| 1 | /**************************************************************************/ |
| 2 | /* light_storage.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "light_storage.h" |
| 32 | #include "core/config/project_settings.h" |
| 33 | #include "servers/rendering/renderer_rd/renderer_scene_render_rd.h" |
| 34 | #include "texture_storage.h" |
| 35 | |
| 36 | using namespace RendererRD; |
| 37 | |
| 38 | LightStorage *LightStorage::singleton = nullptr; |
| 39 | |
| 40 | LightStorage *LightStorage::get_singleton() { |
| 41 | return singleton; |
| 42 | } |
| 43 | |
| 44 | LightStorage::LightStorage() { |
| 45 | singleton = this; |
| 46 | |
| 47 | TextureStorage *texture_storage = TextureStorage::get_singleton(); |
| 48 | |
| 49 | directional_shadow.size = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/size" ); |
| 50 | directional_shadow.use_16_bits = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/16_bits" ); |
| 51 | |
| 52 | using_lightmap_array = true; // high end |
| 53 | if (using_lightmap_array) { |
| 54 | uint64_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE); |
| 55 | |
| 56 | if (textures_per_stage <= 256) { |
| 57 | lightmap_textures.resize(32); |
| 58 | } else { |
| 59 | lightmap_textures.resize(1024); |
| 60 | } |
| 61 | |
| 62 | for (int i = 0; i < lightmap_textures.size(); i++) { |
| 63 | lightmap_textures.write[i] = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | lightmap_probe_capture_update_speed = GLOBAL_GET("rendering/lightmapping/probe_capture/update_speed" ); |
| 68 | } |
| 69 | |
| 70 | LightStorage::~LightStorage() { |
| 71 | free_reflection_data(); |
| 72 | free_light_data(); |
| 73 | |
| 74 | for (const KeyValue<int, ShadowCubemap> &E : shadow_cubemaps) { |
| 75 | RD::get_singleton()->free(E.value.cubemap); |
| 76 | } |
| 77 | |
| 78 | singleton = nullptr; |
| 79 | } |
| 80 | |
| 81 | bool LightStorage::free(RID p_rid) { |
| 82 | if (owns_reflection_probe(p_rid)) { |
| 83 | reflection_probe_free(p_rid); |
| 84 | return true; |
| 85 | } else if (owns_reflection_atlas(p_rid)) { |
| 86 | reflection_atlas_free(p_rid); |
| 87 | return true; |
| 88 | } else if (owns_reflection_probe_instance(p_rid)) { |
| 89 | reflection_probe_instance_free(p_rid); |
| 90 | return true; |
| 91 | } else if (owns_light(p_rid)) { |
| 92 | light_free(p_rid); |
| 93 | return true; |
| 94 | } else if (owns_light_instance(p_rid)) { |
| 95 | light_instance_free(p_rid); |
| 96 | return true; |
| 97 | } else if (owns_lightmap(p_rid)) { |
| 98 | lightmap_free(p_rid); |
| 99 | return true; |
| 100 | } else if (owns_lightmap_instance(p_rid)) { |
| 101 | lightmap_instance_free(p_rid); |
| 102 | return true; |
| 103 | } else if (owns_shadow_atlas(p_rid)) { |
| 104 | shadow_atlas_free(p_rid); |
| 105 | return true; |
| 106 | } |
| 107 | |
| 108 | return false; |
| 109 | } |
| 110 | |
| 111 | /* LIGHT */ |
| 112 | |
| 113 | void LightStorage::_light_initialize(RID p_light, RS::LightType p_type) { |
| 114 | Light light; |
| 115 | light.type = p_type; |
| 116 | |
| 117 | light.param[RS::LIGHT_PARAM_ENERGY] = 1.0; |
| 118 | light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0; |
| 119 | light.param[RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY] = 1.0; |
| 120 | light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5; |
| 121 | light.param[RS::LIGHT_PARAM_RANGE] = 1.0; |
| 122 | light.param[RS::LIGHT_PARAM_SIZE] = 0.0; |
| 123 | light.param[RS::LIGHT_PARAM_ATTENUATION] = 1.0; |
| 124 | light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45; |
| 125 | light.param[RS::LIGHT_PARAM_SPOT_ATTENUATION] = 1.0; |
| 126 | light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0; |
| 127 | light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1; |
| 128 | light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3; |
| 129 | light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6; |
| 130 | light.param[RS::LIGHT_PARAM_SHADOW_FADE_START] = 0.8; |
| 131 | light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0; |
| 132 | light.param[RS::LIGHT_PARAM_SHADOW_BIAS] = 0.02; |
| 133 | light.param[RS::LIGHT_PARAM_SHADOW_OPACITY] = 1.0; |
| 134 | light.param[RS::LIGHT_PARAM_SHADOW_BLUR] = 0; |
| 135 | light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0; |
| 136 | light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05; |
| 137 | light.param[RS::LIGHT_PARAM_INTENSITY] = p_type == RS::LIGHT_DIRECTIONAL ? 100000.0 : 1000.0; |
| 138 | |
| 139 | light_owner.initialize_rid(p_light, light); |
| 140 | } |
| 141 | |
| 142 | RID LightStorage::directional_light_allocate() { |
| 143 | return light_owner.allocate_rid(); |
| 144 | } |
| 145 | |
| 146 | void LightStorage::directional_light_initialize(RID p_light) { |
| 147 | _light_initialize(p_light, RS::LIGHT_DIRECTIONAL); |
| 148 | } |
| 149 | |
| 150 | RID LightStorage::omni_light_allocate() { |
| 151 | return light_owner.allocate_rid(); |
| 152 | } |
| 153 | |
| 154 | void LightStorage::omni_light_initialize(RID p_light) { |
| 155 | _light_initialize(p_light, RS::LIGHT_OMNI); |
| 156 | } |
| 157 | |
| 158 | RID LightStorage::spot_light_allocate() { |
| 159 | return light_owner.allocate_rid(); |
| 160 | } |
| 161 | |
| 162 | void LightStorage::spot_light_initialize(RID p_light) { |
| 163 | _light_initialize(p_light, RS::LIGHT_SPOT); |
| 164 | } |
| 165 | |
| 166 | void LightStorage::light_free(RID p_rid) { |
| 167 | light_set_projector(p_rid, RID()); //clear projector |
| 168 | |
| 169 | // delete the texture |
| 170 | Light *light = light_owner.get_or_null(p_rid); |
| 171 | light->dependency.deleted_notify(p_rid); |
| 172 | light_owner.free(p_rid); |
| 173 | } |
| 174 | |
| 175 | void LightStorage::light_set_color(RID p_light, const Color &p_color) { |
| 176 | Light *light = light_owner.get_or_null(p_light); |
| 177 | ERR_FAIL_COND(!light); |
| 178 | |
| 179 | light->color = p_color; |
| 180 | } |
| 181 | |
| 182 | void LightStorage::light_set_param(RID p_light, RS::LightParam p_param, float p_value) { |
| 183 | Light *light = light_owner.get_or_null(p_light); |
| 184 | ERR_FAIL_COND(!light); |
| 185 | ERR_FAIL_INDEX(p_param, RS::LIGHT_PARAM_MAX); |
| 186 | |
| 187 | if (light->param[p_param] == p_value) { |
| 188 | return; |
| 189 | } |
| 190 | |
| 191 | switch (p_param) { |
| 192 | case RS::LIGHT_PARAM_RANGE: |
| 193 | case RS::LIGHT_PARAM_SPOT_ANGLE: |
| 194 | case RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE: |
| 195 | case RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET: |
| 196 | case RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET: |
| 197 | case RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET: |
| 198 | case RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS: |
| 199 | case RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE: |
| 200 | case RS::LIGHT_PARAM_SHADOW_BIAS: { |
| 201 | light->version++; |
| 202 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 203 | } break; |
| 204 | case RS::LIGHT_PARAM_SIZE: { |
| 205 | if ((light->param[p_param] > CMP_EPSILON) != (p_value > CMP_EPSILON)) { |
| 206 | //changing from no size to size and the opposite |
| 207 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR); |
| 208 | } |
| 209 | } break; |
| 210 | default: { |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | light->param[p_param] = p_value; |
| 215 | } |
| 216 | |
| 217 | void LightStorage::light_set_shadow(RID p_light, bool p_enabled) { |
| 218 | Light *light = light_owner.get_or_null(p_light); |
| 219 | ERR_FAIL_COND(!light); |
| 220 | light->shadow = p_enabled; |
| 221 | |
| 222 | light->version++; |
| 223 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 224 | } |
| 225 | |
| 226 | void LightStorage::light_set_projector(RID p_light, RID p_texture) { |
| 227 | TextureStorage *texture_storage = TextureStorage::get_singleton(); |
| 228 | Light *light = light_owner.get_or_null(p_light); |
| 229 | ERR_FAIL_COND(!light); |
| 230 | |
| 231 | if (light->projector == p_texture) { |
| 232 | return; |
| 233 | } |
| 234 | |
| 235 | ERR_FAIL_COND(p_texture.is_valid() && !texture_storage->owns_texture(p_texture)); |
| 236 | |
| 237 | if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) { |
| 238 | texture_storage->texture_remove_from_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI); |
| 239 | } |
| 240 | |
| 241 | light->projector = p_texture; |
| 242 | |
| 243 | if (light->type != RS::LIGHT_DIRECTIONAL) { |
| 244 | if (light->projector.is_valid()) { |
| 245 | texture_storage->texture_add_to_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI); |
| 246 | } |
| 247 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR); |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | void LightStorage::light_set_negative(RID p_light, bool p_enable) { |
| 252 | Light *light = light_owner.get_or_null(p_light); |
| 253 | ERR_FAIL_COND(!light); |
| 254 | |
| 255 | light->negative = p_enable; |
| 256 | } |
| 257 | |
| 258 | void LightStorage::light_set_cull_mask(RID p_light, uint32_t p_mask) { |
| 259 | Light *light = light_owner.get_or_null(p_light); |
| 260 | ERR_FAIL_COND(!light); |
| 261 | |
| 262 | light->cull_mask = p_mask; |
| 263 | |
| 264 | light->version++; |
| 265 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 266 | } |
| 267 | |
| 268 | void LightStorage::light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) { |
| 269 | Light *light = light_owner.get_or_null(p_light); |
| 270 | ERR_FAIL_COND(!light); |
| 271 | |
| 272 | light->distance_fade = p_enabled; |
| 273 | light->distance_fade_begin = p_begin; |
| 274 | light->distance_fade_shadow = p_shadow; |
| 275 | light->distance_fade_length = p_length; |
| 276 | } |
| 277 | |
| 278 | void LightStorage::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) { |
| 279 | Light *light = light_owner.get_or_null(p_light); |
| 280 | ERR_FAIL_COND(!light); |
| 281 | |
| 282 | light->reverse_cull = p_enabled; |
| 283 | |
| 284 | light->version++; |
| 285 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 286 | } |
| 287 | |
| 288 | void LightStorage::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) { |
| 289 | Light *light = light_owner.get_or_null(p_light); |
| 290 | ERR_FAIL_COND(!light); |
| 291 | |
| 292 | light->bake_mode = p_bake_mode; |
| 293 | |
| 294 | light->version++; |
| 295 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 296 | } |
| 297 | |
| 298 | void LightStorage::light_set_max_sdfgi_cascade(RID p_light, uint32_t p_cascade) { |
| 299 | Light *light = light_owner.get_or_null(p_light); |
| 300 | ERR_FAIL_COND(!light); |
| 301 | |
| 302 | light->max_sdfgi_cascade = p_cascade; |
| 303 | |
| 304 | light->version++; |
| 305 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 306 | } |
| 307 | |
| 308 | void LightStorage::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) { |
| 309 | Light *light = light_owner.get_or_null(p_light); |
| 310 | ERR_FAIL_COND(!light); |
| 311 | |
| 312 | light->omni_shadow_mode = p_mode; |
| 313 | |
| 314 | light->version++; |
| 315 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 316 | } |
| 317 | |
| 318 | RS::LightOmniShadowMode LightStorage::light_omni_get_shadow_mode(RID p_light) { |
| 319 | const Light *light = light_owner.get_or_null(p_light); |
| 320 | ERR_FAIL_COND_V(!light, RS::LIGHT_OMNI_SHADOW_CUBE); |
| 321 | |
| 322 | return light->omni_shadow_mode; |
| 323 | } |
| 324 | |
| 325 | void LightStorage::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) { |
| 326 | Light *light = light_owner.get_or_null(p_light); |
| 327 | ERR_FAIL_COND(!light); |
| 328 | |
| 329 | light->directional_shadow_mode = p_mode; |
| 330 | light->version++; |
| 331 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 332 | } |
| 333 | |
| 334 | void LightStorage::light_directional_set_blend_splits(RID p_light, bool p_enable) { |
| 335 | Light *light = light_owner.get_or_null(p_light); |
| 336 | ERR_FAIL_COND(!light); |
| 337 | |
| 338 | light->directional_blend_splits = p_enable; |
| 339 | light->version++; |
| 340 | light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); |
| 341 | } |
| 342 | |
| 343 | bool LightStorage::light_directional_get_blend_splits(RID p_light) const { |
| 344 | const Light *light = light_owner.get_or_null(p_light); |
| 345 | ERR_FAIL_COND_V(!light, false); |
| 346 | |
| 347 | return light->directional_blend_splits; |
| 348 | } |
| 349 | |
| 350 | void LightStorage::light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) { |
| 351 | Light *light = light_owner.get_or_null(p_light); |
