1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #include "BsRenderCompositor.h" |
4 | #include "Renderer/BsRendererExtension.h" |
5 | #include "Renderer/BsSkybox.h" |
6 | #include "Renderer/BsCamera.h" |
7 | #include "Renderer/BsRendererUtility.h" |
8 | #include "RenderAPI/BsGpuBuffer.h" |
9 | #include "Utility/BsBitwise.h" |
10 | #include "Mesh/BsMesh.h" |
11 | #include "Material/BsGpuParamsSet.h" |
12 | #include "Renderer/BsGpuResourcePool.h" |
13 | #include "Utility/BsRendererTextures.h" |
14 | #include "Shading/BsStandardDeferred.h" |
15 | #include "Shading/BsTiledDeferred.h" |
16 | #include "Shading/BsLightProbes.h" |
17 | #include "Shading/BsPostProcessing.h" |
18 | #include "Shading/BsShadowRendering.h" |
19 | #include "Shading/BsLightGrid.h" |
20 | #include "BsRendererView.h" |
21 | #include "BsRenderBeastOptions.h" |
22 | #include "BsRendererScene.h" |
23 | #include "BsRenderBeast.h" |
24 | #include "Particles/BsParticleManager.h" |
25 | #include "Particles/BsParticleSystem.h" |
26 | #include "Threading/BsTaskScheduler.h" |
27 | #include "Profiling/BsProfilerGPU.h" |
28 | #include "Shading/BsGpuParticleSimulation.h" |
29 | #include "Profiling/BsProfilerCPU.h" |
30 | |
31 | namespace bs { namespace ct |
32 | { |
33 | UnorderedMap<StringID, RenderCompositor::NodeType*> RenderCompositor::mNodeTypes; |
34 | |
35 | /** Renders all elements in a render queue. */ |
36 | void renderQueueElements(const Vector<RenderQueueElement>& elements) |
37 | { |
38 | for(auto& entry : elements) |
39 | { |
40 | if (entry.applyPass) |
41 | gRendererUtility().setPass(entry.renderElem->material, entry.passIdx, entry.techniqueIdx); |
42 | |
43 | gRendererUtility().setPassParams(entry.renderElem->params, entry.passIdx); |
44 | |
45 | entry.renderElem->draw(); |
46 | } |
47 | } |
48 | |
49 | RenderCompositor::~RenderCompositor() |
50 | { |
51 | clear(); |
52 | } |
53 | |
54 | void RenderCompositor::build(const RendererView& view, const StringID& finalNode) |
55 | { |
56 | clear(); |
57 | |
58 | bs_frame_mark(); |
59 | { |
60 | FrameUnorderedMap<StringID, UINT32> processedNodes; |
61 | mIsValid = true; |
62 | |
63 | std::function<bool(const StringID&)> registerNode = [&](const StringID& nodeId) |
64 | { |
65 | // Find node type |
66 | auto iterFind = mNodeTypes.find(nodeId); |
67 | if (iterFind == mNodeTypes.end()) |
68 | { |
69 | LOGERR("Cannot find render compositor node of type \"" + String(nodeId.c_str()) + "\"." ); |
70 | return false; |
71 | } |
72 | |
73 | NodeType* nodeType = iterFind->second; |
74 | |
75 | // Register current node |
76 | auto iterFind2 = processedNodes.find(nodeId); |
77 | |
78 | // New node |
79 | if (iterFind2 == processedNodes.end()) |
80 | { |
81 | // Mark it as invalid for now |
82 | processedNodes[nodeId] = -1; |
83 | } |
84 | |
85 | // Register node dependencies |
86 | SmallVector<StringID, 4> depIds = nodeType->getDependencies(view); |
87 | for (auto& dep : depIds) |
88 | { |
89 | if (!registerNode(dep)) |
90 | return false; |
91 | } |
92 | |
93 | // Register current node |
94 | UINT32 curIdx; |
95 | |
96 | // New node, properly populate its index |
97 | if (iterFind2 == processedNodes.end()) |
98 | { |
99 | iterFind2 = processedNodes.find(nodeId); |
100 | |
101 | curIdx = (UINT32)mNodeInfos.size(); |
102 | mNodeInfos.push_back(NodeInfo()); |
103 | processedNodes[nodeId] = curIdx; |
104 | |
105 | NodeInfo& nodeInfo = mNodeInfos.back(); |
106 | nodeInfo.node = nodeType->create(); |
107 | nodeInfo.nodeType = nodeType; |
108 | nodeInfo.lastUseIdx = -1; |
109 | |
110 | for (auto& depId : depIds) |
111 | { |
112 | iterFind2 = processedNodes.find(depId); |
113 | |
114 | NodeInfo& depNodeInfo = mNodeInfos[iterFind2->second]; |
115 | nodeInfo.inputs.add(depNodeInfo.node); |
116 | } |
117 | } |
118 | else // Existing node |
119 | { |
120 | curIdx = iterFind2->second; |
121 | |
122 | // Check if invalid |
123 | if (curIdx == (UINT32)-1) |
124 | { |
125 | LOGERR("Render compositor nodes recursion detected. Node \"" + String(nodeId.c_str()) + "\" " + |
126 | "depends on node \"" + String(iterFind->first.c_str()) + "\" which is not available at " + |
127 | "this stage." ); |
128 | return false; |
129 | } |
130 | } |
131 | |
132 | // Update dependency last use counters |
133 | for (auto& dep : depIds) |
134 | { |
135 | iterFind2 = processedNodes.find(dep); |
136 | |
137 | NodeInfo& depNodeInfo = mNodeInfos[iterFind2->second]; |
138 | if (depNodeInfo.lastUseIdx == (UINT32)-1) |
139 | depNodeInfo.lastUseIdx = curIdx; |
140 | else |
141 | depNodeInfo.lastUseIdx = std::max(depNodeInfo.lastUseIdx, curIdx); |
142 | } |
143 | |
144 | return true; |
145 | }; |
146 | |
147 | mIsValid = registerNode(finalNode); |
148 | |
149 | if (!mIsValid) |
150 | clear(); |
151 | } |
152 | bs_frame_clear(); |
153 | } |
154 | |
155 | void RenderCompositor::execute(RenderCompositorNodeInputs& inputs) const |
156 | { |
157 | if (!mIsValid) |
158 | return; |
159 | |
160 | bs_frame_mark(); |
161 | { |
162 | FrameVector<const NodeInfo*> activeNodes; |
163 | |
164 | UINT32 idx = 0; |
165 | for (auto& entry : mNodeInfos) |
166 | { |
167 | inputs.inputNodes = entry.inputs; |
168 | |
169 | #if BS_PROFILING_ENABLED |
170 | const ProfilerString sampleName = ProfilerString("RC: " ) + entry.nodeType->id.c_str(); |
171 | BS_GPU_PROFILE_BEGIN(sampleName); |
172 | gProfilerCPU().beginSample(sampleName.c_str()); |
173 | #endif |
174 | |
175 | entry.node->render(inputs); |
176 | |
177 | #if BS_PROFILING_ENABLED |
178 | gProfilerCPU().endSample(sampleName.c_str()); |
179 | BS_GPU_PROFILE_END(sampleName); |
180 | #endif |
181 | |
182 | activeNodes.push_back(&entry); |
183 | |
184 | for (UINT32 i = 0; i < (UINT32)activeNodes.size(); ++i) |
185 | { |
186 | if (activeNodes[i] == nullptr) |
187 | continue; |
188 | |
189 | if (activeNodes[i]->lastUseIdx <= idx) |
190 | { |
191 | activeNodes[i]->node->clear(); |
192 | activeNodes[i] = nullptr; |
193 | } |
194 | } |
195 | |
196 | idx++; |
197 | } |
198 | } |
199 | bs_frame_clear(); |
200 | |
201 | if (!mNodeInfos.empty()) |
202 | mNodeInfos.back().node->clear(); |
203 | } |
204 | |
205 | void RenderCompositor::clear() |
206 | { |
207 | for (auto& entry : mNodeInfos) |
208 | bs_delete(entry.node); |
209 | |
210 | mNodeInfos.clear(); |
211 | mIsValid = false; |
212 | } |
213 | |
214 | void RCNodeSceneDepth::render(const RenderCompositorNodeInputs& inputs) |
215 | { |
216 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
217 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
218 | |
219 | UINT32 width = viewProps.target.viewRect.width; |
220 | UINT32 height = viewProps.target.viewRect.height; |
221 | UINT32 numSamples = viewProps.target.numSamples; |
222 | |
223 | depthTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_D32_S8X24, width, height, TU_DEPTHSTENCIL, |
224 | numSamples, false)); |
225 | } |
226 | |
227 | void RCNodeSceneDepth::clear() |
228 | { |
229 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
230 | resPool.release(depthTex); |
231 | } |
232 | |
233 | SmallVector<StringID, 4> RCNodeSceneDepth::getDependencies(const RendererView& view) |
234 | { |
235 | return {}; |
236 | } |
237 | |
238 | void RCNodeBasePass::render(const RenderCompositorNodeInputs& inputs) |
239 | { |
240 | // Allocate necessary textures & targets |
241 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
242 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
243 | |
244 | const UINT32 width = viewProps.target.viewRect.width; |
245 | const UINT32 height = viewProps.target.viewRect.height; |
246 | const UINT32 numSamples = viewProps.target.numSamples; |
247 | |
248 | // Note: Consider customizable formats. e.g. for testing if quality can be improved with higher precision normals. |
249 | albedoTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA8, width, height, TU_RENDERTARGET, |
250 | numSamples, true)); |
251 | normalTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGB10A2, width, height, TU_RENDERTARGET, |
252 | numSamples, false)); |
253 | roughMetalTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RG16F, width, height, TU_RENDERTARGET, |
254 | numSamples, false)); // Note: Metal doesn't need 16-bit float |
255 | idTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_R8, width, height, TU_RENDERTARGET, |
256 | numSamples, false)); |
257 | |
258 | auto sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[0]); |
259 | auto sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[1]); |
260 | SPtr<PooledRenderTexture> sceneDepthTex = sceneDepthNode->depthTex; |
261 | SPtr<PooledRenderTexture> sceneColorTex = sceneColorNode->sceneColorTex; |
262 | |
263 | bool rebuildRT = false; |
264 | if (renderTarget != nullptr) |
265 | { |
266 | rebuildRT |= renderTarget->getColorTexture(0) != sceneColorTex->texture; |
267 | rebuildRT |= renderTarget->getColorTexture(1) != albedoTex->texture; |
268 | rebuildRT |= renderTarget->getColorTexture(2) != normalTex->texture; |
269 | rebuildRT |= renderTarget->getColorTexture(3) != roughMetalTex->texture; |
270 | rebuildRT |= renderTarget->getColorTexture(4) != idTex->texture; |
271 | rebuildRT |= renderTarget->getDepthStencilTexture() != sceneDepthTex->texture; |
272 | } |
273 | else |
274 | rebuildRT = true; |
275 | |
276 | if (renderTarget == nullptr || rebuildRT) |
277 | { |
278 | RENDER_TEXTURE_DESC gbufferDesc; |
279 | gbufferDesc.colorSurfaces[0].texture = sceneColorTex->texture; |
280 | gbufferDesc.colorSurfaces[0].face = 0; |
281 | gbufferDesc.colorSurfaces[0].numFaces = 1; |
282 | gbufferDesc.colorSurfaces[0].mipLevel = 0; |
283 | |
284 | gbufferDesc.colorSurfaces[1].texture = albedoTex->texture; |
285 | gbufferDesc.colorSurfaces[1].face = 0; |
286 | gbufferDesc.colorSurfaces[1].numFaces = 1; |
287 | gbufferDesc.colorSurfaces[1].mipLevel = 0; |
288 | |
289 | gbufferDesc.colorSurfaces[2].texture = normalTex->texture; |
290 | gbufferDesc.colorSurfaces[2].face = 0; |
291 | gbufferDesc.colorSurfaces[2].numFaces = 1; |
292 | gbufferDesc.colorSurfaces[2].mipLevel = 0; |
293 | |
294 | gbufferDesc.colorSurfaces[3].texture = roughMetalTex->texture; |
295 | gbufferDesc.colorSurfaces[3].face = 0; |
296 | gbufferDesc.colorSurfaces[3].numFaces = 1; |
297 | gbufferDesc.colorSurfaces[3].mipLevel = 0; |
298 | |
299 | gbufferDesc.depthStencilSurface.texture = sceneDepthTex->texture; |
300 | gbufferDesc.depthStencilSurface.face = 0; |
301 | gbufferDesc.depthStencilSurface.mipLevel = 0; |
302 | |
303 | renderTargetNoMask = RenderTexture::create(gbufferDesc); |
304 | |
305 | gbufferDesc.colorSurfaces[4].texture = idTex->texture; |
306 | gbufferDesc.colorSurfaces[4].face = 0; |
307 | gbufferDesc.colorSurfaces[4].numFaces = 1; |
308 | gbufferDesc.colorSurfaces[4].mipLevel = 0; |
309 | |
310 | renderTarget = RenderTexture::create(gbufferDesc); |
311 | } |
312 | |
313 | // Prepare all visible objects. Note that this also prepares non-opaque objects. |
314 | //// Prepare normal renderables |
315 | const VisibilityInfo& visibility = inputs.view.getVisibilityMasks(); |
316 | const auto numRenderables = (UINT32)inputs.scene.renderables.size(); |
317 | for (UINT32 i = 0; i < numRenderables; i++) |
318 | { |
319 | if (!visibility.renderables[i]) |
320 | continue; |
321 | |
322 | RendererRenderable* rendererRenderable = inputs.scene.renderables[i]; |
323 | rendererRenderable->updatePerCallBuffer(viewProps.viewProjTransform); |
324 | |
325 | for (auto& element : inputs.scene.renderables[i]->elements) |
326 | { |
327 | SPtr<GpuParams> gpuParams = element.params->getGpuParams(); |
328 | for(UINT32 j = 0; j < GPT_COUNT; j++) |
329 | { |
330 | const GpuParamBinding& binding = element.perCameraBindings[j]; |
331 | if(binding.slot != (UINT32)-1) |
332 | gpuParams->setParamBlockBuffer(binding.set, binding.slot, inputs.view.getPerViewBuffer()); |
333 | } |
334 | } |
335 | } |
336 | |
337 | //// Prepare particle systems |
338 | const ParticlePerFrameData* particleData = inputs.frameInfo.perFrameData.particles; |
339 | if(particleData) |
340 | { |
341 | const auto numParticleSystems = (UINT32)inputs.scene.particleSystems.size(); |
342 | |
343 | const GpuParticleResources& gpuSimResources = GpuParticleSimulation::instance().getResources(); |
344 | for (UINT32 i = 0; i < numParticleSystems; i++) |
345 | { |
346 | if (!visibility.particleSystems[i]) |
347 | continue; |
348 | |
349 | const RendererParticles& rendererParticles = inputs.scene.particleSystems[i]; |
350 | ParticlesRenderElement& renderElement = rendererParticles.renderElement; |
351 | |
352 | if(!renderElement.isValid()) |
353 | continue; |
354 | |
355 | ParticleSystem* particleSystem = rendererParticles.particleSystem; |
356 | |
357 | // Bind textures/buffers from CPU simulation |
358 | const auto iterFind = particleData->cpuData.find(particleSystem->getId()); |
359 | if (iterFind != particleData->cpuData.end()) |
360 | { |
361 | ParticleRenderData* renderData = iterFind->second; |
362 | rendererParticles.bindCPUSimulatedInputs(renderData, inputs.view); |
363 | } |
364 | // Bind textures/buffers from GPU simulation |
365 | else if(rendererParticles.gpuParticleSystem) |
366 | rendererParticles.bindGPUSimulatedInputs(gpuSimResources, inputs.view); |
367 | } |
368 | } |
369 | |
370 | //// Prepare decals |
371 | const auto numDecals = (UINT32)inputs.scene.decals.size(); |
372 | for (UINT32 i = 0; i < numDecals; i++) |
373 | { |
