t> geometry; |
1908 | Vector<uint8_t> indices; |
1909 | int lc = lines.size(); |
1910 | |
1911 | geometry.resize(lc * 6 * sizeof(float)); |
1912 | indices.resize(lc * 3 * sizeof(uint16_t)); |
1913 | |
1914 | { |
1915 | uint8_t *vw = geometry.ptrw(); |
1916 | float *vwptr = reinterpret_cast<float *>(vw); |
1917 | uint8_t *iw = indices.ptrw(); |
1918 | uint16_t *iwptr = (uint16_t *)iw; |
1919 | |
1920 | const Vector2 *lr = lines.ptr(); |
1921 | |
1922 | const int POLY_HEIGHT = 16384; |
1923 | |
1924 | for (int i = 0; i < lc / 2; i++) { |
1925 | vwptr[i * 12 + 0] = lr[i * 2 + 0].x; |
1926 | vwptr[i * 12 + 1] = lr[i * 2 + 0].y; |
1927 | vwptr[i * 12 + 2] = POLY_HEIGHT; |
1928 | |
1929 | vwptr[i * 12 + 3] = lr[i * 2 + 1].x; |
1930 | vwptr[i * 12 + 4] = lr[i * 2 + 1].y; |
1931 | vwptr[i * 12 + 5] = POLY_HEIGHT; |
1932 | |
1933 | vwptr[i * 12 + 6] = lr[i * 2 + 1].x; |
1934 | vwptr[i * 12 + 7] = lr[i * 2 + 1].y; |
1935 | vwptr[i * 12 + 8] = -POLY_HEIGHT; |
1936 | |
1937 | vwptr[i * 12 + 9] = lr[i * 2 + 0].x; |
1938 | vwptr[i * 12 + 10] = lr[i * 2 + 0].y; |
1939 | vwptr[i * 12 + 11] = -POLY_HEIGHT; |
1940 | |
1941 | iwptr[i * 6 + 0] = i * 4 + 0; |
1942 | iwptr[i * 6 + 1] = i * 4 + 1; |
1943 | iwptr[i * 6 + 2] = i * 4 + 2; |
1944 | |
1945 | iwptr[i * 6 + 3] = i * 4 + 2; |
1946 | iwptr[i * 6 + 4] = i * 4 + 3; |
1947 | iwptr[i * 6 + 5] = i * 4 + 0; |
1948 | } |
1949 | } |
1950 | |
1951 | if (oc->vertex_array == 0) { |
1952 | oc->line_point_count = lc; |
1953 | glGenVertexArrays(1, &oc->vertex_array); |
1954 | glBindVertexArray(oc->vertex_array); |
1955 | glGenBuffers(1, &oc->vertex_buffer); |
1956 | glBindBuffer(GL_ARRAY_BUFFER, oc->vertex_buffer); |
1957 | |
1958 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, oc->vertex_buffer, lc * 6 * sizeof(float), geometry.ptr(), GL_STATIC_DRAW, "Occluder polygon vertex buffer" ); |
1959 | |
1960 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
1961 | glVertexAttribPointer(RS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), nullptr); |
1962 | |
1963 | glGenBuffers(1, &oc->index_buffer); |
1964 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer); |
1965 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer, 3 * lc * sizeof(uint16_t), indices.ptr(), GL_STATIC_DRAW, "Occluder polygon index buffer" ); |
1966 | |
1967 | glBindVertexArray(0); |
1968 | } else { |
1969 | glBindBuffer(GL_ARRAY_BUFFER, oc->vertex_buffer); |
1970 | glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(float), geometry.ptr(), GL_STATIC_DRAW); |
1971 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer); |
1972 | glBufferData(GL_ELEMENT_ARRAY_BUFFER, 3 * lc * sizeof(uint16_t), indices.ptr(), GL_STATIC_DRAW); |
1973 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
1974 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
1975 | } |
1976 | } |
1977 | |
1978 | // sdf |
1979 | |
1980 | Vector<int> sdf_indices; |
1981 | |
1982 | if (p_points.size()) { |
1983 | if (p_closed) { |
1984 | sdf_indices = Geometry2D::triangulate_polygon(p_points); |
1985 | oc->sdf_is_lines = false; |
1986 | } else { |
1987 | int max = p_points.size(); |
1988 | sdf_indices.resize(max * 2); |
1989 | |
1990 | int *iw = sdf_indices.ptrw(); |
1991 | for (int i = 0; i < max; i++) { |
1992 | iw[i * 2 + 0] = i; |
1993 | iw[i * 2 + 1] = (i + 1) % max; |
1994 | } |
1995 | oc->sdf_is_lines = true; |
1996 | } |
1997 | } |
1998 | |
1999 | if (oc->sdf_index_count != sdf_indices.size() && oc->sdf_point_count != p_points.size() && oc->sdf_vertex_array != 0) { |
2000 | glDeleteVertexArrays(1, &oc->sdf_vertex_array); |
2001 | GLES3::Utilities::get_singleton()->buffer_free_data(oc->sdf_vertex_buffer); |
2002 | GLES3::Utilities::get_singleton()->buffer_free_data(oc->sdf_index_buffer); |
2003 | |
2004 | oc->sdf_vertex_array = 0; |
2005 | oc->sdf_vertex_buffer = 0; |
2006 | oc->sdf_index_buffer = 0; |
2007 | |
2008 | oc->sdf_index_count = sdf_indices.size(); |
2009 | oc->sdf_point_count = p_points.size(); |
2010 | } |
2011 | |
2012 | if (sdf_indices.size()) { |
2013 | if (oc->sdf_vertex_array == 0) { |
2014 | oc->sdf_index_count = sdf_indices.size(); |
2015 | oc->sdf_point_count = p_points.size(); |
2016 | glGenVertexArrays(1, &oc->sdf_vertex_array); |
2017 | glBindVertexArray(oc->sdf_vertex_array); |
2018 | glGenBuffers(1, &oc->sdf_vertex_buffer); |
2019 | glBindBuffer(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer); |
2020 | |
2021 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer, oc->sdf_point_count * 2 * sizeof(float), p_points.to_byte_array().ptr(), GL_STATIC_DRAW, "Occluder polygon SDF vertex buffer" ); |
2022 | |
2023 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
2024 | glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), nullptr); |
2025 | |
2026 | glGenBuffers(1, &oc->sdf_index_buffer); |