| 352 | ERR_FAIL_COND(!light); |
| 353 | |
| 354 | light->directional_sky_mode = p_mode; |
| 355 | } |
| 356 | |
| 357 | RS::LightDirectionalSkyMode LightStorage::light_directional_get_sky_mode(RID p_light) const { |
| 358 | const Light *light = light_owner.get_or_null(p_light); |
| 359 | ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY); |
| 360 | |
| 361 | return light->directional_sky_mode; |
| 362 | } |
| 363 | |
| 364 | RS::LightDirectionalShadowMode LightStorage::light_directional_get_shadow_mode(RID p_light) { |
| 365 | const Light *light = light_owner.get_or_null(p_light); |
| 366 | ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL); |
| 367 | |
| 368 | return light->directional_shadow_mode; |
| 369 | } |
| 370 | |
| 371 | uint32_t LightStorage::light_get_max_sdfgi_cascade(RID p_light) { |
| 372 | const Light *light = light_owner.get_or_null(p_light); |
| 373 | ERR_FAIL_COND_V(!light, 0); |
| 374 | |
| 375 | return light->max_sdfgi_cascade; |
| 376 | } |
| 377 | |
| 378 | RS::LightBakeMode LightStorage::light_get_bake_mode(RID p_light) { |
| 379 | const Light *light = light_owner.get_or_null(p_light); |
| 380 | ERR_FAIL_COND_V(!light, RS::LIGHT_BAKE_DISABLED); |
| 381 | |
| 382 | return light->bake_mode; |
| 383 | } |
| 384 | |
| 385 | uint64_t LightStorage::light_get_version(RID p_light) const { |
| 386 | const Light *light = light_owner.get_or_null(p_light); |
| 387 | ERR_FAIL_COND_V(!light, 0); |
| 388 | |
| 389 | return light->version; |
| 390 | } |
| 391 | |
| 392 | uint32_t LightStorage::light_get_cull_mask(RID p_light) const { |
| 393 | const Light *light = light_owner.get_or_null(p_light); |
| 394 | ERR_FAIL_COND_V(!light, 0); |
| 395 | |
| 396 | return light->cull_mask; |
| 397 | } |
| 398 | |
| 399 | AABB LightStorage::light_get_aabb(RID p_light) const { |
| 400 | const Light *light = light_owner.get_or_null(p_light); |
| 401 | ERR_FAIL_COND_V(!light, AABB()); |
| 402 | |
| 403 | switch (light->type) { |
| 404 | case RS::LIGHT_SPOT: { |
| 405 | float len = light->param[RS::LIGHT_PARAM_RANGE]; |
| 406 | float size = Math::tan(Math::deg_to_rad(light->param[RS::LIGHT_PARAM_SPOT_ANGLE])) * len; |
| 407 | return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len)); |
| 408 | }; |
| 409 | case RS::LIGHT_OMNI: { |
| 410 | float r = light->param[RS::LIGHT_PARAM_RANGE]; |
| 411 | return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2); |
| 412 | }; |
| 413 | case RS::LIGHT_DIRECTIONAL: { |
| 414 | return AABB(); |
| 415 | }; |
| 416 | } |
| 417 | |
| 418 | ERR_FAIL_V(AABB()); |
| 419 | } |
| 420 | |
| 421 | Dependency *LightStorage::light_get_dependency(RID p_light) const { |
| 422 | Light *light = light_owner.get_or_null(p_light); |
| 423 | ERR_FAIL_NULL_V(light, nullptr); |
| 424 | |
| 425 | return &light->dependency; |
| 426 | } |
| 427 | |
| 428 | /* LIGHT INSTANCE API */ |
| 429 | |
| 430 | RID LightStorage::light_instance_create(RID p_light) { |
| 431 | RID li = light_instance_owner.make_rid(LightInstance()); |
| 432 | |
| 433 | LightInstance *light_instance = light_instance_owner.get_or_null(li); |
| 434 | |
| 435 | light_instance->self = li; |
| 436 | light_instance->light = p_light; |
| 437 | light_instance->light_type = light_get_type(p_light); |
| 438 | if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) { |
| 439 | light_instance->forward_id = ForwardIDStorage::get_singleton()->allocate_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT); |
| 440 | } |
| 441 | |
| 442 | return li; |
| 443 | } |
| 444 | |
| 445 | void LightStorage::light_instance_free(RID p_light) { |
| 446 | LightInstance *light_instance = light_instance_owner.get_or_null(p_light); |
| 447 | |
| 448 | //remove from shadow atlases.. |
| 449 | for (const RID &E : light_instance->shadow_atlases) { |
| 450 | ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(E); |
| 451 | ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_light)); |
| 452 | uint32_t key = shadow_atlas->shadow_owners[p_light]; |
| 453 | uint32_t q = (key >> QUADRANT_SHIFT) & 0x3; |
| 454 | uint32_t s = key & SHADOW_INDEX_MASK; |
| 455 | |
| 456 | shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); |
| 457 | |
| 458 | if (key & OMNI_LIGHT_FLAG) { |
| 459 | // Omni lights use two atlas spots, make sure to clear the other as well |
| 460 | shadow_atlas->quadrants[q].shadows.write[s + 1].owner = RID(); |
| 461 | } |
| 462 | |
| 463 | shadow_atlas->shadow_owners.erase(p_light); |
| 464 | } |
| 465 | |
| 466 | if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) { |
| 467 | ForwardIDStorage::get_singleton()->free_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, light_instance->forward_id); |
| 468 | } |
| 469 | light_instance_owner.free(p_light); |
| 470 | } |
| 471 | |
| 472 | void LightStorage::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) { |
| 473 | LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); |
| 474 | ERR_FAIL_COND(!light_instance); |
| 475 | |
| 476 | light_instance->transform = p_transform; |
| 477 | } |
| 478 | |
| 479 | void LightStorage::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) { |
| 480 | LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); |
| 481 | ERR_FAIL_COND(!light_instance); |
| 482 | |
| 483 | light_instance->aabb = p_aabb; |
| 484 | } |
| 485 | |
| 486 | void LightStorage::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) { |
| 487 | LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); |
| 488 | ERR_FAIL_COND(!light_instance); |
| 489 | |
| 490 | ERR_FAIL_INDEX(p_pass, 6); |
| 491 | |
| 492 | light_instance->shadow_transform[p_pass].camera = p_projection; |
| 493 | light_instance->shadow_transform[p_pass].transform = p_transform; |
| 494 | light_instance->shadow_transform[p_pass].farplane = p_far; |
| 495 | light_instance->shadow_transform[p_pass].split = p_split; |
| 496 | light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; |
| 497 | light_instance->shadow_transform[p_pass].range_begin = p_range_begin; |
| 498 | light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size; |
| 499 | light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale; |
| 500 | } |
| 501 | |
| 502 | void LightStorage::light_instance_mark_visible(RID p_light_instance) { |
| 503 | LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); |
| 504 | ERR_FAIL_COND(!light_instance); |
| 505 | |
| 506 | light_instance->last_scene_pass = RendererSceneRenderRD::get_singleton()->get_scene_pass(); |
| 507 | } |
| 508 | |
| 509 | /* LIGHT DATA */ |
| 510 | |
| 511 | void LightStorage::free_light_data() { |
| 512 | if (directional_light_buffer.is_valid()) { |
| 513 | RD::get_singleton()->free(directional_light_buffer); |
| 514 | directional_light_buffer = RID(); |
| 515 | } |
| 516 | |
| 517 | if (omni_light_buffer.is_valid()) { |
| 518 | RD::get_singleton()->free(omni_light_buffer); |
| 519 | omni_light_buffer = RID(); |
| 520 | } |
| 521 | |
| 522 | if (spot_light_buffer.is_valid()) { |
| 523 | RD::get_singleton()->free(spot_light_buffer); |
| 524 | spot_light_buffer = RID(); |
| 525 | } |
| 526 | |
| 527 | if (directional_lights != nullptr) { |
| 528 | memdelete_arr(directional_lights); |
| 529 | directional_lights = nullptr; |
| 530 | } |
| 531 | |
| 532 | if (omni_lights != nullptr) { |
| 533 | memdelete_arr(omni_lights); |
| 534 | omni_lights = nullptr; |
| 535 | } |
| 536 | |
| 537 | if (spot_lights != nullptr) { |
| 538 | memdelete_arr(spot_lights); |
| 539 | spot_lights = nullptr; |
| 540 | } |
| 541 | |
| 542 | if (omni_light_sort != nullptr) { |
| 543 | memdelete_arr(omni_light_sort); |
| 544 | omni_light_sort = nullptr; |
| 545 | } |
| 546 | |
| 547 | if (spot_light_sort != nullptr) { |
| 548 | memdelete_arr(spot_light_sort); |
| 549 | spot_light_sort = nullptr; |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | void LightStorage::set_max_lights(const uint32_t p_max_lights) { |
| 554 | max_lights = p_max_lights; |
| 555 | |
| 556 | uint32_t light_buffer_size = max_lights * sizeof(LightData); |
| 557 | omni_lights = memnew_arr(LightData, max_lights); |
| 558 | omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size); |
| 559 | omni_light_sort = memnew_arr(LightInstanceDepthSort, max_lights); |
| 560 | spot_lights = memnew_arr(LightData, max_lights); |
| 561 | spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size); |
| 562 | spot_light_sort = memnew_arr(LightInstanceDepthSort, max_lights); |
| 563 | //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(max_lights) + "\n"; |
| 564 | |
| 565 | max_directional_lights = RendererSceneRender::MAX_DIRECTIONAL_LIGHTS; |
| 566 | uint32_t directional_light_buffer_size = max_directional_lights * sizeof(DirectionalLightData); |
| 567 | directional_lights = memnew_arr(DirectionalLightData, max_directional_lights); |
| 568 | directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size); |
| 569 | } |
| 570 | |
| 571 | void LightStorage::update_light_buffers(RenderDataRD *p_render_data, const PagedArray<RID> &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count, bool &r_directional_light_soft_shadows) { |
| 572 | ForwardIDStorage *forward_id_storage = ForwardIDStorage::get_singleton(); |
| 573 | RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton(); |
| 574 | |
| 575 | Transform3D inverse_transform = p_camera_transform.affine_inverse(); |
| 576 | |
| 577 | r_directional_light_count = 0; |
| 578 | r_positional_light_count = 0; |
| 579 | |
| 580 | omni_light_count = 0; |
| 581 | spot_light_count = 0; |
| 582 | |
| 583 | r_directional_light_soft_shadows = false; |
| 584 | |
| 585 | for (int i = 0; i < (int)p_lights.size(); i++) { |
| 586 | LightInstance *light_instance = light_instance_owner.get_or_null(p_lights[i]); |
| 587 | if (!light_instance) { |
| 588 | continue; |
| 589 | } |
| 590 | Light *light = light_owner.get_or_null(light_instance->light); |
| 591 | |
| 592 | ERR_CONTINUE(light == nullptr); |
| 593 | |
| 594 | switch (light->type) { |
| 595 | case RS::LIGHT_DIRECTIONAL: { |
| 596 | if (r_directional_light_count >= max_directional_lights || light->directional_sky_mode == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) { |
| 597 | continue; |
| 598 | } |
| 599 | |
| 600 | DirectionalLightData &light_data = directional_lights[r_directional_light_count]; |
| 601 | |
| 602 | Transform3D light_transform = light_instance->transform; |
| 603 | |
| 604 | Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized(); |
| 605 | |
| 606 | light_data.direction[0] = direction.x; |
| 607 | light_data.direction[1] = direction.y; |
| 608 | light_data.direction[2] = direction.z; |
| 609 | |
| 610 | float sign = light->negative ? -1 : 1; |
| 611 | |
| 612 | light_data.energy = sign * light->param[RS::LIGHT_PARAM_ENERGY]; |
| 613 | |
| 614 | if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) { |
| 615 | light_data.energy *= light->param[RS::LIGHT_PARAM_INTENSITY]; |
| 616 | } else { |
| 617 | light_data.energy *= Math_PI; |
| 618 | } |
| 619 | |
| 620 | if (p_render_data->camera_attributes.is_valid()) { |
| 621 | light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); |
| 622 | } |
| 623 | |
| 624 | Color linear_col = light->color.srgb_to_linear(); |
| 625 | light_data.color[0] = linear_col.r; |
| 626 | light_data.color[1] = linear_col.g; |
| 627 | light_data.color[2] = linear_col.b; |
| 628 | |
| 629 | light_data.specular = light->param[RS::LIGHT_PARAM_SPECULAR]; |
| 630 | light_data.volumetric_fog_energy = light->param[RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY]; |
| 631 | light_data.mask = light->cull_mask; |
| 632 | |
| 633 | float size = light->param[RS::LIGHT_PARAM_SIZE]; |
| 634 | |
| 635 | light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset |
| 636 | |
| 637 | light_data.shadow_opacity = (p_using_shadows && light->shadow) |
| 638 | ? light->param[RS::LIGHT_PARAM_SHADOW_OPACITY] |
| 639 | : 0.0; |
| 640 | |
| 641 | float angular_diameter = light->param[RS::LIGHT_PARAM_SIZE]; |
| 642 | if (angular_diameter > 0.0) { |
| 643 | // I know tan(0) is 0, but let's not risk it with numerical precision. |
| 644 | // technically this will keep expanding until reaching the sun, but all we care |
| 645 | // is expand until we reach the radius of the near plane (there can't be more occluders than that) |
| 646 | angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter)); |
| 647 | if (light->shadow && light->param[RS::LIGHT_PARAM_SHADOW_BLUR] > 0.0) { |
| 648 | // Only enable PCSS-like soft shadows if blurring is enabled. |