374 | if (!visibility.decals[i]) |
375 | continue; |
376 | |
377 | const RendererDecal& rendererDecal = inputs.scene.decals[i]; |
378 | DecalRenderElement& renderElement = rendererDecal.renderElement; |
379 | |
380 | rendererDecal.updatePerCallBuffer(viewProps.viewProjTransform); |
381 | |
382 | SPtr<GpuParams> gpuParams = renderElement.params->getGpuParams(); |
383 | for (UINT32 j = 0; j < GPT_COUNT; j++) |
384 | { |
385 | const GpuParamBinding& binding = renderElement.perCameraBindings[j]; |
386 | if (binding.slot != (UINT32)-1) |
387 | gpuParams->setParamBlockBuffer(binding.set, binding.slot, inputs.view.getPerViewBuffer()); |
388 | } |
389 | |
390 | renderElement.depthInputTexture.set(sceneDepthTex->texture); |
391 | renderElement.maskInputTexture.set(idTex->texture); |
392 | } |
393 | |
394 | Camera* sceneCamera = inputs.view.getSceneCamera(); |
395 | |
396 | // Trigger prepare callbacks |
397 | if (sceneCamera != nullptr) |
398 | { |
399 | for(auto& extension : inputs.extPrepare) |
400 | { |
401 | if (extension->check(*sceneCamera)) |
402 | extension->render(*sceneCamera); |
403 | } |
404 | } |
405 | |
406 | // Render base pass |
407 | RenderAPI& rapi = RenderAPI::instance(); |
408 | rapi.setRenderTarget(renderTarget); |
409 | |
410 | Rect2 area(0.0f, 0.0f, 1.0f, 1.0f); |
411 | rapi.setViewport(area); |
412 | |
413 | // Clear all targets |
414 | rapi.clearViewport(FBT_COLOR | FBT_DEPTH | FBT_STENCIL, Color::ZERO, 1.0f, 0); |
415 | |
416 | // Trigger pre-base-pass callbacks |
417 | if (sceneCamera != nullptr) |
418 | { |
419 | for(auto& extension : inputs.extPreBasePass) |
420 | { |
421 | if (extension->check(*sceneCamera)) |
422 | extension->render(*sceneCamera); |
423 | } |
424 | } |
425 | |
426 | // Render all visible opaque elements that use the deferred pipeline |
427 | const Vector<RenderQueueElement>& opaqueElements = inputs.view.getOpaqueQueue(false)->getSortedElements(); |
428 | renderQueueElements(opaqueElements); |
429 | |
430 | // Determine MSAA coverage if required |
431 | if (viewProps.target.numSamples > 1) |
432 | { |
433 | auto msaaCoverageNode = static_cast<RCNodeMSAACoverage*>(inputs.inputNodes[3]); |
434 | |
435 | GBufferTextures gbuffer; |
436 | gbuffer.albedo = albedoTex->texture; |
437 | gbuffer.normals = normalTex->texture; |
438 | gbuffer.roughMetal = roughMetalTex->texture; |
439 | gbuffer.depth = sceneDepthNode->depthTex->texture; |
440 | |
441 | MSAACoverageMat* mat = MSAACoverageMat::getVariation(viewProps.target.numSamples); |
442 | rapi.setRenderTarget(msaaCoverageNode->output->renderTexture); |
443 | mat->execute(inputs.view, gbuffer); |
444 | |
445 | MSAACoverageStencilMat* stencilMat = MSAACoverageStencilMat::get(); |
446 | rapi.setRenderTarget(sceneDepthNode->depthTex->renderTexture); |
447 | stencilMat->execute(inputs.view, msaaCoverageNode->output->texture); |
448 | } |
449 | |
450 | // Render decals after all normal objects, using a read-only depth buffer |
451 | rapi.setRenderTarget(renderTargetNoMask, FBT_DEPTH, RT_ALL); |
452 | |
453 | const Vector<RenderQueueElement>& decalElements = inputs.view.getDecalQueue()->getSortedElements(); |
454 | renderQueueElements(decalElements); |
455 | |
456 | // Make sure that any compute shaders are able to read g-buffer by unbinding it |
457 | rapi.setRenderTarget(nullptr); |
458 | |
459 | // Trigger post-base-pass callbacks |
460 | if (sceneCamera != nullptr) |
461 | { |
462 | for(auto& extension : inputs.extPostBasePass) |
463 | { |
464 | if (extension->check(*sceneCamera)) |
465 | extension->render(*sceneCamera); |
466 | } |
467 | } |
468 | } |
469 | |
470 | void RCNodeBasePass::clear() |
471 | { |
472 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
473 | |
474 | resPool.release(albedoTex); |
475 | resPool.release(normalTex); |
476 | resPool.release(roughMetalTex); |
477 | resPool.release(idTex); |
478 | } |
479 | |
480 | SmallVector<StringID, 4> RCNodeBasePass::getDependencies(const RendererView& view) |
481 | { |
482 | return { |
483 | RCNodeSceneDepth::getNodeId(), RCNodeSceneColor::getNodeId(), RCNodeParticleSort::getNodeId(), |
484 | RCNodeMSAACoverage::getNodeId() }; |
485 | } |
486 | |
487 | void RCNodeSceneColor::render(const RenderCompositorNodeInputs& inputs) |
488 | { |
489 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
490 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
491 | |
492 | UINT32 width = viewProps.target.viewRect.width; |
493 | UINT32 height = viewProps.target.viewRect.height; |
494 | UINT32 numSamples = viewProps.target.numSamples; |
495 | |
496 | UINT32 usageFlags = TU_RENDERTARGET; |
497 | |
498 | bool tiledDeferredSupported = inputs.featureSet != RenderBeastFeatureSet::DesktopMacOS; |
499 | if(tiledDeferredSupported && numSamples == 1) |
500 | usageFlags |= TU_LOADSTORE; |
501 | |
502 | // Note: Consider customizable HDR format via options? e.g. smaller PF_FLOAT_R11G11B10 or larger 32-bit format |
503 | sceneColorTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, width, height, usageFlags, |
504 | numSamples, false)); |
505 | |
506 | RCNodeSceneDepth* sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[0]); |
507 | SPtr<PooledRenderTexture> sceneDepthTex = sceneDepthNode->depthTex; |
508 | |
509 | if (tiledDeferredSupported && viewProps.target.numSamples > 1) |
510 | { |
511 | sceneColorTexArray = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, width, height, |
512 | TU_LOADSTORE, 1, false, viewProps.target.numSamples)); |
513 | } |
514 | else |
515 | sceneColorTexArray = nullptr; |
516 | |
517 | bool rebuildRT = false; |
518 | if (renderTarget != nullptr) |
519 | { |
520 | rebuildRT |= renderTarget->getColorTexture(0) != sceneColorTex->texture; |
521 | rebuildRT |= renderTarget->getDepthStencilTexture() != sceneDepthTex->texture; |
522 | } |
523 | else |
524 | rebuildRT = true; |
525 | |
526 | if (rebuildRT) |
527 | { |
528 | RENDER_TEXTURE_DESC sceneColorDesc; |
529 | sceneColorDesc.colorSurfaces[0].texture = sceneColorTex->texture; |
530 | sceneColorDesc.colorSurfaces[0].face = 0; |
531 | sceneColorDesc.colorSurfaces[0].numFaces = 1; |
532 | sceneColorDesc.colorSurfaces[0].mipLevel = 0; |
533 | |
534 | sceneColorDesc.depthStencilSurface.texture = sceneDepthTex->texture; |
535 | sceneColorDesc.depthStencilSurface.face = 0; |
536 | sceneColorDesc.depthStencilSurface.numFaces = 1; |
537 | sceneColorDesc.depthStencilSurface.mipLevel = 0; |
538 | |
539 | renderTarget = RenderTexture::create(sceneColorDesc); |
540 | } |
541 | } |
542 | |
543 | void RCNodeSceneColor::clear() |
544 | { |
545 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
546 | resPool.release(sceneColorTex); |
547 | |
548 | if (sceneColorTexArray != nullptr) |
549 | resPool.release(sceneColorTexArray); |
550 | } |
551 | |
552 | void RCNodeSceneColor::resolveMSAA() |
553 | { |
554 | RenderAPI& rapi = RenderAPI::instance(); |
555 | rapi.setRenderTarget(renderTarget, FBT_DEPTH | FBT_STENCIL, RT_DEPTH_STENCIL); |
556 | |
557 | Rect2 area(0.0f, 0.0f, 1.0f, 1.0f); |
558 | rapi.setViewport(area); |
559 | |
560 | TextureArrayToMSAATexture* material = TextureArrayToMSAATexture::get(); |
561 | material->execute(sceneColorTexArray->texture, sceneColorTex->texture); |
562 | } |
563 | |
564 | SmallVector<StringID, 4> RCNodeSceneColor::getDependencies(const RendererView& view) |
565 | { |
566 | return { RCNodeSceneDepth::getNodeId() }; |
567 | } |
568 | |
569 | void RCNodeMSAACoverage::render(const RenderCompositorNodeInputs& inputs) |
570 | { |
571 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
572 | if(viewProps.target.numSamples <= 1) |
573 | { |
574 | // No need for MSAA coverage |
575 | output = nullptr; |
576 | return; |
577 | } |
578 | |
579 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
580 | |
581 | UINT32 width = viewProps.target.viewRect.width; |
582 | UINT32 height = viewProps.target.viewRect.height; |
583 | |
584 | // We just allocate the texture, while the base pass is responsible for filling it out |
585 | output = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_R8, width, height, TU_RENDERTARGET)); |
586 | } |
587 | |
588 | void RCNodeMSAACoverage::clear() |
589 | { |
590 | if(output) |
591 | { |
592 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
593 | resPool.release(output); |
594 | } |
595 | } |
596 | |
597 | SmallVector<StringID, 4> RCNodeMSAACoverage::getDependencies(const RendererView& view) |
598 | { |
599 | return { }; |
600 | } |
601 | |
602 | void RCNodeParticleSimulate::render(const RenderCompositorNodeInputs& inputs) |
603 | { |
604 | // Only simulate particles for the first view in the main render pass |
605 | if(inputs.viewGroup.isMainPass() && inputs.view.getViewIdx() == 0) |
606 | { |
607 | RCNodeBasePass* gbufferNode = static_cast<RCNodeBasePass*>(inputs.inputNodes[0]); |
608 | RCNodeSceneDepth* sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[1]); |
609 | |
610 | GBufferTextures gbuffer; |
611 | gbuffer.albedo = gbufferNode->albedoTex->texture; |
612 | gbuffer.normals = gbufferNode->normalTex->texture; |
613 | gbuffer.roughMetal = gbufferNode->roughMetalTex->texture; |
614 | gbuffer.depth = sceneDepthNode->depthTex->texture; |
615 | |
616 | GpuParticleSimulation::instance().simulate(inputs.scene, inputs.frameInfo.perFrameData.particles, |
617 | inputs.view.getPerViewBuffer(), gbuffer, inputs.frameInfo.timeDelta); |
618 | } |
619 | |
620 | GpuParticleSimulation::instance().sort(inputs.view); |
621 | } |
622 | |
623 | void RCNodeParticleSimulate::clear() |
624 | { |
625 | // Do nothing |
626 | } |
627 | |
628 | SmallVector<StringID, 4> RCNodeParticleSimulate::getDependencies(const RendererView& view) |
629 | { |
630 | return { RCNodeBasePass::getNodeId(), RCNodeSceneDepth::getNodeId() }; |
631 | } |
632 | |
633 | void RCNodeParticleSort::render(const RenderCompositorNodeInputs& inputs) |
634 | { |
635 | const ParticlePerFrameData* particleData = inputs.frameInfo.perFrameData.particles; |
636 | if(!particleData) |
637 | return; |
638 | |
639 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
640 | const VisibilityInfo& visibility = inputs.view.getVisibilityMasks(); |
641 | const auto numParticleSystems = (UINT32)inputs.scene.particleSystems.size(); |
642 | |
643 | // Sort particles |
644 | bs_frame_mark(); |
645 | { |
646 | struct SortData |
647 | { |
648 | ParticleSystem* system; |
649 | ParticleRenderData* renderData; |
650 | }; |
651 | |
652 | FrameVector<SortData> systemsToSort; |
653 | for (UINT32 i = 0; i < numParticleSystems; i++) |
654 | { |
655 | if (!visibility.particleSystems[i]) |
656 | continue; |
657 | |
658 | const RendererParticles& rendererParticles = inputs.scene.particleSystems[i]; |
659 | |
660 | ParticleSystem* particleSystem = rendererParticles.particleSystem; |
661 | const auto iterFind = particleData->cpuData.find(particleSystem->getId()); |
662 | if (iterFind == particleData->cpuData.end()) |
663 | continue; |
664 | |
665 | ParticleRenderData* simulationData = iterFind->second; |
666 | if (particleSystem->getSettings().sortMode == ParticleSortMode::Distance) |
667 | systemsToSort.push_back({ particleSystem, simulationData }); |
668 | } |
669 | |
670 | const auto worker = [&systemsToSort, viewOrigin = viewProps.viewOrigin](UINT32 idx) |
671 | { |
672 | const SortData& data = systemsToSort[idx]; |
673 | |
674 | Vector3 refPoint = viewOrigin; |
675 | |
676 | // Transform the view point into particle system's local space |
677 | const ParticleSystemSettings& settings = data.system->getSettings(); |
678 | if (settings.simulationSpace == ParticleSimulationSpace::Local) |
679 | refPoint = data.system->getTransform().getInvMatrix().multiplyAffine(refPoint); |
680 | |
681 | if (settings.renderMode == ParticleRenderMode::Billboard) |
682 | { |
683 | auto renderData = static_cast<ParticleBillboardRenderData*>(data.renderData); |
684 | ParticleRenderer::sortByDistance(refPoint, renderData->positionAndRotation, |
685 | renderData->numParticles, 4, renderData->indices); |
686 | } |
687 | else |
688 | { |
689 | auto renderData = static_cast<ParticleMeshRenderData*>(data.renderData); |
690 | ParticleRenderer::sortByDistance(refPoint, renderData->position, renderData->numParticles, |
691 | 3, renderData->indices); |
692 | } |
693 | }; |
694 | |
695 | SPtr<TaskGroup> sortTask = TaskGroup::create("ParticleSort" , worker, (UINT32)systemsToSort.size()); |
696 | |
697 | TaskScheduler::instance().addTaskGroup(sortTask); |
698 | sortTask->wait(); |
699 | } |
700 | bs_frame_clear(); |
701 | } |
702 | |
703 | void RCNodeParticleSort::clear() |
704 | { |
705 | // Do nothing |
706 | } |
707 | |
708 | SmallVector<StringID, 4> RCNodeParticleSort::getDependencies(const RendererView& view) |
709 | { |
710 | return { }; |
711 | } |
712 | |
713 | void RCNodeLightAccumulation::render(const RenderCompositorNodeInputs& inputs) |
714 | { |
715 | bool supportsTiledDeferred = gRenderBeast()->getFeatureSet() != RenderBeastFeatureSet::DesktopMacOS; |
716 | if(!supportsTiledDeferred) |
717 | { |
718 | // If tiled deferred is not supported, we don't need a separate texture for light accumulation, instead we |
719 | // use scene color directly |
720 | RCNodeSceneColor* sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[0]); |
721 | lightAccumulationTex = sceneColorNode->sceneColorTex; |
722 | renderTarget = sceneColorNode->renderTarget; |
723 | |
724 | mOwnsTexture = false; |
