1 | /**************************************************************************/ |
2 | /* rasterizer_scene_gles3.cpp */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #include "rasterizer_scene_gles3.h" |
32 | #include "core/config/project_settings.h" |
33 | #include "core/templates/sort_array.h" |
34 | #include "servers/rendering/rendering_server_default.h" |
35 | #include "servers/rendering/rendering_server_globals.h" |
36 | #include "storage/config.h" |
37 | #include "storage/mesh_storage.h" |
38 | #include "storage/particles_storage.h" |
39 | #include "storage/texture_storage.h" |
40 | |
41 | #ifdef GLES3_ENABLED |
42 | |
43 | RasterizerSceneGLES3 *RasterizerSceneGLES3::singleton = nullptr; |
44 | |
45 | RenderGeometryInstance *RasterizerSceneGLES3::geometry_instance_create(RID p_base) { |
46 | RS::InstanceType type = RSG::utilities->get_base_type(p_base); |
47 | ERR_FAIL_COND_V(!((1 << type) & RS::INSTANCE_GEOMETRY_MASK), nullptr); |
48 | |
49 | GeometryInstanceGLES3 *ginstance = geometry_instance_alloc.alloc(); |
50 | ginstance->data = memnew(GeometryInstanceGLES3::Data); |
51 | |
52 | ginstance->data->base = p_base; |
53 | ginstance->data->base_type = type; |
54 | ginstance->data->dependency_tracker.userdata = ginstance; |
55 | ginstance->data->dependency_tracker.changed_callback = _geometry_instance_dependency_changed; |
56 | ginstance->data->dependency_tracker.deleted_callback = _geometry_instance_dependency_deleted; |
57 | |
58 | ginstance->_mark_dirty(); |
59 | |
60 | return ginstance; |
61 | } |
62 | |
63 | uint32_t RasterizerSceneGLES3::geometry_instance_get_pair_mask() { |
64 | return (1 << RS::INSTANCE_LIGHT); |
65 | } |
66 | |
67 | void RasterizerSceneGLES3::GeometryInstanceGLES3::pair_light_instances(const RID *p_light_instances, uint32_t p_light_instance_count) { |
68 | GLES3::Config *config = GLES3::Config::get_singleton(); |
69 | |
70 | omni_light_count = 0; |
71 | spot_light_count = 0; |
72 | omni_lights.clear(); |
73 | spot_lights.clear(); |
74 | |
75 | for (uint32_t i = 0; i < p_light_instance_count; i++) { |
76 | RS::LightType type = GLES3::LightStorage::get_singleton()->light_instance_get_type(p_light_instances[i]); |
77 | switch (type) { |
78 | case RS::LIGHT_OMNI: { |
79 | if (omni_light_count < (uint32_t)config->max_lights_per_object) { |
80 | omni_lights.push_back(p_light_instances[i]); |
81 | omni_light_count++; |
82 | } |
83 | } break; |
84 | case RS::LIGHT_SPOT: { |
85 | if (spot_light_count < (uint32_t)config->max_lights_per_object) { |
86 | spot_lights.push_back(p_light_instances[i]); |
87 | spot_light_count++; |
88 | } |
89 | } break; |
90 | default: |
91 | break; |
92 | } |
93 | } |
94 | } |
95 | |
96 | void RasterizerSceneGLES3::geometry_instance_free(RenderGeometryInstance *p_geometry_instance) { |
97 | GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance); |
98 | ERR_FAIL_NULL(ginstance); |
99 | GeometryInstanceSurface *surf = ginstance->surface_caches; |
100 | while (surf) { |
101 | GeometryInstanceSurface *next = surf->next; |
102 | geometry_instance_surface_alloc.free(surf); |
103 | surf = next; |
104 | } |
105 | memdelete(ginstance->data); |
106 | geometry_instance_alloc.free(ginstance); |
107 | } |
108 | |
109 | void RasterizerSceneGLES3::GeometryInstanceGLES3::_mark_dirty() { |
110 | if (dirty_list_element.in_list()) { |
111 | return; |
112 | } |
113 | |
114 | //clear surface caches |
115 | GeometryInstanceSurface *surf = surface_caches; |
116 | |
117 | while (surf) { |
118 | GeometryInstanceSurface *next = surf->next; |
119 | RasterizerSceneGLES3::get_singleton()->geometry_instance_surface_alloc.free(surf); |
120 | surf = next; |
121 | } |
122 | |
123 | surface_caches = nullptr; |
124 | |
125 | RasterizerSceneGLES3::get_singleton()->geometry_instance_dirty_list.add(&dirty_list_element); |
126 | } |
127 | |
128 | void RasterizerSceneGLES3::GeometryInstanceGLES3::set_use_lightmap(RID p_lightmap_instance, const Rect2 &p_lightmap_uv_scale, int p_lightmap_slice_index) { |
129 | } |
130 | |
131 | void RasterizerSceneGLES3::GeometryInstanceGLES3::set_lightmap_capture(const Color *p_sh9) { |
132 | } |
133 | |
134 | void RasterizerSceneGLES3::_update_dirty_geometry_instances() { |
135 | while (geometry_instance_dirty_list.first()) { |
136 | _geometry_instance_update(geometry_instance_dirty_list.first()->self()); |
137 | } |
138 | } |
139 | |
140 | void RasterizerSceneGLES3::_geometry_instance_dependency_changed(Dependency::DependencyChangedNotification p_notification, DependencyTracker *p_tracker) { |
141 | switch (p_notification) { |
142 | case Dependency::DEPENDENCY_CHANGED_MATERIAL: |
143 | case Dependency::DEPENDENCY_CHANGED_MESH: |
144 | case Dependency::DEPENDENCY_CHANGED_PARTICLES: |
145 | case Dependency::DEPENDENCY_CHANGED_MULTIMESH: |
146 | case Dependency::DEPENDENCY_CHANGED_SKELETON_DATA: { |
147 | static_cast<RenderGeometryInstance *>(p_tracker->userdata)->_mark_dirty(); |
148 | static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata)->data->dirty_dependencies = true; |
149 | } break; |
150 | case Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES: { |
151 | GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata); |
152 | if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) { |
153 | ginstance->instance_count = GLES3::MeshStorage::get_singleton()->multimesh_get_instances_to_draw(ginstance->data->base); |
154 | } |
155 | } break; |
156 | default: { |
157 | //rest of notifications of no interest |
158 | } break; |
159 | } |
160 | } |
161 | |
162 | void RasterizerSceneGLES3::_geometry_instance_dependency_deleted(const RID &p_dependency, DependencyTracker *p_tracker) { |
163 | static_cast<RenderGeometryInstance *>(p_tracker->userdata)->_mark_dirty(); |
164 | static_cast<GeometryInstanceGLES3 *>(p_tracker->userdata)->data->dirty_dependencies = true; |
165 | } |
166 | |
167 | void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material, uint32_t p_material_id, uint32_t p_shader_id, RID p_mesh) { |
168 | GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); |
169 | |
170 | bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture; |
171 | bool has_base_alpha = ((p_material->shader_data->uses_alpha && !p_material->shader_data->uses_alpha_clip) || has_read_screen_alpha); |
172 | bool has_blend_alpha = p_material->shader_data->uses_blend_alpha; |
173 | bool has_alpha = has_base_alpha || has_blend_alpha; |
174 | |
175 | uint32_t flags = 0; |
176 | |
177 | if (p_material->shader_data->uses_screen_texture) { |
178 | flags |= GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE; |
179 | } |
180 | |
181 | if (p_material->shader_data->uses_depth_texture) { |
182 | flags |= GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE; |
183 | } |
184 | |
185 | if (p_material->shader_data->uses_normal_texture) { |
186 | flags |= GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE; |
187 | } |
188 | |
189 | if (ginstance->data->cast_double_sided_shadows) { |
190 | flags |= GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS; |
191 | } |
192 | |
193 | if (has_alpha || has_read_screen_alpha || p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) { |
194 | //material is only meant for alpha pass |
195 | flags |= GeometryInstanceSurface::FLAG_PASS_ALPHA; |
196 | if (p_material->shader_data->uses_depth_prepass_alpha && !(p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED)) { |
197 | flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH; |
198 | flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW; |
199 | } |
200 | } else { |
201 | flags |= GeometryInstanceSurface::FLAG_PASS_OPAQUE; |
202 | flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH; |
203 | flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW; |
204 | } |
205 | |
206 | GLES3::SceneMaterialData *material_shadow = nullptr; |
207 | void *surface_shadow = nullptr; |
208 | if (!p_material->shader_data->uses_particle_trails && !p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_prepass_alpha && !p_material->shader_data->uses_alpha_clip) { |
209 | flags |= GeometryInstanceSurface::FLAG_USES_SHARED_SHADOW_MATERIAL; |
210 | material_shadow = static_cast<GLES3::SceneMaterialData *>(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL)); |
211 | |
212 | RID shadow_mesh = mesh_storage->mesh_get_shadow_mesh(p_mesh); |
213 | |
214 | if (shadow_mesh.is_valid()) { |
215 | surface_shadow = mesh_storage->mesh_get_surface(shadow_mesh, p_surface); |
216 | } |
217 | |
218 | } else { |
219 | material_shadow = p_material; |
220 | } |
221 | |
222 | GeometryInstanceSurface *sdcache = geometry_instance_surface_alloc.alloc(); |
223 | |
224 | sdcache->flags = flags; |
225 | |
226 | sdcache->shader = p_material->shader_data; |
227 | sdcache->material = p_material; |
228 | sdcache->surface = mesh_storage->mesh_get_surface(p_mesh, p_surface); |
229 | sdcache->primitive = mesh_storage->mesh_surface_get_primitive(sdcache->surface); |
230 | sdcache->surface_index = p_surface; |
231 | |
232 | if (ginstance->data->dirty_dependencies) { |
233 | RSG::utilities->base_update_dependency(p_mesh, &ginstance->data->dependency_tracker); |
234 | } |
235 | |
236 | //shadow |
237 | sdcache->shader_shadow = material_shadow->shader_data; |
238 | sdcache->material_shadow = material_shadow; |
239 | |
240 | sdcache->surface_shadow = surface_shadow ? surface_shadow : sdcache->surface; |
241 | |
242 | sdcache->owner = ginstance; |
243 | |
244 | sdcache->next = ginstance->surface_caches; |
245 | ginstance->surface_caches = sdcache; |
246 | |
247 | //sortkey |
248 | |
249 | sdcache->sort.sort_key1 = 0; |
250 | sdcache->sort.sort_key2 = 0; |
251 | |
252 | sdcache->sort.surface_index = p_surface; |
253 | sdcache->sort.material_id_low = p_material_id & 0x0000FFFF; |
254 | sdcache->sort.material_id_hi = p_material_id >> 16; |
255 | sdcache->sort.shader_id = p_shader_id; |
256 | sdcache->sort.geometry_id = p_mesh.get_local_index(); |
257 | sdcache->sort.priority = p_material->priority; |
258 | } |
259 | |
260 | void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material_chain(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material_data, RID p_mat_src, RID p_mesh) { |
261 | GLES3::SceneMaterialData *material_data = p_material_data; |
262 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
263 | |
264 | _geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, p_mat_src.get_local_index(), material_storage->material_get_shader_id(p_mat_src), p_mesh); |
265 | |
266 | while (material_data->next_pass.is_valid()) { |
267 | RID next_pass = material_data->next_pass; |
268 | material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(next_pass, RS::SHADER_SPATIAL)); |
269 | if (!material_data || !material_data->shader_data->valid) { |
270 | break; |
271 | } |
272 | if (ginstance->data->dirty_dependencies) { |
273 | material_storage->material_update_dependency(next_pass, &ginstance->data->dependency_tracker); |
274 | } |
275 | _geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, next_pass.get_local_index(), material_storage->material_get_shader_id(next_pass), p_mesh); |
276 | } |
277 | } |
278 | |
279 | void RasterizerSceneGLES3::_geometry_instance_add_surface(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, RID p_material, RID p_mesh) { |
280 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
281 | RID m_src; |
282 | |
283 | m_src = ginstance->data->material_override.is_valid() ? ginstance->data->material_override : p_material; |
284 | |
285 | GLES3::SceneMaterialData *material_data = nullptr; |
286 | |
287 | if (m_src.is_valid()) { |
288 | material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL)); |
289 | if (!material_data || !material_data->shader_data->valid) { |
290 | material_data = nullptr; |
291 | } |
292 | } |
293 | |
294 | if (material_data) { |
295 | if (ginstance->data->dirty_dependencies) { |
296 | material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker); |
297 | } |
298 | } else { |
299 | material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL)); |
300 | m_src = scene_globals.default_material; |
301 | } |
302 | |
303 | ERR_FAIL_NULL(material_data); |
304 | |
305 | _geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh); |
306 | |
307 | if (ginstance->data->material_overlay.is_valid()) { |
308 | m_src = ginstance->data->material_overlay; |
309 | |
310 | material_data = static_cast<GLES3::SceneMaterialData *>(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL)); |
311 | if (material_data && material_data->shader_data->valid) { |
312 | if (ginstance->data->dirty_dependencies) { |
313 | material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker); |
314 | } |
315 | |
316 | _geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh); |
317 | } |
318 | } |
319 | } |
320 | |
321 | void RasterizerSceneGLES3::_geometry_instance_update(RenderGeometryInstance *p_geometry_instance) { |
322 | GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); |
323 | GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); |
324 | |
325 | GeometryInstanceGLES3 *ginstance = static_cast<GeometryInstanceGLES3 *>(p_geometry_instance); |
326 | |
327 | if (ginstance->data->dirty_dependencies) { |
328 | ginstance->data->dependency_tracker.update_begin(); |
329 | } |
330 | |
331 | //add geometry for drawing |
332 | switch (ginstance->data->base_type) { |
333 | case RS::INSTANCE_MESH: { |
334 | const RID *materials = nullptr; |
335 | uint32_t surface_count; |
336 | RID mesh = ginstance->data->base; |
337 | |
338 | materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count); |
339 | if (materials) { |
340 | //if no materials, no surfaces. |