2027 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer); |
2028 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer, oc->sdf_index_count * sizeof(uint32_t), sdf_indices.to_byte_array().ptr(), GL_STATIC_DRAW, "Occluder polygon SDF index buffer" ); |
2029 | |
2030 | glBindVertexArray(0); |
2031 | } else { |
2032 | glBindBuffer(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer); |
2033 | glBufferData(GL_ARRAY_BUFFER, p_points.size() * 2 * sizeof(float), p_points.to_byte_array().ptr(), GL_STATIC_DRAW); |
2034 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer); |
2035 | glBufferData(GL_ELEMENT_ARRAY_BUFFER, sdf_indices.size() * sizeof(uint32_t), sdf_indices.to_byte_array().ptr(), GL_STATIC_DRAW); |
2036 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
2037 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
2038 | } |
2039 | } |
2040 | } |
2041 | |
2042 | void RasterizerCanvasGLES3::occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) { |
2043 | OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder); |
2044 | ERR_FAIL_NULL(oc); |
2045 | oc->cull_mode = p_mode; |
2046 | } |
2047 | |
2048 | void RasterizerCanvasGLES3::set_shadow_texture_size(int p_size) { |
2049 | GLES3::Config *config = GLES3::Config::get_singleton(); |
2050 | p_size = nearest_power_of_2_templated(p_size); |
2051 | |
2052 | if (p_size > config->max_texture_size) { |
2053 | p_size = config->max_texture_size; |
2054 | WARN_PRINT("Attempting to set CanvasItem shadow atlas size to " + itos(p_size) + " which is beyond limit of " + itos(config->max_texture_size) + "supported by hardware." ); |
2055 | } |
2056 | |
2057 | if (p_size == state.shadow_texture_size) { |
2058 | return; |
2059 | } |
2060 | state.shadow_texture_size = p_size; |
2061 | |
2062 | if (state.shadow_fb != 0) { |
2063 | glDeleteFramebuffers(1, &state.shadow_fb); |
2064 | GLES3::Utilities::get_singleton()->texture_free_data(state.shadow_texture); |
2065 | glDeleteRenderbuffers(1, &state.shadow_depth_buffer); |
2066 | state.shadow_fb = 0; |
2067 | state.shadow_texture = 0; |
2068 | state.shadow_depth_buffer = 0; |
2069 | } |
2070 | _update_shadow_atlas(); |
2071 | } |
2072 | |
2073 | bool RasterizerCanvasGLES3::free(RID p_rid) { |
2074 | if (canvas_light_owner.owns(p_rid)) { |
2075 | CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); |
2076 | ERR_FAIL_NULL_V(cl, false); |
2077 | canvas_light_owner.free(p_rid); |
2078 | } else if (occluder_polygon_owner.owns(p_rid)) { |
2079 | occluder_polygon_set_shape(p_rid, Vector<Vector2>(), false); |
2080 | occluder_polygon_owner.free(p_rid); |
2081 | } else { |
2082 | return false; |
2083 | } |
2084 | |
2085 | return true; |
2086 | } |
2087 | |
2088 | void RasterizerCanvasGLES3::update() { |
2089 | } |
2090 | |
2091 | void RasterizerCanvasGLES3::canvas_begin(RID p_to_render_target, bool p_to_backbuffer) { |
2092 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
2093 | GLES3::Config *config = GLES3::Config::get_singleton(); |
2094 | |
2095 | GLES3::RenderTarget *render_target = texture_storage->get_render_target(p_to_render_target); |
2096 | |
2097 | if (p_to_backbuffer) { |
2098 | glBindFramebuffer(GL_FRAMEBUFFER, render_target->backbuffer_fbo); |
2099 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); |
2100 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
2101 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
2102 | } else { |
2103 | glBindFramebuffer(GL_FRAMEBUFFER, render_target->fbo); |
2104 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); |
2105 | glBindTexture(GL_TEXTURE_2D, render_target->backbuffer); |
2106 | } |
2107 | |
2108 | if (render_target->is_transparent || p_to_backbuffer) { |
2109 | state.transparent_render_target = true; |
2110 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
2111 | } else { |
2112 | state.transparent_render_target = false; |
2113 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
2114 | } |
2115 | |
2116 | if (render_target && render_target->clear_requested) { |
2117 | const Color &col = render_target->clear_color; |
2118 | glClearColor(col.r, col.g, col.b, render_target->is_transparent ? col.a : 1.0f); |
2119 | |
2120 | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); |
2121 | render_target->clear_requested = false; |
2122 | } |
2123 | |
2124 | glActiveTexture(GL_TEXTURE0); |
2125 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
2126 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
2127 | } |
2128 | |
2129 | void RasterizerCanvasGLES3::_bind_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat) { |
2130 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
2131 | GLES3::Config *config = GLES3::Config::get_singleton(); |
2132 | |
2133 | if (p_texture == RID()) { |
2134 | p_texture = default_canvas_texture; |
2135 | } |
2136 | |