725 | return; |
726 | } |
727 | |
728 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
729 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
730 | |
731 | RCNodeSceneDepth* depthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[0]); |
732 | |
733 | UINT32 width = viewProps.target.viewRect.width; |
734 | UINT32 height = viewProps.target.viewRect.height; |
735 | UINT32 numSamples = viewProps.target.numSamples; |
736 | |
737 | UINT32 usage = TU_RENDERTARGET; |
738 | if (numSamples > 1) |
739 | { |
740 | lightAccumulationTexArray = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, width, height, |
741 | TU_LOADSTORE, 1, false, numSamples)); |
742 | |
743 | ClearLoadStoreMat* clearMat = ClearLoadStoreMat::getVariation(ClearLoadStoreType::TextureArray, |
744 | ClearLoadStoreDataType::Float, 4); |
745 | |
746 | for(UINT32 i = 0; i < numSamples; i++) |
747 | { |
748 | TextureSurface surface; |
749 | surface.face = i; |
750 | surface.numFaces = 1; |
751 | surface.mipLevel = 0; |
752 | surface.numMipLevels = 1; |
753 | |
754 | clearMat->execute(lightAccumulationTexArray->texture, Color::ZERO, surface); |
755 | } |
756 | } |
757 | else |
758 | { |
759 | usage |= TU_LOADSTORE; |
760 | lightAccumulationTexArray = nullptr; |
761 | } |
762 | |
763 | lightAccumulationTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, width, |
764 | height, usage, numSamples, false)); |
765 | |
766 | bool rebuildRT; |
767 | if (renderTarget != nullptr) |
768 | { |
769 | rebuildRT = renderTarget->getColorTexture(0) != lightAccumulationTex->texture; |
770 | rebuildRT |= renderTarget->getDepthStencilTexture() != depthNode->depthTex->texture; |
771 | } |
772 | else |
773 | rebuildRT = true; |
774 | |
775 | if (rebuildRT) |
776 | { |
777 | RENDER_TEXTURE_DESC lightAccumulationRTDesc; |
778 | lightAccumulationRTDesc.colorSurfaces[0].texture = lightAccumulationTex->texture; |
779 | lightAccumulationRTDesc.colorSurfaces[0].face = 0; |
780 | lightAccumulationRTDesc.colorSurfaces[0].numFaces = 1; |
781 | lightAccumulationRTDesc.colorSurfaces[0].mipLevel = 0; |
782 | |
783 | lightAccumulationRTDesc.depthStencilSurface.texture = depthNode->depthTex->texture; |
784 | lightAccumulationRTDesc.depthStencilSurface.face = 0; |
785 | lightAccumulationRTDesc.depthStencilSurface.numFaces = 1; |
786 | lightAccumulationRTDesc.depthStencilSurface.mipLevel = 0; |
787 | |
788 | renderTarget = RenderTexture::create(lightAccumulationRTDesc); |
789 | } |
790 | |
791 | mOwnsTexture = true; |
792 | } |
793 | |
794 | void RCNodeLightAccumulation::resolveMSAA() |
795 | { |
796 | RenderAPI& rapi = RenderAPI::instance(); |
797 | rapi.setRenderTarget(renderTarget, FBT_DEPTH | FBT_STENCIL, RT_DEPTH_STENCIL); |
798 | |
799 | TextureArrayToMSAATexture* material = TextureArrayToMSAATexture::get(); |
800 | material->execute(lightAccumulationTexArray->texture, lightAccumulationTex->texture); |
801 | } |
802 | |
803 | void RCNodeLightAccumulation::clear() |
804 | { |
805 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
806 | if(mOwnsTexture) |
807 | resPool.release(lightAccumulationTex); |
808 | else |
809 | { |
810 | lightAccumulationTex = nullptr; |
811 | renderTarget = nullptr; |
812 | } |
813 | |
814 | if(lightAccumulationTexArray) |
815 | resPool.release(lightAccumulationTexArray); |
816 | } |
817 | |
818 | SmallVector<StringID, 4> RCNodeLightAccumulation::getDependencies(const RendererView& view) |
819 | { |
820 | SmallVector<StringID, 4> deps; |
821 | |
822 | const bool supportsTiledDeferred = gRenderBeast()->getFeatureSet() != RenderBeastFeatureSet::DesktopMacOS; |
823 | if(!supportsTiledDeferred) |
824 | deps.add(RCNodeSceneColor::getNodeId()); |
825 | else |
826 | deps.add(RCNodeSceneDepth::getNodeId()); |
827 | |
828 | return deps; |
829 | } |
830 | |
831 | void RCNodeDeferredDirectLighting::render(const RenderCompositorNodeInputs& inputs) |
832 | { |
833 | output = static_cast<RCNodeLightAccumulation*>(inputs.inputNodes[0]); |
834 | |
835 | auto gbufferNode = static_cast<RCNodeBasePass*>(inputs.inputNodes[1]); |
836 | auto sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[2]); |
837 | auto sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[3]); |
838 | |
839 | GBufferTextures gbuffer; |
840 | gbuffer.albedo = gbufferNode->albedoTex->texture; |
841 | gbuffer.normals = gbufferNode->normalTex->texture; |
842 | gbuffer.roughMetal = gbufferNode->roughMetalTex->texture; |
843 | gbuffer.depth = sceneDepthNode->depthTex->texture; |
844 | |
845 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
846 | |
847 | if (!inputs.view.getRenderSettings().enableShadows) |
848 | mLightOcclusionRT = nullptr; |
849 | |
850 | bool tiledDeferredSupported = inputs.featureSet != RenderBeastFeatureSet::DesktopMacOS; |
851 | if(tiledDeferredSupported) |
852 | { |
853 | SPtr<Texture> msaaCoverage; |
854 | if(viewProps.target.numSamples > 1) |
855 | { |
856 | RCNodeMSAACoverage* coverageNode = static_cast<RCNodeMSAACoverage*>(inputs.inputNodes[4]); |
857 | msaaCoverage = coverageNode->output->texture; |
858 | } |
859 | |
860 | TiledDeferredLightingMat* tiledDeferredMat = |
861 | TiledDeferredLightingMat::getVariation(viewProps.target.numSamples); |
862 | |
863 | const VisibleLightData& lightData = inputs.viewGroup.getVisibleLightData(); |
864 | |
865 | SPtr<Texture> lightAccumTexArray; |
866 | if(output->lightAccumulationTexArray) |
867 | lightAccumTexArray = output->lightAccumulationTexArray->texture; |
868 | |
869 | tiledDeferredMat->execute(inputs.view, lightData, gbuffer, sceneColorNode->sceneColorTex->texture, |
870 | output->lightAccumulationTex->texture, lightAccumTexArray, msaaCoverage); |
871 | |
872 | if (viewProps.target.numSamples > 1) |
873 | output->resolveMSAA(); |
874 | |
875 | // If shadows are disabled we handle all lights through tiled deferred so we can exit immediately |
876 | if (!inputs.view.getRenderSettings().enableShadows) |
877 | return; |
878 | } |
879 | |
880 | // Standard deferred used for shadowed lights, or when tiled deferred isn't supported |
881 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
882 | |
883 | UINT32 width = viewProps.target.viewRect.width; |
884 | UINT32 height = viewProps.target.viewRect.height; |
885 | UINT32 numSamples = viewProps.target.numSamples; |
886 | |
887 | const VisibleLightData& lightData = inputs.viewGroup.getVisibleLightData(); |
888 | |
889 | RenderAPI& rapi = RenderAPI::instance(); |
890 | |
891 | // Render unshadowed lights |
892 | if(!tiledDeferredSupported) |
893 | { |
894 | ProfileGPUBlock sampleBlock("Standard deferred unshadowed lights" ); |
895 | |
896 | rapi.setRenderTarget(output->renderTarget, FBT_DEPTH | FBT_STENCIL, RT_DEPTH_STENCIL); |
897 | |
898 | for (UINT32 i = 0; i < (UINT32)LightType::Count; i++) |
899 | { |
900 | LightType lightType = (LightType)i; |
901 | |
902 | auto& lights = lightData.getLights(lightType); |
903 | UINT32 count = lightData.getNumUnshadowedLights(lightType); |
904 | |
905 | for (UINT32 j = 0; j < count; j++) |
906 | { |
907 | UINT32 lightIdx = j; |
908 | const RendererLight& light = *lights[lightIdx]; |
909 | |
910 | StandardDeferred::instance().renderLight(lightType, light, inputs.view, gbuffer, Texture::BLACK); |
911 | } |
912 | } |
913 | } |
914 | |
915 | // Allocate light occlusion |
916 | SPtr<PooledRenderTexture> lightOcclusionTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_R8, width, |
917 | height, TU_RENDERTARGET, numSamples, false)); |
918 | |
919 | bool rebuildRT = false; |
920 | if (mLightOcclusionRT != nullptr) |
921 | { |
922 | rebuildRT |= mLightOcclusionRT->getColorTexture(0) != lightOcclusionTex->texture; |
923 | rebuildRT |= mLightOcclusionRT->getDepthStencilTexture() != sceneDepthNode->depthTex->texture; |
924 | } |
925 | else |
926 | rebuildRT = true; |
927 | |
928 | if (rebuildRT) |
929 | { |
930 | RENDER_TEXTURE_DESC lightOcclusionRTDesc; |
931 | lightOcclusionRTDesc.colorSurfaces[0].texture = lightOcclusionTex->texture; |
932 | lightOcclusionRTDesc.colorSurfaces[0].face = 0; |
933 | lightOcclusionRTDesc.colorSurfaces[0].numFaces = 1; |
934 | lightOcclusionRTDesc.colorSurfaces[0].mipLevel = 0; |
935 | |
936 | lightOcclusionRTDesc.depthStencilSurface.texture = sceneDepthNode->depthTex->texture; |
937 | lightOcclusionRTDesc.depthStencilSurface.face = 0; |
938 | lightOcclusionRTDesc.depthStencilSurface.numFaces = 1; |
939 | lightOcclusionRTDesc.depthStencilSurface.mipLevel = 0; |
940 | |
941 | mLightOcclusionRT = RenderTexture::create(lightOcclusionRTDesc); |
942 | } |
943 | |
944 | // Render shadowed lights |
945 | { |
946 | ProfileGPUBlock sampleBlock("Standard deferred shadowed lights" ); |
947 | |
948 | const ShadowRendering& shadowRenderer = inputs.viewGroup.getShadowRenderer(); |
949 | for (UINT32 i = 0; i < (UINT32)LightType::Count; i++) |
950 | { |
951 | LightType lightType = (LightType)i; |
952 | |
953 | auto& lights = lightData.getLights(lightType); |
954 | UINT32 count = lightData.getNumShadowedLights(lightType); |
955 | UINT32 offset = lightData.getNumUnshadowedLights(lightType); |
956 | |
957 | for (UINT32 j = 0; j < count; j++) |
958 | { |
959 | rapi.setRenderTarget(mLightOcclusionRT, FBT_DEPTH, RT_DEPTH_STENCIL); |
960 | |
961 | Rect2 area(0.0f, 0.0f, 1.0f, 1.0f); |
962 | rapi.setViewport(area); |
963 | |
964 | rapi.clearViewport(FBT_COLOR, Color::ZERO); |
965 | |
966 | UINT32 lightIdx = offset + j; |
967 | const RendererLight& light = *lights[lightIdx]; |
968 | shadowRenderer.renderShadowOcclusion(inputs.view, light, gbuffer); |
969 | |
970 | rapi.setRenderTarget(output->renderTarget, FBT_DEPTH | FBT_STENCIL, RT_COLOR0 | RT_DEPTH_STENCIL); |
971 | StandardDeferred::instance().renderLight(lightType, light, inputs.view, gbuffer, |
972 | lightOcclusionTex->texture); |
973 | } |
974 | } |
975 | } |
976 | |
977 | // Makes sure light accumulation can be read by following passes |
978 | rapi.setRenderTarget(nullptr); |
979 | |
980 | resPool.release(lightOcclusionTex); |
981 | } |
982 | |
983 | void RCNodeDeferredDirectLighting::clear() |
984 | { |
985 | output = nullptr; |
986 | } |
987 | |
988 | SmallVector<StringID, 4> RCNodeDeferredDirectLighting::getDependencies(const RendererView& view) |
989 | { |
990 | SmallVector<StringID, 4> deps; |
991 | deps.add(RCNodeLightAccumulation::getNodeId()); |
992 | deps.add(RCNodeBasePass::getNodeId()); |
993 | deps.add(RCNodeSceneDepth::getNodeId()); |
994 | deps.add(RCNodeSceneColor::getNodeId()); |
995 | deps.add(RCNodeMSAACoverage::getNodeId()); |
996 | |
997 | return deps; |
998 | } |
999 | |
1000 | void RCNodeIndirectDiffuseLighting::render(const RenderCompositorNodeInputs& inputs) |
1001 | { |
1002 | if (!inputs.view.getRenderSettings().enableIndirectLighting) |
1003 | return; |
1004 | |
1005 | RCNodeBasePass* gbufferNode = static_cast<RCNodeBasePass*>(inputs.inputNodes[0]); |
1006 | RCNodeSceneDepth* sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[1]); |
1007 | RCNodeLightAccumulation* lightAccumNode = static_cast <RCNodeLightAccumulation*>(inputs.inputNodes[2]); |
1008 | RCNodeSSAO* ssaoNode = static_cast<RCNodeSSAO*>(inputs.inputNodes[3]); |
1009 | |
1010 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1011 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
1012 | |
1013 | const LightProbes& lightProbes = inputs.scene.lightProbes; |
1014 | LightProbesInfo lpInfo = lightProbes.getInfo(); |
1015 | |
1016 | IrradianceEvaluateMat* evaluateMat; |
1017 | SPtr<PooledRenderTexture> volumeIndices; |
1018 | if(lightProbes.hasAnyProbes()) |
1019 | { |
1020 | POOLED_RENDER_TEXTURE_DESC volumeIndicesDesc; |
1021 | POOLED_RENDER_TEXTURE_DESC depthDesc; |
1022 | TetrahedraRenderMat::getOutputDesc(inputs.view, volumeIndicesDesc, depthDesc); |
1023 | |
1024 | volumeIndices = resPool.get(volumeIndicesDesc); |
1025 | SPtr<PooledRenderTexture> depthTex = resPool.get(depthDesc); |
1026 | |
1027 | RENDER_TEXTURE_DESC rtDesc; |
1028 | rtDesc.colorSurfaces[0].texture = volumeIndices->texture; |
1029 | rtDesc.depthStencilSurface.texture = depthTex->texture; |
1030 | |
1031 | SPtr<RenderTexture> rt = RenderTexture::create(rtDesc); |
1032 | |
1033 | RenderAPI& rapi = RenderAPI::instance(); |
1034 | rapi.setRenderTarget(rt); |
1035 | rapi.clearRenderTarget(FBT_DEPTH); |
1036 | gRendererUtility().clear(-1); |
1037 | |
1038 | TetrahedraRenderMat* renderTetrahedra = |
1039 | TetrahedraRenderMat::getVariation(viewProps.target.numSamples > 1, true); |
1040 | renderTetrahedra->execute(inputs.view, sceneDepthNode->depthTex->texture, lpInfo.tetrahedraVolume, rt); |
1041 | |
1042 | rt = nullptr; |
1043 | resPool.release(depthTex); |
1044 | |
1045 | evaluateMat = IrradianceEvaluateMat::getVariation(viewProps.target.numSamples > 1, true, false); |
1046 | } |
1047 | else // Sky only |
1048 | { |
1049 | evaluateMat = IrradianceEvaluateMat::getVariation(viewProps.target.numSamples > 1, true, true); |
1050 | } |
1051 | |
1052 | GBufferTextures gbuffer; |
1053 | gbuffer.albedo = gbufferNode->albedoTex->texture; |
1054 | gbuffer.normals = gbufferNode->normalTex->texture; |
1055 | gbuffer.roughMetal = gbufferNode->roughMetalTex->texture; |
1056 | gbuffer.depth = sceneDepthNode->depthTex->texture; |
1057 | |
1058 | SPtr<Texture> volumeIndicesTex; |
1059 | if (volumeIndices) |
1060 | volumeIndicesTex = volumeIndices->texture; |
1061 | |
1062 | Skybox* skybox = nullptr; |