341 | const RID *inst_materials = ginstance->data->surface_materials.ptr(); |
342 | uint32_t surf_mat_count = ginstance->data->surface_materials.size(); |
343 | |
344 | for (uint32_t j = 0; j < surface_count; j++) { |
345 | RID material = (j < surf_mat_count && inst_materials[j].is_valid()) ? inst_materials[j] : materials[j]; |
346 | _geometry_instance_add_surface(ginstance, j, material, mesh); |
347 | } |
348 | } |
349 | |
350 | ginstance->instance_count = -1; |
351 | |
352 | } break; |
353 | |
354 | case RS::INSTANCE_MULTIMESH: { |
355 | RID mesh = mesh_storage->multimesh_get_mesh(ginstance->data->base); |
356 | if (mesh.is_valid()) { |
357 | const RID *materials = nullptr; |
358 | uint32_t surface_count; |
359 | |
360 | materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count); |
361 | if (materials) { |
362 | for (uint32_t j = 0; j < surface_count; j++) { |
363 | _geometry_instance_add_surface(ginstance, j, materials[j], mesh); |
364 | } |
365 | } |
366 | |
367 | ginstance->instance_count = mesh_storage->multimesh_get_instances_to_draw(ginstance->data->base); |
368 | } |
369 | |
370 | } break; |
371 | case RS::INSTANCE_PARTICLES: { |
372 | int draw_passes = particles_storage->particles_get_draw_passes(ginstance->data->base); |
373 | |
374 | for (int j = 0; j < draw_passes; j++) { |
375 | RID mesh = particles_storage->particles_get_draw_pass_mesh(ginstance->data->base, j); |
376 | if (!mesh.is_valid()) { |
377 | continue; |
378 | } |
379 | |
380 | const RID *materials = nullptr; |
381 | uint32_t surface_count; |
382 | |
383 | materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count); |
384 | if (materials) { |
385 | for (uint32_t k = 0; k < surface_count; k++) { |
386 | _geometry_instance_add_surface(ginstance, k, materials[k], mesh); |
387 | } |
388 | } |
389 | } |
390 | |
391 | ginstance->instance_count = particles_storage->particles_get_amount(ginstance->data->base); |
392 | } break; |
393 | |
394 | default: { |
395 | } |
396 | } |
397 | |
398 | bool store_transform = true; |
399 | ginstance->base_flags = 0; |
400 | |
401 | if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) { |
402 | ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH; |
403 | if (mesh_storage->multimesh_get_transform_format(ginstance->data->base) == RS::MULTIMESH_TRANSFORM_2D) { |
404 | ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D; |
405 | } |
406 | if (mesh_storage->multimesh_uses_colors(ginstance->data->base)) { |
407 | ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR; |
408 | } |
409 | if (mesh_storage->multimesh_uses_custom_data(ginstance->data->base)) { |
410 | ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA; |
411 | } |
412 | |
413 | } else if (ginstance->data->base_type == RS::INSTANCE_PARTICLES) { |
414 | ginstance->base_flags |= INSTANCE_DATA_FLAG_PARTICLES; |
415 | ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH; |
416 | |
417 | ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR; |
418 | ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA; |
419 | |
420 | if (!particles_storage->particles_is_using_local_coords(ginstance->data->base)) { |
421 | store_transform = false; |
422 | } |
423 | |
424 | } else if (ginstance->data->base_type == RS::INSTANCE_MESH) { |
425 | if (mesh_storage->skeleton_is_valid(ginstance->data->skeleton)) { |
426 | if (ginstance->data->dirty_dependencies) { |
427 | mesh_storage->skeleton_update_dependency(ginstance->data->skeleton, &ginstance->data->dependency_tracker); |
428 | } |
429 | } |
430 | } |
431 | |
432 | ginstance->store_transform_cache = store_transform; |
433 | |
434 | if (ginstance->data->dirty_dependencies) { |
435 | ginstance->data->dependency_tracker.update_end(); |
436 | ginstance->data->dirty_dependencies = false; |
437 | } |
438 | |
439 | ginstance->dirty_list_element.remove_from_list(); |
440 | } |
441 | |
442 | /* SKY API */ |
443 | |
444 | void RasterizerSceneGLES3::_free_sky_data(Sky *p_sky) { |
445 | if (p_sky->radiance != 0) { |
446 | GLES3::Utilities::get_singleton()->texture_free_data(p_sky->radiance); |
447 | p_sky->radiance = 0; |
448 | GLES3::Utilities::get_singleton()->texture_free_data(p_sky->raw_radiance); |
449 | p_sky->raw_radiance = 0; |
450 | glDeleteFramebuffers(1, &p_sky->radiance_framebuffer); |
451 | p_sky->radiance_framebuffer = 0; |
452 | } |
453 | } |
454 | |
455 | RID RasterizerSceneGLES3::sky_allocate() { |
456 | return sky_owner.allocate_rid(); |
457 | } |
458 | |
459 | void RasterizerSceneGLES3::sky_initialize(RID p_rid) { |
460 | sky_owner.initialize_rid(p_rid); |
461 | } |
462 | |
463 | void RasterizerSceneGLES3::sky_set_radiance_size(RID p_sky, int p_radiance_size) { |
464 | Sky *sky = sky_owner.get_or_null(p_sky); |
465 | ERR_FAIL_NULL(sky); |
466 | ERR_FAIL_COND_MSG(p_radiance_size < 32 || p_radiance_size > 2048, "Sky radiance size must be between 32 and 2048" ); |
467 | |
468 | if (sky->radiance_size == p_radiance_size) { |
469 | return; // No need to update |
470 | } |
471 | |
472 | sky->radiance_size = p_radiance_size; |
473 | |
474 | _free_sky_data(sky); |
475 | _invalidate_sky(sky); |
476 | } |
477 | |
478 | void RasterizerSceneGLES3::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { |
479 | Sky *sky = sky_owner.get_or_null(p_sky); |
480 | ERR_FAIL_NULL(sky); |
481 | |
482 | if (sky->mode == p_mode) { |
483 | return; |
484 | } |
485 | |
486 | sky->mode = p_mode; |
487 | _invalidate_sky(sky); |
488 | } |
489 | |
490 | void RasterizerSceneGLES3::sky_set_material(RID p_sky, RID p_material) { |
491 | Sky *sky = sky_owner.get_or_null(p_sky); |
492 | ERR_FAIL_NULL(sky); |
493 | |
494 | if (sky->material == p_material) { |
495 | return; |
496 | } |
497 | |
498 | sky->material = p_material; |
499 | _invalidate_sky(sky); |
500 | } |
501 | |
502 | float RasterizerSceneGLES3::sky_get_baked_exposure(RID p_sky) const { |
503 | Sky *sky = sky_owner.get_or_null(p_sky); |
504 | ERR_FAIL_NULL_V(sky, 1.0); |
505 | |
506 | return sky->baked_exposure; |
507 | } |
508 | |
509 | void RasterizerSceneGLES3::_invalidate_sky(Sky *p_sky) { |
510 | if (!p_sky->dirty) { |
511 | p_sky->dirty = true; |
512 | p_sky->dirty_list = dirty_sky_list; |
513 | dirty_sky_list = p_sky; |
514 | } |
515 | } |
516 | |
517 | void RasterizerSceneGLES3::_update_dirty_skys() { |
518 | Sky *sky = dirty_sky_list; |
519 | |
520 | while (sky) { |
521 | if (sky->radiance == 0) { |
522 | sky->mipmap_count = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8) - 1; |
523 | // Left uninitialized, will attach a texture at render time |
524 | glGenFramebuffers(1, &sky->radiance_framebuffer); |
525 | |
526 | GLenum internal_format = GL_RGB10_A2; |
527 | |
528 | glGenTextures(1, &sky->radiance); |
529 | glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance); |
530 | |
531 | #ifdef GLES_OVER_GL |
532 | GLenum format = GL_RGBA; |
533 | GLenum type = GL_UNSIGNED_INT_2_10_10_10_REV; |
534 | //TODO, on low-end compare this to allocating each face of each mip individually |
535 | // see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml |
536 | for (int i = 0; i < 6; i++) { |
537 | glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr); |
538 | } |
539 | |
540 | glGenerateMipmap(GL_TEXTURE_CUBE_MAP); |
541 | #else |
542 | glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size); |
543 | #endif |
544 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); |
545 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
546 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); |
547 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); |
548 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); |
549 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count - 1); |
550 | |
551 | GLES3::Utilities::get_singleton()->texture_allocated_data(sky->radiance, Image::get_image_data_size(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8, true), "Sky radiance map" ); |
552 | |
553 | glGenTextures(1, &sky->raw_radiance); |
554 | glBindTexture(GL_TEXTURE_CUBE_MAP, sky->raw_radiance); |
555 | |
556 | #ifdef GLES_OVER_GL |
557 | //TODO, on low-end compare this to allocating each face of each mip individually |
558 | // see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml |
559 | for (int i = 0; i < 6; i++) { |
560 | glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr); |
561 | } |
562 | |
563 | glGenerateMipmap(GL_TEXTURE_CUBE_MAP); |
564 | #else |
565 | glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size); |
566 | #endif |
567 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); |
568 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
569 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); |
570 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); |
571 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); |
572 | glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count - 1); |
573 | |
574 | glBindTexture(GL_TEXTURE_CUBE_MAP, 0); |
575 | GLES3::Utilities::get_singleton()->texture_allocated_data(sky->raw_radiance, Image::get_image_data_size(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8, true), "Sky raw radiance map" ); |
576 | } |
577 | |
578 | sky->reflection_dirty = true; |
579 | sky->processing_layer = 0; |
580 | |
581 | Sky *next = sky->dirty_list; |
582 | sky->dirty_list = nullptr; |
583 | sky->dirty = false; |
584 | sky = next; |
585 | } |
586 | |
587 | dirty_sky_list = nullptr; |
588 | } |
589 | |
590 | void RasterizerSceneGLES3::_setup_sky(const RenderDataGLES3 *p_render_data, const PagedArray<RID> &p_lights, const Projection &p_projection, const Transform3D &p_transform, const Size2i p_screen_size) { |
591 | GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); |
592 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
593 | ERR_FAIL_COND(p_render_data->environment.is_null()); |
594 | |
595 | GLES3::SkyMaterialData *material = nullptr; |
596 | Sky *sky = sky_owner.get_or_null(environment_get_sky(p_render_data->environment)); |
597 | |
598 | RID sky_material; |
599 | |
600 | GLES3::SkyShaderData *shader_data = nullptr; |
601 | |
602 | if (sky) { |
603 | sky_material = sky->material; |
604 | |
605 | if (sky_material.is_valid()) { |
606 | material = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); |
607 | if (!material || !material->shader_data->valid) { |
608 | material = nullptr; |
609 | } |
610 | } |
611 | } |
612 | |
613 | if (!material) { |
614 | sky_material = sky_globals.default_material; |
615 | material = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); |
616 | } |
617 | |
618 | ERR_FAIL_NULL(material); |
619 | |
620 | shader_data = material->shader_data; |
621 | |
622 | ERR_FAIL_NULL(shader_data); |
623 | |
624 | if (sky) { |
625 | if (shader_data->uses_time && time - sky->prev_time > 0.00001) { |
626 | sky->prev_time = time; |
627 | sky->reflection_dirty = true; |
628 | RenderingServerDefault::redraw_request(); |
629 | } |
630 | |
631 | if (material != sky->prev_material) { |
632 | sky->prev_material = material; |
633 | sky->reflection_dirty = true; |
634 | } |
635 | |
636 | if (material->uniform_set_updated) { |
637 | material->uniform_set_updated = false; |
638 | sky->reflection_dirty = true; |
639 | } |
640 | |
641 | if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) { |
642 | sky->prev_position = p_transform.origin; |
643 | sky->reflection_dirty = true; |
644 | } |
645 | } |
646 | |
647 | glBindBufferBase(GL_UNIFORM_BUFFER, SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, sky_globals.directional_light_buffer); |
648 | if (shader_data->uses_light) { |
649 | sky_globals.directional_light_count = 0; |
650 | for (int i = 0; i < (int)p_lights.size(); i++) { |
651 | GLES3::LightInstance *li = GLES3::LightStorage::get_singleton()->get_light_instance(p_lights[i]); |
652 | if (!li) { |
653 | continue; |
654 | } |
655 | RID base = li->light; |
656 | |
657 | ERR_CONTINUE(base.is_null()); |
658 | |
659 | RS::LightType type = light_storage->light_get_type(base); |
660 | if (type == RS::LIGHT_DIRECTIONAL && light_storage->light_directional_get_sky_mode(base) != RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_ONLY) { |
661 | DirectionalLightData &sky_light_data = sky_globals.directional_lights[sky_globals.directional_light_count]; |
662 | Transform3D light_transform = li->transform; |
663 | Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized(); |
664 | |
665 | sky_light_data.direction[0] = world_direction.x; |
666 | sky_light_data.direction[1] = world_direction.y; |
667 | sky_light_data.direction[2] = world_direction.z; |
668 | |
669 | float sign = light_storage->light_is_negative(base) ? -1 : 1; |
670 | sky_light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY); |
671 | |
672 | if (is_using_physical_light_units()) { |
673 | sky_light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY); |
674 | } |
675 | |
676 | if (p_render_data->camera_attributes.is_valid()) { |
677 | sky_light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); |
678 | } |
679 | |
680 | Color linear_col = light_storage->light_get_color(base); |
681 | sky_light_data.color[0] = linear_col.r; |
682 | sky_light_data.color[1] = linear_col.g; |
683 | sky_light_data.color[2] = linear_col.b; |
684 | |
685 | sky_light_data.enabled = true; |
686 | |
687 | float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); |
688 | if (angular_diameter > 0.0) { |
689 | angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter)); |
690 | } else { |
691 | angular_diameter = 0.0; |
692 | } |
693 | sky_light_data.size = angular_diameter; |
694 | sky_globals.directional_light_count++; |
695 | if (sky_globals.directional_light_count >= sky_globals.max_directional_lights) { |
696 | break; |