| 649 | // Otherwise, performance would decrease with no visual difference. |
| 650 | r_directional_light_soft_shadows = true; |
| 651 | } |
| 652 | } else { |
| 653 | angular_diameter = 0.0; |
| 654 | } |
| 655 | |
| 656 | if (light_data.shadow_opacity > 0.001) { |
| 657 | RS::LightDirectionalShadowMode smode = light->directional_shadow_mode; |
| 658 | |
| 659 | light_data.soft_shadow_scale = light->param[RS::LIGHT_PARAM_SHADOW_BLUR]; |
| 660 | light_data.softshadow_angle = angular_diameter; |
| 661 | light_data.bake_mode = light->bake_mode; |
| 662 | |
| 663 | if (angular_diameter <= 0.0) { |
| 664 | light_data.soft_shadow_scale *= RendererSceneRenderRD::get_singleton()->directional_shadow_quality_radius_get(); // Only use quality radius for PCF |
| 665 | } |
| 666 | |
| 667 | int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3); |
| 668 | light_data.blend_splits = (smode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light->directional_blend_splits; |
| 669 | for (int j = 0; j < 4; j++) { |
| 670 | Rect2 atlas_rect = light_instance->shadow_transform[j].atlas_rect; |
| 671 | Projection matrix = light_instance->shadow_transform[j].camera; |
| 672 | float split = light_instance->shadow_transform[MIN(limit, j)].split; |
| 673 | |
| 674 | Projection bias; |
| 675 | bias.set_light_bias(); |
| 676 | Projection rectm; |
| 677 | rectm.set_light_atlas_rect(atlas_rect); |
| 678 | |
| 679 | Transform3D modelview = (inverse_transform * light_instance->shadow_transform[j].transform).inverse(); |
| 680 | |
| 681 | Projection shadow_mtx = rectm * bias * matrix * modelview; |
| 682 | light_data.shadow_split_offsets[j] = split; |
| 683 | float bias_scale = light_instance->shadow_transform[j].bias_scale * light_data.soft_shadow_scale; |
| 684 | light_data.shadow_bias[j] = light->param[RS::LIGHT_PARAM_SHADOW_BIAS] / 100.0 * bias_scale; |
| 685 | light_data.shadow_normal_bias[j] = light->param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * light_instance->shadow_transform[j].shadow_texel_size; |
| 686 | light_data.shadow_transmittance_bias[j] = light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] * bias_scale; |
| 687 | light_data.shadow_z_range[j] = light_instance->shadow_transform[j].farplane; |
| 688 | light_data.shadow_range_begin[j] = light_instance->shadow_transform[j].range_begin; |
| 689 | RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrices[j]); |
| 690 | |
| 691 | Vector2 uv_scale = light_instance->shadow_transform[j].uv_scale; |
| 692 | uv_scale *= atlas_rect.size; //adapt to atlas size |
| 693 | switch (j) { |
| 694 | case 0: { |
| 695 | light_data.uv_scale1[0] = uv_scale.x; |
| 696 | light_data.uv_scale1[1] = uv_scale.y; |
| 697 | } break; |
| 698 | case 1: { |
| 699 | light_data.uv_scale2[0] = uv_scale.x; |
| 700 | light_data.uv_scale2[1] = uv_scale.y; |
| 701 | } break; |
| 702 | case 2: { |
| 703 | light_data.uv_scale3[0] = uv_scale.x; |
| 704 | light_data.uv_scale3[1] = uv_scale.y; |
| 705 | } break; |
| 706 | case 3: { |
| 707 | light_data.uv_scale4[0] = uv_scale.x; |
| 708 | light_data.uv_scale4[1] = uv_scale.y; |
| 709 | } break; |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | float fade_start = light->param[RS::LIGHT_PARAM_SHADOW_FADE_START]; |
| 714 | light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep |
| 715 | light_data.fade_to = -light_data.shadow_split_offsets[3]; |
| 716 | } |
| 717 | |
| 718 | r_directional_light_count++; |
| 719 | } break; |
| 720 | case RS::LIGHT_OMNI: { |
| 721 | if (omni_light_count >= max_lights) { |
| 722 | continue; |
| 723 | } |
| 724 | |
| 725 | Transform3D light_transform = light_instance->transform; |
| 726 | const real_t distance = p_camera_transform.origin.distance_to(light_transform.origin); |
| 727 | |
| 728 | if (light->distance_fade) { |
| 729 | const float fade_begin = light->distance_fade_begin; |
| 730 | const float fade_length = light->distance_fade_length; |
| 731 | |
| 732 | if (distance > fade_begin) { |
| 733 | if (distance > fade_begin + fade_length) { |
| 734 | // Out of range, don't draw this light to improve performance. |
| 735 | continue; |
| 736 | } |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | omni_light_sort[omni_light_count].light_instance = light_instance; |
| 741 | omni_light_sort[omni_light_count].light = light; |
| 742 | omni_light_sort[omni_light_count].depth = distance; |
| 743 | omni_light_count++; |
| 744 | } break; |
| 745 | case RS::LIGHT_SPOT: { |
| 746 | if (spot_light_count >= max_lights) { |
| 747 | continue; |
| 748 | } |
| 749 | |
| 750 | Transform3D light_transform = light_instance->transform; |
| 751 | const real_t distance = p_camera_transform.origin.distance_to(light_transform.origin); |
| 752 | |
| 753 | if (light->distance_fade) { |
| 754 | const float fade_begin = light->distance_fade_begin; |
| 755 | const float fade_length = light->distance_fade_length; |
| 756 | |
| 757 | if (distance > fade_begin) { |
| 758 | if (distance > fade_begin + fade_length) { |
| 759 | // Out of range, don't draw this light to improve performance. |
| 760 | continue; |
| 761 | } |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | spot_light_sort[spot_light_count].light_instance = light_instance; |
| 766 | spot_light_sort[spot_light_count].light = light; |
| 767 | spot_light_sort[spot_light_count].depth = distance; |
| 768 | spot_light_count++; |
| 769 | } break; |
| 770 | } |
| 771 | |
| 772 | light_instance->last_pass = RSG::rasterizer->get_frame_number(); |
| 773 | } |
| 774 | |
| 775 | if (omni_light_count) { |
| 776 | SortArray<LightInstanceDepthSort> sorter; |
| 777 | sorter.sort(omni_light_sort, omni_light_count); |
| 778 | } |
| 779 | |
| 780 | if (spot_light_count) { |
| 781 | SortArray<LightInstanceDepthSort> sorter; |
| 782 | sorter.sort(spot_light_sort, spot_light_count); |
| 783 | } |
| 784 | |
| 785 | bool using_forward_ids = forward_id_storage->uses_forward_ids(); |
| 786 | |
| 787 | for (uint32_t i = 0; i < (omni_light_count + spot_light_count); i++) { |
| 788 | uint32_t index = (i < omni_light_count) ? i : i - (omni_light_count); |
| 789 | LightData &light_data = (i < omni_light_count) ? omni_lights[index] : spot_lights[index]; |
| 790 | RS::LightType type = (i < omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT; |
| 791 | LightInstance *light_instance = (i < omni_light_count) ? omni_light_sort[index].light_instance : spot_light_sort[index].light_instance; |
| 792 | Light *light = (i < omni_light_count) ? omni_light_sort[index].light : spot_light_sort[index].light; |
| 793 | real_t distance = (i < omni_light_count) ? omni_light_sort[index].depth : spot_light_sort[index].depth; |
| 794 | |
| 795 | if (using_forward_ids) { |
| 796 | forward_id_storage->map_forward_id(type == RS::LIGHT_OMNI ? RendererRD::FORWARD_ID_TYPE_OMNI_LIGHT : RendererRD::FORWARD_ID_TYPE_SPOT_LIGHT, light_instance->forward_id, index); |
| 797 | } |
| 798 | |
| 799 | Transform3D light_transform = light_instance->transform; |
| 800 | |
| 801 | float sign = light->negative ? -1 : 1; |
| 802 | Color linear_col = light->color.srgb_to_linear(); |
| 803 | |
| 804 | light_data.attenuation = light->param[RS::LIGHT_PARAM_ATTENUATION]; |
| 805 | |
| 806 | // Reuse fade begin, fade length and distance for shadow LOD determination later. |
| 807 | float fade_begin = 0.0; |
| 808 | float fade_shadow = 0.0; |
| 809 | float fade_length = 0.0; |
| 810 | |
| 811 | float fade = 1.0; |
| 812 | float shadow_opacity_fade = 1.0; |
| 813 | if (light->distance_fade) { |
| 814 | fade_begin = light->distance_fade_begin; |
| 815 | fade_shadow = light->distance_fade_shadow; |
| 816 | fade_length = light->distance_fade_length; |
| 817 | |
| 818 | // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player. |
| 819 | if (distance > fade_begin) { |
| 820 | fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length); |
| 821 | } |
| 822 | |
| 823 | if (distance > fade_shadow) { |
| 824 | shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | float energy = sign * light->param[RS::LIGHT_PARAM_ENERGY] * fade; |
| 829 | |
| 830 | if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) { |
| 831 | energy *= light->param[RS::LIGHT_PARAM_INTENSITY]; |
| 832 | |
| 833 | // Convert from Luminous Power to Luminous Intensity |
| 834 | if (type == RS::LIGHT_OMNI) { |
| 835 | energy *= 1.0 / (Math_PI * 4.0); |
| 836 | } else { |
| 837 | // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle. |
| 838 | // We make this assumption to keep them easy to control. |
| 839 | energy *= 1.0 / Math_PI; |
| 840 | } |
| 841 | } else { |
| 842 | energy *= Math_PI; |
| 843 | } |
| 844 | |
| 845 | if (p_render_data->camera_attributes.is_valid()) { |
| 846 | energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); |
| 847 | } |
| 848 | |
| 849 | light_data.color[0] = linear_col.r * energy; |
| 850 | light_data.color[1] = linear_col.g * energy; |
| 851 | light_data.color[2] = linear_col.b * energy; |
| 852 | light_data.specular_amount = light->param[RS::LIGHT_PARAM_SPECULAR] * 2.0; |
| 853 | light_data.volumetric_fog_energy = light->param[RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY]; |
| 854 | light_data.bake_mode = light->bake_mode; |
| 855 | |
| 856 | float radius = MAX(0.001, light->param[RS::LIGHT_PARAM_RANGE]); |
| 857 | light_data.inv_radius = 1.0 / radius; |
| 858 | |
| 859 | Vector3 pos = inverse_transform.xform(light_transform.origin); |
| 860 | |
| 861 | light_data.position[0] = pos.x; |
| 862 | light_data.position[1] = pos.y; |
| 863 | light_data.position[2] = pos.z; |
| 864 | |
| 865 | Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized(); |
| 866 | |
| 867 | light_data.direction[0] = direction.x; |
| 868 | light_data.direction[1] = direction.y; |
| 869 | light_data.direction[2] = direction.z; |
| 870 | |
| 871 | float size = light->param[RS::LIGHT_PARAM_SIZE]; |
| 872 | |
| 873 | light_data.size = size; |
| 874 | |
| 875 | light_data.inv_spot_attenuation = 1.0f / light->param[RS::LIGHT_PARAM_SPOT_ATTENUATION]; |
| 876 | float spot_angle = light->param[RS::LIGHT_PARAM_SPOT_ANGLE]; |
| 877 | light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle)); |
| 878 | |
| 879 | light_data.mask = light->cull_mask; |
| 880 | |
| 881 | light_data.atlas_rect[0] = 0; |
| 882 | light_data.atlas_rect[1] = 0; |
| 883 | light_data.atlas_rect[2] = 0; |
| 884 | light_data.atlas_rect[3] = 0; |
| 885 | |
| 886 | RID projector = light->projector; |
| 887 | |
| 888 | if (projector.is_valid()) { |
| 889 | Rect2 rect = texture_storage->decal_atlas_get_texture_rect(projector); |
| 890 | |
| 891 | if (type == RS::LIGHT_SPOT) { |
| 892 | light_data.projector_rect[0] = rect.position.x; |
| 893 | light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped |
| 894 | light_data.projector_rect[2] = rect.size.width; |
| 895 | light_data.projector_rect[3] = -rect.size.height; |
| 896 | } else { |
| 897 | light_data.projector_rect[0] = rect.position.x; |
| 898 | light_data.projector_rect[1] = rect.position.y; |
| 899 | light_data.projector_rect[2] = rect.size.width; |
| 900 | light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half |
| 901 | } |
| 902 | } else { |
| 903 | light_data.projector_rect[0] = 0; |
| 904 | light_data.projector_rect[1] = 0; |
| 905 | light_data.projector_rect[2] = 0; |
| 906 | light_data.projector_rect[3] = 0; |
| 907 | } |
| 908 | |
| 909 | const bool needs_shadow = |
| 910 | p_using_shadows && |
| 911 | owns_shadow_atlas(p_shadow_atlas) && |
| 912 | shadow_atlas_owns_light_instance(p_shadow_atlas, light_instance->self) && |
| 913 | light->shadow; |
| 914 | |
| 915 | bool in_shadow_range = true; |
| 916 | if (needs_shadow && light->distance_fade) { |
| 917 | if (distance > light->distance_fade_shadow + light->distance_fade_length) { |
| 918 | // Out of range, don't draw shadows to improve performance. |
| 919 | in_shadow_range = false; |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | if (needs_shadow && in_shadow_range) { |
| 924 | // fill in the shadow information |
| 925 | |
| 926 | light_data.shadow_opacity = light->param[RS::LIGHT_PARAM_SHADOW_OPACITY] * shadow_opacity_fade; |
| 927 | |
| 928 | float shadow_texel_size = light_instance_get_shadow_texel_size(light_instance->self, p_shadow_atlas); |
| 929 | light_data.shadow_normal_bias = light->param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * shadow_texel_size * 10.0; |
| 930 | |
| 931 | if (type == RS::LIGHT_SPOT) { |
| 932 | light_data.shadow_bias = light->param[RS::LIGHT_PARAM_SHADOW_BIAS] / 100.0; |