1063 | if(inputs.view.getRenderSettings().enableSkybox) |
1064 | skybox = inputs.scene.skybox; |
1065 | |
1066 | evaluateMat->execute(inputs.view, gbuffer, volumeIndicesTex, lpInfo, skybox, ssaoNode->output, |
1067 | lightAccumNode->renderTarget); |
1068 | |
1069 | if(volumeIndices) |
1070 | resPool.release(volumeIndices); |
1071 | } |
1072 | |
1073 | void RCNodeIndirectDiffuseLighting::clear() |
1074 | { |
1075 | // Do nothing |
1076 | } |
1077 | |
1078 | SmallVector<StringID, 4> RCNodeIndirectDiffuseLighting::getDependencies(const RendererView& view) |
1079 | { |
1080 | SmallVector<StringID, 4> deps; |
1081 | deps.add(RCNodeBasePass::getNodeId()); |
1082 | deps.add(RCNodeSceneDepth::getNodeId()); |
1083 | deps.add(RCNodeLightAccumulation::getNodeId()); |
1084 | deps.add(RCNodeSSAO::getNodeId()); |
1085 | deps.add(RCNodeDeferredDirectLighting::getNodeId()); |
1086 | |
1087 | return deps; |
1088 | } |
1089 | |
1090 | void RCNodeDeferredIndirectSpecularLighting::render(const RenderCompositorNodeInputs& inputs) |
1091 | { |
1092 | RCNodeSceneColor* sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[0]); |
1093 | RCNodeBasePass* gbufferNode = static_cast<RCNodeBasePass*>(inputs.inputNodes[1]); |
1094 | RCNodeSceneDepth* sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[2]); |
1095 | RCNodeLightAccumulation* lightAccumNode = static_cast <RCNodeLightAccumulation*>(inputs.inputNodes[3]); |
1096 | RCNodeSSR* ssrNode = static_cast<RCNodeSSR*>(inputs.inputNodes[4]); |
1097 | RCNodeSSAO* ssaoNode = static_cast<RCNodeSSAO*>(inputs.inputNodes[5]); |
1098 | |
1099 | GBufferTextures gbuffer; |
1100 | gbuffer.albedo = gbufferNode->albedoTex->texture; |
1101 | gbuffer.normals = gbufferNode->normalTex->texture; |
1102 | gbuffer.roughMetal = gbufferNode->roughMetalTex->texture; |
1103 | gbuffer.depth = sceneDepthNode->depthTex->texture; |
1104 | |
1105 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
1106 | |
1107 | bool tiledDeferredSupported = inputs.featureSet != RenderBeastFeatureSet::DesktopMacOS; |
1108 | if(tiledDeferredSupported) |
1109 | { |
1110 | SPtr<Texture> msaaCoverage; |
1111 | if (viewProps.target.numSamples > 1) |
1112 | { |
1113 | RCNodeMSAACoverage* coverageNode = static_cast<RCNodeMSAACoverage*>(inputs.inputNodes[6]); |
1114 | msaaCoverage = coverageNode->output->texture; |
1115 | } |
1116 | |
1117 | TiledDeferredImageBasedLightingMat* material = |
1118 | TiledDeferredImageBasedLightingMat::getVariation(viewProps.target.numSamples); |
1119 | |
1120 | TiledDeferredImageBasedLightingMat::Inputs iblInputs; |
1121 | iblInputs.gbuffer = gbuffer; |
1122 | iblInputs.sceneColorTex = sceneColorNode->sceneColorTex->texture; |
1123 | iblInputs.lightAccumulation = lightAccumNode->lightAccumulationTex->texture; |
1124 | iblInputs.preIntegratedGF = RendererTextures::preintegratedEnvGF; |
1125 | iblInputs.ambientOcclusion = ssaoNode->output; |
1126 | iblInputs.ssr = ssrNode->output; |
1127 | iblInputs.msaaCoverage = msaaCoverage; |
1128 | |
1129 | if (sceneColorNode->sceneColorTexArray) |
1130 | iblInputs.sceneColorTexArray = sceneColorNode->sceneColorTexArray->texture; |
1131 | |
1132 | material->execute(inputs.view, inputs.scene, inputs.viewGroup.getVisibleReflProbeData(), iblInputs); |
1133 | |
1134 | if(viewProps.target.numSamples > 1) |
1135 | sceneColorNode->resolveMSAA(); |
1136 | } |
1137 | else // Standard deferred |
1138 | { |
1139 | SPtr<RenderTexture> outputRT = lightAccumNode->renderTarget; |
1140 | |
1141 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1142 | |
1143 | UINT32 width = viewProps.target.viewRect.width; |
1144 | UINT32 height = viewProps.target.viewRect.height; |
1145 | UINT32 numSamples = viewProps.target.numSamples; |
1146 | |
1147 | RenderAPI& rapi = RenderAPI::instance(); |
1148 | |
1149 | bool isMSAA = viewProps.target.numSamples > 1; |
1150 | |
1151 | SPtr<PooledRenderTexture> iblRadianceTex = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, width, |
1152 | height, TU_RENDERTARGET, numSamples, false)); |
1153 | |
1154 | RENDER_TEXTURE_DESC rtDesc; |
1155 | rtDesc.colorSurfaces[0].texture = iblRadianceTex->texture; |
1156 | rtDesc.depthStencilSurface.texture = sceneDepthNode->depthTex->texture; |
1157 | |
1158 | SPtr<GpuParamBlockBuffer> perViewBuffer = inputs.view.getPerViewBuffer(); |
1159 | |
1160 | SPtr<RenderTexture> iblRadianceRT = RenderTexture::create(rtDesc); |
1161 | rapi.setRenderTarget(iblRadianceRT, FBT_DEPTH | FBT_STENCIL, RT_DEPTH_STENCIL); |
1162 | |
1163 | const VisibleReflProbeData& probeData = inputs.viewGroup.getVisibleReflProbeData(); |
1164 | |
1165 | Skybox* skybox = nullptr; |
1166 | if(inputs.view.getRenderSettings().enableSkybox) |
1167 | skybox = inputs.scene.skybox; |
1168 | |
1169 | ReflProbeParamBuffer reflProbeParams; |
1170 | reflProbeParams.populate(skybox, probeData.getNumProbes(), inputs.scene.reflProbeCubemapsTex, |
1171 | viewProps.capturingReflections); |
1172 | |
1173 | // Prepare the texture for refl. probe and skybox rendering |
1174 | { |
1175 | DeferredIBLSetupMat* mat = DeferredIBLSetupMat::getVariation(isMSAA, true); |
1176 | mat->bind(gbuffer, perViewBuffer, ssrNode->output, ssaoNode->output, reflProbeParams.buffer); |
1177 | |
1178 | gRendererUtility().drawScreenQuad(); |
1179 | |
1180 | // Draw pixels requiring per-sample evaluation |
1181 | if (isMSAA) |
1182 | { |
1183 | DeferredIBLSetupMat* msaaMat = DeferredIBLSetupMat::getVariation(true, false); |
1184 | msaaMat->bind(gbuffer, perViewBuffer, ssrNode->output, ssaoNode->output, reflProbeParams.buffer); |
1185 | |
1186 | gRendererUtility().drawScreenQuad(); |
1187 | } |
1188 | } |
1189 | |
1190 | if (!viewProps.capturingReflections) |
1191 | { |
1192 | // Render refl. probes |
1193 | UINT32 numProbes = probeData.getNumProbes(); |
1194 | for (UINT32 i = 0; i < numProbes; i++) |
1195 | { |
1196 | const ReflProbeData& probe = probeData.getProbeData(i); |
1197 | |
1198 | StandardDeferred::instance().renderReflProbe(probe, inputs.view, gbuffer, inputs.scene, |
1199 | reflProbeParams.buffer); |
1200 | } |
1201 | |
1202 | // Render sky |
1203 | SPtr<Texture> skyFilteredRadiance; |
1204 | if (skybox) |
1205 | skyFilteredRadiance = skybox->getFilteredRadiance(); |
1206 | |
1207 | if (skyFilteredRadiance) |
1208 | { |
1209 | DeferredIBLSkyMat* skymat = DeferredIBLSkyMat::getVariation(isMSAA, true); |
1210 | skymat->bind(gbuffer, perViewBuffer, skybox, reflProbeParams.buffer); |
1211 | |
1212 | gRendererUtility().drawScreenQuad(); |
1213 | |
1214 | // Draw pixels requiring per-sample evaluation |
1215 | if (isMSAA) |
1216 | { |
1217 | DeferredIBLSkyMat* msaaMat = DeferredIBLSkyMat::getVariation(true, false); |
1218 | msaaMat->bind(gbuffer, perViewBuffer, skybox, reflProbeParams.buffer); |
1219 | |
1220 | gRendererUtility().drawScreenQuad(); |
1221 | } |
1222 | } |
1223 | } |
1224 | |
1225 | // Finalize rendered reflections and output them to main render target |
1226 | { |
1227 | rapi.setRenderTarget(outputRT, FBT_DEPTH | FBT_STENCIL, RT_COLOR0 | RT_DEPTH_STENCIL); |
1228 | |
1229 | DeferredIBLFinalizeMat* mat = DeferredIBLFinalizeMat::getVariation(isMSAA, true); |
1230 | mat->bind(gbuffer, perViewBuffer, iblRadianceTex->texture, RendererTextures::preintegratedEnvGF, |
1231 | reflProbeParams.buffer); |
1232 | |
1233 | gRendererUtility().drawScreenQuad(); |
1234 | |
1235 | // Draw pixels requiring per-sample evaluation |
1236 | if (isMSAA) |
1237 | { |
1238 | DeferredIBLFinalizeMat* msaaMat = DeferredIBLFinalizeMat::getVariation(true, false); |
1239 | msaaMat->bind(gbuffer, perViewBuffer, iblRadianceTex->texture, RendererTextures::preintegratedEnvGF, |
1240 | reflProbeParams.buffer); |
1241 | |
1242 | gRendererUtility().drawScreenQuad(); |
1243 | } |
1244 | } |
1245 | |
1246 | // Makes sure light accumulation can be read by following passes |
1247 | rapi.setRenderTarget(nullptr); |
1248 | } |
1249 | } |
1250 | |
1251 | void RCNodeDeferredIndirectSpecularLighting::clear() |
1252 | { |
1253 | output = nullptr; |
1254 | } |
1255 | |
1256 | SmallVector<StringID, 4> RCNodeDeferredIndirectSpecularLighting::getDependencies(const RendererView& view) |
1257 | { |
1258 | SmallVector<StringID, 4> deps; |
1259 | deps.add(RCNodeSceneColor::getNodeId()); |
1260 | deps.add(RCNodeBasePass::getNodeId()); |
1261 | deps.add(RCNodeSceneDepth::getNodeId()); |
1262 | deps.add(RCNodeLightAccumulation::getNodeId()); |
1263 | deps.add(RCNodeSSR::getNodeId()); |
1264 | deps.add(RCNodeSSAO::getNodeId()); |
1265 | deps.add(RCNodeMSAACoverage::getNodeId()); |
1266 | deps.add(RCNodeIndirectDiffuseLighting::getNodeId()); |
1267 | |
1268 | return deps; |
1269 | } |
1270 | |
1271 | void RCNodeClusteredForward::render(const RenderCompositorNodeInputs& inputs) |
1272 | { |
1273 | const SceneInfo& sceneInfo = inputs.scene; |
1274 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
1275 | |
1276 | const VisibleLightData& visibleLightData = inputs.viewGroup.getVisibleLightData(); |
1277 | const VisibleReflProbeData& visibleReflProbeData = inputs.viewGroup.getVisibleReflProbeData(); |
1278 | |
1279 | LightGridOutputs lightGridOutputs; |
1280 | |
1281 | struct StandardForwardBuffers |
1282 | { |
1283 | SPtr<GpuParamBlockBuffer> lightsParamBlock; |
1284 | SPtr<GpuParamBlockBuffer> reflProbesParamBlock; |
1285 | SPtr<GpuParamBlockBuffer> lightAndReflProbeParamsParamBlock; |
1286 | } standardForwardBuffers; |
1287 | |
1288 | const bool supportsClusteredForward = gRenderBeast()->getFeatureSet() == RenderBeastFeatureSet::Desktop; |
1289 | if(supportsClusteredForward) |
1290 | { |
1291 | const LightGrid& lightGrid = inputs.view.getLightGrid(); |
1292 | lightGridOutputs = lightGrid.getOutputs(); |
1293 | } |
1294 | else |
1295 | { |
1296 | // Note: Store these instead of creating them every time? |
1297 | standardForwardBuffers.lightsParamBlock = gLightsParamDef.createBuffer(); |
1298 | standardForwardBuffers.reflProbesParamBlock = gReflProbesParamDef.createBuffer(); |
1299 | standardForwardBuffers.lightAndReflProbeParamsParamBlock = gLightAndReflProbeParamsParamDef.createBuffer(); |
1300 | } |
1301 | |
1302 | Skybox* skybox = nullptr; |
1303 | if(inputs.view.getRenderSettings().enableSkybox) |
1304 | skybox = sceneInfo.skybox; |
1305 | |
1306 | // Prepare refl. probe param buffer |
1307 | ReflProbeParamBuffer reflProbeParamBuffer; |
1308 | reflProbeParamBuffer.populate(skybox, visibleReflProbeData.getNumProbes(), sceneInfo.reflProbeCubemapsTex, |
1309 | viewProps.capturingReflections); |
1310 | |
1311 | SPtr<Texture> skyFilteredRadiance; |
1312 | if(skybox) |
1313 | skyFilteredRadiance = skybox->getFilteredRadiance(); |
1314 | |
1315 | const auto bindParamsForClustered = [&lightGridOutputs, &visibleLightData, &visibleReflProbeData] |
1316 | (GpuParams& gpuParams, const ForwardLightingParams& fwdParams, const ImageBasedLightingParams& iblParams) |
1317 | { |
1318 | for (UINT32 j = 0; j < GPT_COUNT; j++) |
1319 | { |
1320 | const GpuParamBinding& binding = fwdParams.gridParamsBindings[j]; |
1321 | if (binding.slot != (UINT32)-1) |
1322 | gpuParams.setParamBlockBuffer(binding.set, binding.slot, lightGridOutputs.gridParams); |
1323 | } |
1324 | |
1325 | fwdParams.gridLightOffsetsAndSizeParam.set(lightGridOutputs.gridLightOffsetsAndSize); |
1326 | fwdParams.gridProbeOffsetsAndSizeParam.set(lightGridOutputs.gridProbeOffsetsAndSize); |
1327 | |
1328 | fwdParams.gridLightIndicesParam.set(lightGridOutputs.gridLightIndices); |
1329 | iblParams.reflectionProbeIndicesParam.set(lightGridOutputs.gridProbeIndices); |
1330 | |
1331 | fwdParams.lightsBufferParam.set(visibleLightData.getLightBuffer()); |
1332 | iblParams.reflectionProbesParam.set(visibleReflProbeData.getProbeBuffer()); |
1333 | }; |
1334 | |
1335 | const auto bindParamsForStandardForward = [&standardForwardBuffers, &visibleLightData, &visibleReflProbeData] |
1336 | (GpuParams& gpuParams, const Bounds& bounds, const ForwardLightingParams& fwdParams, |
1337 | const ImageBasedLightingParams& iblParams) |
1338 | { |
1339 | // Populate light & probe buffers |
1340 | Vector3I lightCounts; |
1341 | const LightData* lights[STANDARD_FORWARD_MAX_NUM_LIGHTS]; |
1342 | visibleLightData.gatherInfluencingLights(bounds, lights, lightCounts); |
1343 | |
1344 | Vector4I lightOffsets; |
1345 | lightOffsets.x = lightCounts.x; |
1346 | lightOffsets.y = lightCounts.x; |
1347 | lightOffsets.z = lightOffsets.y + lightCounts.y; |
1348 | lightOffsets.w = lightOffsets.z + lightCounts.z; |
1349 | |
1350 | for (INT32 j = 0; j < lightOffsets.w; j++) |
1351 | gLightsParamDef.gLights.set(standardForwardBuffers.lightsParamBlock, *lights[j], j); |
1352 | |
1353 | INT32 numReflProbes = std::min(visibleReflProbeData.getNumProbes(), STANDARD_FORWARD_MAX_NUM_PROBES); |
1354 | for (INT32 j = 0; j < numReflProbes; j++) |
1355 | { |
1356 | gReflProbesParamDef.gReflectionProbes.set(standardForwardBuffers.reflProbesParamBlock, |
1357 | visibleReflProbeData.getProbeData(j), j); |
1358 | } |
1359 | |
1360 | gLightAndReflProbeParamsParamDef.gLightOffsets.set(standardForwardBuffers.lightAndReflProbeParamsParamBlock, |
1361 | lightOffsets); |
1362 | gLightAndReflProbeParamsParamDef.gReflProbeCount.set(standardForwardBuffers.lightAndReflProbeParamsParamBlock, |
1363 | numReflProbes); |
1364 | |
1365 | if (iblParams.reflProbesBinding.set != (UINT32)-1) |
1366 | { |
1367 | gpuParams.setParamBlockBuffer( |
1368 | iblParams.reflProbesBinding.set, |