697 | } |
698 | } |
699 | } |
700 | // Check whether the directional_light_buffer changes |
701 | bool light_data_dirty = false; |
702 | |
703 | // Light buffer is dirty if we have fewer or more lights |
704 | // If we have fewer lights, make sure that old lights are disabled |
705 | if (sky_globals.directional_light_count != sky_globals.last_frame_directional_light_count) { |
706 | light_data_dirty = true; |
707 | for (uint32_t i = sky_globals.directional_light_count; i < sky_globals.max_directional_lights; i++) { |
708 | sky_globals.directional_lights[i].enabled = false; |
709 | sky_globals.last_frame_directional_lights[i].enabled = false; |
710 | } |
711 | } |
712 | |
713 | if (!light_data_dirty) { |
714 | for (uint32_t i = 0; i < sky_globals.directional_light_count; i++) { |
715 | if (sky_globals.directional_lights[i].direction[0] != sky_globals.last_frame_directional_lights[i].direction[0] || |
716 | sky_globals.directional_lights[i].direction[1] != sky_globals.last_frame_directional_lights[i].direction[1] || |
717 | sky_globals.directional_lights[i].direction[2] != sky_globals.last_frame_directional_lights[i].direction[2] || |
718 | sky_globals.directional_lights[i].energy != sky_globals.last_frame_directional_lights[i].energy || |
719 | sky_globals.directional_lights[i].color[0] != sky_globals.last_frame_directional_lights[i].color[0] || |
720 | sky_globals.directional_lights[i].color[1] != sky_globals.last_frame_directional_lights[i].color[1] || |
721 | sky_globals.directional_lights[i].color[2] != sky_globals.last_frame_directional_lights[i].color[2] || |
722 | sky_globals.directional_lights[i].enabled != sky_globals.last_frame_directional_lights[i].enabled || |
723 | sky_globals.directional_lights[i].size != sky_globals.last_frame_directional_lights[i].size) { |
724 | light_data_dirty = true; |
725 | break; |
726 | } |
727 | } |
728 | } |
729 | |
730 | if (light_data_dirty) { |
731 | glBufferData(GL_UNIFORM_BUFFER, sizeof(DirectionalLightData) * sky_globals.max_directional_lights, sky_globals.directional_lights, GL_STREAM_DRAW); |
732 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
733 | |
734 | DirectionalLightData *temp = sky_globals.last_frame_directional_lights; |
735 | sky_globals.last_frame_directional_lights = sky_globals.directional_lights; |
736 | sky_globals.directional_lights = temp; |
737 | sky_globals.last_frame_directional_light_count = sky_globals.directional_light_count; |
738 | if (sky) { |
739 | sky->reflection_dirty = true; |
740 | } |
741 | } |
742 | } |
743 | |
744 | if (p_render_data->view_count > 1) { |
745 | glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer); |
746 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
747 | } |
748 | |
749 | if (sky && !sky->radiance) { |
750 | _invalidate_sky(sky); |
751 | _update_dirty_skys(); |
752 | } |
753 | } |
754 | |
755 | void RasterizerSceneGLES3::_draw_sky(RID p_env, const Projection &p_projection, const Transform3D &p_transform, float p_luminance_multiplier, bool p_use_multiview, bool p_flip_y) { |
756 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
757 | ERR_FAIL_COND(p_env.is_null()); |
758 | |
759 | Sky *sky = sky_owner.get_or_null(environment_get_sky(p_env)); |
760 | ERR_FAIL_NULL(sky); |
761 | |
762 | GLES3::SkyMaterialData *material_data = nullptr; |
763 | RID sky_material; |
764 | |
765 | uint64_t spec_constants = p_use_multiview ? SkyShaderGLES3::USE_MULTIVIEW : 0; |
766 | if (p_flip_y) { |
767 | spec_constants |= SkyShaderGLES3::USE_INVERTED_Y; |
768 | } |
769 | |
770 | RS::EnvironmentBG background = environment_get_background(p_env); |
771 | |
772 | if (sky) { |
773 | sky_material = sky->material; |
774 | |
775 | if (sky_material.is_valid()) { |
776 | material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); |
777 | if (!material_data || !material_data->shader_data->valid) { |
778 | material_data = nullptr; |
779 | } |
780 | } |
781 | |
782 | if (!material_data) { |
783 | sky_material = sky_globals.default_material; |
784 | material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); |
785 | } |
786 | } else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) { |
787 | sky_material = sky_globals.fog_material; |
788 | material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); |
789 | } |
790 | |
791 | ERR_FAIL_NULL(material_data); |
792 | material_data->bind_uniforms(); |
793 | |
794 | GLES3::SkyShaderData *shader_data = material_data->shader_data; |
795 | |
796 | ERR_FAIL_NULL(shader_data); |
797 | |
798 | // Camera |
799 | Projection camera; |
800 | |
801 | if (environment_get_sky_custom_fov(p_env)) { |
802 | float near_plane = p_projection.get_z_near(); |
803 | float far_plane = p_projection.get_z_far(); |
804 | float aspect = p_projection.get_aspect(); |
805 | |
806 | camera.set_perspective(environment_get_sky_custom_fov(p_env), aspect, near_plane, far_plane); |
807 | } else { |
808 | camera = p_projection; |
809 | } |
810 | Basis sky_transform = environment_get_sky_orientation(p_env); |
811 | sky_transform.invert(); |
812 | sky_transform = sky_transform * p_transform.basis; |
813 | |
814 | bool success = material_storage->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); |
815 | if (!success) { |
816 | return; |
817 | } |
818 | |
819 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, sky_transform, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); |
820 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, camera.columns[2][0], camera.columns[0][0], camera.columns[2][1], camera.columns[1][1], shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); |
821 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); |
822 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); |
823 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::LUMINANCE_MULTIPLIER, p_luminance_multiplier, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND, spec_constants); |
824 | |
825 | if (p_use_multiview) { |
826 | glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer); |
827 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
828 | } |
829 | |
830 | glBindVertexArray(sky_globals.screen_triangle_array); |
831 | glDrawArrays(GL_TRIANGLES, 0, 3); |
832 | } |
833 | |
834 | void RasterizerSceneGLES3::_update_sky_radiance(RID p_env, const Projection &p_projection, const Transform3D &p_transform, float p_luminance_multiplier) { |
835 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
836 | ERR_FAIL_COND(p_env.is_null()); |
837 | |
838 | Sky *sky = sky_owner.get_or_null(environment_get_sky(p_env)); |
839 | ERR_FAIL_NULL(sky); |
840 | |
841 | GLES3::SkyMaterialData *material_data = nullptr; |
842 | RID sky_material; |
843 | |
844 | RS::EnvironmentBG background = environment_get_background(p_env); |
845 | |
846 | if (sky) { |
847 | ERR_FAIL_NULL(sky); |
848 | sky_material = sky->material; |
849 | |
850 | if (sky_material.is_valid()) { |
851 | material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); |
852 | if (!material_data || !material_data->shader_data->valid) { |
853 | material_data = nullptr; |
854 | } |
855 | } |
856 | |
857 | if (!material_data) { |
858 | sky_material = sky_globals.default_material; |
859 | material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); |
860 | } |
861 | } else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) { |
862 | sky_material = sky_globals.fog_material; |
863 | material_data = static_cast<GLES3::SkyMaterialData *>(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); |
864 | } |
865 | |
866 | ERR_FAIL_NULL(material_data); |
867 | material_data->bind_uniforms(); |
868 | |
869 | GLES3::SkyShaderData *shader_data = material_data->shader_data; |
870 | |
871 | ERR_FAIL_NULL(shader_data); |
872 | |
873 | bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY; |
874 | RS::SkyMode sky_mode = sky->mode; |
875 | |
876 | if (sky_mode == RS::SKY_MODE_AUTOMATIC) { |
877 | if (shader_data->uses_time || shader_data->uses_position) { |
878 | update_single_frame = true; |
879 | sky_mode = RS::SKY_MODE_REALTIME; |
880 | } else if (shader_data->uses_light || shader_data->ubo_size > 0) { |
881 | update_single_frame = false; |
882 | sky_mode = RS::SKY_MODE_INCREMENTAL; |
883 | } else { |
884 | update_single_frame = true; |
885 | sky_mode = RS::SKY_MODE_QUALITY; |
886 | } |
887 | } |
888 | |
889 | if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) { |
890 | // On the first frame after creating sky, rebuild in single frame |
891 | update_single_frame = true; |
892 | sky_mode = RS::SKY_MODE_QUALITY; |
893 | } |
894 | |
895 | int max_processing_layer = sky->mipmap_count; |
896 | |
897 | // Update radiance cubemap |
898 | if (sky->reflection_dirty && (sky->processing_layer > max_processing_layer || update_single_frame)) { |
899 | static const Vector3 view_normals[6] = { |
900 | Vector3(+1, 0, 0), |
901 | Vector3(-1, 0, 0), |
902 | Vector3(0, +1, 0), |
903 | Vector3(0, -1, 0), |
904 | Vector3(0, 0, +1), |
905 | Vector3(0, 0, -1) |
906 | }; |
907 | static const Vector3 view_up[6] = { |
908 | Vector3(0, -1, 0), |
909 | Vector3(0, -1, 0), |
910 | Vector3(0, 0, +1), |
911 | Vector3(0, 0, -1), |
912 | Vector3(0, -1, 0), |
913 | Vector3(0, -1, 0) |
914 | }; |
915 | |
916 | Projection cm; |
917 | cm.set_perspective(90, 1, 0.01, 10.0); |
918 | Projection correction; |
919 | correction.columns[1][1] = -1.0; |
920 | cm = correction * cm; |
921 | |
922 | bool success = material_storage->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); |
923 | if (!success) { |
924 | return; |
925 | } |
926 | |
927 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); |
928 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); |
929 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, cm.columns[2][0], cm.columns[0][0], cm.columns[2][1], cm.columns[1][1], shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); |
930 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::LUMINANCE_MULTIPLIER, p_luminance_multiplier, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); |
931 | |
932 | glBindVertexArray(sky_globals.screen_triangle_array); |
933 | |
934 | glViewport(0, 0, sky->radiance_size, sky->radiance_size); |
935 | glBindFramebuffer(GL_FRAMEBUFFER, sky->radiance_framebuffer); |
936 | |
937 | for (int i = 0; i < 6; i++) { |
938 | Basis local_view = Basis::looking_at(view_normals[i], view_up[i]); |
939 | material_storage->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, local_view, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); |
940 | glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, sky->raw_radiance, 0); |
941 | glDrawArrays(GL_TRIANGLES, 0, 3); |
942 | } |
943 | |
944 | if (update_single_frame) { |
945 | for (int i = 0; i < max_processing_layer; i++) { |
946 | _filter_sky_radiance(sky, i); |
947 | } |
948 | } else { |
949 | _filter_sky_radiance(sky, 0); //Just copy over the first mipmap |
950 | } |
951 | sky->processing_layer = 1; |
952 | sky->baked_exposure = p_luminance_multiplier; |
953 | sky->reflection_dirty = false; |
954 | } else { |
955 | if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) { |
956 | _filter_sky_radiance(sky, sky->processing_layer); |
957 | sky->processing_layer++; |
958 | } |
959 | } |
960 | } |
961 | |
962 | // Helper functions for IBL filtering |
963 | |
964 | Vector3 importance_sample_GGX(Vector2 xi, float roughness4) { |
965 | // Compute distribution direction |
966 | float phi = 2.0 * Math_PI * xi.x; |
967 | float cos_theta = sqrt((1.0 - xi.y) / (1.0 + (roughness4 - 1.0) * xi.y)); |
968 | float sin_theta = sqrt(1.0 - cos_theta * cos_theta); |
969 | |
970 | // Convert to spherical direction |
971 | Vector3 half_vector; |
972 | half_vector.x = sin_theta * cos(phi); |
973 | half_vector.y = sin_theta * sin(phi); |
974 | half_vector.z = cos_theta; |
975 | |
976 | return half_vector; |
977 | } |
978 | |
979 | float distribution_GGX(float NdotH, float roughness4) { |
980 | float NdotH2 = NdotH * NdotH; |
981 | float denom = (NdotH2 * (roughness4 - 1.0) + 1.0); |
982 | denom = Math_PI * denom * denom; |
983 | |
984 | return roughness4 / denom; |
985 | } |
986 | |
987 | float radical_inverse_vdC(uint32_t bits) { |
988 | bits = (bits << 16) | (bits >> 16); |
989 | bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1); |
990 | bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2); |
991 | bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4); |
992 | bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8); |
993 | |
994 | return float(bits) * 2.3283064365386963e-10; |
995 | } |
996 | |
997 | Vector2 hammersley(uint32_t i, uint32_t N) { |
998 | return Vector2(float(i) / float(N), radical_inverse_vdC(i)); |
999 | } |
1000 | |
1001 | void RasterizerSceneGLES3::_filter_sky_radiance(Sky *p_sky, int p_base_layer) { |
1002 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
1003 | |
1004 | glActiveTexture(GL_TEXTURE0); |
1005 | glBindTexture(GL_TEXTURE_CUBE_MAP, p_sky->raw_radiance); |
1006 | glBindFramebuffer(GL_FRAMEBUFFER, p_sky->radiance_framebuffer); |
1007 | |
1008 | CubemapFilterShaderGLES3::ShaderVariant mode = CubemapFilterShaderGLES3::MODE_DEFAULT; |
1009 | |
1010 | if (p_base_layer == 0) { |
1011 | glGenerateMipmap(GL_TEXTURE_CUBE_MAP); |
1012 | // Copy over base layer without filtering. |
1013 | mode = CubemapFilterShaderGLES3::MODE_COPY; |
1014 | } |
1015 | |
1016 | int size = p_sky->radiance_size >> p_base_layer; |
1017 | glViewport(0, 0, size, size); |
1018 | glBindVertexArray(sky_globals.screen_triangle_array); |
1019 | |
1020 | bool success = material_storage->shaders.cubemap_filter_shader.version_bind_shader(scene_globals.cubemap_filter_shader_version, mode); |