2137 | if (state.current_tex == p_texture && state.current_filter_mode == p_base_filter && state.current_repeat_mode == p_base_repeat) { |
2138 | return; |
2139 | } |
2140 | |
2141 | state.current_tex = p_texture; |
2142 | state.current_filter_mode = p_base_filter; |
2143 | state.current_repeat_mode = p_base_repeat; |
2144 | |
2145 | GLES3::CanvasTexture *ct = nullptr; |
2146 | |
2147 | GLES3::Texture *t = texture_storage->get_texture(p_texture); |
2148 | |
2149 | if (t) { |
2150 | ERR_FAIL_COND(!t->canvas_texture); |
2151 | ct = t->canvas_texture; |
2152 | if (t->render_target) { |
2153 | t->render_target->used_in_frame = true; |
2154 | } |
2155 | } else { |
2156 | ct = texture_storage->get_canvas_texture(p_texture); |
2157 | } |
2158 | |
2159 | if (!ct) { |
2160 | // Invalid Texture RID. |
2161 | _bind_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat); |
2162 | return; |
2163 | } |
2164 | |
2165 | RS::CanvasItemTextureFilter filter = ct->texture_filter != RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? ct->texture_filter : p_base_filter; |
2166 | ERR_FAIL_COND(filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT); |
2167 | |
2168 | RS::CanvasItemTextureRepeat repeat = ct->texture_repeat != RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? ct->texture_repeat : p_base_repeat; |
2169 | ERR_FAIL_COND(repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT); |
2170 | |
2171 | GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse); |
2172 | |
2173 | if (!texture) { |
2174 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
2175 | glActiveTexture(GL_TEXTURE0); |
2176 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
2177 | } else { |
2178 | glActiveTexture(GL_TEXTURE0); |
2179 | glBindTexture(GL_TEXTURE_2D, texture->tex_id); |
2180 | texture->gl_set_filter(filter); |
2181 | texture->gl_set_repeat(repeat); |
2182 | if (texture->render_target) { |
2183 | texture->render_target->used_in_frame = true; |
2184 | } |
2185 | } |
2186 | |
2187 | GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map); |
2188 | |
2189 | if (!normal_map) { |
2190 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); |
2191 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_NORMAL)); |
2192 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
2193 | } else { |
2194 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); |
2195 | glBindTexture(GL_TEXTURE_2D, normal_map->tex_id); |
2196 | normal_map->gl_set_filter(filter); |
2197 | normal_map->gl_set_repeat(repeat); |
2198 | if (normal_map->render_target) { |
2199 | normal_map->render_target->used_in_frame = true; |
2200 | } |
2201 | } |
2202 | |
2203 | GLES3::Texture *specular_map = texture_storage->get_texture(ct->specular); |
2204 | |
2205 | if (!specular_map) { |
2206 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7); |
2207 | GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); |
2208 | glBindTexture(GL_TEXTURE_2D, tex->tex_id); |
2209 | } else { |
2210 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7); |
2211 | glBindTexture(GL_TEXTURE_2D, specular_map->tex_id); |
2212 | specular_map->gl_set_filter(filter); |
2213 | specular_map->gl_set_repeat(repeat); |
2214 | if (specular_map->render_target) { |
2215 | specular_map->render_target->used_in_frame = true; |
2216 | } |
2217 | } |
2218 | } |
2219 | |
2220 | void RasterizerCanvasGLES3::_prepare_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, uint32_t &r_index, Size2 &r_texpixel_size) { |
2221 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
2222 | |
2223 | if (p_texture == RID()) { |
2224 | p_texture = default_canvas_texture; |
2225 | } |
2226 | |
2227 | GLES3::CanvasTexture *ct = nullptr; |
2228 | |
2229 | GLES3::Texture *t = texture_storage->get_texture(p_texture); |
2230 | |
2231 | if (t) { |
2232 | //regular texture |
2233 | if (!t->canvas_texture) { |
2234 | t->canvas_texture = memnew(GLES3::CanvasTexture); |
2235 | t->canvas_texture->diffuse = p_texture; |
2236 | } |
2237 | |
2238 | ct = t->canvas_texture; |
2239 | } else { |
2240 | ct = texture_storage->get_canvas_texture(p_texture); |
2241 | } |
2242 | |
2243 | if (!ct) { |
2244 | // Invalid Texture RID. |
2245 | _prepare_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat, r_index, r_texpixel_size); |
2246 | return; |
2247 | } |
2248 | |
2249 | GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse); |
2250 | Size2i size_cache; |
2251 | if (!texture) { |
2252 | ct->diffuse = texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE); |
2253 | GLES3::Texture *tex = texture_storage->get_texture(ct->diffuse); |
2254 | size_cache = Size2i(tex->width, tex->height); |
2255 | } else { |
2256 | size_cache = Size2i(texture->width, texture->height); |
2257 | } |
2258 | |
2259 | GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map); |
2260 | |
2261 | if (ct->specular_color.a < 0.999) { |