1369 | iblParams.reflProbesBinding.slot, |
1370 | standardForwardBuffers.reflProbesParamBlock); |
1371 | } |
1372 | |
1373 | if (fwdParams.lightsParamBlockBinding.set != (UINT32)-1) |
1374 | { |
1375 | gpuParams.setParamBlockBuffer( |
1376 | fwdParams.lightsParamBlockBinding.set, |
1377 | fwdParams.lightsParamBlockBinding.slot, |
1378 | standardForwardBuffers.lightsParamBlock); |
1379 | } |
1380 | |
1381 | if (fwdParams.lightAndReflProbeParamsParamBlockBinding.set != (UINT32)-1) |
1382 | { |
1383 | gpuParams.setParamBlockBuffer( |
1384 | fwdParams.lightAndReflProbeParamsParamBlockBinding.set, |
1385 | fwdParams.lightAndReflProbeParamsParamBlockBinding.slot, |
1386 | standardForwardBuffers.lightAndReflProbeParamsParamBlock); |
1387 | } |
1388 | }; |
1389 | |
1390 | const auto bindCommonIBLParams = [&reflProbeParamBuffer, &skyFilteredRadiance, &sceneInfo] |
1391 | (GpuParams& gpuParams, ImageBasedLightingParams& iblParams) |
1392 | { |
1393 | // Note: Ideally these should be bound once (they are the same for all renderables) |
1394 | if (iblParams.reflProbeParamBindings.set != (UINT32)-1) |
1395 | { |
1396 | gpuParams.setParamBlockBuffer( |
1397 | iblParams.reflProbeParamBindings.set, |
1398 | iblParams.reflProbeParamBindings.slot, |
1399 | reflProbeParamBuffer.buffer); |
1400 | } |
1401 | |
1402 | iblParams.skyReflectionsTexParam.set(skyFilteredRadiance); |
1403 | iblParams.ambientOcclusionTexParam.set(Texture::WHITE); // Note: Add SSAO here? |
1404 | iblParams.ssrTexParam.set(Texture::BLACK); // Note: Add SSR here? |
1405 | |
1406 | iblParams.reflectionProbeCubemapsTexParam.set(sceneInfo.reflProbeCubemapsTex); |
1407 | iblParams.preintegratedEnvBRDFParam.set(RendererTextures::preintegratedEnvGF); |
1408 | }; |
1409 | |
1410 | // Prepare render target |
1411 | auto sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[0]); |
1412 | auto sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[2]); |
1413 | auto resolvedSceneDepthNode = static_cast<RCNodeResolvedSceneDepth*>(inputs.inputNodes[5]); |
1414 | |
1415 | bool rebuildRT; |
1416 | if (renderTarget != nullptr) |
1417 | { |
1418 | rebuildRT = renderTarget->getColorTexture(0) != sceneColorNode->sceneColorTex->texture; |
1419 | rebuildRT |= renderTarget->getDepthStencilTexture() != sceneDepthNode->depthTex->texture; |
1420 | } |
1421 | else |
1422 | rebuildRT = true; |
1423 | |
1424 | if (rebuildRT) |
1425 | { |
1426 | RENDER_TEXTURE_DESC rtDesc; |
1427 | rtDesc.colorSurfaces[0].texture = sceneColorNode->sceneColorTex->texture; |
1428 | rtDesc.colorSurfaces[0].face = 0; |
1429 | rtDesc.colorSurfaces[0].numFaces = 1; |
1430 | rtDesc.colorSurfaces[0].mipLevel = 0; |
1431 | |
1432 | rtDesc.depthStencilSurface.texture = sceneDepthNode->depthTex->texture; |
1433 | rtDesc.depthStencilSurface.face = 0; |
1434 | rtDesc.depthStencilSurface.numFaces = 1; |
1435 | rtDesc.depthStencilSurface.mipLevel = 0; |
1436 | |
1437 | renderTarget = RenderTexture::create(rtDesc); |
1438 | } |
1439 | |
1440 | // Prepare objects for rendering by binding forward lighting data |
1441 | //// Normal renderables |
1442 | const VisibilityInfo& visibility = inputs.view.getVisibilityMasks(); |
1443 | const auto numRenderables = (UINT32)sceneInfo.renderables.size(); |
1444 | for (UINT32 i = 0; i < numRenderables; i++) |
1445 | { |
1446 | if (!visibility.renderables[i]) |
1447 | continue; |
1448 | |
1449 | for (auto& element : sceneInfo.renderables[i]->elements) |
1450 | { |
1451 | ShaderFlags shaderFlags = element.material->getShader()->getFlags(); |
1452 | |
1453 | const bool useForwardRendering = shaderFlags.isSet(ShaderFlag::Forward) || shaderFlags.isSet(ShaderFlag::Transparent); |
1454 | if (!useForwardRendering) |
1455 | continue; |
1456 | |
1457 | // Note: It would be nice to be able to set this once and keep it, only updating if the buffers actually |
1458 | // change (e.g. when growing). |
1459 | const SPtr<GpuParams> gpuParams = element.params->getGpuParams(); |
1460 | if(supportsClusteredForward) |
1461 | bindParamsForClustered(*gpuParams, element.forwardLightingParams, element.imageBasedParams); |
1462 | else |
1463 | { |
1464 | // Populate light & probe buffers |
1465 | const Bounds& bounds = sceneInfo.renderableCullInfos[i].bounds; |
1466 | bindParamsForStandardForward(*gpuParams, bounds, element.forwardLightingParams, element.imageBasedParams); |
1467 | } |
1468 | |
1469 | bindCommonIBLParams(*gpuParams, element.imageBasedParams); |
1470 | } |
1471 | } |
1472 | |
1473 | //// Particle systems |
1474 | const ParticlePerFrameData* particleData = inputs.frameInfo.perFrameData.particles; |
1475 | if(particleData) |
1476 | { |
1477 | const auto numParticleSystems = (UINT32)inputs.scene.particleSystems.size(); |
1478 | |
1479 | for (UINT32 i = 0; i < numParticleSystems; i++) |
1480 | { |
1481 | if (!visibility.particleSystems[i]) |
1482 | continue; |
1483 | |
1484 | const RendererParticles& rendererParticles = inputs.scene.particleSystems[i]; |
1485 | ParticlesRenderElement& renderElement = rendererParticles.renderElement; |
1486 | |
1487 | ShaderFlags shaderFlags = renderElement.material->getShader()->getFlags(); |
1488 | |
1489 | if(shaderFlags.isSet(ShaderFlag::Transparent)) |
1490 | renderElement.depthInputTexture.set(resolvedSceneDepthNode->output->texture); |
1491 | |
1492 | const bool requiresForwardLighting = shaderFlags.isSet(ShaderFlag::Forward); |
1493 | if (!requiresForwardLighting) |
1494 | continue; |
1495 | |
1496 | if(!renderElement.isValid()) |
1497 | continue; |
1498 | |
1499 | const SPtr<GpuParams> gpuParams = renderElement.params->getGpuParams(); |
1500 | |
1501 | // Note: It would be nice to be able to set this once and keep it, only updating if the buffers actually |
1502 | // change (e.g. when growing). |
1503 | if(supportsClusteredForward) |
1504 | bindParamsForClustered(*gpuParams, renderElement.forwardLightingParams, renderElement.imageBasedParams); |
1505 | else |
1506 | { |
1507 | // Populate light & probe buffers |
1508 | const Bounds& bounds = sceneInfo.particleSystemCullInfos[i].bounds; |
1509 | bindParamsForStandardForward(*gpuParams, bounds, renderElement.forwardLightingParams, renderElement.imageBasedParams); |
1510 | } |
1511 | |
1512 | bindCommonIBLParams(*gpuParams, renderElement.imageBasedParams); |
1513 | } |
1514 | } |
1515 | |
1516 | // TODO: Forward pipeline rendering doesn't support shadows. In order to support this I'd have to render the light |
1517 | // occlusion for all lights affecting this object into a single (or a few) textures. I can likely use texture |
1518 | // arrays for this, or to avoid sampling many textures, perhaps just jam it all in one or few texture channels. |
1519 | |
1520 | // Render everything |
1521 | RenderAPI& rapi = RenderAPI::instance(); |
1522 | |
1523 | RenderQueue* opaqueQueue = inputs.view.getOpaqueQueue(true).get(); |
1524 | RenderQueue* transparentQueue = inputs.view.getTransparentQueue().get(); |
1525 | |
1526 | rapi.setRenderTarget(renderTarget, 0, RT_ALL); |
1527 | renderQueueElements(opaqueQueue->getSortedElements()); |
1528 | |
1529 | rapi.setRenderTarget(renderTarget, FBT_DEPTH, RT_ALL); |
1530 | renderQueueElements(transparentQueue->getSortedElements()); |
1531 | |
1532 | // Note: Perhaps delay clearing this one frame, so previous frame textures have a better chance of being done |
1533 | ParticleRenderer::instance().getTexturePool().clear(); |
1534 | |
1535 | // Trigger post-lighting callbacks |
1536 | Camera* sceneCamera = inputs.view.getSceneCamera(); |
1537 | if (sceneCamera != nullptr) |
1538 | { |
1539 | for(auto& extension : inputs.extPostLighting) |
1540 | { |
1541 | if (extension->check(*sceneCamera)) |
1542 | extension->render(*sceneCamera); |
1543 | } |
1544 | } |
1545 | } |
1546 | |
1547 | void RCNodeClusteredForward::clear() |
1548 | { |
1549 | // Do nothing |
1550 | } |
1551 | |
1552 | SmallVector<StringID, 4> RCNodeClusteredForward::getDependencies(const RendererView& view) |
1553 | { |
1554 | return { |
1555 | RCNodeSceneColor::getNodeId(), |
1556 | RCNodeSkybox::getNodeId(), |
1557 | RCNodeSceneDepth::getNodeId(), |
1558 | RCNodeParticleSimulate::getNodeId(), |
1559 | RCNodeParticleSort::getNodeId(), |
1560 | RCNodeResolvedSceneDepth::getNodeId() |
1561 | }; |
1562 | } |
1563 | |
1564 | void RCNodeSkybox::render(const RenderCompositorNodeInputs& inputs) |
1565 | { |
1566 | Skybox* skybox = nullptr; |
1567 | if(inputs.view.getRenderSettings().enableSkybox) |
1568 | skybox = inputs.scene.skybox; |
1569 | |
1570 | SPtr<Texture> radiance = skybox ? skybox->getTexture() : nullptr; |
1571 | |
1572 | if (radiance != nullptr) |
1573 | { |
1574 | SkyboxMat* material = SkyboxMat::getVariation(false); |
1575 | material->bind(inputs.view.getPerViewBuffer(), radiance, Color::White); |
1576 | } |
1577 | else |
1578 | { |
1579 | // Cancel out the linear->SRGB conversion |
1580 | Color clearColor = PixelUtil::SRGBToLinear(inputs.view.getProperties().target.clearColor); |
1581 | |
1582 | SkyboxMat* material = SkyboxMat::getVariation(true); |
1583 | material->bind(inputs.view.getPerViewBuffer(), nullptr, clearColor); |
1584 | } |
1585 | |
1586 | RCNodeSceneColor* sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[0]); |
1587 | int readOnlyFlags = FBT_DEPTH | FBT_STENCIL; |
1588 | |
1589 | RenderAPI& rapi = RenderAPI::instance(); |
1590 | rapi.setRenderTarget(sceneColorNode->renderTarget, readOnlyFlags, RT_COLOR0 | RT_DEPTH_STENCIL); |
1591 | |
1592 | Rect2 area(0.0f, 0.0f, 1.0f, 1.0f); |
1593 | rapi.setViewport(area); |
1594 | |
1595 | SPtr<Mesh> mesh = gRendererUtility().getSkyBoxMesh(); |
1596 | gRendererUtility().draw(mesh, mesh->getProperties().getSubMesh(0)); |
1597 | } |
1598 | |
1599 | void RCNodeSkybox::clear() |
1600 | { } |
1601 | |
1602 | SmallVector<StringID, 4> RCNodeSkybox::getDependencies(const RendererView& view) |
1603 | { |
1604 | SmallVector<StringID, 4> deps; |
1605 | deps.add(RCNodeSceneColor::getNodeId()); |
1606 | deps.add(RCNodeDeferredIndirectSpecularLighting::getNodeId()); |
1607 | |
1608 | return deps; |
1609 | } |
1610 | |
1611 | void RCNodeFinalResolve::render(const RenderCompositorNodeInputs& inputs) |
1612 | { |
1613 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
1614 | |
1615 | SPtr<Texture> input; |
1616 | if(viewProps.runPostProcessing) |
1617 | { |
1618 | RCNodePostProcess* postProcessNode = static_cast<RCNodePostProcess*>(inputs.inputNodes[0]); |
1619 | |
1620 | // Note: Ideally the last PP effect could write directly to the final target and we could avoid this copy |
1621 | input = postProcessNode->getLastOutput(); |
1622 | } |
1623 | else |
1624 | { |
1625 | RCNodeSceneColor* sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[0]); |
1626 | input = sceneColorNode->sceneColorTex->texture; |
1627 | } |
1628 | |
1629 | SPtr<RenderTarget> target = viewProps.target.target; |
1630 | |
1631 | RenderAPI& rapi = RenderAPI::instance(); |
1632 | rapi.setRenderTarget(target); |
1633 | rapi.setViewport(viewProps.target.nrmViewRect); |
1634 | |
1635 | gRendererUtility().blit(input, Rect2I::EMPTY, viewProps.flipView); |
1636 | |
1637 | if(viewProps.encodeDepth) |
1638 | { |
1639 | RCNodeResolvedSceneDepth* resolvedSceneDepthNode = static_cast<RCNodeResolvedSceneDepth*>(inputs.inputNodes[0]); |
1640 | |
1641 | EncodeDepthMat* encodeDepthMat = EncodeDepthMat::get(); |
1642 | encodeDepthMat->execute(resolvedSceneDepthNode->output->texture, viewProps.depthEncodeNear, |
1643 | viewProps.depthEncodeFar, target); |
1644 | } |
1645 | |
1646 | // Trigger overlay callbacks |
1647 | Camera* sceneCamera = inputs.view.getSceneCamera(); |
1648 | if (sceneCamera != nullptr) |
1649 | { |
1650 | for(auto& extension : inputs.extOverlay) |
1651 | { |
1652 | if (extension->check(*sceneCamera)) |
1653 | extension->render(*sceneCamera); |
1654 | } |
1655 | } |
1656 | } |
1657 | |
1658 | void RCNodeFinalResolve::clear() |
1659 | { } |
1660 | |
1661 | SmallVector<StringID, 4> RCNodeFinalResolve::getDependencies(const RendererView& view) |
1662 | { |
1663 | const RendererViewProperties& viewProps = view.getProperties(); |
1664 | |
1665 | SmallVector<StringID, 4> deps; |
1666 | if(viewProps.runPostProcessing) |
1667 | { |
1668 | deps.add(RCNodePostProcess::getNodeId()); |
1669 | deps.add(RCNodeFXAA::getNodeId()); |
1670 | } |
1671 | else |
1672 | { |
1673 | deps.add(RCNodeSceneColor::getNodeId()); |
1674 | deps.add(RCNodeClusteredForward::getNodeId()); |
1675 | } |
1676 | |
1677 | if(viewProps.encodeDepth) |
1678 | deps.add(RCNodeResolvedSceneDepth::getNodeId()); |
1679 | |
1680 | return deps; |
1681 | } |
1682 | |
1683 | RCNodePostProcess::RCNodePostProcess() |
1684 | :mOutput(), mAllocated() |
1685 | { } |
1686 | |
1687 | void RCNodePostProcess::getAndSwitch(const RendererView& view, SPtr<RenderTexture>& output, SPtr<Texture>& lastFrame) const |
1688 | { |
1689 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1690 | |
1691 | const RendererViewProperties& viewProps = view.getProperties(); |
1692 | UINT32 width = viewProps.target.viewRect.width; |
1693 | UINT32 height = viewProps.target.viewRect.height; |
1694 | |
1695 | if(!mAllocated[mCurrentIdx]) |
1696 | { |
1697 | mOutput[mCurrentIdx] = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA8, width, height, |
1698 | TU_RENDERTARGET, 1, false)); |
1699 | |
1700 | mAllocated[mCurrentIdx] = true; |
1701 | } |
1702 | |