| 933 | } else { //omni |
| 934 | light_data.shadow_bias = light->param[RS::LIGHT_PARAM_SHADOW_BIAS]; |
| 935 | } |
| 936 | |
| 937 | light_data.transmittance_bias = light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS]; |
| 938 | |
| 939 | Vector2i omni_offset; |
| 940 | Rect2 rect = light_instance_get_shadow_atlas_rect(light_instance->self, p_shadow_atlas, omni_offset); |
| 941 | |
| 942 | light_data.atlas_rect[0] = rect.position.x; |
| 943 | light_data.atlas_rect[1] = rect.position.y; |
| 944 | light_data.atlas_rect[2] = rect.size.width; |
| 945 | light_data.atlas_rect[3] = rect.size.height; |
| 946 | |
| 947 | light_data.soft_shadow_scale = light->param[RS::LIGHT_PARAM_SHADOW_BLUR]; |
| 948 | |
| 949 | if (type == RS::LIGHT_OMNI) { |
| 950 | Transform3D proj = (inverse_transform * light_transform).inverse(); |
| 951 | |
| 952 | RendererRD::MaterialStorage::store_transform(proj, light_data.shadow_matrix); |
| 953 | |
| 954 | if (size > 0.0 && light_data.soft_shadow_scale > 0.0) { |
| 955 | // Only enable PCSS-like soft shadows if blurring is enabled. |
| 956 | // Otherwise, performance would decrease with no visual difference. |
| 957 | light_data.soft_shadow_size = size; |
| 958 | } else { |
| 959 | light_data.soft_shadow_size = 0.0; |
| 960 | light_data.soft_shadow_scale *= RendererSceneRenderRD::get_singleton()->shadows_quality_radius_get(); // Only use quality radius for PCF |
| 961 | } |
| 962 | |
| 963 | light_data.direction[0] = omni_offset.x * float(rect.size.width); |
| 964 | light_data.direction[1] = omni_offset.y * float(rect.size.height); |
| 965 | } else if (type == RS::LIGHT_SPOT) { |
| 966 | Transform3D modelview = (inverse_transform * light_transform).inverse(); |
| 967 | Projection bias; |
| 968 | bias.set_light_bias(); |
| 969 | |
| 970 | Projection cm = light_instance->shadow_transform[0].camera; |
| 971 | Projection shadow_mtx = bias * cm * modelview; |
| 972 | RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrix); |
| 973 | |
| 974 | if (size > 0.0 && light_data.soft_shadow_scale > 0.0) { |
| 975 | // Only enable PCSS-like soft shadows if blurring is enabled. |
| 976 | // Otherwise, performance would decrease with no visual difference. |
| 977 | float half_np = cm.get_z_near() * Math::tan(Math::deg_to_rad(spot_angle)); |
| 978 | light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width; |
| 979 | } else { |
| 980 | light_data.soft_shadow_size = 0.0; |
| 981 | light_data.soft_shadow_scale *= RendererSceneRenderRD::get_singleton()->shadows_quality_radius_get(); // Only use quality radius for PCF |
| 982 | } |
| 983 | light_data.shadow_bias *= light_data.soft_shadow_scale; |
| 984 | } |
| 985 | } else { |
| 986 | light_data.shadow_opacity = 0.0; |
| 987 | } |
| 988 | |
| 989 | light_instance->cull_mask = light->cull_mask; |
| 990 | |
| 991 | // hook for subclass to do further processing. |
| 992 | RendererSceneRenderRD::get_singleton()->setup_added_light(type, light_transform, radius, spot_angle); |
| 993 | |
| 994 | r_positional_light_count++; |
| 995 | } |
| 996 | |
| 997 | //update without barriers |
| 998 | if (omni_light_count) { |
| 999 | RD::get_singleton()->buffer_update(omni_light_buffer, 0, sizeof(LightData) * omni_light_count, omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); |
| 1000 | } |
| 1001 | |
| 1002 | if (spot_light_count) { |
| 1003 | RD::get_singleton()->buffer_update(spot_light_buffer, 0, sizeof(LightData) * spot_light_count, spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); |
| 1004 | } |
| 1005 | |
| 1006 | if (r_directional_light_count) { |
| 1007 | RD::get_singleton()->buffer_update(directional_light_buffer, 0, sizeof(DirectionalLightData) * r_directional_light_count, directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | /* REFLECTION PROBE */ |
| 1012 | |
| 1013 | RID LightStorage::reflection_probe_allocate() { |
| 1014 | return reflection_probe_owner.allocate_rid(); |
| 1015 | } |
| 1016 | |
| 1017 | void LightStorage::reflection_probe_initialize(RID p_reflection_probe) { |
| 1018 | reflection_probe_owner.initialize_rid(p_reflection_probe, ReflectionProbe()); |
| 1019 | } |
| 1020 | |
| 1021 | void LightStorage::reflection_probe_free(RID p_rid) { |
| 1022 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_rid); |
| 1023 | reflection_probe->dependency.deleted_notify(p_rid); |
| 1024 | reflection_probe_owner.free(p_rid); |
| 1025 | }; |
| 1026 | |
| 1027 | void LightStorage::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) { |
| 1028 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1029 | ERR_FAIL_COND(!reflection_probe); |
| 1030 | |
| 1031 | reflection_probe->update_mode = p_mode; |
| 1032 | reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); |
| 1033 | } |
| 1034 | |
| 1035 | void LightStorage::reflection_probe_set_intensity(RID p_probe, float p_intensity) { |
| 1036 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1037 | ERR_FAIL_COND(!reflection_probe); |
| 1038 | |
| 1039 | reflection_probe->intensity = p_intensity; |
| 1040 | } |
| 1041 | |
| 1042 | void LightStorage::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) { |
| 1043 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1044 | ERR_FAIL_COND(!reflection_probe); |
| 1045 | |
| 1046 | reflection_probe->ambient_mode = p_mode; |
| 1047 | } |
| 1048 | |
| 1049 | void LightStorage::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) { |
| 1050 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1051 | ERR_FAIL_COND(!reflection_probe); |
| 1052 | |
| 1053 | reflection_probe->ambient_color = p_color; |
| 1054 | } |
| 1055 | |
| 1056 | void LightStorage::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) { |
| 1057 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1058 | ERR_FAIL_COND(!reflection_probe); |
| 1059 | |
| 1060 | reflection_probe->ambient_color_energy = p_energy; |
| 1061 | } |
| 1062 | |
| 1063 | void LightStorage::reflection_probe_set_max_distance(RID p_probe, float p_distance) { |
| 1064 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1065 | ERR_FAIL_COND(!reflection_probe); |
| 1066 | |
| 1067 | reflection_probe->max_distance = p_distance; |
| 1068 | |
| 1069 | reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); |
| 1070 | } |
| 1071 | |
| 1072 | void LightStorage::reflection_probe_set_size(RID p_probe, const Vector3 &p_size) { |
| 1073 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1074 | ERR_FAIL_COND(!reflection_probe); |
| 1075 | |
| 1076 | if (reflection_probe->size == p_size) { |
| 1077 | return; |
| 1078 | } |
| 1079 | reflection_probe->size = p_size; |
| 1080 | reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); |
| 1081 | } |
| 1082 | |
| 1083 | void LightStorage::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) { |
| 1084 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1085 | ERR_FAIL_COND(!reflection_probe); |
| 1086 | |
| 1087 | reflection_probe->origin_offset = p_offset; |
| 1088 | reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); |
| 1089 | } |
| 1090 | |
| 1091 | void LightStorage::reflection_probe_set_as_interior(RID p_probe, bool p_enable) { |
| 1092 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1093 | ERR_FAIL_COND(!reflection_probe); |
| 1094 | |
| 1095 | reflection_probe->interior = p_enable; |
| 1096 | reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); |
| 1097 | } |
| 1098 | |
| 1099 | void LightStorage::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) { |
| 1100 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1101 | ERR_FAIL_COND(!reflection_probe); |
| 1102 | |
| 1103 | reflection_probe->box_projection = p_enable; |
| 1104 | } |
| 1105 | |
| 1106 | void LightStorage::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) { |
| 1107 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1108 | ERR_FAIL_COND(!reflection_probe); |
| 1109 | |
| 1110 | reflection_probe->enable_shadows = p_enable; |
| 1111 | reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); |
| 1112 | } |
| 1113 | |
| 1114 | void LightStorage::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) { |
| 1115 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1116 | ERR_FAIL_COND(!reflection_probe); |
| 1117 | |
| 1118 | reflection_probe->cull_mask = p_layers; |
| 1119 | reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); |
| 1120 | } |
| 1121 | |
| 1122 | void LightStorage::reflection_probe_set_resolution(RID p_probe, int p_resolution) { |
| 1123 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1124 | ERR_FAIL_COND(!reflection_probe); |
| 1125 | ERR_FAIL_COND(p_resolution < 32); |
| 1126 | |
| 1127 | reflection_probe->resolution = p_resolution; |
| 1128 | } |
| 1129 | |
| 1130 | void LightStorage::reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) { |
| 1131 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1132 | ERR_FAIL_COND(!reflection_probe); |
| 1133 | |
| 1134 | reflection_probe->mesh_lod_threshold = p_ratio; |
| 1135 | |
| 1136 | reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); |
| 1137 | } |
| 1138 | |
| 1139 | void LightStorage::reflection_probe_set_baked_exposure(RID p_probe, float p_exposure) { |
| 1140 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1141 | ERR_FAIL_COND(!reflection_probe); |
| 1142 | |
| 1143 | reflection_probe->baked_exposure = p_exposure; |
| 1144 | } |
| 1145 | |
| 1146 | AABB LightStorage::reflection_probe_get_aabb(RID p_probe) const { |
| 1147 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1148 | ERR_FAIL_COND_V(!reflection_probe, AABB()); |
| 1149 | |
| 1150 | AABB aabb; |
| 1151 | aabb.position = -reflection_probe->size / 2; |
| 1152 | aabb.size = reflection_probe->size; |
| 1153 | |
| 1154 | return aabb; |
| 1155 | } |
| 1156 | |
| 1157 | RS::ReflectionProbeUpdateMode LightStorage::reflection_probe_get_update_mode(RID p_probe) const { |
| 1158 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1159 | ERR_FAIL_COND_V(!reflection_probe, RS::REFLECTION_PROBE_UPDATE_ALWAYS); |
| 1160 | |
| 1161 | return reflection_probe->update_mode; |
| 1162 | } |
| 1163 | |
| 1164 | uint32_t LightStorage::reflection_probe_get_cull_mask(RID p_probe) const { |
| 1165 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1166 | ERR_FAIL_COND_V(!reflection_probe, 0); |
| 1167 | |
| 1168 | return reflection_probe->cull_mask; |
| 1169 | } |
| 1170 | |
| 1171 | Vector3 LightStorage::reflection_probe_get_size(RID p_probe) const { |
| 1172 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1173 | ERR_FAIL_COND_V(!reflection_probe, Vector3()); |
| 1174 | |
| 1175 | return reflection_probe->size; |
| 1176 | } |
| 1177 | |
| 1178 | Vector3 LightStorage::reflection_probe_get_origin_offset(RID p_probe) const { |
| 1179 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1180 | ERR_FAIL_COND_V(!reflection_probe, Vector3()); |
| 1181 | |
| 1182 | return reflection_probe->origin_offset; |
| 1183 | } |
| 1184 | |
| 1185 | bool LightStorage::reflection_probe_renders_shadows(RID p_probe) const { |
| 1186 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1187 | ERR_FAIL_COND_V(!reflection_probe, false); |
| 1188 | |
| 1189 | return reflection_probe->enable_shadows; |
| 1190 | } |
| 1191 | |
| 1192 | float LightStorage::reflection_probe_get_origin_max_distance(RID p_probe) const { |
| 1193 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1194 | ERR_FAIL_COND_V(!reflection_probe, 0); |
| 1195 | |
| 1196 | return reflection_probe->max_distance; |
| 1197 | } |
| 1198 | |
| 1199 | float LightStorage::reflection_probe_get_mesh_lod_threshold(RID p_probe) const { |
| 1200 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1201 | ERR_FAIL_COND_V(!reflection_probe, 0); |
| 1202 | |
| 1203 | return reflection_probe->mesh_lod_threshold; |
| 1204 | } |
| 1205 | |
| 1206 | int LightStorage::reflection_probe_get_resolution(RID p_probe) const { |
| 1207 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1208 | ERR_FAIL_COND_V(!reflection_probe, 0); |
| 1209 | |
| 1210 | return reflection_probe->resolution; |
| 1211 | } |
| 1212 | |
| 1213 | float LightStorage::reflection_probe_get_baked_exposure(RID p_probe) const { |
| 1214 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1215 | ERR_FAIL_COND_V(!reflection_probe, 1.0); |
| 1216 | |
| 1217 | return reflection_probe->baked_exposure; |
| 1218 | } |
| 1219 | |
| 1220 | float LightStorage::reflection_probe_get_intensity(RID p_probe) const { |
| 1221 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1222 | ERR_FAIL_COND_V(!reflection_probe, 0); |