1021 | if (!success) { |
1022 | return; |
1023 | } |
1024 | |
1025 | if (p_base_layer > 0) { |
1026 | const uint32_t sample_counts[4] = { 1, sky_globals.ggx_samples / 4, sky_globals.ggx_samples / 2, sky_globals.ggx_samples }; |
1027 | uint32_t sample_count = sample_counts[MIN(3, p_base_layer)]; |
1028 | |
1029 | float roughness = float(p_base_layer) / (p_sky->mipmap_count); |
1030 | float roughness4 = roughness * roughness; |
1031 | roughness4 *= roughness4; |
1032 | |
1033 | float solid_angle_texel = 4.0 * Math_PI / float(6 * size * size); |
1034 | |
1035 | LocalVector<float> sample_directions; |
1036 | sample_directions.resize(4 * sample_count); |
1037 | |
1038 | uint32_t index = 0; |
1039 | float weight = 0.0; |
1040 | for (uint32_t i = 0; i < sample_count; i++) { |
1041 | Vector2 xi = hammersley(i, sample_count); |
1042 | Vector3 dir = importance_sample_GGX(xi, roughness4); |
1043 | Vector3 light_vec = (2.0 * dir.z * dir - Vector3(0.0, 0.0, 1.0)); |
1044 | |
1045 | if (light_vec.z < 0.0) { |
1046 | continue; |
1047 | } |
1048 | |
1049 | sample_directions[index * 4] = light_vec.x; |
1050 | sample_directions[index * 4 + 1] = light_vec.y; |
1051 | sample_directions[index * 4 + 2] = light_vec.z; |
1052 | |
1053 | float D = distribution_GGX(dir.z, roughness4); |
1054 | float pdf = D * dir.z / (4.0 * dir.z) + 0.0001; |
1055 | |
1056 | float solid_angle_sample = 1.0 / (float(sample_count) * pdf + 0.0001); |
1057 | |
1058 | float mip_level = MAX(0.5 * log2(solid_angle_sample / solid_angle_texel) + float(MAX(1, p_base_layer - 3)), 1.0); |
1059 | |
1060 | sample_directions[index * 4 + 3] = mip_level; |
1061 | weight += light_vec.z; |
1062 | index++; |
1063 | } |
1064 | |
1065 | glUniform4fv(material_storage->shaders.cubemap_filter_shader.version_get_uniform(CubemapFilterShaderGLES3::SAMPLE_DIRECTIONS_MIP, scene_globals.cubemap_filter_shader_version, mode), sample_count, sample_directions.ptr()); |
1066 | material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::WEIGHT, weight, scene_globals.cubemap_filter_shader_version, mode); |
1067 | material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::SAMPLE_COUNT, index, scene_globals.cubemap_filter_shader_version, mode); |
1068 | } |
1069 | |
1070 | for (int i = 0; i < 6; i++) { |
1071 | glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, p_sky->radiance, p_base_layer); |
1072 | #ifdef DEBUG_ENABLED |
1073 | GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); |
1074 | if (status != GL_FRAMEBUFFER_COMPLETE) { |
1075 | WARN_PRINT("Could not bind sky radiance face: " + itos(i) + ", status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status)); |
1076 | } |
1077 | #endif |
1078 | material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::FACE_ID, i, scene_globals.cubemap_filter_shader_version, mode); |
1079 | |
1080 | glDrawArrays(GL_TRIANGLES, 0, 3); |
1081 | } |
1082 | glBindVertexArray(0); |
1083 | glViewport(0, 0, p_sky->screen_size.x, p_sky->screen_size.y); |
1084 | glBindFramebuffer(GL_FRAMEBUFFER, 0); |
1085 | } |
1086 | |
1087 | Ref<Image> RasterizerSceneGLES3::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) { |
1088 | return Ref<Image>(); |
1089 | } |
1090 | |
1091 | /* ENVIRONMENT API */ |
1092 | |
1093 | void RasterizerSceneGLES3::environment_glow_set_use_bicubic_upscale(bool p_enable) { |
1094 | glow_bicubic_upscale = p_enable; |
1095 | } |
1096 | |
1097 | void RasterizerSceneGLES3::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) { |
1098 | } |
1099 | |
1100 | void RasterizerSceneGLES3::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { |
1101 | } |
1102 | |
1103 | void RasterizerSceneGLES3::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { |
1104 | } |
1105 | |
1106 | void RasterizerSceneGLES3::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) { |
1107 | } |
1108 | |
1109 | void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) { |
1110 | } |
1111 | |
1112 | void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) { |
1113 | } |
1114 | |
1115 | void RasterizerSceneGLES3::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) { |
1116 | } |
1117 | |
1118 | void RasterizerSceneGLES3::environment_set_volumetric_fog_filter_active(bool p_enable) { |
1119 | } |
1120 | |
1121 | Ref<Image> RasterizerSceneGLES3::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) { |
1122 | return Ref<Image>(); |
1123 | } |
1124 | |
1125 | void RasterizerSceneGLES3::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) { |
1126 | } |
1127 | |
1128 | void RasterizerSceneGLES3::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) { |
1129 | } |
1130 | |
1131 | RID RasterizerSceneGLES3::fog_volume_instance_create(RID p_fog_volume) { |
1132 | return RID(); |
1133 | } |
1134 | |
1135 | void RasterizerSceneGLES3::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) { |
1136 | } |
1137 | |
1138 | void RasterizerSceneGLES3::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) { |
1139 | } |
1140 | |
1141 | RID RasterizerSceneGLES3::fog_volume_instance_get_volume(RID p_fog_volume_instance) const { |
1142 | return RID(); |
1143 | } |
1144 | |
1145 | Vector3 RasterizerSceneGLES3::fog_volume_instance_get_position(RID p_fog_volume_instance) const { |
1146 | return Vector3(); |
1147 | } |
1148 | |
1149 | RID RasterizerSceneGLES3::voxel_gi_instance_create(RID p_voxel_gi) { |
1150 | return RID(); |
1151 | } |
1152 | |
1153 | void RasterizerSceneGLES3::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) { |
1154 | } |
1155 | |
1156 | bool RasterizerSceneGLES3::voxel_gi_needs_update(RID p_probe) const { |
1157 | return false; |
1158 | } |
1159 | |
1160 | void RasterizerSceneGLES3::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) { |
1161 | } |
1162 | |
1163 | void RasterizerSceneGLES3::voxel_gi_set_quality(RS::VoxelGIQuality) { |
1164 | } |
1165 | |
1166 | _FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) { |
1167 | static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 }; |
1168 | static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 1 }; |
1169 | return (p_indices - subtractor[p_primitive]) / divisor[p_primitive]; |
1170 | } |
1171 | void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append) { |
1172 | GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); |
1173 | |
1174 | if (p_render_list == RENDER_LIST_OPAQUE) { |
1175 | scene_state.used_screen_texture = false; |
1176 | scene_state.used_normal_texture = false; |
1177 | scene_state.used_depth_texture = false; |
1178 | } |
1179 | |
1180 | Plane near_plane; |
1181 | if (p_render_data->cam_orthogonal) { |
1182 | near_plane = Plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin); |
1183 | near_plane.d += p_render_data->cam_projection.get_z_near(); |
1184 | } |
1185 | float z_max = p_render_data->cam_projection.get_z_far() - p_render_data->cam_projection.get_z_near(); |
1186 | |
1187 | RenderList *rl = &render_list[p_render_list]; |
1188 | |
1189 | // Parse any updates on our geometry, updates surface caches and such |
1190 | _update_dirty_geometry_instances(); |
1191 | |
1192 | if (!p_append) { |
1193 | rl->clear(); |
1194 | if (p_render_list == RENDER_LIST_OPAQUE) { |
1195 | render_list[RENDER_LIST_ALPHA].clear(); //opaque fills alpha too |
1196 | } |
1197 | } |
1198 | |
1199 | //fill list |
1200 | |
1201 | for (int i = 0; i < (int)p_render_data->instances->size(); i++) { |
1202 | GeometryInstanceGLES3 *inst = static_cast<GeometryInstanceGLES3 *>((*p_render_data->instances)[i]); |
1203 | |
1204 | Vector3 center = inst->transform.origin; |
1205 | if (p_render_data->cam_orthogonal) { |
1206 | if (inst->use_aabb_center) { |
1207 | center = inst->transformed_aabb.get_support(-near_plane.normal); |
1208 | } |
1209 | inst->depth = near_plane.distance_to(center) - inst->sorting_offset; |
1210 | } else { |
1211 | if (inst->use_aabb_center) { |
1212 | center = inst->transformed_aabb.position + (inst->transformed_aabb.size * 0.5); |
1213 | } |
1214 | inst->depth = p_render_data->cam_transform.origin.distance_to(center) - inst->sorting_offset; |
1215 | } |
1216 | uint32_t depth_layer = CLAMP(int(inst->depth * 16 / z_max), 0, 15); |
1217 | |
1218 | uint32_t flags = inst->base_flags; //fill flags if appropriate |
1219 | |
1220 | if (inst->non_uniform_scale) { |
1221 | flags |= INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE; |
1222 | } |
1223 | |
1224 | // Sets the index values for lookup in the shader |
1225 | // This has to be done after _setup_lights was called this frame |
1226 | // TODO, check shadow status of lights here, if using shadows, skip here and add below |
1227 | if (p_pass_mode == PASS_MODE_COLOR) { |
1228 | if (inst->omni_light_count) { |
1229 | inst->omni_light_gl_cache.resize(inst->omni_light_count); |
1230 | for (uint32_t j = 0; j < inst->omni_light_count; j++) { |
1231 | inst->omni_light_gl_cache[j] = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(inst->omni_lights[j]); |
1232 | } |
1233 | } |
1234 | if (inst->spot_light_count) { |
1235 | inst->spot_light_gl_cache.resize(inst->spot_light_count); |
1236 | for (uint32_t j = 0; j < inst->spot_light_count; j++) { |
1237 | inst->spot_light_gl_cache[j] = GLES3::LightStorage::get_singleton()->light_instance_get_gl_id(inst->spot_lights[j]); |
1238 | } |
1239 | } |
1240 | } |
1241 | |
1242 | inst->flags_cache = flags; |
1243 | |
1244 | GeometryInstanceSurface *surf = inst->surface_caches; |
1245 | |
1246 | while (surf) { |
1247 | // LOD |
1248 | |
1249 | if (p_render_data->screen_mesh_lod_threshold > 0.0 && mesh_storage->mesh_surface_has_lod(surf->surface)) { |
1250 | // Get the LOD support points on the mesh AABB. |
1251 | Vector3 lod_support_min = inst->transformed_aabb.get_support(p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z)); |
1252 | Vector3 lod_support_max = inst->transformed_aabb.get_support(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z)); |
1253 | |
1254 | // Get the distances to those points on the AABB from the camera origin. |
1255 | float distance_min = (float)p_render_data->cam_transform.origin.distance_to(lod_support_min); |
1256 | float distance_max = (float)p_render_data->cam_transform.origin.distance_to(lod_support_max); |
1257 | |
1258 | float distance = 0.0; |
1259 | |
1260 | if (distance_min * distance_max < 0.0) { |
1261 | //crossing plane |
1262 | distance = 0.0; |
1263 | } else if (distance_min >= 0.0) { |
1264 | distance = distance_min; |
1265 | } else if (distance_max <= 0.0) { |
1266 | distance = -distance_max; |
1267 | } |
1268 | |
1269 | if (p_render_data->cam_orthogonal) { |
1270 | distance = 1.0; |
1271 | } |
1272 | |
1273 | uint32_t indices = 0; |
1274 | surf->lod_index = mesh_storage->mesh_surface_get_lod(surf->surface, inst->lod_model_scale * inst->lod_bias, distance * p_render_data->lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, indices); |
1275 | surf->index_count = indices; |
1276 | |
1277 | if (p_render_data->render_info) { |
1278 | indices = _indices_to_primitives(surf->primitive, indices); |
1279 | if (p_render_list == RENDER_LIST_OPAQUE) { //opaque |
1280 | p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices; |
1281 | } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow |
1282 | p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices; |
1283 | } |
1284 | } |
1285 | |
1286 | } else { |
1287 | surf->lod_index = 0; |
1288 | |
1289 | if (p_render_data->render_info) { |
1290 | uint32_t to_draw = mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface); |
1291 | to_draw = _indices_to_primitives(surf->primitive, to_draw); |
1292 | to_draw *= inst->instance_count > 0 ? inst->instance_count : 1; |
1293 | if (p_render_list == RENDER_LIST_OPAQUE) { //opaque |
1294 | p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += to_draw; |
1295 | } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow |
1296 | p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += to_draw; |
1297 | } |
1298 | } |
1299 | } |
1300 | |
1301 | // ADD Element |
1302 | if (p_pass_mode == PASS_MODE_COLOR) { |
1303 | #ifdef DEBUG_ENABLED |
1304 | bool force_alpha = unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW); |
1305 | #else |
1306 | bool force_alpha = false; |
1307 | #endif |
1308 | if (!force_alpha && (surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { |
1309 | rl->add_element(surf); |
1310 | } |
1311 | if (force_alpha || (surf->flags & GeometryInstanceSurface::FLAG_PASS_ALPHA)) { |
1312 | render_list[RENDER_LIST_ALPHA].add_element(surf); |
1313 | } |
1314 | |
1315 | if (surf->flags & GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE) { |
1316 | scene_state.used_screen_texture = true; |
1317 | } |
1318 | if (surf->flags & GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE) { |
1319 | scene_state.used_normal_texture = true; |
1320 | } |
1321 | if (surf->flags & GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE) { |
1322 | scene_state.used_depth_texture = true; |
1323 | } |
1324 | |
1325 | /* |
1326 | Add elements here if there are shadows |
1327 | */ |
1328 | |
1329 | } else if (p_pass_mode == PASS_MODE_SHADOW) { |
1330 | if (surf->flags & GeometryInstanceSurface::FLAG_PASS_SHADOW) { |
1331 | rl->add_element(surf); |
1332 | } |
1333 | } else { |
1334 | if (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { |
1335 | rl->add_element(surf); |
1336 | } |
1337 | } |
1338 | |
1339 | surf->sort.depth_layer = depth_layer; |
1340 | |
1341 | surf = surf->next; |
1342 | } |
1343 | } |
1344 | } |
1345 | |
1346 | // Needs to be called after _setup_lights so that directional_light_count is accurate. |
1347 | void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows) { |
1348 | Projection correction; |