1703 | output = mOutput[mCurrentIdx]->renderTexture; |
1704 | |
1705 | UINT32 otherIdx = (mCurrentIdx + 1) % 2; |
1706 | if (mAllocated[otherIdx]) |
1707 | lastFrame = mOutput[otherIdx]->texture; |
1708 | |
1709 | mCurrentIdx = otherIdx; |
1710 | } |
1711 | |
1712 | SPtr<Texture> RCNodePostProcess::getLastOutput() const |
1713 | { |
1714 | UINT32 otherIdx = (mCurrentIdx + 1) % 2; |
1715 | if (mAllocated[otherIdx]) |
1716 | return mOutput[otherIdx]->texture; |
1717 | |
1718 | return nullptr; |
1719 | } |
1720 | |
1721 | void RCNodePostProcess::render(const RenderCompositorNodeInputs& inputs) |
1722 | { |
1723 | // Do nothing, this is just a helper node |
1724 | } |
1725 | |
1726 | void RCNodePostProcess::clear() |
1727 | { |
1728 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1729 | |
1730 | if (mAllocated[0]) |
1731 | resPool.release(mOutput[0]); |
1732 | |
1733 | if (mAllocated[1]) |
1734 | resPool.release(mOutput[1]); |
1735 | |
1736 | mAllocated[0] = false; |
1737 | mAllocated[1] = false; |
1738 | mCurrentIdx = 0; |
1739 | } |
1740 | |
1741 | SmallVector<StringID, 4> RCNodePostProcess::getDependencies(const RendererView& view) |
1742 | { |
1743 | return {}; |
1744 | } |
1745 | |
1746 | RCNodeEyeAdaptation::~RCNodeEyeAdaptation() |
1747 | { |
1748 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1749 | |
1750 | if (previous) |
1751 | resPool.release(previous); |
1752 | } |
1753 | |
1754 | void RCNodeEyeAdaptation::render(const RenderCompositorNodeInputs& inputs) |
1755 | { |
1756 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1757 | |
1758 | const RenderSettings& settings = inputs.view.getRenderSettings(); |
1759 | |
1760 | const bool hdr = settings.enableHDR; |
1761 | |
1762 | if(hdr && settings.enableAutoExposure) |
1763 | { |
1764 | // Get downsample scene |
1765 | auto* halfSceneColorNode = static_cast<RCNodeHalfSceneColor*>(inputs.inputNodes[1]); |
1766 | const SPtr<PooledRenderTexture>& downsampledScene = halfSceneColorNode->output; |
1767 | |
1768 | if(useHistogramEyeAdapatation(inputs)) |
1769 | { |
1770 | // Generate histogram |
1771 | SPtr<PooledRenderTexture> eyeAdaptHistogram = |
1772 | resPool.get(EyeAdaptHistogramMat::getOutputDesc(downsampledScene->texture)); |
1773 | EyeAdaptHistogramMat* eyeAdaptHistogramMat = EyeAdaptHistogramMat::get(); |
1774 | eyeAdaptHistogramMat->execute(downsampledScene->texture, eyeAdaptHistogram->texture, settings.autoExposure); |
1775 | |
1776 | // Reduce histogram |
1777 | SPtr<PooledRenderTexture> reducedHistogram = resPool.get(EyeAdaptHistogramReduceMat::getOutputDesc()); |
1778 | |
1779 | SPtr<Texture> prevFrameEyeAdaptation; |
1780 | if (previous != nullptr) |
1781 | prevFrameEyeAdaptation = previous->texture; |
1782 | |
1783 | EyeAdaptHistogramReduceMat* eyeAdaptHistogramReduce = EyeAdaptHistogramReduceMat::get(); |
1784 | eyeAdaptHistogramReduce->execute( |
1785 | downsampledScene->texture, |
1786 | eyeAdaptHistogram->texture, |
1787 | prevFrameEyeAdaptation, |
1788 | reducedHistogram->renderTexture); |
1789 | |
1790 | resPool.release(eyeAdaptHistogram); |
1791 | eyeAdaptHistogram = nullptr; |
1792 | |
1793 | // Generate eye adaptation value |
1794 | output = resPool.get(EyeAdaptationMat::getOutputDesc()); |
1795 | EyeAdaptationMat* eyeAdaptationMat = EyeAdaptationMat::get(); |
1796 | eyeAdaptationMat->execute( |
1797 | reducedHistogram->texture, |
1798 | output->renderTexture, |
1799 | inputs.frameInfo.timeDelta, |
1800 | settings.autoExposure, |
1801 | settings.exposureScale); |
1802 | |
1803 | resPool.release(reducedHistogram); |
1804 | } |
1805 | else |
1806 | { |
1807 | // Populate alpha values of the downsampled texture with luminance |
1808 | SPtr<PooledRenderTexture> luminanceTex = |
1809 | resPool.get(EyeAdaptationBasicSetupMat::getOutputDesc(downsampledScene->texture)); |
1810 | |
1811 | EyeAdaptationBasicSetupMat* setupMat = EyeAdaptationBasicSetupMat::get(); |
1812 | setupMat->execute( |
1813 | downsampledScene->texture, |
1814 | luminanceTex->renderTexture, |
1815 | inputs.frameInfo.timeDelta, |
1816 | settings.autoExposure, |
1817 | settings.exposureScale); |
1818 | |
1819 | SPtr<Texture> downsampleInput = luminanceTex->texture; |
1820 | luminanceTex = nullptr; |
1821 | |
1822 | // Downsample some more |
1823 | for(UINT32 i = 0; i < 5; i++) |
1824 | { |
1825 | DownsampleMat* downsampleMat = DownsampleMat::getVariation(1, false); |
1826 | SPtr<PooledRenderTexture> downsampledLuminance = |
1827 | resPool.get(DownsampleMat::getOutputDesc(downsampleInput)); |
1828 | |
1829 | downsampleMat->execute(downsampleInput, downsampledLuminance->renderTexture); |
1830 | downsampleInput = downsampledLuminance->texture; |
1831 | } |
1832 | |
1833 | // Generate eye adaptation value |
1834 | EyeAdaptationBasicMat* eyeAdaptationMat = EyeAdaptationBasicMat::get(); |
1835 | |
1836 | SPtr<Texture> prevFrameEyeAdaptation; |
1837 | if (previous != nullptr) |
1838 | prevFrameEyeAdaptation = previous->texture; |
1839 | |
1840 | output = resPool.get(EyeAdaptationBasicMat::getOutputDesc()); |
1841 | eyeAdaptationMat->execute( |
1842 | downsampleInput, |
1843 | prevFrameEyeAdaptation, |
1844 | output->renderTexture, |
1845 | inputs.frameInfo.timeDelta, |
1846 | settings.autoExposure, |
1847 | settings.exposureScale); |
1848 | } |
1849 | } |
1850 | else |
1851 | { |
1852 | if(previous) |
1853 | resPool.release(previous); |
1854 | |
1855 | previous = nullptr; |
1856 | output = nullptr; |
1857 | } |
1858 | } |
1859 | |
1860 | void RCNodeEyeAdaptation::clear() |
1861 | { |
1862 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1863 | |
1864 | // Save eye adaptation for next frame |
1865 | if(previous) |
1866 | resPool.release(previous); |
1867 | |
1868 | std::swap(output, previous); |
1869 | } |
1870 | |
1871 | bool RCNodeEyeAdaptation::useHistogramEyeAdapatation(const RenderCompositorNodeInputs& inputs) |
1872 | { |
1873 | return inputs.featureSet == RenderBeastFeatureSet::Desktop; |
1874 | } |
1875 | |
1876 | SmallVector<StringID, 4> RCNodeEyeAdaptation::getDependencies(const RendererView& view) |
1877 | { |
1878 | SmallVector<StringID, 4> deps; |
1879 | deps.add(RCNodeClusteredForward::getNodeId()); |
1880 | |
1881 | const RenderSettings& settings = view.getRenderSettings(); |
1882 | if(settings.enableHDR && settings.enableAutoExposure) |
1883 | deps.add(RCNodeHalfSceneColor::getNodeId()); |
1884 | |
1885 | return deps; |
1886 | } |
1887 | |
1888 | RCNodeTonemapping::~RCNodeTonemapping() |
1889 | { |
1890 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1891 | |
1892 | if (mTonemapLUT) |
1893 | resPool.release(mTonemapLUT); |
1894 | } |
1895 | |
1896 | void RCNodeTonemapping::render(const RenderCompositorNodeInputs& inputs) |
1897 | { |
1898 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
1899 | |
1900 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
1901 | const RenderSettings& settings = inputs.view.getRenderSettings(); |
1902 | |
1903 | auto* eyeAdaptationNode = static_cast<RCNodeEyeAdaptation*>(inputs.inputNodes[0]); |
1904 | auto* sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[1]); |
1905 | auto* postProcessNode = static_cast<RCNodePostProcess*>(inputs.inputNodes[3]); |
1906 | const SPtr<Texture>& sceneColor = sceneColorNode->sceneColorTex->texture; |
1907 | |
1908 | const bool hdr = settings.enableHDR; |
1909 | const bool msaa = viewProps.target.numSamples > 1; |
1910 | |
1911 | const bool volumeLUT = inputs.featureSet == RenderBeastFeatureSet::Desktop; |
1912 | bool gammaOnly; |
1913 | bool autoExposure; |
1914 | if (hdr) |
1915 | { |
1916 | if (settings.enableTonemapping) |
1917 | { |
1918 | const UINT64 latestHash = inputs.view.getRenderSettingsHash(); |
1919 | const bool tonemapLUTDirty = mTonemapLastUpdateHash != latestHash; |
1920 | |
1921 | if (tonemapLUTDirty) // Rebuild LUT if PP settings changed |
1922 | { |
1923 | CreateTonemapLUTMat* createLUT = CreateTonemapLUTMat::getVariation(volumeLUT); |
1924 | if(mTonemapLUT == nullptr) |
1925 | mTonemapLUT = resPool.get(createLUT->getOutputDesc()); |
1926 | |
1927 | if(volumeLUT) |
1928 | createLUT->execute3D(mTonemapLUT->texture, settings); |
1929 | else |
1930 | createLUT->execute2D(mTonemapLUT->renderTexture, settings); |
1931 | |
1932 | mTonemapLastUpdateHash = latestHash; |
1933 | } |
1934 | |
1935 | gammaOnly = false; |
1936 | } |
1937 | else |
1938 | gammaOnly = true; |
1939 | |
1940 | autoExposure = settings.enableAutoExposure; |
1941 | } |
1942 | else |
1943 | { |
1944 | gammaOnly = true; |
1945 | autoExposure = false; |
1946 | } |
1947 | |
1948 | if(gammaOnly) |
1949 | { |
1950 | if(mTonemapLUT) |
1951 | { |
1952 | resPool.release(mTonemapLUT); |
1953 | mTonemapLUT = nullptr; |
1954 | } |
1955 | } |
1956 | |
1957 | TonemappingMat* tonemapping = TonemappingMat::getVariation(volumeLUT, gammaOnly, autoExposure, msaa); |
1958 | |
1959 | SPtr<RenderTexture> ppOutput; |
1960 | SPtr<Texture> ppLastFrame; |
1961 | postProcessNode->getAndSwitch(inputs.view, ppOutput, ppLastFrame); |
1962 | |
1963 | SPtr<Texture> eyeAdaptationTex; |
1964 | if (eyeAdaptationNode->output) |
1965 | eyeAdaptationTex = eyeAdaptationNode->output->texture; |
1966 | |
1967 | SPtr<Texture> tonemapLUTTex; |
1968 | if (mTonemapLUT) |
1969 | tonemapLUTTex = mTonemapLUT->texture; |
1970 | |
1971 | SPtr<Texture> bloomTex; |
1972 | if(settings.bloom.enabled) |
1973 | { |
1974 | auto* bloomNode = static_cast<RCNodeBloom*>(inputs.inputNodes[5]); |
1975 | bloomTex = bloomNode->output; |
1976 | } |
1977 | |
1978 | tonemapping->execute(sceneColor, eyeAdaptationTex, bloomTex, tonemapLUTTex, ppOutput, settings); |
1979 | } |
1980 | |
1981 | void RCNodeTonemapping::clear() |
1982 | { |
1983 | // Do nothing |
1984 | } |
1985 | |
1986 | SmallVector<StringID, 4> RCNodeTonemapping::getDependencies(const RendererView& view) |
1987 | { |
1988 | SmallVector<StringID, 4> deps = { |
1989 | RCNodeEyeAdaptation::getNodeId(), |
1990 | RCNodeSceneColor::getNodeId(), |
1991 | RCNodeClusteredForward::getNodeId(), |
1992 | RCNodePostProcess::getNodeId(), |
1993 | RCNodeHalfSceneColor::getNodeId() |
1994 | }; |
1995 | |
1996 | if(view.getRenderSettings().bloom.enabled) |
1997 | deps.add(RCNodeBloom::getNodeId()); |
1998 | |
1999 | return deps; |
2000 | } |
2001 | |
2002 | void RCNodeGaussianDOF::render(const RenderCompositorNodeInputs& inputs) |
2003 | { |
2004 | RCNodeSceneDepth* sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[1]); |
2005 | RCNodePostProcess* postProcessNode = static_cast<RCNodePostProcess*>(inputs.inputNodes[2]); |
2006 | |
2007 | const DepthOfFieldSettings& settings = inputs.view.getRenderSettings().depthOfField; |
2008 | bool near = settings.nearBlurAmount > 0.0f; |
2009 | bool far = settings.farBlurAmount > 0.0f; |
2010 | |
2011 | bool enabled = settings.enabled && (near || far); |
2012 | if(!enabled) |
2013 | return; |
2014 | |
2015 | GaussianDOFSeparateMat* separateMat = GaussianDOFSeparateMat::getVariation(near, far); |
2016 | GaussianDOFCombineMat* combineMat = GaussianDOFCombineMat::getVariation(near, far); |
2017 | GaussianBlurMat* blurMat = GaussianBlurMat::get(); |
2018 | |
2019 | SPtr<RenderTexture> ppOutput; |
2020 | SPtr<Texture> ppLastFrame; |
2021 | postProcessNode->getAndSwitch(inputs.view, ppOutput, ppLastFrame); |
2022 | |
2023 | separateMat->execute(ppLastFrame, sceneDepthNode->depthTex->texture, inputs.view, settings); |
2024 | |
2025 | SPtr<PooledRenderTexture> nearTex, farTex; |
2026 | if(near && far) |
2027 | { |
2028 | nearTex = separateMat->getOutput(0); |
2029 | farTex = separateMat->getOutput(1); |
2030 | } |
2031 | else |
2032 | { |
2033 | if (near) |
2034 | nearTex = separateMat->getOutput(0); |
2035 | else |
2036 | farTex = separateMat->getOutput(0); |
2037 | } |
2038 | |
2039 | // Blur the out of focus pixels |
2040 | // Note: Perhaps set up stencil so I can avoid performing blur on unused parts of the textures? |
2041 | const TextureProperties& texProps = nearTex ? nearTex->texture->getProperties() : farTex->texture->getProperties(); |
2042 | POOLED_RENDER_TEXTURE_DESC tempTexDesc = POOLED_RENDER_TEXTURE_DESC::create2D(texProps.getFormat(), |
2043 | texProps.getWidth(), texProps.getHeight(), TU_RENDERTARGET); |
2044 | SPtr<PooledRenderTexture> tempTexture = GpuResourcePool::instance().get(tempTexDesc); |
2045 | |
2046 | SPtr<Texture> blurredNearTex; |
2047 | if(nearTex) |
2048 | { |
2049 | blurMat->execute(nearTex->texture, settings.nearBlurAmount, tempTexture->renderTexture); |
2050 | blurredNearTex = tempTexture->texture; |
2051 | } |
2052 | |
2053 | SPtr<Texture> blurredFarTex; |
2054 | if(farTex) |
2055 | { |
2056 | // If temporary texture is used up, re-use the original near texture for the blurred result |
2057 | if(blurredNearTex) |
2058 | { |
2059 | blurMat->execute(farTex->texture, settings.farBlurAmount, nearTex->renderTexture); |
2060 | blurredFarTex = nearTex->texture; |
2061 | } |
2062 | else // Otherwise just use the temporary |
2063 | { |
2064 | blurMat->execute(farTex->texture, settings.farBlurAmount, tempTexture->renderTexture); |
2065 | blurredFarTex = tempTexture->texture; |
2066 | } |
2067 | } |
2068 | |
2069 | combineMat->execute(ppLastFrame, blurredNearTex, blurredFarTex, |
2070 | sceneDepthNode->depthTex->texture, ppOutput, inputs.view, settings); |
2071 | |
2072 | separateMat->release(); |
2073 | GpuResourcePool::instance().release(tempTexture); |