2262 | state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED; |
2263 | } else { |
2264 | state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_SPECULAR_MAP_USED; |
2265 | } |
2266 | |
2267 | if (normal_map) { |
2268 | state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_NORMAL_MAP_USED; |
2269 | } else { |
2270 | state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_NORMAL_MAP_USED; |
2271 | } |
2272 | |
2273 | state.instance_data_array[r_index].specular_shininess = uint32_t(CLAMP(ct->specular_color.a * 255.0, 0, 255)) << 24; |
2274 | state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.b * 255.0, 0, 255)) << 16; |
2275 | state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.g * 255.0, 0, 255)) << 8; |
2276 | state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.r * 255.0, 0, 255)); |
2277 | |
2278 | r_texpixel_size.x = 1.0 / float(size_cache.x); |
2279 | r_texpixel_size.y = 1.0 / float(size_cache.y); |
2280 | |
2281 | state.instance_data_array[r_index].color_texture_pixel_size[0] = r_texpixel_size.x; |
2282 | state.instance_data_array[r_index].color_texture_pixel_size[1] = r_texpixel_size.y; |
2283 | } |
2284 | |
2285 | void RasterizerCanvasGLES3::reset_canvas() { |
2286 | glDisable(GL_CULL_FACE); |
2287 | glDisable(GL_DEPTH_TEST); |
2288 | glDisable(GL_SCISSOR_TEST); |
2289 | glEnable(GL_BLEND); |
2290 | glBlendEquation(GL_FUNC_ADD); |
2291 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
2292 | |
2293 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 2); |
2294 | glBindTexture(GL_TEXTURE_2D, 0); |
2295 | glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 3); |
2296 | glBindTexture(GL_TEXTURE_2D, 0); |
2297 | glActiveTexture(GL_TEXTURE0); |
2298 | |
2299 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
2300 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
2301 | } |
2302 | |
2303 | void RasterizerCanvasGLES3::draw_lens_distortion_rect(const Rect2 &p_rect, float p_k1, float p_k2, const Vector2 &p_eye_center, float p_oversample) { |
2304 | } |
2305 | |
2306 | RendererCanvasRender::PolygonID RasterizerCanvasGLES3::request_polygon(const Vector<int> &p_indices, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, const Vector<int> &p_bones, const Vector<float> &p_weights) { |
2307 | // We interleave the vertex data into one big VBO to improve cache coherence |
2308 | uint32_t vertex_count = p_points.size(); |
2309 | uint32_t stride = 2; |
2310 | if ((uint32_t)p_colors.size() == vertex_count) { |
2311 | stride += 4; |
2312 | } |
2313 | if ((uint32_t)p_uvs.size() == vertex_count) { |
2314 | stride += 2; |
2315 | } |
2316 | if ((uint32_t)p_bones.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { |
2317 | stride += 4; |
2318 | } |
2319 | |
2320 | PolygonBuffers pb; |
2321 | glGenBuffers(1, &pb.vertex_buffer); |
2322 | glGenVertexArrays(1, &pb.vertex_array); |
2323 | glBindVertexArray(pb.vertex_array); |
2324 | pb.count = vertex_count; |
2325 | pb.index_buffer = 0; |
2326 | |
2327 | uint32_t buffer_size = stride * p_points.size(); |
2328 | |
2329 | Vector<uint8_t> polygon_buffer; |
2330 | polygon_buffer.resize(buffer_size * sizeof(float)); |
2331 | { |
2332 | glBindBuffer(GL_ARRAY_BUFFER, pb.vertex_buffer); |
2333 | uint8_t *r = polygon_buffer.ptrw(); |
2334 | float *fptr = reinterpret_cast<float *>(r); |
2335 | uint32_t *uptr = (uint32_t *)r; |
2336 | uint32_t base_offset = 0; |
2337 | { |
2338 | // Always uses vertex positions |
2339 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
2340 | glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), nullptr); |
2341 | const Vector2 *points_ptr = p_points.ptr(); |
2342 | |
2343 | for (uint32_t i = 0; i < vertex_count; i++) { |
2344 | fptr[base_offset + i * stride + 0] = points_ptr[i].x; |
2345 | fptr[base_offset + i * stride + 1] = points_ptr[i].y; |
2346 | } |
2347 | |
2348 | base_offset += 2; |
2349 | } |
2350 | |
2351 | // Next add colors |
2352 | if ((uint32_t)p_colors.size() == vertex_count) { |
2353 | glEnableVertexAttribArray(RS::ARRAY_COLOR); |
2354 | glVertexAttribPointer(RS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); |
2355 | |
2356 | const Color *color_ptr = p_colors.ptr(); |
2357 | |
2358 | for (uint32_t i = 0; i < vertex_count; i++) { |
2359 | fptr[base_offset + i * stride + 0] = color_ptr[i].r; |
2360 | fptr[base_offset + i * stride + 1] = color_ptr[i].g; |
2361 | fptr[base_offset + i * stride + 2] = color_ptr[i].b; |
2362 | fptr[base_offset + i * stride + 3] = color_ptr[i].a; |
2363 | } |
2364 | base_offset += 4; |
2365 | } else { |
2366 | glDisableVertexAttribArray(RS::ARRAY_COLOR); |
2367 | pb.color_disabled = true; |
2368 | pb.color = p_colors.size() == 1 ? p_colors[0] : Color(1.0, 1.0, 1.0, 1.0); |
2369 | } |
2370 | |
2371 | if ((uint32_t)p_uvs.size() == vertex_count) { |
2372 | glEnableVertexAttribArray(RS::ARRAY_TEX_UV); |