| 1223 | |
| 1224 | return reflection_probe->intensity; |
| 1225 | } |
| 1226 | |
| 1227 | bool LightStorage::reflection_probe_is_interior(RID p_probe) const { |
| 1228 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1229 | ERR_FAIL_COND_V(!reflection_probe, false); |
| 1230 | |
| 1231 | return reflection_probe->interior; |
| 1232 | } |
| 1233 | |
| 1234 | bool LightStorage::reflection_probe_is_box_projection(RID p_probe) const { |
| 1235 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1236 | ERR_FAIL_COND_V(!reflection_probe, false); |
| 1237 | |
| 1238 | return reflection_probe->box_projection; |
| 1239 | } |
| 1240 | |
| 1241 | RS::ReflectionProbeAmbientMode LightStorage::reflection_probe_get_ambient_mode(RID p_probe) const { |
| 1242 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1243 | ERR_FAIL_COND_V(!reflection_probe, RS::REFLECTION_PROBE_AMBIENT_DISABLED); |
| 1244 | return reflection_probe->ambient_mode; |
| 1245 | } |
| 1246 | |
| 1247 | Color LightStorage::reflection_probe_get_ambient_color(RID p_probe) const { |
| 1248 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1249 | ERR_FAIL_COND_V(!reflection_probe, Color()); |
| 1250 | |
| 1251 | return reflection_probe->ambient_color; |
| 1252 | } |
| 1253 | float LightStorage::reflection_probe_get_ambient_color_energy(RID p_probe) const { |
| 1254 | const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1255 | ERR_FAIL_COND_V(!reflection_probe, 0); |
| 1256 | |
| 1257 | return reflection_probe->ambient_color_energy; |
| 1258 | } |
| 1259 | |
| 1260 | Dependency *LightStorage::reflection_probe_get_dependency(RID p_probe) const { |
| 1261 | ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); |
| 1262 | ERR_FAIL_NULL_V(reflection_probe, nullptr); |
| 1263 | |
| 1264 | return &reflection_probe->dependency; |
| 1265 | } |
| 1266 | |
| 1267 | /* REFLECTION ATLAS */ |
| 1268 | |
| 1269 | RID LightStorage::reflection_atlas_create() { |
| 1270 | ReflectionAtlas ra; |
| 1271 | ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count" ); |
| 1272 | ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size" ); |
| 1273 | ra.cluster_builder = nullptr; |
| 1274 | |
| 1275 | return reflection_atlas_owner.make_rid(ra); |
| 1276 | } |
| 1277 | |
| 1278 | void LightStorage::reflection_atlas_free(RID p_ref_atlas) { |
| 1279 | reflection_atlas_set_size(p_ref_atlas, 0, 0); |
| 1280 | ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas); |
| 1281 | if (ra->cluster_builder) { |
| 1282 | memdelete(ra->cluster_builder); |
| 1283 | } |
| 1284 | reflection_atlas_owner.free(p_ref_atlas); |
| 1285 | } |
| 1286 | |
| 1287 | void LightStorage::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) { |
| 1288 | ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas); |
| 1289 | ERR_FAIL_COND(!ra); |
| 1290 | |
| 1291 | if (ra->size == p_reflection_size && ra->count == p_reflection_count) { |
| 1292 | return; //no changes |
| 1293 | } |
| 1294 | |
| 1295 | if (ra->cluster_builder) { |
| 1296 | // only if we're using our cluster |
| 1297 | ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID()); |
| 1298 | } |
| 1299 | |
| 1300 | ra->size = p_reflection_size; |
| 1301 | ra->count = p_reflection_count; |
| 1302 | |
| 1303 | if (ra->reflection.is_valid()) { |
| 1304 | //clear and invalidate everything |
| 1305 | RD::get_singleton()->free(ra->reflection); |
| 1306 | ra->reflection = RID(); |
| 1307 | RD::get_singleton()->free(ra->depth_buffer); |
| 1308 | ra->depth_buffer = RID(); |
| 1309 | for (int i = 0; i < ra->reflections.size(); i++) { |
| 1310 | ra->reflections.write[i].data.clear_reflection_data(); |
| 1311 | if (ra->reflections[i].owner.is_null()) { |
| 1312 | continue; |
| 1313 | } |
| 1314 | reflection_probe_release_atlas_index(ra->reflections[i].owner); |
| 1315 | //rp->atlasindex clear |
| 1316 | } |
| 1317 | |
| 1318 | ra->reflections.clear(); |
| 1319 | } |
| 1320 | |
| 1321 | if (ra->render_buffers.is_valid()) { |
| 1322 | ra->render_buffers->cleanup(); |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | int LightStorage::reflection_atlas_get_size(RID p_ref_atlas) const { |
| 1327 | ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas); |
| 1328 | ERR_FAIL_COND_V(!ra, 0); |
| 1329 | |
| 1330 | return ra->size; |
| 1331 | } |
| 1332 | |
| 1333 | /* REFLECTION PROBE INSTANCE */ |
| 1334 | |
| 1335 | RID LightStorage::reflection_probe_instance_create(RID p_probe) { |
| 1336 | ReflectionProbeInstance rpi; |
| 1337 | rpi.probe = p_probe; |
| 1338 | rpi.forward_id = ForwardIDStorage::get_singleton()->allocate_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE); |
| 1339 | |
| 1340 | return reflection_probe_instance_owner.make_rid(rpi); |
| 1341 | } |
| 1342 | |
| 1343 | void LightStorage::reflection_probe_instance_free(RID p_instance) { |
| 1344 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1345 | ForwardIDStorage::get_singleton()->free_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id); |
| 1346 | reflection_probe_release_atlas_index(p_instance); |
| 1347 | reflection_probe_instance_owner.free(p_instance); |
| 1348 | } |
| 1349 | |
| 1350 | void LightStorage::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) { |
| 1351 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1352 | ERR_FAIL_COND(!rpi); |
| 1353 | |
| 1354 | rpi->transform = p_transform; |
| 1355 | rpi->dirty = true; |
| 1356 | } |
| 1357 | |
| 1358 | void LightStorage::reflection_probe_release_atlas_index(RID p_instance) { |
| 1359 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1360 | ERR_FAIL_COND(!rpi); |
| 1361 | |
| 1362 | if (rpi->atlas.is_null()) { |
| 1363 | return; //nothing to release |
| 1364 | } |
| 1365 | ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); |
| 1366 | ERR_FAIL_COND(!atlas); |
| 1367 | ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size()); |
| 1368 | atlas->reflections.write[rpi->atlas_index].owner = RID(); |
| 1369 | |
| 1370 | // TODO investigate if this is enough? shouldn't we be freeing our textures and framebuffers? |
| 1371 | |
| 1372 | rpi->atlas_index = -1; |
| 1373 | rpi->atlas = RID(); |
| 1374 | } |
| 1375 | |
| 1376 | bool LightStorage::reflection_probe_instance_needs_redraw(RID p_instance) { |
| 1377 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1378 | ERR_FAIL_COND_V(!rpi, false); |
| 1379 | |
| 1380 | if (rpi->rendering) { |
| 1381 | return false; |
| 1382 | } |
| 1383 | |
| 1384 | if (rpi->dirty) { |
| 1385 | return true; |
| 1386 | } |
| 1387 | |
| 1388 | if (LightStorage::get_singleton()->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { |
| 1389 | return true; |
| 1390 | } |
| 1391 | |
| 1392 | return rpi->atlas_index == -1; |
| 1393 | } |
| 1394 | |
| 1395 | bool LightStorage::reflection_probe_instance_has_reflection(RID p_instance) { |
| 1396 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1397 | ERR_FAIL_COND_V(!rpi, false); |
| 1398 | |
| 1399 | return rpi->atlas.is_valid(); |
| 1400 | } |
| 1401 | |
| 1402 | bool LightStorage::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { |
| 1403 | ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas); |
| 1404 | |
| 1405 | ERR_FAIL_COND_V(!atlas, false); |
| 1406 | |
| 1407 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1408 | ERR_FAIL_COND_V(!rpi, false); |
| 1409 | |
| 1410 | if (atlas->render_buffers.is_null()) { |
| 1411 | atlas->render_buffers.instantiate(); |
| 1412 | } |
| 1413 | |
| 1414 | RD::get_singleton()->draw_command_begin_label("Reflection probe render" ); |
| 1415 | |
| 1416 | if (LightStorage::get_singleton()->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) { |
| 1417 | WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings." ); |
| 1418 | reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count); |
| 1419 | } |
| 1420 | |
| 1421 | if (LightStorage::get_singleton()->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) { |
| 1422 | // Invalidate reflection atlas, need to regenerate |
| 1423 | RD::get_singleton()->free(atlas->reflection); |
| 1424 | atlas->reflection = RID(); |
| 1425 | |
| 1426 | for (int i = 0; i < atlas->reflections.size(); i++) { |
| 1427 | if (atlas->reflections[i].owner.is_null()) { |
| 1428 | continue; |
| 1429 | } |
| 1430 | reflection_probe_release_atlas_index(atlas->reflections[i].owner); |
| 1431 | } |
| 1432 | |
| 1433 | atlas->reflections.clear(); |
| 1434 | } |
| 1435 | |
| 1436 | if (atlas->reflection.is_null()) { |
| 1437 | int mipmaps = MIN(RendererSceneRenderRD::get_singleton()->get_sky()->roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1); |
| 1438 | mipmaps = LightStorage::get_singleton()->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering |
| 1439 | { |
| 1440 | //reflection atlas was unused, create: |
| 1441 | RD::TextureFormat tf; |
| 1442 | tf.array_layers = 6 * atlas->count; |
| 1443 | tf.format = RendererSceneRenderRD::get_singleton()->_render_buffers_get_color_format(); |
| 1444 | tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY; |
| 1445 | tf.mipmaps = mipmaps; |
| 1446 | tf.width = atlas->size; |
| 1447 | tf.height = atlas->size; |
| 1448 | tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | (RendererSceneRenderRD::get_singleton()->_render_buffers_can_be_storage() ? RD::TEXTURE_USAGE_STORAGE_BIT : 0); |
| 1449 | |
| 1450 | atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView()); |
| 1451 | } |
| 1452 | { |
| 1453 | RD::TextureFormat tf; |
| 1454 | tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; |
| 1455 | tf.width = atlas->size; |
| 1456 | tf.height = atlas->size; |
| 1457 | tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; |
| 1458 | atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView()); |
| 1459 | } |
| 1460 | atlas->reflections.resize(atlas->count); |
| 1461 | for (int i = 0; i < atlas->count; i++) { |
| 1462 | atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, LightStorage::get_singleton()->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, RendererSceneRenderRD::get_singleton()->get_sky()->roughness_layers, RendererSceneRenderRD::get_singleton()->_render_buffers_get_color_format()); |
| 1463 | for (int j = 0; j < 6; j++) { |
| 1464 | atlas->reflections.write[i].fbs[j] = RendererSceneRenderRD::get_singleton()->reflection_probe_create_framebuffer(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j], atlas->depth_buffer); |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | Vector<RID> fb; |
| 1469 | fb.push_back(atlas->depth_buffer); |
| 1470 | atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb); |
| 1471 | |
| 1472 | atlas->render_buffers->configure_for_reflections(Size2i(atlas->size, atlas->size)); |
| 1473 | } |
| 1474 | |
| 1475 | if (rpi->atlas_index == -1) { |
| 1476 | for (int i = 0; i < atlas->reflections.size(); i++) { |
| 1477 | if (atlas->reflections[i].owner.is_null()) { |
| 1478 | rpi->atlas_index = i; |
| 1479 | break; |
| 1480 | } |
| 1481 | } |
| 1482 | //find the one used last |
| 1483 | if (rpi->atlas_index == -1) { |
| 1484 | //everything is in use, find the one least used via LRU |
| 1485 | uint64_t pass_min = 0; |
| 1486 | |
| 1487 | for (int i = 0; i < atlas->reflections.size(); i++) { |
| 1488 | ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.get_or_null(atlas->reflections[i].owner); |
| 1489 | if (rpi2->last_pass < pass_min) { |
| 1490 | pass_min = rpi2->last_pass; |
| 1491 | rpi->atlas_index = i; |
| 1492 | } |
| 1493 | } |
| 1494 | } |
| 1495 | } |
| 1496 | |
| 1497 | if (rpi->atlas_index != -1) { // should we fail if this is still -1 ? |
| 1498 | atlas->reflections.write[rpi->atlas_index].owner = p_instance; |
| 1499 | } |
| 1500 | |
| 1501 | rpi->atlas = p_reflection_atlas; |
| 1502 | rpi->rendering = true; |
| 1503 | rpi->dirty = false; |
| 1504 | rpi->processing_layer = 1; |
| 1505 | rpi->processing_side = 0; |
| 1506 | |
| 1507 | RD::get_singleton()->draw_command_end_label(); |
| 1508 | |
| 1509 | return true; |
| 1510 | } |
| 1511 | |
| 1512 | Ref<RenderSceneBuffers> LightStorage::reflection_probe_atlas_get_render_buffers(RID p_reflection_atlas) { |
| 1513 | ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas); |
| 1514 | ERR_FAIL_COND_V(!atlas, Ref<RenderSceneBuffersRD>()); |
| 1515 | |
| 1516 | return atlas->render_buffers; |
| 1517 | } |
| 1518 | |
| 1519 | bool LightStorage::reflection_probe_instance_postprocess_step(RID p_instance) { |
| 1520 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1521 | ERR_FAIL_COND_V(!rpi, false); |
| 1522 | ERR_FAIL_COND_V(!rpi->rendering, false); |