2074 | } |
2075 | |
2076 | void RCNodeGaussianDOF::clear() |
2077 | { |
2078 | // Do nothing |
2079 | } |
2080 | |
2081 | SmallVector<StringID, 4> RCNodeGaussianDOF::getDependencies(const RendererView& view) |
2082 | { |
2083 | return { RCNodeTonemapping::getNodeId(), RCNodeSceneDepth::getNodeId(), RCNodePostProcess::getNodeId() }; |
2084 | } |
2085 | |
2086 | void RCNodeFXAA::render(const RenderCompositorNodeInputs& inputs) |
2087 | { |
2088 | const RenderSettings& settings = inputs.view.getRenderSettings(); |
2089 | if (!settings.enableFXAA) |
2090 | return; |
2091 | |
2092 | RCNodePostProcess* postProcessNode = static_cast<RCNodePostProcess*>(inputs.inputNodes[1]); |
2093 | |
2094 | SPtr<RenderTexture> ppOutput; |
2095 | SPtr<Texture> ppLastFrame; |
2096 | postProcessNode->getAndSwitch(inputs.view, ppOutput, ppLastFrame); |
2097 | |
2098 | // Note: I could skip executing FXAA over DOF and motion blurred pixels |
2099 | FXAAMat* fxaa = FXAAMat::get(); |
2100 | fxaa->execute(ppLastFrame, ppOutput); |
2101 | } |
2102 | |
2103 | void RCNodeFXAA::clear() |
2104 | { |
2105 | // Do nothing |
2106 | } |
2107 | |
2108 | SmallVector<StringID, 4> RCNodeFXAA::getDependencies(const RendererView& view) |
2109 | { |
2110 | return { RCNodeGaussianDOF::getNodeId(), RCNodePostProcess::getNodeId() }; |
2111 | } |
2112 | |
2113 | void RCNodeHalfSceneColor::render(const RenderCompositorNodeInputs& inputs) |
2114 | { |
2115 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
2116 | |
2117 | auto* sceneColorNode = static_cast<RCNodeSceneColor*>(inputs.inputNodes[0]); |
2118 | const SPtr<Texture>& input = sceneColorNode->sceneColorTex->texture; |
2119 | |
2120 | // Downsample scene |
2121 | const bool msaa = viewProps.target.numSamples > 1; |
2122 | DownsampleMat* downsampleMat = DownsampleMat::getVariation(1, msaa); |
2123 | |
2124 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2125 | output = resPool.get(DownsampleMat::getOutputDesc(input)); |
2126 | |
2127 | downsampleMat->execute(input, output->renderTexture); |
2128 | } |
2129 | |
2130 | void RCNodeHalfSceneColor::clear() |
2131 | { |
2132 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2133 | resPool.release(output); |
2134 | } |
2135 | |
2136 | SmallVector<StringID, 4> RCNodeHalfSceneColor::getDependencies(const RendererView& view) |
2137 | { |
2138 | return { RCNodeSceneColor::getNodeId() }; |
2139 | } |
2140 | |
2141 | void RCNodeResolvedSceneDepth::render(const RenderCompositorNodeInputs& inputs) |
2142 | { |
2143 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2144 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
2145 | RCNodeSceneDepth* sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[0]); |
2146 | |
2147 | if (viewProps.target.numSamples > 1) |
2148 | { |
2149 | UINT32 width = viewProps.target.viewRect.width; |
2150 | UINT32 height = viewProps.target.viewRect.height; |
2151 | |
2152 | output = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_D32_S8X24, width, height, |
2153 | TU_DEPTHSTENCIL, 1, false)); |
2154 | |
2155 | RenderAPI& rapi = RenderAPI::instance(); |
2156 | rapi.setRenderTarget(output->renderTexture); |
2157 | rapi.clearRenderTarget(FBT_STENCIL); |
2158 | gRendererUtility().blit(sceneDepthNode->depthTex->texture, Rect2I::EMPTY, false, true); |
2159 | |
2160 | mPassThrough = false; |
2161 | } |
2162 | else |
2163 | { |
2164 | output = sceneDepthNode->depthTex; |
2165 | mPassThrough = true; |
2166 | } |
2167 | } |
2168 | |
2169 | void RCNodeResolvedSceneDepth::clear() |
2170 | { |
2171 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2172 | |
2173 | if (!mPassThrough) |
2174 | resPool.release(output); |
2175 | else |
2176 | output = nullptr; |
2177 | |
2178 | mPassThrough = false; |
2179 | } |
2180 | |
2181 | SmallVector<StringID, 4> RCNodeResolvedSceneDepth::getDependencies(const RendererView& view) |
2182 | { |
2183 | // GBuffer require because it renders the base pass (populates the depth buffer) |
2184 | return { RCNodeSceneDepth::getNodeId(), RCNodeBasePass::getNodeId() }; |
2185 | } |
2186 | |
2187 | void RCNodeHiZ::render(const RenderCompositorNodeInputs& inputs) |
2188 | { |
2189 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2190 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
2191 | |
2192 | RCNodeResolvedSceneDepth* resolvedSceneDepth = static_cast<RCNodeResolvedSceneDepth*>(inputs.inputNodes[0]); |
2193 | |
2194 | UINT32 width = viewProps.target.viewRect.width; |
2195 | UINT32 height = viewProps.target.viewRect.height; |
2196 | |
2197 | UINT32 size = Bitwise::nextPow2(std::max(width, height)); |
2198 | UINT32 numMips = PixelUtil::getMaxMipmaps(size, size, 1, PF_R32F); |
2199 | size = 1 << numMips; |
2200 | |
2201 | // Note: Use the 32-bit buffer here as 16-bit causes too much banding (most of the scene gets assigned 4-5 different |
2202 | // depth values). |
2203 | // - When I add UNORM 16-bit format I should be able to switch to that |
2204 | output = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_R32F, size, size, TU_RENDERTARGET, 1, false, 1, |
2205 | numMips)); |
2206 | |
2207 | Rect2 srcRect = viewProps.target.nrmViewRect; |
2208 | |
2209 | // If viewport size is odd, adjust UV |
2210 | srcRect.width += (viewProps.target.viewRect.width % 2) * (1.0f / viewProps.target.viewRect.width); |
2211 | srcRect.height += (viewProps.target.viewRect.height % 2) * (1.0f / viewProps.target.viewRect.height); |
2212 | |
2213 | bool noTextureViews = !gCaps().hasCapability(RSC_TEXTURE_VIEWS); |
2214 | |
2215 | BuildHiZMat* material = BuildHiZMat::getVariation(noTextureViews); |
2216 | |
2217 | // Generate first mip |
2218 | RENDER_TEXTURE_DESC rtDesc; |
2219 | rtDesc.colorSurfaces[0].texture = output->texture; |
2220 | rtDesc.colorSurfaces[0].mipLevel = 0; |
2221 | |
2222 | SPtr<RenderTexture> rt = RenderTexture::create(rtDesc); |
2223 | |
2224 | Rect2 destRect; |
2225 | bool downsampledFirstMip = false; // Not used currently |
2226 | if (downsampledFirstMip) |
2227 | { |
2228 | // Make sure that 1 pixel in HiZ maps to a 2x2 block in source |
2229 | destRect = Rect2(0, 0, |
2230 | Math::ceilToInt(viewProps.target.viewRect.width / 2.0f) / (float)size, |
2231 | Math::ceilToInt(viewProps.target.viewRect.height / 2.0f) / (float)size); |
2232 | |
2233 | material->execute(resolvedSceneDepth->output->texture, 0, srcRect, destRect, rt); |
2234 | } |
2235 | else // First level is just a copy of the depth buffer |
2236 | { |
2237 | destRect = Rect2(0, 0, |
2238 | viewProps.target.viewRect.width / (float)size, |
2239 | viewProps.target.viewRect.height / (float)size); |
2240 | |
2241 | RenderAPI& rapi = RenderAPI::instance(); |
2242 | rapi.setRenderTarget(rt); |
2243 | rapi.setViewport(destRect); |
2244 | |
2245 | Rect2I srcAreaInt; |
2246 | srcAreaInt.x = (INT32)(srcRect.x * viewProps.target.viewRect.width); |
2247 | srcAreaInt.y = (INT32)(srcRect.y * viewProps.target.viewRect.height); |
2248 | srcAreaInt.width = (UINT32)(srcRect.width * viewProps.target.viewRect.width); |
2249 | srcAreaInt.height = (UINT32)(srcRect.height * viewProps.target.viewRect.height); |
2250 | |
2251 | gRendererUtility().blit(resolvedSceneDepth->output->texture, srcAreaInt); |
2252 | rapi.setViewport(Rect2(0, 0, 1, 1)); |
2253 | } |
2254 | |
2255 | // Generate remaining mip levels |
2256 | for(UINT32 i = 1; i <= numMips; i++) |
2257 | { |
2258 | rtDesc.colorSurfaces[0].mipLevel = i; |
2259 | rt = RenderTexture::create(rtDesc); |
2260 | |
2261 | material->execute(output->texture, i - 1, destRect, destRect, rt); |
2262 | } |
2263 | } |
2264 | |
2265 | void RCNodeHiZ::clear() |
2266 | { |
2267 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2268 | resPool.release(output); |
2269 | } |
2270 | |
2271 | SmallVector<StringID, 4> RCNodeHiZ::getDependencies(const RendererView& view) |
2272 | { |
2273 | // Note: This doesn't actually use any gbuffer textures, but node is a dependency because it renders to the depth |
2274 | // buffer. In order to avoid keeping gbuffer textures alive I could separate out the base pass into its own node |
2275 | // perhaps. But at the moment it doesn't matter, as anything using HiZ also needs gbuffer. |
2276 | return { RCNodeResolvedSceneDepth::getNodeId(), RCNodeBasePass::getNodeId() }; |
2277 | } |
2278 | |
2279 | void RCNodeSSAO::render(const RenderCompositorNodeInputs& inputs) |
2280 | { |
2281 | /** Maximum valid depth range within samples in a sample set. In meters. */ |
2282 | static const float DEPTH_RANGE = 1.0f; |
2283 | |
2284 | const AmbientOcclusionSettings& settings = inputs.view.getRenderSettings().ambientOcclusion; |
2285 | if(!settings.enabled) |
2286 | { |
2287 | output = Texture::WHITE; |
2288 | mPooledOutput = nullptr; |
2289 | return; |
2290 | } |
2291 | |
2292 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2293 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
2294 | |
2295 | RCNodeResolvedSceneDepth* resolvedDepthNode = static_cast<RCNodeResolvedSceneDepth*>(inputs.inputNodes[0]); |
2296 | RCNodeBasePass* gbufferNode = static_cast<RCNodeBasePass*>(inputs.inputNodes[1]); |
2297 | |
2298 | SPtr<Texture> sceneDepth = resolvedDepthNode->output->texture; |
2299 | SPtr<Texture> sceneNormals = gbufferNode->normalTex->texture; |
2300 | |
2301 | const TextureProperties& normalsProps = sceneNormals->getProperties(); |
2302 | SPtr<PooledRenderTexture> resolvedNormals; |
2303 | |
2304 | RenderAPI& rapi = RenderAPI::instance(); |
2305 | if(sceneNormals->getProperties().getNumSamples() > 1) |
2306 | { |
2307 | POOLED_RENDER_TEXTURE_DESC desc = POOLED_RENDER_TEXTURE_DESC::create2D(normalsProps.getFormat(), |
2308 | normalsProps.getWidth(), normalsProps.getHeight(), TU_RENDERTARGET); |
2309 | resolvedNormals = resPool.get(desc); |
2310 | |
2311 | rapi.setRenderTarget(resolvedNormals->renderTexture); |
2312 | gRendererUtility().blit(sceneNormals); |
2313 | |
2314 | sceneNormals = resolvedNormals->texture; |
2315 | } |
2316 | |
2317 | // Multiple downsampled AO levels are used to minimize cache trashing. Downsampled AO targets use larger radius, |
2318 | // whose contents are then blended with the higher level. |
2319 | UINT32 quality = settings.quality; |
2320 | UINT32 numDownsampleLevels = 0; |
2321 | if (quality == 2) |
2322 | numDownsampleLevels = 1; |
2323 | else if (quality > 2) |
2324 | numDownsampleLevels = 2; |
2325 | |
2326 | SSAODownsampleMat* downsample = SSAODownsampleMat::get(); |
2327 | |
2328 | SPtr<PooledRenderTexture> setupTex0; |
2329 | if(numDownsampleLevels > 0) |
2330 | { |
2331 | Vector2I downsampledSize( |
2332 | std::max(1, Math::divideAndRoundUp((INT32)viewProps.target.viewRect.width, 2)), |
2333 | std::max(1, Math::divideAndRoundUp((INT32)viewProps.target.viewRect.height, 2)) |
2334 | ); |
2335 | |
2336 | POOLED_RENDER_TEXTURE_DESC desc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, downsampledSize.x, |
2337 | downsampledSize.y, TU_RENDERTARGET); |
2338 | setupTex0 = GpuResourcePool::instance().get(desc); |
2339 | |
2340 | downsample->execute(inputs.view, sceneDepth, sceneNormals, setupTex0->renderTexture, DEPTH_RANGE); |
2341 | } |
2342 | |
2343 | SPtr<PooledRenderTexture> setupTex1; |
2344 | if(numDownsampleLevels > 1) |
2345 | { |
2346 | Vector2I downsampledSize( |
2347 | std::max(1, Math::divideAndRoundUp((INT32)viewProps.target.viewRect.width, 4)), |
2348 | std::max(1, Math::divideAndRoundUp((INT32)viewProps.target.viewRect.height, 4)) |
2349 | ); |
2350 | |
2351 | POOLED_RENDER_TEXTURE_DESC desc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, downsampledSize.x, |
2352 | downsampledSize.y, TU_RENDERTARGET); |
2353 | setupTex1 = GpuResourcePool::instance().get(desc); |
2354 | |
2355 | downsample->execute(inputs.view, sceneDepth, sceneNormals, setupTex1->renderTexture, DEPTH_RANGE); |
2356 | } |
2357 | |
2358 | SSAOTextureInputs textures; |
2359 | textures.sceneDepth = sceneDepth; |
2360 | textures.sceneNormals = sceneNormals; |
2361 | textures.randomRotations = RendererTextures::ssaoRandomization4x4; |
2362 | |
2363 | SPtr<PooledRenderTexture> downAOTex1; |
2364 | if(numDownsampleLevels > 1) |
2365 | { |
2366 | textures.aoSetup = setupTex1->texture; |
2367 | |
2368 | Vector2I downsampledSize( |
2369 | std::max(1, Math::divideAndRoundUp((INT32)viewProps.target.viewRect.width, 4)), |
2370 | std::max(1, Math::divideAndRoundUp((INT32)viewProps.target.viewRect.height, 4)) |
2371 | ); |
2372 | |
2373 | POOLED_RENDER_TEXTURE_DESC desc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_R8, downsampledSize.x, |
2374 | downsampledSize.y, TU_RENDERTARGET); |
2375 | downAOTex1 = GpuResourcePool::instance().get(desc); |
2376 | |
2377 | SSAOMat* ssaoMat = SSAOMat::getVariation(false, false, quality); |
2378 | ssaoMat->execute(inputs.view, textures, downAOTex1->renderTexture, settings); |
2379 | |
2380 | GpuResourcePool::instance().release(setupTex1); |
2381 | setupTex1 = nullptr; |
2382 | } |
2383 | |
2384 | SPtr<PooledRenderTexture> downAOTex0; |
2385 | if(numDownsampleLevels > 0) |
2386 | { |
2387 | textures.aoSetup = setupTex0->texture; |
2388 | |
2389 | if(downAOTex1) |
2390 | textures.aoDownsampled = downAOTex1->texture; |
2391 | |
2392 | Vector2I downsampledSize( |
2393 | std::max(1, Math::divideAndRoundUp((INT32)viewProps.target.viewRect.width, 2)), |
2394 | std::max(1, Math::divideAndRoundUp((INT32)viewProps.target.viewRect.height, 2)) |
2395 | ); |