2373 | glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); |
2374 | |
2375 | const Vector2 *uv_ptr = p_uvs.ptr(); |
2376 | |
2377 | for (uint32_t i = 0; i < vertex_count; i++) { |
2378 | fptr[base_offset + i * stride + 0] = uv_ptr[i].x; |
2379 | fptr[base_offset + i * stride + 1] = uv_ptr[i].y; |
2380 | } |
2381 | |
2382 | base_offset += 2; |
2383 | } else { |
2384 | glDisableVertexAttribArray(RS::ARRAY_TEX_UV); |
2385 | } |
2386 | |
2387 | if ((uint32_t)p_indices.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { |
2388 | glEnableVertexAttribArray(RS::ARRAY_BONES); |
2389 | glVertexAttribPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_INT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); |
2390 | |
2391 | const int *bone_ptr = p_bones.ptr(); |
2392 | |
2393 | for (uint32_t i = 0; i < vertex_count; i++) { |
2394 | uint16_t *bone16w = (uint16_t *)&uptr[base_offset + i * stride]; |
2395 | |
2396 | bone16w[0] = bone_ptr[i * 4 + 0]; |
2397 | bone16w[1] = bone_ptr[i * 4 + 1]; |
2398 | bone16w[2] = bone_ptr[i * 4 + 2]; |
2399 | bone16w[3] = bone_ptr[i * 4 + 3]; |
2400 | } |
2401 | |
2402 | base_offset += 2; |
2403 | } else { |
2404 | glDisableVertexAttribArray(RS::ARRAY_BONES); |
2405 | } |
2406 | |
2407 | if ((uint32_t)p_weights.size() == vertex_count * 4) { |
2408 | glEnableVertexAttribArray(RS::ARRAY_WEIGHTS); |
2409 | glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); |
2410 | |
2411 | const float *weight_ptr = p_weights.ptr(); |
2412 | |
2413 | for (uint32_t i = 0; i < vertex_count; i++) { |
2414 | uint16_t *weight16w = (uint16_t *)&uptr[base_offset + i * stride]; |
2415 | |
2416 | weight16w[0] = CLAMP(weight_ptr[i * 4 + 0] * 65535, 0, 65535); |
2417 | weight16w[1] = CLAMP(weight_ptr[i * 4 + 1] * 65535, 0, 65535); |
2418 | weight16w[2] = CLAMP(weight_ptr[i * 4 + 2] * 65535, 0, 65535); |
2419 | weight16w[3] = CLAMP(weight_ptr[i * 4 + 3] * 65535, 0, 65535); |
2420 | } |
2421 | |
2422 | base_offset += 2; |
2423 | } else { |
2424 | glDisableVertexAttribArray(RS::ARRAY_WEIGHTS); |
2425 | } |
2426 | |
2427 | ERR_FAIL_COND_V(base_offset != stride, 0); |
2428 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, pb.vertex_buffer, vertex_count * stride * sizeof(float), polygon_buffer.ptr(), GL_STATIC_DRAW, "Polygon 2D vertex buffer" ); |
2429 | } |
2430 | |
2431 | if (p_indices.size()) { |
2432 | //create indices, as indices were requested |
2433 | Vector<uint8_t> index_buffer; |
2434 | index_buffer.resize(p_indices.size() * sizeof(int32_t)); |
2435 | { |
2436 | uint8_t *w = index_buffer.ptrw(); |
2437 | memcpy(w, p_indices.ptr(), sizeof(int32_t) * p_indices.size()); |
2438 | } |
2439 | glGenBuffers(1, &pb.index_buffer); |
2440 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer); |
2441 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer, p_indices.size() * 4, index_buffer.ptr(), GL_STATIC_DRAW, "Polygon 2D index buffer" ); |
2442 | pb.count = p_indices.size(); |
2443 | } |
2444 | |
2445 | glBindVertexArray(0); |
2446 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
2447 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
2448 | |
2449 | PolygonID id = polygon_buffers.last_id++; |
2450 | |
2451 | polygon_buffers.polygons[id] = pb; |
2452 | |
2453 | return id; |
2454 | } |
2455 | |
2456 | void RasterizerCanvasGLES3::free_polygon(PolygonID p_polygon) { |
2457 | PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon); |
2458 | ERR_FAIL_NULL(pb_ptr); |
2459 | |
2460 | PolygonBuffers &pb = *pb_ptr; |
2461 | |
2462 | if (pb.index_buffer != 0) { |
2463 | GLES3::Utilities::get_singleton()->buffer_free_data(pb.index_buffer); |
2464 | } |
2465 | |
2466 | glDeleteVertexArrays(1, &pb.vertex_array); |
2467 | GLES3::Utilities::get_singleton()->buffer_free_data(pb.vertex_buffer); |
2468 | |
2469 | polygon_buffers.polygons.erase(p_polygon); |
2470 | } |
2471 | |
2472 | // Creates a new uniform buffer and uses it right away |
2473 | // This expands the instance buffer continually |
2474 | // In theory allocations can reach as high as number of windows * 3 frames |
2475 | // because OpenGL can start rendering subsequent frames before finishing the current one |
2476 | void RasterizerCanvasGLES3::_allocate_instance_data_buffer() { |
2477 | GLuint new_buffers[3]; |
2478 | glGenBuffers(3, new_buffers); |
2479 | // Batch UBO. |
2480 | glBindBuffer(GL_ARRAY_BUFFER, new_buffers[0]); |
2481 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffers[0], data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "2D Batch UBO[" + itos(state.current_data_buffer_index) + "][0]" ); |
2482 | // Light uniform buffer. |
2483 | glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[1]); |
2484 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[1], sizeof(LightUniform) * data.max_lights_per_render, nullptr, GL_STREAM_DRAW, "2D Lights UBO[" + itos(state.current_data_buffer_index) + "]" ); |