1349 | correction.columns[1][1] = p_flip_y ? -1.0 : 1.0; |
1350 | Projection projection = correction * p_render_data->cam_projection; |
1351 | //store camera into ubo |
1352 | GLES3::MaterialStorage::store_camera(projection, scene_state.ubo.projection_matrix); |
1353 | GLES3::MaterialStorage::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix); |
1354 | GLES3::MaterialStorage::store_transform(p_render_data->cam_transform, scene_state.ubo.inv_view_matrix); |
1355 | GLES3::MaterialStorage::store_transform(p_render_data->inv_cam_transform, scene_state.ubo.view_matrix); |
1356 | scene_state.ubo.camera_visible_layers = p_render_data->camera_visible_layers; |
1357 | |
1358 | if (p_render_data->view_count > 1) { |
1359 | for (uint32_t v = 0; v < p_render_data->view_count; v++) { |
1360 | projection = correction * p_render_data->view_projection[v]; |
1361 | GLES3::MaterialStorage::store_camera(projection, scene_state.multiview_ubo.projection_matrix_view[v]); |
1362 | GLES3::MaterialStorage::store_camera(projection.inverse(), scene_state.multiview_ubo.inv_projection_matrix_view[v]); |
1363 | |
1364 | scene_state.multiview_ubo.eye_offset[v][0] = p_render_data->view_eye_offset[v].x; |
1365 | scene_state.multiview_ubo.eye_offset[v][1] = p_render_data->view_eye_offset[v].y; |
1366 | scene_state.multiview_ubo.eye_offset[v][2] = p_render_data->view_eye_offset[v].z; |
1367 | scene_state.multiview_ubo.eye_offset[v][3] = 0.0; |
1368 | } |
1369 | } |
1370 | |
1371 | scene_state.ubo.directional_light_count = p_render_data->directional_light_count; |
1372 | |
1373 | scene_state.ubo.z_far = p_render_data->z_far; |
1374 | scene_state.ubo.z_near = p_render_data->z_near; |
1375 | |
1376 | scene_state.ubo.viewport_size[0] = p_screen_size.x; |
1377 | scene_state.ubo.viewport_size[1] = p_screen_size.y; |
1378 | |
1379 | Size2 screen_pixel_size = Vector2(1.0, 1.0) / Size2(p_screen_size); |
1380 | scene_state.ubo.screen_pixel_size[0] = screen_pixel_size.x; |
1381 | scene_state.ubo.screen_pixel_size[1] = screen_pixel_size.y; |
1382 | |
1383 | //time global variables |
1384 | scene_state.ubo.time = time; |
1385 | |
1386 | if (is_environment(p_render_data->environment)) { |
1387 | RS::EnvironmentBG env_bg = environment_get_background(p_render_data->environment); |
1388 | RS::EnvironmentAmbientSource ambient_src = environment_get_ambient_source(p_render_data->environment); |
1389 | |
1390 | float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_render_data->environment); |
1391 | |
1392 | scene_state.ubo.ambient_light_color_energy[3] = bg_energy_multiplier; |
1393 | |
1394 | scene_state.ubo.ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_render_data->environment); |
1395 | |
1396 | //ambient |
1397 | if (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && (env_bg == RS::ENV_BG_CLEAR_COLOR || env_bg == RS::ENV_BG_COLOR)) { |
1398 | Color color = env_bg == RS::ENV_BG_CLEAR_COLOR ? p_default_bg_color : environment_get_bg_color(p_render_data->environment); |
1399 | color = color.srgb_to_linear(); |
1400 | |
1401 | scene_state.ubo.ambient_light_color_energy[0] = color.r * bg_energy_multiplier; |
1402 | scene_state.ubo.ambient_light_color_energy[1] = color.g * bg_energy_multiplier; |
1403 | scene_state.ubo.ambient_light_color_energy[2] = color.b * bg_energy_multiplier; |
1404 | scene_state.ubo.use_ambient_light = true; |
1405 | scene_state.ubo.use_ambient_cubemap = false; |
1406 | } else { |
1407 | float energy = environment_get_ambient_light_energy(p_render_data->environment); |
1408 | Color color = environment_get_ambient_light(p_render_data->environment); |
1409 | color = color.srgb_to_linear(); |
1410 | scene_state.ubo.ambient_light_color_energy[0] = color.r * energy; |
1411 | scene_state.ubo.ambient_light_color_energy[1] = color.g * energy; |
1412 | scene_state.ubo.ambient_light_color_energy[2] = color.b * energy; |
1413 | |
1414 | Basis sky_transform = environment_get_sky_orientation(p_render_data->environment); |
1415 | sky_transform = sky_transform.inverse() * p_render_data->cam_transform.basis; |
1416 | GLES3::MaterialStorage::store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform); |
1417 | scene_state.ubo.use_ambient_cubemap = (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ambient_src == RS::ENV_AMBIENT_SOURCE_SKY; |
1418 | scene_state.ubo.use_ambient_light = scene_state.ubo.use_ambient_cubemap || ambient_src == RS::ENV_AMBIENT_SOURCE_COLOR; |
1419 | } |
1420 | |
1421 | //specular |
1422 | RS::EnvironmentReflectionSource ref_src = environment_get_reflection_source(p_render_data->environment); |
1423 | if ((ref_src == RS::ENV_REFLECTION_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ref_src == RS::ENV_REFLECTION_SOURCE_SKY) { |
1424 | scene_state.ubo.use_reflection_cubemap = true; |
1425 | } else { |
1426 | scene_state.ubo.use_reflection_cubemap = false; |
1427 | } |
1428 | |
1429 | scene_state.ubo.fog_enabled = environment_get_fog_enabled(p_render_data->environment); |
1430 | scene_state.ubo.fog_density = environment_get_fog_density(p_render_data->environment); |
1431 | scene_state.ubo.fog_height = environment_get_fog_height(p_render_data->environment); |
1432 | scene_state.ubo.fog_height_density = environment_get_fog_height_density(p_render_data->environment); |
1433 | scene_state.ubo.fog_aerial_perspective = environment_get_fog_aerial_perspective(p_render_data->environment); |
1434 | |
1435 | Color fog_color = environment_get_fog_light_color(p_render_data->environment).srgb_to_linear(); |
1436 | float fog_energy = environment_get_fog_light_energy(p_render_data->environment); |
1437 | |
1438 | scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy; |
1439 | scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy; |
1440 | scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy; |
1441 | |
1442 | scene_state.ubo.fog_sun_scatter = environment_get_fog_sun_scatter(p_render_data->environment); |
1443 | |
1444 | } else { |
1445 | } |
1446 | |
1447 | if (p_render_data->camera_attributes.is_valid()) { |
1448 | scene_state.ubo.emissive_exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); |
1449 | scene_state.ubo.IBL_exposure_normalization = 1.0; |
1450 | if (is_environment(p_render_data->environment)) { |
1451 | RID sky_rid = environment_get_sky(p_render_data->environment); |
1452 | if (sky_rid.is_valid()) { |
1453 | float current_exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes) * environment_get_bg_intensity(p_render_data->environment); |
1454 | scene_state.ubo.IBL_exposure_normalization = current_exposure / MAX(0.001, sky_get_baked_exposure(sky_rid)); |
1455 | } |
1456 | } |
1457 | } else if (scene_state.ubo.emissive_exposure_normalization > 0.0) { |
1458 | // This branch is triggered when using render_material(). |
1459 | // Emissive is set outside the function, so don't set it. |
1460 | // IBL isn't used don't set it. |
1461 | } else { |
1462 | scene_state.ubo.emissive_exposure_normalization = 1.0; |
1463 | scene_state.ubo.IBL_exposure_normalization = 1.0; |
1464 | } |
1465 | |
1466 | if (scene_state.ubo_buffer == 0) { |
1467 | glGenBuffers(1, &scene_state.ubo_buffer); |
1468 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DATA_UNIFORM_LOCATION, scene_state.ubo_buffer); |
1469 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.ubo_buffer, sizeof(SceneState::UBO), &scene_state.ubo, GL_STREAM_DRAW, "Scene state UBO" ); |
1470 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
1471 | } else { |
1472 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DATA_UNIFORM_LOCATION, scene_state.ubo_buffer); |
1473 | glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::UBO), &scene_state.ubo, GL_STREAM_DRAW); |
1474 | } |
1475 | |
1476 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
1477 | |
1478 | if (p_render_data->view_count > 1) { |
1479 | if (scene_state.multiview_buffer == 0) { |
1480 | glGenBuffers(1, &scene_state.multiview_buffer); |
1481 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer); |
1482 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.multiview_buffer, sizeof(SceneState::MultiviewUBO), &scene_state.multiview_ubo, GL_STREAM_DRAW, "Multiview UBO" ); |
1483 | } else { |
1484 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_MULTIVIEW_UNIFORM_LOCATION, scene_state.multiview_buffer); |
1485 | glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::MultiviewUBO), &scene_state.multiview_ubo, GL_STREAM_DRAW); |
1486 | } |
1487 | |
1488 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
1489 | } |
1490 | } |
1491 | |
1492 | // Puts lights into Uniform Buffers. Needs to be called before _fill_list as this caches the index of each light in the Uniform Buffer |
1493 | void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count) { |
1494 | GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); |
1495 | GLES3::Config *config = GLES3::Config::get_singleton(); |
1496 | |
1497 | const Transform3D inverse_transform = p_render_data->inv_cam_transform; |
1498 | |
1499 | const PagedArray<RID> &lights = *p_render_data->lights; |
1500 | |
1501 | r_directional_light_count = 0; |
1502 | r_omni_light_count = 0; |
1503 | r_spot_light_count = 0; |
1504 | |
1505 | int num_lights = lights.size(); |
1506 | |
1507 | for (int i = 0; i < num_lights; i++) { |
1508 | GLES3::LightInstance *li = GLES3::LightStorage::get_singleton()->get_light_instance(lights[i]); |
1509 | if (!li) { |
1510 | continue; |
1511 | } |
1512 | RID base = li->light; |
1513 | |
1514 | ERR_CONTINUE(base.is_null()); |
1515 | |
1516 | RS::LightType type = light_storage->light_get_type(base); |
1517 | switch (type) { |
1518 | case RS::LIGHT_DIRECTIONAL: { |
1519 | if (r_directional_light_count >= RendererSceneRender::MAX_DIRECTIONAL_LIGHTS || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) { |
1520 | continue; |
1521 | } |
1522 | |
1523 | DirectionalLightData &light_data = scene_state.directional_lights[r_directional_light_count]; |
1524 | |
1525 | Transform3D light_transform = li->transform; |
1526 | |
1527 | Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized(); |
1528 | |
1529 | light_data.direction[0] = direction.x; |
1530 | light_data.direction[1] = direction.y; |
1531 | light_data.direction[2] = direction.z; |
1532 | |
1533 | float sign = light_storage->light_is_negative(base) ? -1 : 1; |
1534 | |
1535 | light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY); |
1536 | |
1537 | if (is_using_physical_light_units()) { |
1538 | light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY); |
1539 | } else { |
1540 | light_data.energy *= Math_PI; |
1541 | } |
1542 | |
1543 | if (p_render_data->camera_attributes.is_valid()) { |
1544 | light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); |
1545 | } |
1546 | |
1547 | Color linear_col = light_storage->light_get_color(base).srgb_to_linear(); |
1548 | light_data.color[0] = linear_col.r; |
1549 | light_data.color[1] = linear_col.g; |
1550 | light_data.color[2] = linear_col.b; |
1551 | |
1552 | float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); |
1553 | light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset |
1554 | |
1555 | light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR); |
1556 | |
1557 | r_directional_light_count++; |
1558 | } break; |
1559 | case RS::LIGHT_OMNI: { |
1560 | if (r_omni_light_count >= (uint32_t)config->max_renderable_lights) { |
1561 | continue; |
1562 | } |
1563 | |
1564 | const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin); |
1565 | |
1566 | if (light_storage->light_is_distance_fade_enabled(li->light)) { |
1567 | const float fade_begin = light_storage->light_get_distance_fade_begin(li->light); |
1568 | const float fade_length = light_storage->light_get_distance_fade_length(li->light); |
1569 | |
1570 | if (distance > fade_begin) { |
1571 | if (distance > fade_begin + fade_length) { |
1572 | // Out of range, don't draw this light to improve performance. |
1573 | continue; |
1574 | } |
1575 | } |
1576 | } |
1577 | |
1578 | scene_state.omni_light_sort[r_omni_light_count].instance = li; |
1579 | scene_state.omni_light_sort[r_omni_light_count].depth = distance; |
1580 | r_omni_light_count++; |
1581 | } break; |
1582 | case RS::LIGHT_SPOT: { |
1583 | if (r_spot_light_count >= (uint32_t)config->max_renderable_lights) { |
1584 | continue; |
1585 | } |
1586 | |
1587 | const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin); |
1588 | |
1589 | if (light_storage->light_is_distance_fade_enabled(li->light)) { |
1590 | const float fade_begin = light_storage->light_get_distance_fade_begin(li->light); |
1591 | const float fade_length = light_storage->light_get_distance_fade_length(li->light); |
1592 | |
1593 | if (distance > fade_begin) { |
1594 | if (distance > fade_begin + fade_length) { |
1595 | // Out of range, don't draw this light to improve performance. |
1596 | continue; |
1597 | } |
1598 | } |
1599 | } |
1600 | |
1601 | scene_state.spot_light_sort[r_spot_light_count].instance = li; |
1602 | scene_state.spot_light_sort[r_spot_light_count].depth = distance; |
1603 | r_spot_light_count++; |
1604 | } break; |
1605 | } |
1606 | } |
1607 | |
1608 | if (r_omni_light_count) { |
1609 | SortArray<InstanceSort<GLES3::LightInstance>> sorter; |
1610 | sorter.sort(scene_state.omni_light_sort, r_omni_light_count); |
1611 | } |
1612 | |
1613 | if (r_spot_light_count) { |
1614 | SortArray<InstanceSort<GLES3::LightInstance>> sorter; |
1615 | sorter.sort(scene_state.spot_light_sort, r_spot_light_count); |
1616 | } |
1617 | |
1618 | for (uint32_t i = 0; i < (r_omni_light_count + r_spot_light_count); i++) { |
1619 | uint32_t index = (i < r_omni_light_count) ? i : i - (r_omni_light_count); |