| 1523 | ERR_FAIL_COND_V(rpi->atlas.is_null(), false); |
| 1524 | |
| 1525 | ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); |
| 1526 | if (!atlas || rpi->atlas_index == -1) { |
| 1527 | //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering) |
| 1528 | rpi->rendering = false; |
| 1529 | return false; |
| 1530 | } |
| 1531 | |
| 1532 | if (LightStorage::get_singleton()->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { |
| 1533 | // Using real time reflections, all roughness is done in one step |
| 1534 | atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(false); |
| 1535 | rpi->rendering = false; |
| 1536 | rpi->processing_side = 0; |
| 1537 | rpi->processing_layer = 1; |
| 1538 | return true; |
| 1539 | } |
| 1540 | |
| 1541 | if (rpi->processing_layer > 1) { |
| 1542 | atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, 10, rpi->processing_layer, RendererSceneRenderRD::get_singleton()->get_sky()->sky_ggx_samples_quality); |
| 1543 | rpi->processing_layer++; |
| 1544 | if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) { |
| 1545 | rpi->rendering = false; |
| 1546 | rpi->processing_side = 0; |
| 1547 | rpi->processing_layer = 1; |
| 1548 | return true; |
| 1549 | } |
| 1550 | return false; |
| 1551 | |
| 1552 | } else { |
| 1553 | atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, rpi->processing_side, rpi->processing_layer, RendererSceneRenderRD::get_singleton()->get_sky()->sky_ggx_samples_quality); |
| 1554 | } |
| 1555 | |
| 1556 | rpi->processing_side++; |
| 1557 | if (rpi->processing_side == 6) { |
| 1558 | rpi->processing_side = 0; |
| 1559 | rpi->processing_layer++; |
| 1560 | if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) { |
| 1561 | rpi->rendering = false; |
| 1562 | rpi->processing_layer = 1; |
| 1563 | return true; |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | return false; |
| 1568 | } |
| 1569 | |
| 1570 | uint32_t LightStorage::reflection_probe_instance_get_resolution(RID p_instance) { |
| 1571 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1572 | ERR_FAIL_COND_V(!rpi, 0); |
| 1573 | |
| 1574 | ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); |
| 1575 | ERR_FAIL_COND_V(!atlas, 0); |
| 1576 | return atlas->size; |
| 1577 | } |
| 1578 | |
| 1579 | RID LightStorage::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) { |
| 1580 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1581 | ERR_FAIL_COND_V(!rpi, RID()); |
| 1582 | ERR_FAIL_INDEX_V(p_index, 6, RID()); |
| 1583 | |
| 1584 | ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); |
| 1585 | ERR_FAIL_COND_V(!atlas, RID()); |
| 1586 | return atlas->reflections[rpi->atlas_index].fbs[p_index]; |
| 1587 | } |
| 1588 | |
| 1589 | RID LightStorage::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) { |
| 1590 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1591 | ERR_FAIL_COND_V(!rpi, RID()); |
| 1592 | ERR_FAIL_INDEX_V(p_index, 6, RID()); |
| 1593 | |
| 1594 | ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); |
| 1595 | ERR_FAIL_COND_V(!atlas, RID()); |
| 1596 | return atlas->depth_fb; |
| 1597 | } |
| 1598 | |
| 1599 | ClusterBuilderRD *LightStorage::reflection_probe_instance_get_cluster_builder(RID p_instance, ClusterBuilderSharedDataRD *p_cluster_builder_shared) { |
| 1600 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); |
| 1601 | ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(rpi->atlas); |
| 1602 | if (!ra) { |
| 1603 | ERR_PRINT("reflection probe has no reflection atlas! Bug?" ); |
| 1604 | return nullptr; |
| 1605 | } else { |
| 1606 | if (ra->cluster_builder == nullptr) { |
| 1607 | ra->cluster_builder = memnew(ClusterBuilderRD); |
| 1608 | ra->cluster_builder->set_shared(p_cluster_builder_shared); |
| 1609 | ra->cluster_builder->setup(Size2i(ra->size, ra->size), get_max_cluster_elements(), RID(), RID(), RID()); |
| 1610 | } |
| 1611 | return ra->cluster_builder; |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | /* REFLECTION DATA */ |
| 1616 | |
| 1617 | void LightStorage::free_reflection_data() { |
| 1618 | if (reflection_buffer.is_valid()) { |
| 1619 | RD::get_singleton()->free(reflection_buffer); |
| 1620 | reflection_buffer = RID(); |
| 1621 | } |
| 1622 | |
| 1623 | if (reflections != nullptr) { |
| 1624 | memdelete_arr(reflections); |
| 1625 | reflections = nullptr; |
| 1626 | } |
| 1627 | |
| 1628 | if (reflection_sort != nullptr) { |
| 1629 | memdelete_arr(reflection_sort); |
| 1630 | reflection_sort = nullptr; |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | void LightStorage::set_max_reflection_probes(const uint32_t p_max_reflection_probes) { |
| 1635 | max_reflections = p_max_reflection_probes; |
| 1636 | reflections = memnew_arr(ReflectionData, max_reflections); |
| 1637 | reflection_sort = memnew_arr(ReflectionProbeInstanceSort, max_reflections); |
| 1638 | reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(ReflectionData) * max_reflections); |
| 1639 | } |
| 1640 | |
| 1641 | void LightStorage::update_reflection_probe_buffer(RenderDataRD *p_render_data, const PagedArray<RID> &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment) { |
| 1642 | ForwardIDStorage *forward_id_storage = ForwardIDStorage::get_singleton(); |
| 1643 | |
| 1644 | reflection_count = 0; |
| 1645 | |
| 1646 | for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) { |
| 1647 | if (reflection_count == max_reflections) { |
| 1648 | break; |
| 1649 | } |
| 1650 | |
| 1651 | ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_reflections[i]); |
| 1652 | if (!rpi) { |
| 1653 | continue; |
| 1654 | } |
| 1655 | |
| 1656 | Transform3D transform = rpi->transform; |
| 1657 | |
| 1658 | reflection_sort[reflection_count].probe_instance = rpi; |
| 1659 | reflection_sort[reflection_count].depth = -p_camera_inverse_transform.xform(transform.origin).z; |
| 1660 | reflection_count++; |
| 1661 | } |
| 1662 | |
| 1663 | if (reflection_count > 0) { |
| 1664 | SortArray<ReflectionProbeInstanceSort> sort_array; |
| 1665 | sort_array.sort(reflection_sort, reflection_count); |
| 1666 | } |
| 1667 | |
| 1668 | bool using_forward_ids = forward_id_storage->uses_forward_ids(); |
| 1669 | for (uint32_t i = 0; i < reflection_count; i++) { |
| 1670 | ReflectionProbeInstance *rpi = reflection_sort[i].probe_instance; |
| 1671 | |
| 1672 | if (using_forward_ids) { |
| 1673 | forward_id_storage->map_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id, i); |
| 1674 | } |
| 1675 | |
| 1676 | ReflectionProbe *probe = reflection_probe_owner.get_or_null(rpi->probe); |
| 1677 | |
| 1678 | ReflectionData &reflection_ubo = reflections[i]; |
| 1679 | |
| 1680 | Vector3 extents = probe->size / 2; |
| 1681 | |
| 1682 | rpi->cull_mask = probe->cull_mask; |
| 1683 | |
| 1684 | reflection_ubo.box_extents[0] = extents.x; |
| 1685 | reflection_ubo.box_extents[1] = extents.y; |
| 1686 | reflection_ubo.box_extents[2] = extents.z; |
| 1687 | reflection_ubo.index = rpi->atlas_index; |
| 1688 | |
| 1689 | Vector3 origin_offset = probe->origin_offset; |
| 1690 | |
| 1691 | reflection_ubo.box_offset[0] = origin_offset.x; |
| 1692 | reflection_ubo.box_offset[1] = origin_offset.y; |
| 1693 | reflection_ubo.box_offset[2] = origin_offset.z; |
| 1694 | reflection_ubo.mask = probe->cull_mask; |
| 1695 | |
| 1696 | reflection_ubo.intensity = probe->intensity; |
| 1697 | reflection_ubo.ambient_mode = probe->ambient_mode; |
| 1698 | |
| 1699 | reflection_ubo.exterior = !probe->interior; |
| 1700 | reflection_ubo.box_project = probe->box_projection; |
| 1701 | reflection_ubo.exposure_normalization = 1.0; |
| 1702 | |
| 1703 | if (p_render_data->camera_attributes.is_valid()) { |
| 1704 | float exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); |
| 1705 | reflection_ubo.exposure_normalization = exposure / probe->baked_exposure; |
| 1706 | } |
| 1707 | |
| 1708 | Color ambient_linear = probe->ambient_color.srgb_to_linear(); |
| 1709 | float interior_ambient_energy = probe->ambient_color_energy; |
| 1710 | reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy; |
| 1711 | reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy; |
| 1712 | reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy; |
| 1713 | |
| 1714 | Transform3D transform = rpi->transform; |
| 1715 | Transform3D proj = (p_camera_inverse_transform * transform).inverse(); |
| 1716 | MaterialStorage::store_transform(proj, reflection_ubo.local_matrix); |
| 1717 | |
| 1718 | // hook for subclass to do further processing. |
| 1719 | RendererSceneRenderRD::get_singleton()->setup_added_reflection_probe(transform, extents); |
| 1720 | |
| 1721 | rpi->last_pass = RSG::rasterizer->get_frame_number(); |
| 1722 | } |
| 1723 | |
| 1724 | if (reflection_count) { |
| 1725 | RD::get_singleton()->buffer_update(reflection_buffer, 0, reflection_count * sizeof(ReflectionData), reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE); |
| 1726 | } |
| 1727 | } |
| 1728 | |
| 1729 | /* LIGHTMAP API */ |
| 1730 | |
| 1731 | RID LightStorage::lightmap_allocate() { |
| 1732 | return lightmap_owner.allocate_rid(); |
| 1733 | } |
| 1734 | |
| 1735 | void LightStorage::lightmap_initialize(RID p_lightmap) { |
| 1736 | lightmap_owner.initialize_rid(p_lightmap, Lightmap()); |
| 1737 | } |
| 1738 | |
| 1739 | void LightStorage::lightmap_free(RID p_rid) { |
| 1740 | lightmap_set_textures(p_rid, RID(), false); |
| 1741 | Lightmap *lightmap = lightmap_owner.get_or_null(p_rid); |
| 1742 | lightmap->dependency.deleted_notify(p_rid); |
| 1743 | lightmap_owner.free(p_rid); |
| 1744 | } |
| 1745 | |
| 1746 | void LightStorage::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) { |
| 1747 | TextureStorage *texture_storage = TextureStorage::get_singleton(); |
| 1748 | |
| 1749 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1750 | ERR_FAIL_COND(!lm); |
| 1751 | |
| 1752 | lightmap_array_version++; |
| 1753 | |
| 1754 | //erase lightmap users |
| 1755 | if (lm->light_texture.is_valid()) { |
| 1756 | TextureStorage::Texture *t = texture_storage->get_texture(lm->light_texture); |
| 1757 | if (t) { |
| 1758 | t->lightmap_users.erase(p_lightmap); |
| 1759 | } |
| 1760 | } |
| 1761 | |
| 1762 | TextureStorage::Texture *t = texture_storage->get_texture(p_light); |
| 1763 | lm->light_texture = p_light; |
| 1764 | lm->uses_spherical_harmonics = p_uses_spherical_haromics; |
| 1765 | |
| 1766 | RID default_2d_array = texture_storage->texture_rd_get_default(TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE); |
| 1767 | if (!t) { |
| 1768 | if (using_lightmap_array) { |
| 1769 | if (lm->array_index >= 0) { |
| 1770 | lightmap_textures.write[lm->array_index] = default_2d_array; |
| 1771 | lm->array_index = -1; |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | return; |
| 1776 | } |
| 1777 | |
| 1778 | t->lightmap_users.insert(p_lightmap); |
| 1779 | |
| 1780 | if (using_lightmap_array) { |
| 1781 | if (lm->array_index < 0) { |
| 1782 | //not in array, try to put in array |
| 1783 | for (int i = 0; i < lightmap_textures.size(); i++) { |
| 1784 | if (lightmap_textures[i] == default_2d_array) { |
| 1785 | lm->array_index = i; |
| 1786 | break; |
| 1787 | } |
| 1788 | } |
| 1789 | } |
| 1790 | ERR_FAIL_COND_MSG(lm->array_index < 0, "Maximum amount of lightmaps in use (" + itos(lightmap_textures.size()) + ") has been exceeded, lightmap will nod display properly." ); |
| 1791 | |
| 1792 | lightmap_textures.write[lm->array_index] = t->rd_texture; |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | void LightStorage::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) { |
| 1797 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1798 | ERR_FAIL_COND(!lm); |
| 1799 | lm->bounds = p_bounds; |
| 1800 | } |
| 1801 | |
| 1802 | void LightStorage::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) { |
| 1803 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1804 | ERR_FAIL_COND(!lm); |
| 1805 | lm->interior = p_interior; |
| 1806 | } |
| 1807 | |
| 1808 | void LightStorage::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) { |
| 1809 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1810 | ERR_FAIL_COND(!lm); |
| 1811 | |
| 1812 | if (p_points.size()) { |
| 1813 | ERR_FAIL_COND(p_points.size() * 9 != p_point_sh.size()); |
| 1814 | ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0); |
| 1815 | ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0); |
| 1816 | } |
| 1817 | |
| 1818 | lm->points = p_points; |
| 1819 | lm->bsp_tree = p_bsp_tree; |
| 1820 | lm->point_sh = p_point_sh; |