2485 | // State buffer. |
2486 | glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[2]); |
2487 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[2], sizeof(StateBuffer), nullptr, GL_STREAM_DRAW, "2D State UBO[" + itos(state.current_data_buffer_index) + "]" ); |
2488 | |
2489 | state.current_data_buffer_index = (state.current_data_buffer_index + 1); |
2490 | DataBuffer db; |
2491 | db.instance_buffers.push_back(new_buffers[0]); |
2492 | db.light_ubo = new_buffers[1]; |
2493 | db.state_ubo = new_buffers[2]; |
2494 | db.last_frame_used = RSG::rasterizer->get_frame_number(); |
2495 | state.canvas_instance_data_buffers.insert(state.current_data_buffer_index, db); |
2496 | state.current_data_buffer_index = state.current_data_buffer_index % state.canvas_instance_data_buffers.size(); |
2497 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
2498 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
2499 | } |
2500 | void RasterizerCanvasGLES3::_allocate_instance_buffer() { |
2501 | state.current_instance_buffer_index++; |
2502 | |
2503 | if (int(state.current_instance_buffer_index) < state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) { |
2504 | // We already allocated another buffer in a previous frame, so we can just use it. |
2505 | return; |
2506 | } |
2507 | |
2508 | GLuint new_buffer; |
2509 | glGenBuffers(1, &new_buffer); |
2510 | |
2511 | glBindBuffer(GL_ARRAY_BUFFER, new_buffer); |
2512 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffer, data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "Batch UBO[" + itos(state.current_data_buffer_index) + "][" + itos(state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) + "]" ); |
2513 | |
2514 | state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.push_back(new_buffer); |
2515 | |
2516 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
2517 | } |
2518 | |
2519 | void RasterizerCanvasGLES3::set_time(double p_time) { |
2520 | state.time = p_time; |
2521 | } |
2522 | |
2523 | RasterizerCanvasGLES3 *RasterizerCanvasGLES3::singleton = nullptr; |
2524 | |
2525 | RasterizerCanvasGLES3 *RasterizerCanvasGLES3::get_singleton() { |
2526 | return singleton; |
2527 | } |
2528 | |
2529 | RasterizerCanvasGLES3::RasterizerCanvasGLES3() { |
2530 | singleton = this; |
2531 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
2532 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
2533 | GLES3::Config *config = GLES3::Config::get_singleton(); |
2534 | |
2535 | glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); |
2536 | |
2537 | polygon_buffers.last_id = 1; |
2538 | // quad buffer |
2539 | { |
2540 | glGenBuffers(1, &data.canvas_quad_vertices); |
2541 | glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); |
2542 | |
2543 | const float qv[8] = { |
2544 | 0, 0, |
2545 | 0, 1, |
2546 | 1, 1, |
2547 | 1, 0 |
2548 | }; |
2549 | |
2550 | glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 8, qv, GL_STATIC_DRAW); |
2551 | |
2552 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
2553 | |
2554 | glGenVertexArrays(1, &data.canvas_quad_array); |
2555 | glBindVertexArray(data.canvas_quad_array); |
2556 | glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); |
2557 | glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr); |
2558 | glEnableVertexAttribArray(0); |
2559 | glBindVertexArray(0); |
2560 | glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind |
2561 | } |
2562 | |
2563 | { |
2564 | //particle quad buffers |
2565 | |
2566 | glGenBuffers(1, &data.particle_quad_vertices); |
2567 | glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices); |
2568 | { |
2569 | //quad of size 1, with pivot on the center for particles, then regular UVS. Color is general plus fetched from particle |
2570 | const float qv[16] = { |
2571 | -0.5, -0.5, |
2572 | 0.0, 0.0, |
2573 | -0.5, 0.5, |
2574 | 0.0, 1.0, |
2575 | 0.5, 0.5, |
2576 | 1.0, 1.0, |
2577 | 0.5, -0.5, |
2578 | 1.0, 0.0 |
2579 | }; |
2580 | |
2581 | glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW); |
2582 | } |
2583 | |
2584 | glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind |
2585 | |
2586 | glGenVertexArrays(1, &data.particle_quad_array); |
2587 | glBindVertexArray(data.particle_quad_array); |
2588 | glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices); |
2589 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
2590 | glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr); |
2591 | glEnableVertexAttribArray(RS::ARRAY_TEX_UV); |
2592 | glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8)); |
2593 | glBindVertexArray(0); |
2594 | glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind |
2595 | } |
2596 | |
2597 | // ninepatch buffers |
2598 | { |
2599 | // array buffer |