1620 | LightData &light_data = (i < r_omni_light_count) ? scene_state.omni_lights[index] : scene_state.spot_lights[index]; |
1621 | RS::LightType type = (i < r_omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT; |
1622 | GLES3::LightInstance *li = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].instance : scene_state.spot_light_sort[index].instance; |
1623 | real_t distance = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].depth : scene_state.spot_light_sort[index].depth; |
1624 | RID base = li->light; |
1625 | |
1626 | li->gl_id = index; |
1627 | |
1628 | Transform3D light_transform = li->transform; |
1629 | Vector3 pos = inverse_transform.xform(light_transform.origin); |
1630 | |
1631 | light_data.position[0] = pos.x; |
1632 | light_data.position[1] = pos.y; |
1633 | light_data.position[2] = pos.z; |
1634 | |
1635 | float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE)); |
1636 | light_data.inv_radius = 1.0 / radius; |
1637 | |
1638 | Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized(); |
1639 | |
1640 | light_data.direction[0] = direction.x; |
1641 | light_data.direction[1] = direction.y; |
1642 | light_data.direction[2] = direction.z; |
1643 | |
1644 | float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); |
1645 | |
1646 | light_data.size = size; |
1647 | |
1648 | float sign = light_storage->light_is_negative(base) ? -1 : 1; |
1649 | Color linear_col = light_storage->light_get_color(base).srgb_to_linear(); |
1650 | |
1651 | // Reuse fade begin, fade length and distance for shadow LOD determination later. |
1652 | float fade_begin = 0.0; |
1653 | float fade_length = 0.0; |
1654 | |
1655 | float fade = 1.0; |
1656 | if (light_storage->light_is_distance_fade_enabled(li->light)) { |
1657 | fade_begin = light_storage->light_get_distance_fade_begin(li->light); |
1658 | fade_length = light_storage->light_get_distance_fade_length(li->light); |
1659 | |
1660 | if (distance > fade_begin) { |
1661 | // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player. |
1662 | fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length); |
1663 | } |
1664 | } |
1665 | |
1666 | float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade; |
1667 | |
1668 | if (is_using_physical_light_units()) { |
1669 | energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY); |
1670 | |
1671 | // Convert from Luminous Power to Luminous Intensity |
1672 | if (type == RS::LIGHT_OMNI) { |
1673 | energy *= 1.0 / (Math_PI * 4.0); |
1674 | } else { |
1675 | // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle. |
1676 | // We make this assumption to keep them easy to control. |
1677 | energy *= 1.0 / Math_PI; |
1678 | } |
1679 | } else { |
1680 | energy *= Math_PI; |
1681 | } |
1682 | |
1683 | if (p_render_data->camera_attributes.is_valid()) { |
1684 | energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes); |
1685 | } |
1686 | |
1687 | light_data.color[0] = linear_col.r * energy; |
1688 | light_data.color[1] = linear_col.g * energy; |
1689 | light_data.color[2] = linear_col.b * energy; |
1690 | |
1691 | light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION); |
1692 | |
1693 | light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION); |
1694 | |
1695 | float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE); |
1696 | light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle)); |
1697 | |
1698 | light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0; |
1699 | |
1700 | light_data.shadow_opacity = 0.0; |
1701 | } |
1702 | |
1703 | // TODO, to avoid stalls, should rotate between 3 buffers based on frame index. |
1704 | // TODO, consider mapping the buffer as in 2D |
1705 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_OMNILIGHT_UNIFORM_LOCATION, scene_state.omni_light_buffer); |
1706 | if (r_omni_light_count) { |
1707 | glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_omni_light_count, scene_state.omni_lights); |
1708 | } |
1709 | |
1710 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_SPOTLIGHT_UNIFORM_LOCATION, scene_state.spot_light_buffer); |
1711 | if (r_spot_light_count) { |
1712 | glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_spot_light_count, scene_state.spot_lights); |
1713 | } |
1714 | |
1715 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, scene_state.directional_light_buffer); |
1716 | if (r_directional_light_count) { |
1717 | glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(DirectionalLightData) * r_directional_light_count, scene_state.directional_lights); |
1718 | } |
1719 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
1720 | } |
1721 | |
1722 | void RasterizerSceneGLES3::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) { |
1723 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
1724 | GLES3::Config *config = GLES3::Config::get_singleton(); |
1725 | RENDER_TIMESTAMP("Setup 3D Scene" ); |
1726 | |
1727 | Ref<RenderSceneBuffersGLES3> rb; |
1728 | if (p_render_buffers.is_valid()) { |
1729 | rb = p_render_buffers; |
1730 | ERR_FAIL_COND(rb.is_null()); |
1731 | } |
1732 | |
1733 | GLES3::RenderTarget *rt = texture_storage->get_render_target(rb->render_target); |
1734 | ERR_FAIL_NULL(rt); |
1735 | |
1736 | // Assign render data |
1737 | // Use the format from rendererRD |
1738 | RenderDataGLES3 render_data; |
1739 | { |
1740 | render_data.render_buffers = rb; |
1741 | render_data.transparent_bg = rb.is_valid() ? rt->is_transparent : false; |
1742 | // Our first camera is used by default |
1743 | render_data.cam_transform = p_camera_data->main_transform; |
1744 | render_data.inv_cam_transform = render_data.cam_transform.affine_inverse(); |
1745 | render_data.cam_projection = p_camera_data->main_projection; |
1746 | render_data.cam_orthogonal = p_camera_data->is_orthogonal; |
1747 | render_data.camera_visible_layers = p_camera_data->visible_layers; |
1748 | |
1749 | render_data.view_count = p_camera_data->view_count; |
1750 | for (uint32_t v = 0; v < p_camera_data->view_count; v++) { |
1751 | render_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin; |
1752 | render_data.view_projection[v] = p_camera_data->view_projection[v]; |
1753 | } |
1754 | |
1755 | render_data.z_near = p_camera_data->main_projection.get_z_near(); |
1756 | render_data.z_far = p_camera_data->main_projection.get_z_far(); |
1757 | |
1758 | render_data.instances = &p_instances; |
1759 | render_data.lights = &p_lights; |
1760 | render_data.reflection_probes = &p_reflection_probes; |
1761 | render_data.environment = p_environment; |
1762 | render_data.camera_attributes = p_camera_attributes; |
1763 | render_data.reflection_probe = p_reflection_probe; |
1764 | render_data.reflection_probe_pass = p_reflection_probe_pass; |
1765 | |
1766 | // this should be the same for all cameras.. |
1767 | render_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier(); |
1768 | |
1769 | if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) { |
1770 | render_data.screen_mesh_lod_threshold = 0.0; |
1771 | } else { |
1772 | render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold; |
1773 | } |
1774 | render_data.render_info = r_render_info; |
1775 | } |
1776 | |
1777 | PagedArray<RID> empty; |
1778 | |
1779 | if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { |
1780 | render_data.lights = ∅ |
1781 | render_data.reflection_probes = ∅ |
1782 | } |
1783 | |
1784 | bool reverse_cull = render_data.cam_transform.basis.determinant() < 0; |
1785 | |
1786 | /////////// |
1787 | // Fill Light lists here |
1788 | ////////// |
1789 | |
1790 | GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer(); |
1791 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer); |
1792 | |
1793 | Color clear_color; |
1794 | if (p_render_buffers.is_valid()) { |
1795 | clear_color = texture_storage->render_target_get_clear_request_color(rb->render_target); |
1796 | } else { |
1797 | clear_color = texture_storage->get_default_clear_color(); |
1798 | } |
1799 | |
1800 | bool fb_cleared = false; |
1801 | |
1802 | Size2i screen_size; |
1803 | screen_size.x = rb->width; |
1804 | screen_size.y = rb->height; |
1805 | |
1806 | bool use_wireframe = get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME; |
1807 | |
1808 | SceneState::TonemapUBO tonemap_ubo; |
1809 | if (render_data.environment.is_valid()) { |
1810 | tonemap_ubo.exposure = environment_get_exposure(render_data.environment); |
1811 | tonemap_ubo.white = environment_get_white(render_data.environment); |
1812 | tonemap_ubo.tonemapper = int32_t(environment_get_tone_mapper(render_data.environment)); |
1813 | } |
1814 | |
1815 | if (scene_state.tonemap_buffer == 0) { |
1816 | // Only create if using 3D |
1817 | glGenBuffers(1, &scene_state.tonemap_buffer); |
1818 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer); |
1819 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.tonemap_buffer, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW, "Tonemap UBO" ); |
1820 | } else { |
1821 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer); |
1822 | glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW); |
1823 | } |
1824 | |
1825 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
1826 | |
1827 | scene_state.ubo.emissive_exposure_normalization = -1.0; // Use default exposure normalization. |
1828 | |
1829 | bool flip_y = !render_data.reflection_probe.is_valid(); |
1830 | |
1831 | if (rt->overridden.color.is_valid()) { |
1832 | // If we've overridden the render target's color texture, then don't render upside down. |
1833 | // We're probably rendering directly to an XR device. |
1834 | flip_y = false; |
1835 | } |
1836 | if (!flip_y) { |
1837 | // If we're rendering right-side up, then we need to change the winding order. |
1838 | glFrontFace(GL_CW); |
1839 | } |
1840 | |
1841 | _setup_lights(&render_data, false, render_data.directional_light_count, render_data.omni_light_count, render_data.spot_light_count); |
1842 | _setup_environment(&render_data, render_data.reflection_probe.is_valid(), screen_size, flip_y, clear_color, false); |
1843 | |
1844 | _fill_render_list(RENDER_LIST_OPAQUE, &render_data, PASS_MODE_COLOR); |
1845 | render_list[RENDER_LIST_OPAQUE].sort_by_key(); |
1846 | render_list[RENDER_LIST_ALPHA].sort_by_reverse_depth_and_priority(); |
1847 | |
1848 | bool draw_sky = false; |
1849 | bool draw_sky_fog_only = false; |
1850 | bool keep_color = false; |
1851 | float sky_energy_multiplier = 1.0; |
1852 | |
1853 | if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { |
1854 | clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black |
1855 | } else if (render_data.environment.is_valid()) { |
1856 | RS::EnvironmentBG bg_mode = environment_get_background(render_data.environment); |
1857 | float bg_energy_multiplier = environment_get_bg_energy_multiplier(render_data.environment); |
1858 | bg_energy_multiplier *= environment_get_bg_intensity(render_data.environment); |
1859 | |
1860 | if (render_data.camera_attributes.is_valid()) { |
1861 | bg_energy_multiplier *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(render_data.camera_attributes); |
1862 | } |
1863 | |
1864 | switch (bg_mode) { |
1865 | case RS::ENV_BG_CLEAR_COLOR: { |
1866 | clear_color.r *= bg_energy_multiplier; |
1867 | clear_color.g *= bg_energy_multiplier; |
1868 | clear_color.b *= bg_energy_multiplier; |
1869 | if (environment_get_fog_enabled(render_data.environment)) { |
1870 | draw_sky_fog_only = true; |
1871 | GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color" , Variant(clear_color)); |
1872 | } |
1873 | } break; |
1874 | case RS::ENV_BG_COLOR: { |
1875 | clear_color = environment_get_bg_color(render_data.environment); |
1876 | clear_color.r *= bg_energy_multiplier; |
1877 | clear_color.g *= bg_energy_multiplier; |
1878 | clear_color.b *= bg_energy_multiplier; |
1879 | if (environment_get_fog_enabled(render_data.environment)) { |
1880 | draw_sky_fog_only = true; |
1881 | GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color" , Variant(clear_color)); |
1882 | } |
1883 | } break; |
1884 | case RS::ENV_BG_SKY: { |
1885 | draw_sky = true; |
1886 | } break; |
1887 | case RS::ENV_BG_CANVAS: { |
1888 | keep_color = true; |
1889 | } break; |
1890 | case RS::ENV_BG_KEEP: { |
1891 | keep_color = true; |
1892 | } break; |
1893 | case RS::ENV_BG_CAMERA_FEED: { |
1894 | } break; |
1895 | default: { |
1896 | } |
1897 | } |
1898 | // setup sky if used for ambient, reflections, or background |
1899 | if (draw_sky || draw_sky_fog_only || environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_SKY || environment_get_ambient_source(render_data.environment) == RS::ENV_AMBIENT_SOURCE_SKY) { |
1900 | RENDER_TIMESTAMP("Setup Sky" ); |
1901 | Projection projection = render_data.cam_projection; |
1902 | if (render_data.reflection_probe.is_valid()) { |
1903 | Projection correction; |
1904 | correction.columns[1][1] = -1.0; |
1905 | projection = correction * render_data.cam_projection; |
1906 | } |
1907 | |
1908 | sky_energy_multiplier *= bg_energy_multiplier; |
1909 | |
1910 | _setup_sky(&render_data, *render_data.lights, projection, render_data.cam_transform, screen_size); |
1911 | |
1912 | if (environment_get_sky(render_data.environment).is_valid()) { |
1913 | if (environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_SKY || environment_get_ambient_source(render_data.environment) == RS::ENV_AMBIENT_SOURCE_SKY || (environment_get_reflection_source(render_data.environment) == RS::ENV_REFLECTION_SOURCE_BG && environment_get_background(render_data.environment) == RS::ENV_BG_SKY)) { |
1914 | _update_sky_radiance(render_data.environment, projection, render_data.cam_transform, sky_energy_multiplier); |