| 1821 | lm->tetrahedra = p_tetrahedra; |
| 1822 | } |
| 1823 | |
| 1824 | void LightStorage::lightmap_set_baked_exposure_normalization(RID p_lightmap, float p_exposure) { |
| 1825 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1826 | ERR_FAIL_COND(!lm); |
| 1827 | |
| 1828 | lm->baked_exposure = p_exposure; |
| 1829 | } |
| 1830 | |
| 1831 | PackedVector3Array LightStorage::lightmap_get_probe_capture_points(RID p_lightmap) const { |
| 1832 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1833 | ERR_FAIL_COND_V(!lm, PackedVector3Array()); |
| 1834 | |
| 1835 | return lm->points; |
| 1836 | } |
| 1837 | |
| 1838 | PackedColorArray LightStorage::lightmap_get_probe_capture_sh(RID p_lightmap) const { |
| 1839 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1840 | ERR_FAIL_COND_V(!lm, PackedColorArray()); |
| 1841 | return lm->point_sh; |
| 1842 | } |
| 1843 | |
| 1844 | PackedInt32Array LightStorage::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const { |
| 1845 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1846 | ERR_FAIL_COND_V(!lm, PackedInt32Array()); |
| 1847 | return lm->tetrahedra; |
| 1848 | } |
| 1849 | |
| 1850 | PackedInt32Array LightStorage::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const { |
| 1851 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1852 | ERR_FAIL_COND_V(!lm, PackedInt32Array()); |
| 1853 | return lm->bsp_tree; |
| 1854 | } |
| 1855 | |
| 1856 | void LightStorage::lightmap_set_probe_capture_update_speed(float p_speed) { |
| 1857 | lightmap_probe_capture_update_speed = p_speed; |
| 1858 | } |
| 1859 | |
| 1860 | Dependency *LightStorage::lightmap_get_dependency(RID p_lightmap) const { |
| 1861 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1862 | ERR_FAIL_NULL_V(lm, nullptr); |
| 1863 | |
| 1864 | return &lm->dependency; |
| 1865 | } |
| 1866 | |
| 1867 | void LightStorage::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) { |
| 1868 | Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1869 | ERR_FAIL_COND(!lm); |
| 1870 | |
| 1871 | for (int i = 0; i < 9; i++) { |
| 1872 | r_sh[i] = Color(0, 0, 0, 0); |
| 1873 | } |
| 1874 | |
| 1875 | if (!lm->points.size() || !lm->bsp_tree.size() || !lm->tetrahedra.size()) { |
| 1876 | return; |
| 1877 | } |
| 1878 | |
| 1879 | static_assert(sizeof(Lightmap::BSP) == 24); |
| 1880 | |
| 1881 | const Lightmap::BSP *bsp = (const Lightmap::BSP *)lm->bsp_tree.ptr(); |
| 1882 | int32_t node = 0; |
| 1883 | while (node >= 0) { |
| 1884 | if (Plane(bsp[node].plane[0], bsp[node].plane[1], bsp[node].plane[2], bsp[node].plane[3]).is_point_over(p_point)) { |
| 1885 | #ifdef DEBUG_ENABLED |
| 1886 | ERR_FAIL_COND(bsp[node].over >= 0 && bsp[node].over < node); |
| 1887 | #endif |
| 1888 | |
| 1889 | node = bsp[node].over; |
| 1890 | } else { |
| 1891 | #ifdef DEBUG_ENABLED |
| 1892 | ERR_FAIL_COND(bsp[node].under >= 0 && bsp[node].under < node); |
| 1893 | #endif |
| 1894 | node = bsp[node].under; |
| 1895 | } |
| 1896 | } |
| 1897 | |
| 1898 | if (node == Lightmap::BSP::EMPTY_LEAF) { |
| 1899 | return; //nothing could be done |
| 1900 | } |
| 1901 | |
| 1902 | node = ABS(node) - 1; |
| 1903 | |
| 1904 | uint32_t *tetrahedron = (uint32_t *)&lm->tetrahedra[node * 4]; |
| 1905 | Vector3 points[4] = { lm->points[tetrahedron[0]], lm->points[tetrahedron[1]], lm->points[tetrahedron[2]], lm->points[tetrahedron[3]] }; |
| 1906 | const Color *sh_colors[4]{ &lm->point_sh[tetrahedron[0] * 9], &lm->point_sh[tetrahedron[1] * 9], &lm->point_sh[tetrahedron[2] * 9], &lm->point_sh[tetrahedron[3] * 9] }; |
| 1907 | Color barycentric = Geometry3D::tetrahedron_get_barycentric_coords(points[0], points[1], points[2], points[3], p_point); |
| 1908 | |
| 1909 | for (int i = 0; i < 4; i++) { |
| 1910 | float c = CLAMP(barycentric[i], 0.0, 1.0); |
| 1911 | for (int j = 0; j < 9; j++) { |
| 1912 | r_sh[j] += sh_colors[i][j] * c; |
| 1913 | } |
| 1914 | } |
| 1915 | } |
| 1916 | |
| 1917 | bool LightStorage::lightmap_is_interior(RID p_lightmap) const { |
| 1918 | const Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1919 | ERR_FAIL_COND_V(!lm, false); |
| 1920 | return lm->interior; |
| 1921 | } |
| 1922 | |
| 1923 | AABB LightStorage::lightmap_get_aabb(RID p_lightmap) const { |
| 1924 | const Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); |
| 1925 | ERR_FAIL_COND_V(!lm, AABB()); |
| 1926 | return lm->bounds; |
| 1927 | } |
| 1928 | |
| 1929 | /* LIGHTMAP INSTANCE */ |
| 1930 | |
| 1931 | RID LightStorage::lightmap_instance_create(RID p_lightmap) { |
| 1932 | LightmapInstance li; |
| 1933 | li.lightmap = p_lightmap; |
| 1934 | return lightmap_instance_owner.make_rid(li); |
| 1935 | } |
| 1936 | |
| 1937 | void LightStorage::lightmap_instance_free(RID p_lightmap) { |
| 1938 | lightmap_instance_owner.free(p_lightmap); |
| 1939 | } |
| 1940 | |
| 1941 | void LightStorage::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) { |
| 1942 | LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap); |
| 1943 | ERR_FAIL_COND(!li); |
| 1944 | li->transform = p_transform; |
| 1945 | } |
| 1946 | |
| 1947 | /* SHADOW ATLAS API */ |
| 1948 | |
| 1949 | RID LightStorage::shadow_atlas_create() { |
| 1950 | return shadow_atlas_owner.make_rid(ShadowAtlas()); |
| 1951 | } |
| 1952 | |
| 1953 | void LightStorage::shadow_atlas_free(RID p_atlas) { |
| 1954 | shadow_atlas_set_size(p_atlas, 0); |
| 1955 | shadow_atlas_owner.free(p_atlas); |
| 1956 | } |
| 1957 | |
| 1958 | void LightStorage::_update_shadow_atlas(ShadowAtlas *shadow_atlas) { |
| 1959 | if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) { |
| 1960 | RD::TextureFormat tf; |
| 1961 | tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT; |
| 1962 | tf.width = shadow_atlas->size; |
| 1963 | tf.height = shadow_atlas->size; |
| 1964 | tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; |
| 1965 | |
| 1966 | shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); |
| 1967 | Vector<RID> fb_tex; |
| 1968 | fb_tex.push_back(shadow_atlas->depth); |
| 1969 | shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex); |
| 1970 | } |
| 1971 | } |
| 1972 | |
| 1973 | void LightStorage::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) { |
| 1974 | ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); |
| 1975 | ERR_FAIL_COND(!shadow_atlas); |
| 1976 | ERR_FAIL_COND(p_size < 0); |
| 1977 | p_size = next_power_of_2(p_size); |
| 1978 | |
| 1979 | if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) { |
| 1980 | return; |
| 1981 | } |
| 1982 | |
| 1983 | // erasing atlas |
| 1984 | if (shadow_atlas->depth.is_valid()) { |
| 1985 | RD::get_singleton()->free(shadow_atlas->depth); |
| 1986 | shadow_atlas->depth = RID(); |
| 1987 | } |
| 1988 | for (int i = 0; i < 4; i++) { |
| 1989 | //clear subdivisions |
| 1990 | shadow_atlas->quadrants[i].shadows.clear(); |
| 1991 | shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision); |
| 1992 | } |
| 1993 | |
| 1994 | //erase shadow atlas reference from lights |
| 1995 | for (const KeyValue<RID, uint32_t> &E : shadow_atlas->shadow_owners) { |
| 1996 | LightInstance *li = light_instance_owner.get_or_null(E.key); |
| 1997 | ERR_CONTINUE(!li); |
| 1998 | li->shadow_atlases.erase(p_atlas); |
| 1999 | } |
| 2000 | |
| 2001 | //clear owners |
| 2002 | shadow_atlas->shadow_owners.clear(); |
| 2003 | |
| 2004 | shadow_atlas->size = p_size; |
| 2005 | shadow_atlas->use_16_bits = p_16_bits; |
| 2006 | } |
| 2007 | |
| 2008 | void LightStorage::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { |
| 2009 | ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); |
| 2010 | ERR_FAIL_COND(!shadow_atlas); |
| 2011 | ERR_FAIL_INDEX(p_quadrant, 4); |
| 2012 | ERR_FAIL_INDEX(p_subdivision, 16384); |
| 2013 | |
| 2014 | uint32_t subdiv = next_power_of_2(p_subdivision); |
| 2015 | if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer |
| 2016 | subdiv <<= 1; |
| 2017 | } |
| 2018 | |
| 2019 | subdiv = int(Math::sqrt((float)subdiv)); |
| 2020 | |
| 2021 | //obtain the number that will be x*x |
| 2022 | |
| 2023 | if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) { |
| 2024 | return; |
| 2025 | } |
| 2026 | |
| 2027 | //erase all data from quadrant |
| 2028 | for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { |
| 2029 | if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { |
| 2030 | shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); |
| 2031 | LightInstance *li = light_instance_owner.get_or_null(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); |
| 2032 | ERR_CONTINUE(!li); |
| 2033 | li->shadow_atlases.erase(p_atlas); |
| 2034 | } |
| 2035 | } |
| 2036 | |
| 2037 | shadow_atlas->quadrants[p_quadrant].shadows.clear(); |
| 2038 | shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); |
| 2039 | shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; |
| 2040 | |
| 2041 | //cache the smallest subdiv (for faster allocation in light update) |
| 2042 | |
| 2043 | shadow_atlas->smallest_subdiv = 1 << 30; |
| 2044 | |
| 2045 | for (int i = 0; i < 4; i++) { |
| 2046 | if (shadow_atlas->quadrants[i].subdivision) { |
| 2047 | shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | if (shadow_atlas->smallest_subdiv == 1 << 30) { |
| 2052 | shadow_atlas->smallest_subdiv = 0; |
| 2053 | } |
| 2054 | |
| 2055 | //resort the size orders, simple bublesort for 4 elements.. |
| 2056 | |
| 2057 | int swaps = 0; |
| 2058 | do { |
| 2059 | swaps = 0; |
| 2060 | |
| 2061 | for (int i = 0; i < 3; i++) { |
| 2062 | if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { |
| 2063 | SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); |
| 2064 | swaps++; |
| 2065 | } |
| 2066 | } |
| 2067 | } while (swaps > 0); |
| 2068 | } |
| 2069 | |
| 2070 | bool LightStorage::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { |
| 2071 | for (int i = p_quadrant_count - 1; i >= 0; i--) { |
| 2072 | int qidx = p_in_quadrants[i]; |
| 2073 | |
| 2074 | if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { |
| 2075 | return false; |
| 2076 | } |
| 2077 | |
| 2078 | //look for an empty space |
| 2079 | int sc = shadow_atlas->quadrants[qidx].shadows.size(); |
| 2080 | const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr(); |
| 2081 | |
| 2082 | int found_free_idx = -1; //found a free one |
| 2083 | int found_used_idx = -1; //found existing one, must steal it |
| 2084 | uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion) |
| 2085 | |
| 2086 | for (int j = 0; j < sc; j++) { |
| 2087 | if (!sarr[j].owner.is_valid()) { |
| 2088 | found_free_idx = j; |
| 2089 | break; |
| 2090 | } |
| 2091 | |
| 2092 | LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner); |
| 2093 | ERR_CONTINUE(!sli); |
| 2094 | |
| 2095 | if (sli->last_scene_pass != RendererSceneRenderRD::get_singleton()->get_scene_pass()) { |
| 2096 | //was just allocated, don't kill it so soon, wait a bit.. |
| 2097 | if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { |
| 2098 | continue; |
| 2099 | } |
| 2100 | |
| 2101 | if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { |
| 2102 | found_used_idx = j; |
| 2103 | min_pass = sli->last_scene_pass; |
| 2104 | } |
| 2105 | } |
| 2106 | } |
| 2107 | |
| 2108 | if (found_free_idx == -1 && found_used_idx == -1) { |
| 2109 | continue; //nothing found |
| 2110 | } |
| 2111 | |
| 2112 | if (found_free_idx == -1 && found_used_idx != -1) { |
| 2113 | found_free_idx = found_used_idx; |
| 2114 | } |
| 2115 | |
| 2116 | r_quadrant = qidx; |
| 2117 | r_shadow = found_free_idx; |
| 2118 | |
| 2119 | return true; |
| 2120 | } |
| 2121 | |
| 2122 | return false; |
| 2123 | } |
| 2124 | |
| 2125 | bool LightStorage::_shadow_atlas_find_omni_shadows(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { |
| 2126 | for (int i = p_quadrant_count - 1; i >= 0; i--) { |
| 2127 | int qidx = p_in_quadrants[i]; |
| 2128 | |
| 2129 | if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { |
| 2130 | return false; |
| 2131 | } |
| 2132 | |
| 2133 | //look for an empty space |
| 2134 | int sc = shadow_atlas->quadrants[qidx].shadows.size(); |
| 2135 | const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr(); |
| 2136 | |
| 2137 | int found_idx = -1; |
| 2138 | uint64_t min_pass = 0; // sum of currently selected spots, try to get the least recently used pair |
| 2139 | |
| 2140 | for (int j = 0; j < sc - 1; j++) { |
| 2141 | uint64_t pass = 0; |
| 2142 | |
| 2143 | if (sarr[j].owner.is_valid()) { |
| 2144 | LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner); |
| 2145 | ERR_CONTINUE(!sli); |