2600 | glGenBuffers(1, &data.ninepatch_vertices); |
2601 | glBindBuffer(GL_ARRAY_BUFFER, data.ninepatch_vertices); |
2602 | |
2603 | glBufferData(GL_ARRAY_BUFFER, sizeof(float) * (16 + 16) * 2, nullptr, GL_DYNAMIC_DRAW); |
2604 | |
2605 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
2606 | |
2607 | // element buffer |
2608 | glGenBuffers(1, &data.ninepatch_elements); |
2609 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ninepatch_elements); |
2610 | |
2611 | #define _EIDX(y, x) (y * 4 + x) |
2612 | uint8_t elems[3 * 2 * 9] = { |
2613 | // first row |
2614 | |
2615 | _EIDX(0, 0), _EIDX(0, 1), _EIDX(1, 1), |
2616 | _EIDX(1, 1), _EIDX(1, 0), _EIDX(0, 0), |
2617 | |
2618 | _EIDX(0, 1), _EIDX(0, 2), _EIDX(1, 2), |
2619 | _EIDX(1, 2), _EIDX(1, 1), _EIDX(0, 1), |
2620 | |
2621 | _EIDX(0, 2), _EIDX(0, 3), _EIDX(1, 3), |
2622 | _EIDX(1, 3), _EIDX(1, 2), _EIDX(0, 2), |
2623 | |
2624 | // second row |
2625 | |
2626 | _EIDX(1, 0), _EIDX(1, 1), _EIDX(2, 1), |
2627 | _EIDX(2, 1), _EIDX(2, 0), _EIDX(1, 0), |
2628 | |
2629 | // the center one would be here, but we'll put it at the end |
2630 | // so it's easier to disable the center and be able to use |
2631 | // one draw call for both |
2632 | |
2633 | _EIDX(1, 2), _EIDX(1, 3), _EIDX(2, 3), |
2634 | _EIDX(2, 3), _EIDX(2, 2), _EIDX(1, 2), |
2635 | |
2636 | // third row |
2637 | |
2638 | _EIDX(2, 0), _EIDX(2, 1), _EIDX(3, 1), |
2639 | _EIDX(3, 1), _EIDX(3, 0), _EIDX(2, 0), |
2640 | |
2641 | _EIDX(2, 1), _EIDX(2, 2), _EIDX(3, 2), |
2642 | _EIDX(3, 2), _EIDX(3, 1), _EIDX(2, 1), |
2643 | |
2644 | _EIDX(2, 2), _EIDX(2, 3), _EIDX(3, 3), |
2645 | _EIDX(3, 3), _EIDX(3, 2), _EIDX(2, 2), |
2646 | |
2647 | // center field |
2648 | |
2649 | _EIDX(1, 1), _EIDX(1, 2), _EIDX(2, 2), |
2650 | _EIDX(2, 2), _EIDX(2, 1), _EIDX(1, 1) |
2651 | }; |
2652 | #undef _EIDX |
2653 | |
2654 | glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elems), elems, GL_STATIC_DRAW); |
2655 | |
2656 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
2657 | } |
2658 | |
2659 | int uniform_max_size = config->max_uniform_buffer_size; |
2660 | if (uniform_max_size < 65536) { |
2661 | data.max_lights_per_render = 64; |
2662 | } else { |
2663 | data.max_lights_per_render = 256; |
2664 | } |
2665 | |
2666 | // Reserve 3 Uniform Buffers for instance data Frame N, N+1 and N+2 |
2667 | data.max_instances_per_buffer = uint32_t(GLOBAL_GET("rendering/gl_compatibility/item_buffer_size" )); |
2668 | data.max_instance_buffer_size = data.max_instances_per_buffer * sizeof(InstanceData); // 16,384 instances * 128 bytes = 2,097,152 bytes = 2,048 kb |
2669 | state.canvas_instance_data_buffers.resize(3); |
2670 | state.canvas_instance_batches.reserve(200); |
2671 | |
2672 | for (int i = 0; i < 3; i++) { |
2673 | GLuint new_buffers[3]; |
2674 | glGenBuffers(3, new_buffers); |
2675 | // Batch UBO. |
2676 | glBindBuffer(GL_ARRAY_BUFFER, new_buffers[0]); |
2677 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffers[0], data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "Batch UBO[0][0]" ); |
2678 | // Light uniform buffer. |
2679 | glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[1]); |
2680 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[1], sizeof(LightUniform) * data.max_lights_per_render, nullptr, GL_STREAM_DRAW, "2D lights UBO[0]" ); |
2681 | // State buffer. |
2682 | glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[2]); |
2683 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[2], sizeof(StateBuffer), nullptr, GL_STREAM_DRAW, "2D state UBO[0]" ); |
2684 | DataBuffer db; |
2685 | db.instance_buffers.push_back(new_buffers[0]); |
2686 | db.light_ubo = new_buffers[1]; |
2687 | db.state_ubo = new_buffers[2]; |
2688 | db.last_frame_used = 0; |
2689 | db.fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); |
2690 | state.canvas_instance_data_buffers[i] = db; |
2691 | } |
2692 | glBindBuffer(GL_ARRAY_BUFFER, 0); |
2693 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
2694 | |
2695 | state.instance_data_array = memnew_arr(InstanceData, data.max_instances_per_buffer); |
2696 | state.light_uniforms = memnew_arr(LightUniform, data.max_lights_per_render); |
2697 | |
2698 | { |
2699 | const uint32_t indices[6] = { 0, 2, 1, 3, 2, 0 }; |
2700 | glGenVertexArrays(1, &data.indexed_quad_array); |
2701 | glBindVertexArray(data.indexed_quad_array); |
2702 | glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); |
2703 | glGenBuffers(1, &data.indexed_quad_buffer); |
2704 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.indexed_quad_buffer); |
2705 | glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(uint32_t) * 6, indices, GL_STATIC_DRAW); |
2706 | glBindVertexArray(0); |
2707 | } |
2708 | |
2709 | String global_defines; |
2710 | global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n" ; // TODO: this is arbitrary for now |