1915 | } |
1916 | } else { |
1917 | // do not try to draw sky if invalid |
1918 | draw_sky = false; |
1919 | } |
1920 | } |
1921 | } |
1922 | |
1923 | glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo); |
1924 | glViewport(0, 0, rb->width, rb->height); |
1925 | |
1926 | glCullFace(GL_BACK); |
1927 | glEnable(GL_CULL_FACE); |
1928 | scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; |
1929 | |
1930 | // Do depth prepass if it's explicitly enabled |
1931 | bool use_depth_prepass = config->use_depth_prepass; |
1932 | |
1933 | // Don't do depth prepass we are rendering overdraw |
1934 | use_depth_prepass = use_depth_prepass && get_debug_draw_mode() != RS::VIEWPORT_DEBUG_DRAW_OVERDRAW; |
1935 | |
1936 | if (use_depth_prepass) { |
1937 | RENDER_TIMESTAMP("Depth Prepass" ); |
1938 | //pre z pass |
1939 | |
1940 | glDisable(GL_BLEND); |
1941 | glDepthMask(GL_TRUE); |
1942 | glEnable(GL_DEPTH_TEST); |
1943 | glDepthFunc(GL_LEQUAL); |
1944 | glDisable(GL_SCISSOR_TEST); |
1945 | |
1946 | glColorMask(0, 0, 0, 0); |
1947 | glClearDepth(1.0f); |
1948 | glClear(GL_DEPTH_BUFFER_BIT); |
1949 | uint64_t spec_constant = SceneShaderGLES3::DISABLE_FOG | SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL | |
1950 | SceneShaderGLES3::DISABLE_LIGHTMAP | SceneShaderGLES3::DISABLE_LIGHT_OMNI | |
1951 | SceneShaderGLES3::DISABLE_LIGHT_SPOT; |
1952 | |
1953 | RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant, use_wireframe); |
1954 | _render_list_template<PASS_MODE_DEPTH>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size()); |
1955 | |
1956 | glColorMask(1, 1, 1, 1); |
1957 | |
1958 | fb_cleared = true; |
1959 | scene_state.used_depth_prepass = true; |
1960 | } else { |
1961 | scene_state.used_depth_prepass = false; |
1962 | } |
1963 | |
1964 | glBlendEquation(GL_FUNC_ADD); |
1965 | |
1966 | if (render_data.transparent_bg) { |
1967 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
1968 | glEnable(GL_BLEND); |
1969 | } else { |
1970 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
1971 | glDisable(GL_BLEND); |
1972 | } |
1973 | scene_state.current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX; |
1974 | |
1975 | glEnable(GL_DEPTH_TEST); |
1976 | glDepthFunc(GL_LEQUAL); |
1977 | glDepthMask(GL_TRUE); |
1978 | scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED; |
1979 | scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS; |
1980 | |
1981 | if (!fb_cleared) { |
1982 | glClearDepth(1.0f); |
1983 | glClear(GL_DEPTH_BUFFER_BIT); |
1984 | } |
1985 | |
1986 | if (!keep_color) { |
1987 | clear_color.a = render_data.transparent_bg ? 0.0f : 1.0f; |
1988 | glClearBufferfv(GL_COLOR, 0, clear_color.components); |
1989 | } |
1990 | RENDER_TIMESTAMP("Render Opaque Pass" ); |
1991 | uint64_t spec_constant_base_flags = 0; |
1992 | |
1993 | { |
1994 | // Specialization Constants that apply for entire rendering pass. |
1995 | if (render_data.directional_light_count == 0) { |
1996 | spec_constant_base_flags |= SceneShaderGLES3::DISABLE_LIGHT_DIRECTIONAL; |
1997 | } |
1998 | |
1999 | if (render_data.environment.is_null() || (render_data.environment.is_valid() && !environment_get_fog_enabled(render_data.environment))) { |
2000 | spec_constant_base_flags |= SceneShaderGLES3::DISABLE_FOG; |
2001 | } |
2002 | } |
2003 | // Render Opaque Objects. |
2004 | RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe); |
2005 | |
2006 | _render_list_template<PASS_MODE_COLOR>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size()); |
2007 | |
2008 | glDepthMask(GL_FALSE); |
2009 | scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_DISABLED; |
2010 | |
2011 | if (draw_sky) { |
2012 | RENDER_TIMESTAMP("Render Sky" ); |
2013 | |
2014 | glEnable(GL_DEPTH_TEST); |
2015 | glDisable(GL_BLEND); |
2016 | glEnable(GL_CULL_FACE); |
2017 | glCullFace(GL_BACK); |
2018 | scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED; |
2019 | scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; |
2020 | |
2021 | _draw_sky(render_data.environment, render_data.cam_projection, render_data.cam_transform, sky_energy_multiplier, p_camera_data->view_count > 1, flip_y); |
2022 | } |
2023 | |
2024 | if (scene_state.used_screen_texture || scene_state.used_depth_texture) { |
2025 | texture_storage->copy_scene_to_backbuffer(rt, scene_state.used_screen_texture, scene_state.used_depth_texture); |
2026 | glBindFramebuffer(GL_READ_FRAMEBUFFER, rt->fbo); |
2027 | glReadBuffer(GL_COLOR_ATTACHMENT0); |
2028 | glBindFramebuffer(GL_DRAW_FRAMEBUFFER, rt->backbuffer_fbo); |
2029 | if (scene_state.used_screen_texture) { |
2030 | glBlitFramebuffer(0, 0, rt->size.x, rt->size.y, |
2031 | 0, 0, rt->size.x, rt->size.y, |
2032 | GL_COLOR_BUFFER_BIT, GL_NEAREST); |
2033 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 5); |
2034 | glBindTexture(GL_TEXTURE_2D, rt->backbuffer); |
2035 | } |
2036 | if (scene_state.used_depth_texture) { |
2037 | glBlitFramebuffer(0, 0, rt->size.x, rt->size.y, |
2038 | 0, 0, rt->size.x, rt->size.y, |
2039 | GL_DEPTH_BUFFER_BIT, GL_NEAREST); |
2040 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); |
2041 | glBindTexture(GL_TEXTURE_2D, rt->backbuffer_depth); |
2042 | } |
2043 | glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo); |
2044 | } |
2045 | |
2046 | RENDER_TIMESTAMP("Render 3D Transparent Pass" ); |
2047 | glEnable(GL_BLEND); |
2048 | |
2049 | //Render transparent pass |
2050 | RenderListParameters render_list_params_alpha(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe); |
2051 | |
2052 | _render_list_template<PASS_MODE_COLOR_TRANSPARENT>(&render_list_params_alpha, &render_data, 0, render_list[RENDER_LIST_ALPHA].elements.size(), true); |
2053 | |
2054 | if (!flip_y) { |
2055 | // Restore the default winding order. |
2056 | glFrontFace(GL_CCW); |
2057 | } |
2058 | |
2059 | if (rb.is_valid()) { |
2060 | _render_buffers_debug_draw(rb, p_shadow_atlas, p_occluder_debug_tex); |
2061 | } |
2062 | glDisable(GL_BLEND); |
2063 | texture_storage->render_target_disable_clear_request(rb->render_target); |
2064 | } |
2065 | |
2066 | template <PassMode p_pass_mode> |
2067 | void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass) { |
2068 | GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); |
2069 | GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); |
2070 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
2071 | |
2072 | GLuint prev_vertex_array_gl = 0; |
2073 | GLuint prev_index_array_gl = 0; |
2074 | |
2075 | GLES3::SceneMaterialData *prev_material_data = nullptr; |
2076 | GLES3::SceneShaderData *prev_shader = nullptr; |
2077 | GeometryInstanceGLES3 *prev_inst = nullptr; |
2078 | SceneShaderGLES3::ShaderVariant prev_variant = SceneShaderGLES3::ShaderVariant::MODE_COLOR; |
2079 | SceneShaderGLES3::ShaderVariant shader_variant = SceneShaderGLES3::MODE_COLOR; // Assigned to silence wrong -Wmaybe-initialized |
2080 | uint64_t prev_spec_constants = 0; |
2081 | |
2082 | // Specializations constants used by all instances in the scene. |
2083 | uint64_t base_spec_constants = p_params->spec_constant_base_flags; |
2084 | |
2085 | if (p_render_data->view_count > 1) { |
2086 | base_spec_constants |= SceneShaderGLES3::USE_MULTIVIEW; |
2087 | } |
2088 | |
2089 | switch (p_pass_mode) { |
2090 | case PASS_MODE_COLOR: |
2091 | case PASS_MODE_COLOR_TRANSPARENT: { |
2092 | } break; |
2093 | case PASS_MODE_COLOR_ADDITIVE: { |
2094 | shader_variant = SceneShaderGLES3::MODE_ADDITIVE; |
2095 | } break; |
2096 | case PASS_MODE_SHADOW: |
2097 | case PASS_MODE_DEPTH: { |
2098 | shader_variant = SceneShaderGLES3::MODE_DEPTH; |
2099 | } break; |
2100 | } |
2101 | |
2102 | if constexpr (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { |
2103 | GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); |
2104 | GLES3::Config *config = GLES3::Config::get_singleton(); |
2105 | glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 2); |
2106 | GLuint texture_to_bind = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_CUBEMAP_BLACK))->tex_id; |
2107 | if (p_render_data->environment.is_valid()) { |
2108 | Sky *sky = sky_owner.get_or_null(environment_get_sky(p_render_data->environment)); |
2109 | if (sky && sky->radiance != 0) { |
2110 | texture_to_bind = sky->radiance; |
2111 | base_spec_constants |= SceneShaderGLES3::USE_RADIANCE_MAP; |
2112 | } |
2113 | glBindTexture(GL_TEXTURE_CUBE_MAP, texture_to_bind); |
2114 | } |
2115 | } |
2116 | |
2117 | bool should_request_redraw = false; |
2118 | if constexpr (p_pass_mode != PASS_MODE_DEPTH) { |
2119 | // Don't count elements during depth pre-pass to match the RD renderers. |
2120 | if (p_render_data->render_info) { |
2121 | p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += p_to_element - p_from_element; |
2122 | } |
2123 | } |
2124 | |
2125 | for (uint32_t i = p_from_element; i < p_to_element; i++) { |
2126 | const GeometryInstanceSurface *surf = p_params->elements[i]; |
2127 | GeometryInstanceGLES3 *inst = surf->owner; |
2128 | |
2129 | if (p_pass_mode == PASS_MODE_COLOR && !(surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { |
2130 | continue; // Objects with "Depth-prepass" transparency are included in both render lists, but should only be rendered in the transparent pass |
2131 | } |
2132 | |
2133 | if (inst->instance_count == 0) { |
2134 | continue; |
2135 | } |
2136 | |
2137 | GLES3::SceneShaderData *shader; |
2138 | GLES3::SceneMaterialData *material_data; |
2139 | void *mesh_surface; |
2140 | |
2141 | if constexpr (p_pass_mode == PASS_MODE_SHADOW) { |
2142 | shader = surf->shader_shadow; |
2143 | material_data = surf->material_shadow; |
2144 | mesh_surface = surf->surface_shadow; |
2145 | } else { |
2146 | shader = surf->shader; |
2147 | material_data = surf->material; |
2148 | mesh_surface = surf->surface; |
2149 | } |
2150 | |
2151 | if (!mesh_surface) { |
2152 | continue; |
2153 | } |
2154 | |
2155 | //request a redraw if one of the shaders uses TIME |
2156 | if (shader->uses_time) { |
2157 | should_request_redraw = true; |
2158 | } |
2159 | |
2160 | if constexpr (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { |
2161 | if (scene_state.current_depth_test != shader->depth_test) { |
2162 | if (shader->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) { |
2163 | glDisable(GL_DEPTH_TEST); |
2164 | } else { |
2165 | glEnable(GL_DEPTH_TEST); |
2166 | } |
2167 | scene_state.current_depth_test = shader->depth_test; |
2168 | } |
2169 | } |
2170 | |
2171 | if (scene_state.current_depth_draw != shader->depth_draw) { |
2172 | switch (shader->depth_draw) { |
2173 | case GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE: { |
2174 | glDepthMask((p_pass_mode == PASS_MODE_COLOR && !GLES3::Config::get_singleton()->use_depth_prepass) || |
2175 | p_pass_mode == PASS_MODE_DEPTH || |
2176 | p_pass_mode == PASS_MODE_SHADOW); |
2177 | } break; |
2178 | case GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS: { |
2179 | glDepthMask(GL_TRUE); |
2180 | } break; |
2181 | case GLES3::SceneShaderData::DEPTH_DRAW_DISABLED: { |
2182 | glDepthMask(GL_FALSE); |
2183 | } break; |
2184 | } |
2185 | |
2186 | scene_state.current_depth_draw = shader->depth_draw; |
2187 | } |
2188 | |
2189 | if constexpr (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT || p_pass_mode == PASS_MODE_COLOR_ADDITIVE) { |
2190 | GLES3::SceneShaderData::BlendMode desired_blend_mode; |
2191 | if constexpr (p_pass_mode == PASS_MODE_COLOR_ADDITIVE) { |
2192 | desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD; |
2193 | } else { |
2194 | desired_blend_mode = shader->blend_mode; |
2195 | } |
2196 | |
2197 | if (desired_blend_mode != scene_state.current_blend_mode) { |
2198 | switch (desired_blend_mode) { |
2199 | case GLES3::SceneShaderData::BLEND_MODE_MIX: { |
2200 | glBlendEquation(GL_FUNC_ADD); |
2201 | if (p_render_data->transparent_bg) { |
2202 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); |
2203 | } else { |
2204 | glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); |
2205 | } |
2206 | |
2207 | } break; |
2208 | case GLES3::SceneShaderData::BLEND_MODE_ADD: { |
2209 | glBlendEquation(GL_FUNC_ADD); |
2210 | glBlendFunc(p_pass_mode == PASS_MODE_COLOR_TRANSPARENT ? GL_SRC_ALPHA : GL_ONE, GL_ONE); |
2211 | |
2212 | } break; |
2213 | case GLES3::SceneShaderData::BLEND_MODE_SUB: { |
2214 | glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); |
2215 | glBlendFunc(GL_SRC_ALPHA, GL_ONE); |
2216 | |
2217 | } break; |
2218 | case GLES3::SceneShaderData::BLEND_MODE_MUL: { |
2219 | glBlendEquation(GL_FUNC_ADD); |
2220 | if (p_render_data->transparent_bg) { |
2221 | glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); |
2222 | } else { |
2223 | glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); |
2224 | } |
2225 | |
2226 | } break; |
2227 | case GLES3::SceneShaderData::BLEND_MODE_ALPHA_TO_COVERAGE: { |
2228 | // Do nothing for now. |
2229 | } break; |
2230 | } |
2231 | scene_state.current_blend_mode = desired_blend_mode; |
2232 | } |
2233 | } |
2234 | |
2235 | //find cull variant |
2236 | GLES3::SceneShaderData::Cull cull_mode = shader->cull_mode; |
2237 | |
2238 | if ((surf->flags & GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS)) { |
2239 | cull_mode = GLES3::SceneShaderData::CULL_DISABLED; |
2240 | } else { |
2241 | bool mirror = inst->mirror; |
2242 | if (p_params->reverse_cull) { |
2243 | mirror = !mirror; |
2244 | } |
2245 | if (cull_mode == GLES3::SceneShaderData::CULL_FRONT && mirror) { |
2246 | cull_mode = GLES3::SceneShaderData::CULL_BACK; |
2247 | } else if (cull_mode == GLES3::SceneShaderData::CULL_BACK && mirror) { |
2248 | cull_mode = GLES3::SceneShaderData::CULL_FRONT; |
2249 | } |