2396 | |
2397 | POOLED_RENDER_TEXTURE_DESC desc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_R8, downsampledSize.x, |
2398 | downsampledSize.y, TU_RENDERTARGET); |
2399 | downAOTex0 = GpuResourcePool::instance().get(desc); |
2400 | |
2401 | bool upsample = numDownsampleLevels > 1; |
2402 | SSAOMat* ssaoMat = SSAOMat::getVariation(upsample, false, quality); |
2403 | ssaoMat->execute(inputs.view, textures, downAOTex0->renderTexture, settings); |
2404 | |
2405 | if(upsample) |
2406 | { |
2407 | GpuResourcePool::instance().release(downAOTex1); |
2408 | downAOTex1 = nullptr; |
2409 | } |
2410 | } |
2411 | |
2412 | UINT32 width = viewProps.target.viewRect.width; |
2413 | UINT32 height = viewProps.target.viewRect.height; |
2414 | mPooledOutput = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_R8, width, height, TU_RENDERTARGET)); |
2415 | |
2416 | { |
2417 | if(setupTex0) |
2418 | textures.aoSetup = setupTex0->texture; |
2419 | |
2420 | if(downAOTex0) |
2421 | textures.aoDownsampled = downAOTex0->texture; |
2422 | |
2423 | bool upsample = numDownsampleLevels > 0; |
2424 | SSAOMat* ssaoMat = SSAOMat::getVariation(upsample, true, quality); |
2425 | ssaoMat->execute(inputs.view, textures, mPooledOutput->renderTexture, settings); |
2426 | } |
2427 | |
2428 | if(resolvedNormals) |
2429 | { |
2430 | GpuResourcePool::instance().release(resolvedNormals); |
2431 | resolvedNormals = nullptr; |
2432 | } |
2433 | |
2434 | if(numDownsampleLevels > 0) |
2435 | { |
2436 | GpuResourcePool::instance().release(setupTex0); |
2437 | GpuResourcePool::instance().release(downAOTex0); |
2438 | } |
2439 | |
2440 | // Blur the output |
2441 | // Note: If I implement temporal AA then this can probably be avoided. I can instead jitter the sample offsets |
2442 | // each frame, and averaging them out should yield blurred AO. |
2443 | if(quality > 1) // On level 0 we don't blur at all, on level 1 we use the ad-hoc blur in shader |
2444 | { |
2445 | const RenderTargetProperties& rtProps = mPooledOutput->renderTexture->getProperties(); |
2446 | |
2447 | POOLED_RENDER_TEXTURE_DESC desc = POOLED_RENDER_TEXTURE_DESC::create2D(PF_R8, rtProps.width, |
2448 | rtProps.height, TU_RENDERTARGET); |
2449 | SPtr<PooledRenderTexture> blurIntermediateTex = GpuResourcePool::instance().get(desc); |
2450 | |
2451 | SSAOBlurMat* blurHorz = SSAOBlurMat::getVariation(true); |
2452 | SSAOBlurMat* blurVert = SSAOBlurMat::getVariation(false); |
2453 | |
2454 | blurHorz->execute(inputs.view, mPooledOutput->texture, sceneDepth, blurIntermediateTex->renderTexture, DEPTH_RANGE); |
2455 | blurVert->execute(inputs.view, blurIntermediateTex->texture, sceneDepth, mPooledOutput->renderTexture, DEPTH_RANGE); |
2456 | |
2457 | GpuResourcePool::instance().release(blurIntermediateTex); |
2458 | } |
2459 | |
2460 | RenderAPI::instance().setRenderTarget(nullptr); |
2461 | output = mPooledOutput->texture; |
2462 | } |
2463 | |
2464 | void RCNodeSSAO::clear() |
2465 | { |
2466 | if(mPooledOutput) |
2467 | { |
2468 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2469 | resPool.release(mPooledOutput); |
2470 | } |
2471 | |
2472 | output = nullptr; |
2473 | } |
2474 | |
2475 | SmallVector<StringID, 4> RCNodeSSAO::getDependencies(const RendererView& view) |
2476 | { |
2477 | return { RCNodeResolvedSceneDepth::getNodeId(), RCNodeBasePass::getNodeId() }; |
2478 | } |
2479 | |
2480 | RCNodeSSR::~RCNodeSSR() |
2481 | { |
2482 | deallocOutputs(); |
2483 | } |
2484 | |
2485 | void RCNodeSSR::render(const RenderCompositorNodeInputs& inputs) |
2486 | { |
2487 | const ScreenSpaceReflectionsSettings& settings = inputs.view.getRenderSettings().screenSpaceReflections; |
2488 | if (!settings.enabled) |
2489 | { |
2490 | deallocOutputs(); |
2491 | |
2492 | mPooledOutput = nullptr; |
2493 | output = Texture::BLACK; |
2494 | return; |
2495 | } |
2496 | |
2497 | RenderAPI& rapi = RenderAPI::instance(); |
2498 | |
2499 | RCNodeSceneDepth* sceneDepthNode = static_cast<RCNodeSceneDepth*>(inputs.inputNodes[0]); |
2500 | RCNodeLightAccumulation* lightAccumNode = static_cast<RCNodeLightAccumulation*>(inputs.inputNodes[1]); |
2501 | RCNodeBasePass* gbufferNode = static_cast<RCNodeBasePass*>(inputs.inputNodes[2]); |
2502 | RCNodeHiZ* hiZNode = static_cast<RCNodeHiZ*>(inputs.inputNodes[3]); |
2503 | RCNodeResolvedSceneDepth* resolvedSceneDepthNode = static_cast<RCNodeResolvedSceneDepth*>(inputs.inputNodes[4]); |
2504 | |
2505 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2506 | const RendererViewProperties& viewProps = inputs.view.getProperties(); |
2507 | |
2508 | UINT32 width = viewProps.target.viewRect.width; |
2509 | UINT32 height = viewProps.target.viewRect.height; |
2510 | |
2511 | SPtr<Texture> hiZ = hiZNode->output->texture; |
2512 | |
2513 | // This will be executing before scene color is resolved, so get the light accum buffer instead |
2514 | SPtr<Texture> sceneColor = lightAccumNode->lightAccumulationTex->texture; |
2515 | |
2516 | // Resolve multiple samples if MSAA is used |
2517 | SPtr<PooledRenderTexture> resolvedSceneColor; |
2518 | if (viewProps.target.numSamples > 1) |
2519 | { |
2520 | resolvedSceneColor = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, width, height, |
2521 | TU_RENDERTARGET)); |
2522 | |
2523 | rapi.setRenderTarget(resolvedSceneColor->renderTexture); |
2524 | gRendererUtility().blit(sceneColor); |
2525 | |
2526 | sceneColor = resolvedSceneColor->texture; |
2527 | } |
2528 | |
2529 | GBufferTextures gbuffer; |
2530 | gbuffer.albedo = gbufferNode->albedoTex->texture; |
2531 | gbuffer.normals = gbufferNode->normalTex->texture; |
2532 | gbuffer.roughMetal = gbufferNode->roughMetalTex->texture; |
2533 | gbuffer.depth = sceneDepthNode->depthTex->texture; |
2534 | |
2535 | SSRStencilMat* stencilMat = SSRStencilMat::getVariation(viewProps.target.numSamples > 1, true); |
2536 | |
2537 | // Note: Making the assumption that the stencil buffer is clear at this point |
2538 | rapi.setRenderTarget(resolvedSceneDepthNode->output->renderTexture, FBT_DEPTH, RT_DEPTH_STENCIL); |
2539 | stencilMat->execute(inputs.view, gbuffer, settings); |
2540 | |
2541 | SPtr<PooledRenderTexture> traceOutput = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, width, |
2542 | height, TU_RENDERTARGET)); |
2543 | |
2544 | RENDER_TEXTURE_DESC traceRtDesc; |
2545 | traceRtDesc.colorSurfaces[0].texture = traceOutput->texture; |
2546 | traceRtDesc.depthStencilSurface.texture = resolvedSceneDepthNode->output->texture; |
2547 | |
2548 | SPtr<RenderTexture> traceRt = RenderTexture::create(traceRtDesc); |
2549 | |
2550 | rapi.setRenderTarget(traceRt, FBT_DEPTH | FBT_STENCIL, RT_DEPTH_STENCIL); |
2551 | rapi.clearRenderTarget(FBT_COLOR, Color::ZERO); |
2552 | |
2553 | SSRTraceMat* traceMat = SSRTraceMat::getVariation(settings.quality, viewProps.target.numSamples > 1, true); |
2554 | traceMat->execute(inputs.view, gbuffer, sceneColor, hiZ, settings, traceRt); |
2555 | |
2556 | if (resolvedSceneColor) |
2557 | { |
2558 | resPool.release(resolvedSceneColor); |
2559 | resolvedSceneColor = nullptr; |
2560 | } |
2561 | |
2562 | if (mPrevFrame) |
2563 | { |
2564 | mPooledOutput = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D(PF_RGBA16F, width, height, TU_RENDERTARGET)); |
2565 | |
2566 | rapi.setRenderTarget(mPooledOutput->renderTexture); |
2567 | rapi.clearRenderTarget(FBT_COLOR); |
2568 | |
2569 | SSRResolveMat* resolveMat = SSRResolveMat::getVariation(viewProps.target.numSamples > 1); |
2570 | resolveMat->execute(inputs.view, mPrevFrame->texture, traceOutput->texture, sceneDepthNode->depthTex->texture, |
2571 | mPooledOutput->renderTexture); |
2572 | |
2573 | resPool.release(traceOutput); |
2574 | } |
2575 | else |
2576 | mPooledOutput = traceOutput; |
2577 | |
2578 | RenderAPI::instance().setRenderTarget(nullptr); |
2579 | output = mPooledOutput->texture; |
2580 | } |
2581 | |
2582 | void RCNodeSSR::clear() |
2583 | { |
2584 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2585 | |
2586 | if(mPrevFrame) |
2587 | resPool.release(mPrevFrame); |
2588 | |
2589 | mPrevFrame = mPooledOutput; |
2590 | mPooledOutput = nullptr; |
2591 | output = nullptr; |
2592 | } |
2593 | |
2594 | void RCNodeSSR::deallocOutputs() |
2595 | { |
2596 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2597 | |
2598 | if(mPrevFrame) |
2599 | { |
2600 | resPool.release(mPrevFrame); |
2601 | mPrevFrame = nullptr; |
2602 | } |
2603 | |
2604 | output = nullptr; |
2605 | } |
2606 | |
2607 | SmallVector<StringID, 4> RCNodeSSR::getDependencies(const RendererView& view) |
2608 | { |
2609 | SmallVector<StringID, 4> deps; |
2610 | if (view.getRenderSettings().screenSpaceReflections.enabled) |
2611 | { |
2612 | deps.add(RCNodeSceneDepth::getNodeId()); |
2613 | deps.add(RCNodeLightAccumulation::getNodeId()); |
2614 | deps.add(RCNodeBasePass::getNodeId()); |
2615 | deps.add(RCNodeHiZ::getNodeId()); |
2616 | deps.add(RCNodeResolvedSceneDepth::getNodeId()); |
2617 | deps.add(RCNodeIndirectDiffuseLighting::getNodeId()); |
2618 | } |
2619 | |
2620 | return deps; |
2621 | } |
2622 | |
2623 | void RCNodeBloom::render(const RenderCompositorNodeInputs& inputs) |
2624 | { |
2625 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2626 | const RenderSettings& settings = inputs.view.getRenderSettings(); |
2627 | |
2628 | // Grab 1/2 scene color to use as input |
2629 | auto* halfSceneColorNode = static_cast<RCNodeHalfSceneColor*>(inputs.inputNodes[1]); |
2630 | const SPtr<Texture>& halfSceneColor = halfSceneColorNode->output->texture; |
2631 | |
2632 | // Clip color values based on intensity (if enabled) |
2633 | SPtr<PooledRenderTexture> clipOutput; |
2634 | SPtr<PooledRenderTexture> downsampleInput; |
2635 | if(settings.bloom.threshold > 0.0f) |
2636 | { |
2637 | const bool autoExposure = settings.enableHDR && settings.enableAutoExposure; |
2638 | BloomClipMat* clipMat = BloomClipMat::getVariation(autoExposure); |
2639 | |
2640 | SPtr<Texture> eyeAdaptationTex = nullptr; |
2641 | |
2642 | if(autoExposure) |
2643 | { |
2644 | auto* eyeAdapatationNode = static_cast<RCNodeEyeAdaptation*>(inputs.inputNodes[2]); |
2645 | |
2646 | if(eyeAdapatationNode->output) |
2647 | eyeAdaptationTex = eyeAdapatationNode->output->texture; |
2648 | } |
2649 | |
2650 | const TextureProperties& halfSceneColorProps = halfSceneColor->getProperties(); |
2651 | clipOutput = resPool.get(POOLED_RENDER_TEXTURE_DESC::create2D( |
2652 | halfSceneColorProps.getFormat(), |
2653 | halfSceneColorProps.getWidth(), |
2654 | halfSceneColorProps.getHeight(), |
2655 | TU_RENDERTARGET)); |
2656 | |
2657 | clipMat->execute(halfSceneColor, settings.bloom.threshold, eyeAdaptationTex, settings, |
2658 | clipOutput->renderTexture); |
2659 | |
2660 | downsampleInput = clipOutput; |
2661 | } |
2662 | else |
2663 | downsampleInput = halfSceneColorNode->output; |
2664 | |
2665 | // Generate the downsample pyramid |
2666 | constexpr UINT32 NUM_DOWNSAMPLE_LEVELS = 6; |
2667 | SPtr<PooledRenderTexture> downsamplePyramid[NUM_DOWNSAMPLE_LEVELS]; |
2668 | downsamplePyramid[0] = downsampleInput; |
2669 | |
2670 | DownsampleMat* downsampleMat = DownsampleMat::getVariation(1, false); |
2671 | for(UINT32 i = 1; i < NUM_DOWNSAMPLE_LEVELS; i++) |
2672 | { |
2673 | downsamplePyramid[i] = resPool.get(DownsampleMat::getOutputDesc(downsamplePyramid[i - 1]->texture)); |
2674 | downsampleMat->execute(downsamplePyramid[i - 1]->texture, downsamplePyramid[i]->renderTexture); |
2675 | } |
2676 | |
2677 | // Blur the downsampled entries and add them together |
2678 | const UINT32 quality = Math::clamp(settings.bloom.quality, 0U, 3U); |
2679 | constexpr UINT32 NUM_STEPS_PER_QUALITY[] = { 3, 4, 5, 6 }; |
2680 | constexpr float FILTER_SIZE_PER_STEP[] = { 4.0f, 16.0f, 64.0f, 128.0f, 256.0f, 256.0f }; |
2681 | |
2682 | GaussianBlurMat* filterMat = GaussianBlurMat::getVariation(true); |
2683 | const UINT32 numSteps = NUM_STEPS_PER_QUALITY[quality]; |
2684 | SPtr<PooledRenderTexture> prevOutput; |
2685 | for(UINT32 i = 0; i < numSteps; i++) |
2686 | { |
2687 | const UINT32 srcIdx = NUM_DOWNSAMPLE_LEVELS - i - 1; |
2688 | const TextureProperties& inputProps = downsamplePyramid[srcIdx]->texture->getProperties(); |
2689 | |
2690 | SPtr<PooledRenderTexture> filterOutput = resPool.get( |
2691 | POOLED_RENDER_TEXTURE_DESC::create2D(inputProps.getFormat(), inputProps.getWidth(), |
2692 | inputProps.getHeight(), TU_RENDERTARGET)); |
2693 | |
2694 | SPtr<Texture> additiveInput; |
2695 | if(prevOutput) |
2696 | additiveInput = prevOutput->texture; |
2697 | |
2698 | const Color tint = Color::White * (settings.bloom.intensity / (float)numSteps); |
2699 | filterMat->execute(downsamplePyramid[srcIdx]->texture, FILTER_SIZE_PER_STEP[i], filterOutput->renderTexture, |
2700 | tint, additiveInput); |
2701 | prevOutput = filterOutput; |
2702 | } |
2703 | |
2704 | mPooledOutput = prevOutput; |
2705 | output = mPooledOutput->texture; |
2706 | } |
2707 | |
2708 | void RCNodeBloom::clear() |
2709 | { |
2710 | GpuResourcePool& resPool = GpuResourcePool::instance(); |
2711 | resPool.release(mPooledOutput); |
2712 | |
2713 | output = nullptr; |
2714 | } |
2715 | |
2716 | SmallVector<StringID, 4> RCNodeBloom::getDependencies(const RendererView& view) |
2717 | { |
2718 | return { RCNodeClusteredForward::getNodeId(), RCNodeHalfSceneColor::getNodeId(), RCNodeEyeAdaptation::getNodeId() }; |
2719 | } |
2720 | |
2721 | }} |
2722 | |