2711 | global_defines += "#define MAX_LIGHTS " + itos(data.max_lights_per_render) + "\n" ; |
2712 | |
2713 | GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.initialize(global_defines, 1); |
2714 | data.canvas_shader_default_version = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_create(); |
2715 | |
2716 | state.shadow_texture_size = GLOBAL_GET("rendering/2d/shadow_atlas/size" ); |
2717 | shadow_render.shader.initialize(); |
2718 | shadow_render.shader_version = shadow_render.shader.version_create(); |
2719 | |
2720 | { |
2721 | default_canvas_group_shader = material_storage->shader_allocate(); |
2722 | material_storage->shader_initialize(default_canvas_group_shader); |
2723 | |
2724 | material_storage->shader_set_code(default_canvas_group_shader, R"( |
2725 | // Default CanvasGroup shader. |
2726 | |
2727 | shader_type canvas_item; |
2728 | render_mode unshaded; |
2729 | |
2730 | uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest; |
2731 | |
2732 | void fragment() { |
2733 | vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0); |
2734 | |
2735 | if (c.a > 0.0001) { |
2736 | c.rgb /= c.a; |
2737 | } |
2738 | |
2739 | COLOR *= c; |
2740 | } |
2741 | )" ); |
2742 | default_canvas_group_material = material_storage->material_allocate(); |
2743 | material_storage->material_initialize(default_canvas_group_material); |
2744 | |
2745 | material_storage->material_set_shader(default_canvas_group_material, default_canvas_group_shader); |
2746 | } |
2747 | |
2748 | { |
2749 | default_clip_children_shader = material_storage->shader_allocate(); |
2750 | material_storage->shader_initialize(default_clip_children_shader); |
2751 | |
2752 | material_storage->shader_set_code(default_clip_children_shader, R"( |
2753 | // Default clip children shader. |
2754 | |
2755 | shader_type canvas_item; |
2756 | render_mode unshaded; |
2757 | |
2758 | uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest; |
2759 | |
2760 | void fragment() { |
2761 | vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0); |
2762 | COLOR.rgb = c.rgb; |
2763 | } |
2764 | )" ); |
2765 | default_clip_children_material = material_storage->material_allocate(); |
2766 | material_storage->material_initialize(default_clip_children_material); |
2767 | |
2768 | material_storage->material_set_shader(default_clip_children_material, default_clip_children_shader); |
2769 | } |
2770 | |
2771 | default_canvas_texture = texture_storage->canvas_texture_allocate(); |
2772 | texture_storage->canvas_texture_initialize(default_canvas_texture); |
2773 | |
2774 | state.time = 0.0; |
2775 | } |
2776 | |
2777 | RasterizerCanvasGLES3::~RasterizerCanvasGLES3() { |
2778 | singleton = nullptr; |
2779 | |
2780 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
2781 | material_storage->shaders.canvas_shader.version_free(data.canvas_shader_default_version); |
2782 | shadow_render.shader.version_free(shadow_render.shader_version); |
2783 | material_storage->material_free(default_canvas_group_material); |
2784 | material_storage->shader_free(default_canvas_group_shader); |
2785 | material_storage->material_free(default_clip_children_material); |
2786 | material_storage->shader_free(default_clip_children_shader); |
2787 | singleton = nullptr; |
2788 | |
2789 | glDeleteBuffers(1, &data.canvas_quad_vertices); |
2790 | glDeleteVertexArrays(1, &data.canvas_quad_array); |
2791 | |
2792 | glDeleteBuffers(1, &data.canvas_quad_vertices); |
2793 | glDeleteVertexArrays(1, &data.canvas_quad_array); |
2794 | |
2795 | GLES3::TextureStorage::get_singleton()->canvas_texture_free(default_canvas_texture); |
2796 | memdelete_arr(state.instance_data_array); |
2797 | memdelete_arr(state.light_uniforms); |
2798 | |
2799 | if (state.shadow_fb != 0) { |
2800 | glDeleteFramebuffers(1, &state.shadow_fb); |
2801 | GLES3::Utilities::get_singleton()->texture_free_data(state.shadow_texture); |
2802 | glDeleteRenderbuffers(1, &state.shadow_depth_buffer); |
2803 | state.shadow_fb = 0; |
2804 | state.shadow_texture = 0; |
2805 | state.shadow_depth_buffer = 0; |
2806 | } |
2807 | |
2808 | for (uint32_t i = 0; i < state.canvas_instance_data_buffers.size(); i++) { |
2809 | for (int j = 0; j < state.canvas_instance_data_buffers[i].instance_buffers.size(); j++) { |
2810 | if (state.canvas_instance_data_buffers[i].instance_buffers[j]) { |
2811 | GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].instance_buffers[j]); |
2812 | } |
2813 | } |
2814 | if (state.canvas_instance_data_buffers[i].light_ubo) { |
2815 | GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].light_ubo); |
2816 | } |
2817 | if (state.canvas_instance_data_buffers[i].state_ubo) { |
2818 | GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].state_ubo); |
2819 | } |
2820 | } |
2821 | } |
2822 | |
2823 | #endif // GLES3_ENABLED |
2824 | |