| 2146 | |
| 2147 | if (sli->last_scene_pass == RendererSceneRenderRD::get_singleton()->get_scene_pass()) { |
| 2148 | continue; |
| 2149 | } |
| 2150 | |
| 2151 | //was just allocated, don't kill it so soon, wait a bit.. |
| 2152 | if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { |
| 2153 | continue; |
| 2154 | } |
| 2155 | pass += sli->last_scene_pass; |
| 2156 | } |
| 2157 | |
| 2158 | if (sarr[j + 1].owner.is_valid()) { |
| 2159 | LightInstance *sli = light_instance_owner.get_or_null(sarr[j + 1].owner); |
| 2160 | ERR_CONTINUE(!sli); |
| 2161 | |
| 2162 | if (sli->last_scene_pass == RendererSceneRenderRD::get_singleton()->get_scene_pass()) { |
| 2163 | continue; |
| 2164 | } |
| 2165 | |
| 2166 | //was just allocated, don't kill it so soon, wait a bit.. |
| 2167 | if (p_tick - sarr[j + 1].alloc_tick < shadow_atlas_realloc_tolerance_msec) { |
| 2168 | continue; |
| 2169 | } |
| 2170 | pass += sli->last_scene_pass; |
| 2171 | } |
| 2172 | |
| 2173 | if (found_idx == -1 || pass < min_pass) { |
| 2174 | found_idx = j; |
| 2175 | min_pass = pass; |
| 2176 | |
| 2177 | // we found two empty spots, no need to check the rest |
| 2178 | if (pass == 0) { |
| 2179 | break; |
| 2180 | } |
| 2181 | } |
| 2182 | } |
| 2183 | |
| 2184 | if (found_idx == -1) { |
| 2185 | continue; //nothing found |
| 2186 | } |
| 2187 | |
| 2188 | r_quadrant = qidx; |
| 2189 | r_shadow = found_idx; |
| 2190 | |
| 2191 | return true; |
| 2192 | } |
| 2193 | |
| 2194 | return false; |
| 2195 | } |
| 2196 | |
| 2197 | bool LightStorage::shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) { |
| 2198 | ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); |
| 2199 | ERR_FAIL_COND_V(!shadow_atlas, false); |
| 2200 | |
| 2201 | LightInstance *li = light_instance_owner.get_or_null(p_light_instance); |
| 2202 | ERR_FAIL_COND_V(!li, false); |
| 2203 | |
| 2204 | if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { |
| 2205 | return false; |
| 2206 | } |
| 2207 | |
| 2208 | uint32_t quad_size = shadow_atlas->size >> 1; |
| 2209 | int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); |
| 2210 | |
| 2211 | int valid_quadrants[4]; |
| 2212 | int valid_quadrant_count = 0; |
| 2213 | int best_size = -1; //best size found |
| 2214 | int best_subdiv = -1; //subdiv for the best size |
| 2215 | |
| 2216 | //find the quadrants this fits into, and the best possible size it can fit into |
| 2217 | for (int i = 0; i < 4; i++) { |
| 2218 | int q = shadow_atlas->size_order[i]; |
| 2219 | int sd = shadow_atlas->quadrants[q].subdivision; |
| 2220 | if (sd == 0) { |
| 2221 | continue; //unused |
| 2222 | } |
| 2223 | |
| 2224 | int max_fit = quad_size / sd; |
| 2225 | |
| 2226 | if (best_size != -1 && max_fit > best_size) { |
| 2227 | break; //too large |
| 2228 | } |
| 2229 | |
| 2230 | valid_quadrants[valid_quadrant_count++] = q; |
| 2231 | best_subdiv = sd; |
| 2232 | |
| 2233 | if (max_fit >= desired_fit) { |
| 2234 | best_size = max_fit; |
| 2235 | } |
| 2236 | } |
| 2237 | |
| 2238 | ERR_FAIL_COND_V(valid_quadrant_count == 0, false); |
| 2239 | |
| 2240 | uint64_t tick = OS::get_singleton()->get_ticks_msec(); |
| 2241 | |
| 2242 | uint32_t old_key = SHADOW_INVALID; |
| 2243 | uint32_t old_quadrant = SHADOW_INVALID; |
| 2244 | uint32_t old_shadow = SHADOW_INVALID; |
| 2245 | int old_subdivision = -1; |
| 2246 | |
| 2247 | bool should_realloc = false; |
| 2248 | bool should_redraw = false; |
| 2249 | |
| 2250 | if (shadow_atlas->shadow_owners.has(p_light_instance)) { |
| 2251 | old_key = shadow_atlas->shadow_owners[p_light_instance]; |
| 2252 | old_quadrant = (old_key >> QUADRANT_SHIFT) & 0x3; |
| 2253 | old_shadow = old_key & SHADOW_INDEX_MASK; |
| 2254 | |
| 2255 | should_realloc = shadow_atlas->quadrants[old_quadrant].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); |
| 2256 | should_redraw = shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].version != p_light_version; |
| 2257 | |
| 2258 | if (!should_realloc) { |
| 2259 | shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = p_light_version; |
| 2260 | //already existing, see if it should redraw or it's just OK |
| 2261 | return should_redraw; |
| 2262 | } |
| 2263 | |
| 2264 | old_subdivision = shadow_atlas->quadrants[old_quadrant].subdivision; |
| 2265 | } |
| 2266 | |
| 2267 | bool is_omni = li->light_type == RS::LIGHT_OMNI; |
| 2268 | bool found_shadow = false; |
| 2269 | int new_quadrant = -1; |
| 2270 | int new_shadow = -1; |
| 2271 | |
| 2272 | if (is_omni) { |
| 2273 | found_shadow = _shadow_atlas_find_omni_shadows(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow); |
| 2274 | } else { |
| 2275 | found_shadow = _shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow); |
| 2276 | } |
| 2277 | |
| 2278 | if (found_shadow) { |
| 2279 | if (old_quadrant != SHADOW_INVALID) { |
| 2280 | shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = 0; |
| 2281 | shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].owner = RID(); |
| 2282 | |
| 2283 | if (old_key & OMNI_LIGHT_FLAG) { |
| 2284 | shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].version = 0; |
| 2285 | shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].owner = RID(); |
| 2286 | } |
| 2287 | } |
| 2288 | |
| 2289 | uint32_t new_key = new_quadrant << QUADRANT_SHIFT; |
| 2290 | new_key |= new_shadow; |
| 2291 | |
| 2292 | ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; |
| 2293 | _shadow_atlas_invalidate_shadow(sh, p_atlas, shadow_atlas, new_quadrant, new_shadow); |
| 2294 | |
| 2295 | sh->owner = p_light_instance; |
| 2296 | sh->alloc_tick = tick; |
| 2297 | sh->version = p_light_version; |
| 2298 | |
| 2299 | if (is_omni) { |
| 2300 | new_key |= OMNI_LIGHT_FLAG; |
| 2301 | |
| 2302 | int new_omni_shadow = new_shadow + 1; |
| 2303 | ShadowAtlas::Quadrant::Shadow * = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_omni_shadow]; |
| 2304 | _shadow_atlas_invalidate_shadow(extra_sh, p_atlas, shadow_atlas, new_quadrant, new_omni_shadow); |
| 2305 | |
| 2306 | extra_sh->owner = p_light_instance; |
| 2307 | extra_sh->alloc_tick = tick; |
| 2308 | extra_sh->version = p_light_version; |
| 2309 | } |
| 2310 | |
| 2311 | li->shadow_atlases.insert(p_atlas); |
| 2312 | |
| 2313 | //update it in map |
| 2314 | shadow_atlas->shadow_owners[p_light_instance] = new_key; |
| 2315 | //make it dirty, as it should redraw anyway |
| 2316 | return true; |
| 2317 | } |
| 2318 | |
| 2319 | return should_redraw; |
| 2320 | } |
| 2321 | |
| 2322 | void LightStorage::_shadow_atlas_invalidate_shadow(ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx) { |
| 2323 | if (p_shadow->owner.is_valid()) { |
| 2324 | LightInstance *sli = light_instance_owner.get_or_null(p_shadow->owner); |
| 2325 | uint32_t old_key = p_shadow_atlas->shadow_owners[p_shadow->owner]; |
| 2326 | |
| 2327 | if (old_key & OMNI_LIGHT_FLAG) { |
| 2328 | uint32_t s = old_key & SHADOW_INDEX_MASK; |
| 2329 | uint32_t omni_shadow_idx = p_shadow_idx + (s == (uint32_t)p_shadow_idx ? 1 : -1); |
| 2330 | ShadowAtlas::Quadrant::Shadow *omni_shadow = &p_shadow_atlas->quadrants[p_quadrant].shadows.write[omni_shadow_idx]; |
| 2331 | omni_shadow->version = 0; |
| 2332 | omni_shadow->owner = RID(); |
| 2333 | } |
| 2334 | |
| 2335 | p_shadow_atlas->shadow_owners.erase(p_shadow->owner); |
| 2336 | p_shadow->version = 0; |
| 2337 | p_shadow->owner = RID(); |
| 2338 | sli->shadow_atlases.erase(p_atlas); |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | void LightStorage::shadow_atlas_update(RID p_atlas) { |
| 2343 | ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); |
| 2344 | ERR_FAIL_COND(!shadow_atlas); |
| 2345 | |
| 2346 | _update_shadow_atlas(shadow_atlas); |
| 2347 | } |
| 2348 | |
| 2349 | /* DIRECTIONAL SHADOW */ |
| 2350 | |
| 2351 | void LightStorage::update_directional_shadow_atlas() { |
| 2352 | if (directional_shadow.depth.is_null() && directional_shadow.size > 0) { |
| 2353 | RD::TextureFormat tf; |
| 2354 | tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT; |
| 2355 | tf.width = directional_shadow.size; |
| 2356 | tf.height = directional_shadow.size; |
| 2357 | tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; |
| 2358 | |
| 2359 | directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); |
| 2360 | Vector<RID> fb_tex; |
| 2361 | fb_tex.push_back(directional_shadow.depth); |
| 2362 | directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex); |
| 2363 | } |
| 2364 | } |
| 2365 | void LightStorage::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) { |
| 2366 | p_size = nearest_power_of_2_templated(p_size); |
| 2367 | |
| 2368 | if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) { |
| 2369 | return; |
| 2370 | } |
| 2371 | |
| 2372 | directional_shadow.size = p_size; |
| 2373 | directional_shadow.use_16_bits = p_16_bits; |
| 2374 | |
| 2375 | if (directional_shadow.depth.is_valid()) { |
| 2376 | RD::get_singleton()->free(directional_shadow.depth); |
| 2377 | directional_shadow.depth = RID(); |
| 2378 | RendererSceneRenderRD::get_singleton()->base_uniforms_changed(); |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | void LightStorage::set_directional_shadow_count(int p_count) { |
| 2383 | directional_shadow.light_count = p_count; |
| 2384 | directional_shadow.current_light = 0; |
| 2385 | } |
| 2386 | |
| 2387 | static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) { |
| 2388 | int split_h = 1; |
| 2389 | int split_v = 1; |
| 2390 | |
| 2391 | while (split_h * split_v < p_shadow_count) { |
| 2392 | if (split_h == split_v) { |
| 2393 | split_h <<= 1; |
| 2394 | } else { |
| 2395 | split_v <<= 1; |
| 2396 | } |
| 2397 | } |
| 2398 | |
| 2399 | Rect2i rect(0, 0, p_size, p_size); |
| 2400 | rect.size.width /= split_h; |
| 2401 | rect.size.height /= split_v; |
| 2402 | |
| 2403 | rect.position.x = rect.size.width * (p_shadow_index % split_h); |
| 2404 | rect.position.y = rect.size.height * (p_shadow_index / split_h); |
| 2405 | |
| 2406 | return rect; |
| 2407 | } |
| 2408 | |
| 2409 | Rect2i LightStorage::get_directional_shadow_rect() { |
| 2410 | return _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light); |
| 2411 | } |
| 2412 | |
| 2413 | int LightStorage::get_directional_light_shadow_size(RID p_light_intance) { |
| 2414 | ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); |
| 2415 | |
| 2416 | Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0); |
| 2417 | |
| 2418 | LightInstance *light_instance = light_instance_owner.get_or_null(p_light_intance); |
| 2419 | ERR_FAIL_COND_V(!light_instance, 0); |
| 2420 | |
| 2421 | switch (light_directional_get_shadow_mode(light_instance->light)) { |
| 2422 | case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: |
| 2423 | break; //none |
| 2424 | case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: |
| 2425 | r.size.height /= 2; |
| 2426 | break; |
| 2427 | case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: |
| 2428 | r.size /= 2; |
| 2429 | break; |
| 2430 | } |
| 2431 | |
| 2432 | return MAX(r.size.width, r.size.height); |
| 2433 | } |
| 2434 | |
| 2435 | /* SHADOW CUBEMAPS */ |
| 2436 | |
| 2437 | LightStorage::ShadowCubemap *LightStorage::_get_shadow_cubemap(int p_size) { |
| 2438 | if (!shadow_cubemaps.has(p_size)) { |
| 2439 | ShadowCubemap sc; |
| 2440 | { |
| 2441 | RD::TextureFormat tf; |
| 2442 | tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; |
| 2443 | tf.width = p_size; |
| 2444 | tf.height = p_size; |
| 2445 | tf.texture_type = RD::TEXTURE_TYPE_CUBE; |
| 2446 | tf.array_layers = 6; |
| 2447 | tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; |
| 2448 | sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); |
| 2449 | } |
| 2450 | |
| 2451 | for (int i = 0; i < 6; i++) { |
| 2452 | RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0); |
| 2453 | Vector<RID> fbtex; |
| 2454 | fbtex.push_back(side_texture); |
| 2455 | sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex); |
| 2456 | } |
| 2457 | |
| 2458 | shadow_cubemaps[p_size] = sc; |
| 2459 | } |
| 2460 | |
| 2461 | return &shadow_cubemaps[p_size]; |
| 2462 | } |
| 2463 | |
| 2464 | RID LightStorage::get_cubemap(int p_size) { |
| 2465 | ShadowCubemap *cubemap = _get_shadow_cubemap(p_size); |
| 2466 | |
| 2467 | return cubemap->cubemap; |
| 2468 | } |
| 2469 | |
| 2470 | RID LightStorage::get_cubemap_fb(int p_size, int p_pass) { |
| 2471 | ShadowCubemap *cubemap = _get_shadow_cubemap(p_size); |
| 2472 | |
| 2473 | return cubemap->side_fb[p_pass]; |
| 2474 | } |
| 2475 | |