2250 | } |
2251 | |
2252 | if (scene_state.cull_mode != cull_mode) { |
2253 | if (cull_mode == GLES3::SceneShaderData::CULL_DISABLED) { |
2254 | glDisable(GL_CULL_FACE); |
2255 | } else { |
2256 | if (scene_state.cull_mode == GLES3::SceneShaderData::CULL_DISABLED) { |
2257 | // Last time was disabled, so enable and set proper face. |
2258 | glEnable(GL_CULL_FACE); |
2259 | } |
2260 | glCullFace(cull_mode == GLES3::SceneShaderData::CULL_FRONT ? GL_FRONT : GL_BACK); |
2261 | } |
2262 | scene_state.cull_mode = cull_mode; |
2263 | } |
2264 | |
2265 | RS::PrimitiveType primitive = surf->primitive; |
2266 | if (shader->uses_point_size) { |
2267 | primitive = RS::PRIMITIVE_POINTS; |
2268 | } |
2269 | static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP }; |
2270 | GLenum primitive_gl = prim[int(primitive)]; |
2271 | |
2272 | GLuint vertex_array_gl = 0; |
2273 | GLuint index_array_gl = 0; |
2274 | |
2275 | //skeleton and blend shape |
2276 | if (surf->owner->mesh_instance.is_valid()) { |
2277 | mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, shader->vertex_input_mask, vertex_array_gl); |
2278 | } else { |
2279 | mesh_storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, shader->vertex_input_mask, vertex_array_gl); |
2280 | } |
2281 | |
2282 | index_array_gl = mesh_storage->mesh_surface_get_index_buffer(mesh_surface, surf->lod_index); |
2283 | |
2284 | if (prev_vertex_array_gl != vertex_array_gl) { |
2285 | if (vertex_array_gl != 0) { |
2286 | glBindVertexArray(vertex_array_gl); |
2287 | } |
2288 | prev_vertex_array_gl = vertex_array_gl; |
2289 | |
2290 | // Invalidate the previous index array |
2291 | prev_index_array_gl = 0; |
2292 | } |
2293 | |
2294 | bool use_index_buffer = index_array_gl != 0; |
2295 | if (prev_index_array_gl != index_array_gl) { |
2296 | if (index_array_gl != 0) { |
2297 | // Bind index each time so we can use LODs |
2298 | glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl); |
2299 | } |
2300 | prev_index_array_gl = index_array_gl; |
2301 | } |
2302 | |
2303 | Transform3D world_transform; |
2304 | if (inst->store_transform_cache) { |
2305 | world_transform = inst->transform; |
2306 | } |
2307 | |
2308 | if (prev_material_data != material_data) { |
2309 | material_data->bind_uniforms(); |
2310 | prev_material_data = material_data; |
2311 | } |
2312 | |
2313 | SceneShaderGLES3::ShaderVariant instance_variant = shader_variant; |
2314 | if (inst->instance_count > 0) { |
2315 | // Will need to use instancing to draw (either MultiMesh or Particles). |
2316 | instance_variant = SceneShaderGLES3::ShaderVariant(1 + int(shader_variant)); |
2317 | } |
2318 | |
2319 | uint64_t spec_constants = base_spec_constants; |
2320 | |
2321 | if (inst->omni_light_count == 0) { |
2322 | spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_OMNI; |
2323 | } |
2324 | |
2325 | if (inst->spot_light_count == 0) { |
2326 | spec_constants |= SceneShaderGLES3::DISABLE_LIGHT_SPOT; |
2327 | } |
2328 | |
2329 | if (prev_shader != shader || prev_variant != instance_variant || spec_constants != prev_spec_constants) { |
2330 | bool success = material_storage->shaders.scene_shader.version_bind_shader(shader->version, instance_variant, spec_constants); |
2331 | if (!success) { |
2332 | continue; |
2333 | } |
2334 | |
2335 | float opaque_prepass_threshold = 0.0; |
2336 | if constexpr (p_pass_mode == PASS_MODE_DEPTH) { |
2337 | opaque_prepass_threshold = 0.99; |
2338 | } else if constexpr (p_pass_mode == PASS_MODE_SHADOW) { |
2339 | opaque_prepass_threshold = 0.1; |
2340 | } |
2341 | |
2342 | material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OPAQUE_PREPASS_THRESHOLD, opaque_prepass_threshold, shader->version, instance_variant, spec_constants); |
2343 | |
2344 | prev_shader = shader; |
2345 | prev_variant = instance_variant; |
2346 | prev_spec_constants = spec_constants; |
2347 | } |
2348 | |
2349 | if (prev_inst != inst || prev_shader != shader || prev_variant != instance_variant) { |
2350 | // Rebind the light indices. |
2351 | material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, inst->omni_light_count, shader->version, instance_variant, spec_constants); |
2352 | material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, inst->spot_light_count, shader->version, instance_variant, spec_constants); |
2353 | |
2354 | if (inst->omni_light_count) { |
2355 | glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->omni_light_count, inst->omni_light_gl_cache.ptr()); |
2356 | } |
2357 | |
2358 | if (inst->spot_light_count) { |
2359 | glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES, shader->version, instance_variant, spec_constants), inst->spot_light_count, inst->spot_light_gl_cache.ptr()); |
2360 | } |
2361 | |
2362 | prev_inst = inst; |
2363 | } |
2364 | |
2365 | material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, instance_variant, spec_constants); |
2366 | |
2367 | // Can be index count or vertex count |
2368 | uint32_t count = 0; |
2369 | if (surf->lod_index > 0) { |
2370 | count = surf->index_count; |
2371 | } else { |
2372 | count = mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface); |
2373 | } |
2374 | if constexpr (p_pass_mode != PASS_MODE_DEPTH) { |
2375 | // Don't count draw calls during depth pre-pass to match the RD renderers. |
2376 | if (p_render_data->render_info) { |
2377 | p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; |
2378 | } |
2379 | } |
2380 | |
2381 | if (inst->instance_count > 0) { |
2382 | // Using MultiMesh or Particles. |
2383 | // Bind instance buffers. |
2384 | |
2385 | GLuint instance_buffer = 0; |
2386 | uint32_t stride = 0; |
2387 | if (inst->flags_cache & INSTANCE_DATA_FLAG_PARTICLES) { |
2388 | instance_buffer = particles_storage->particles_get_gl_buffer(inst->data->base); |
2389 | stride = 16; // 12 bytes for instance transform and 4 bytes for packed color and custom. |
2390 | } else { |
2391 | instance_buffer = mesh_storage->multimesh_get_gl_buffer(inst->data->base); |
2392 | stride = mesh_storage->multimesh_get_stride(inst->data->base); |
2393 | } |
2394 | |
2395 | if (instance_buffer == 0) { |
2396 | // Instance buffer not initialized yet. Skip rendering for now. |
2397 | continue; |
2398 | } |
2399 | |
2400 | glBindBuffer(GL_ARRAY_BUFFER, instance_buffer); |
2401 | |
2402 | glEnableVertexAttribArray(12); |
2403 | glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0)); |
2404 | glVertexAttribDivisor(12, 1); |
2405 | glEnableVertexAttribArray(13); |
2406 | glVertexAttribPointer(13, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4)); |
2407 | glVertexAttribDivisor(13, 1); |
2408 | if (!(inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D)) { |
2409 | glEnableVertexAttribArray(14); |
2410 | glVertexAttribPointer(14, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(sizeof(float) * 8)); |
2411 | glVertexAttribDivisor(14, 1); |
2412 | } |
2413 | |
2414 | if ((inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR) || (inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA)) { |
2415 | uint32_t color_custom_offset = inst->flags_cache & INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D ? 8 : 12; |
2416 | glEnableVertexAttribArray(15); |
2417 | glVertexAttribIPointer(15, 4, GL_UNSIGNED_INT, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(color_custom_offset * sizeof(float))); |
2418 | glVertexAttribDivisor(15, 1); |
2419 | } |
2420 | if (use_index_buffer) { |
2421 | glDrawElementsInstanced(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0, inst->instance_count); |
2422 | } else { |
2423 | glDrawArraysInstanced(primitive_gl, 0, count, inst->instance_count); |
2424 | } |
2425 | } else { |
2426 | // Using regular Mesh. |
2427 | if (use_index_buffer) { |
2428 | glDrawElements(primitive_gl, count, mesh_storage->mesh_surface_get_index_type(mesh_surface), 0); |
2429 | } else { |
2430 | glDrawArrays(primitive_gl, 0, count); |
2431 | } |
2432 | } |
2433 | if (inst->instance_count > 0) { |
2434 | glDisableVertexAttribArray(12); |
2435 | glDisableVertexAttribArray(13); |
2436 | glDisableVertexAttribArray(14); |
2437 | glDisableVertexAttribArray(15); |
2438 | } |
2439 | } |
2440 | |
2441 | // Make the actual redraw request |
2442 | if (should_request_redraw) { |
2443 | RenderingServerDefault::redraw_request(); |
2444 | } |
2445 | } |
2446 | |
2447 | void RasterizerSceneGLES3::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray<RenderGeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) { |
2448 | } |
2449 | |
2450 | void RasterizerSceneGLES3::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<RenderGeometryInstance *> &p_instances) { |
2451 | GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); |
2452 | |
2453 | ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider)); |
2454 | Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale(); |
2455 | Projection cm; |
2456 | cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0); |
2457 | |
2458 | Vector3 cam_pos = p_transform.origin; |
2459 | cam_pos.y += extents.y; |
2460 | |
2461 | Transform3D cam_xform; |
2462 | cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized()); |
2463 | |
2464 | GLuint fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider); |
2465 | Size2i fb_size = particles_storage->particles_collision_get_heightfield_size(p_collider); |
2466 | |
2467 | RENDER_TIMESTAMP("Setup GPUParticlesCollisionHeightField3D" ); |
2468 | |
2469 | RenderDataGLES3 render_data; |
2470 | |
2471 | render_data.cam_projection = cm; |
2472 | render_data.cam_transform = cam_xform; |
2473 | render_data.view_projection[0] = cm; |
2474 | render_data.inv_cam_transform = render_data.cam_transform.affine_inverse(); |
2475 | render_data.cam_orthogonal = true; |
2476 | render_data.z_near = 0.0; |
2477 | render_data.z_far = cm.get_z_far(); |
2478 | |
2479 | render_data.instances = &p_instances; |
2480 | |
2481 | _setup_environment(&render_data, true, Vector2(fb_size), true, Color(), false); |
2482 | |
2483 | PassMode pass_mode = PASS_MODE_SHADOW; |
2484 | |
2485 | _fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode); |
2486 | render_list[RENDER_LIST_SECONDARY].sort_by_key(); |
2487 | |
2488 | RENDER_TIMESTAMP("Render Collider Heightfield" ); |
2489 | |
2490 | glBindFramebuffer(GL_FRAMEBUFFER, fb); |
2491 | glViewport(0, 0, fb_size.width, fb_size.height); |
2492 | |
2493 | GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_shader_parameters_get_uniform_buffer(); |
2494 | |
2495 | glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer); |
2496 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
2497 | |
2498 | glDisable(GL_BLEND); |
2499 | glDepthMask(GL_TRUE); |
2500 | glEnable(GL_DEPTH_TEST); |
2501 | glDepthFunc(GL_LESS); |
2502 | glDisable(GL_SCISSOR_TEST); |
2503 | glCullFace(GL_BACK); |
2504 | glEnable(GL_CULL_FACE); |
2505 | scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; |
2506 | |
2507 | glColorMask(0, 0, 0, 0); |
2508 | glClearDepth(1.0f); |
2509 | glClear(GL_DEPTH_BUFFER_BIT); |
2510 | |
2511 | RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), false, 31, false); |
2512 | |
2513 | _render_list_template<PASS_MODE_SHADOW>(&render_list_params, &render_data, 0, render_list[RENDER_LIST_SECONDARY].elements.size()); |
2514 | |
2515 | glColorMask(1, 1, 1, 1); |
2516 | glBindFramebuffer(GL_FRAMEBUFFER, 0); |
2517 | } |
2518 | |
2519 | void RasterizerSceneGLES3::set_time(double p_time, double p_step) { |
2520 | time = p_time; |
2521 | time_step = p_step; |
2522 | } |
2523 | |
2524 | void RasterizerSceneGLES3::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { |
2525 | debug_draw = p_debug_draw; |
2526 | } |
2527 | |
2528 | Ref<RenderSceneBuffers> RasterizerSceneGLES3::render_buffers_create() { |
2529 | Ref<RenderSceneBuffersGLES3> rb; |
2530 | rb.instantiate(); |
2531 | return rb; |
2532 | } |
2533 | |
2534 | //clear render buffers |
2535 | /* |
2536 | |
2537 | |
2538 | if (rt->copy_screen_effect.color) { |
2539 | glDeleteFramebuffers(1, &rt->copy_screen_effect.fbo); |
2540 | rt->copy_screen_effect.fbo = 0; |
2541 | |
2542 | glDeleteTextures(1, &rt->copy_screen_effect.color); |
2543 | rt->copy_screen_effect.color = 0; |
2544 | } |
2545 | |
2546 | if (rt->multisample_active) { |
2547 | glDeleteFramebuffers(1, &rt->multisample_fbo); |
2548 | rt->multisample_fbo = 0; |
2549 | |
2550 | glDeleteRenderbuffers(1, &rt->multisample_depth); |
2551 | rt->multisample_depth = 0; |
2552 | |
2553 | glDeleteRenderbuffers(1, &rt->multisample_color); |
2554 | |
2555 | rt->multisample_color = 0; |
2556 | } |
2557 | */ |
2558 | |
2559 | void RasterizerSceneGLES3::_render_buffers_debug_draw(Ref<RenderSceneBuffersGLES3> p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) { |
2560 | } |
2561 | |
2562 | void RasterizerSceneGLES3::gi_set_use_half_resolution(bool p_enable) { |
2563 | } |
2564 | |
2565 | void RasterizerSceneGLES3::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_curve) { |
2566 | } |
2567 | |
2568 | bool RasterizerSceneGLES3::screen_space_roughness_limiter_is_active() const { |
2569 | return false; |
2570 | } |
2571 | |
2572 | void RasterizerSceneGLES3::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) { |
2573 | } |
2574 | |
2575 | void RasterizerSceneGLES3::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) { |
2576 | } |
2577 | |
2578 | TypedArray<Image> RasterizerSceneGLES3::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) { |
2579 | return TypedArray<Image>(); |
2580 | } |
2581 | |
2582 | bool RasterizerSceneGLES3::free(RID p_rid) { |
2583 | if (is_environment(p_rid)) { |
2584 | environment_free(p_rid); |
2585 | } else if (sky_owner.owns(p_rid)) { |
2586 | Sky *sky = sky_owner.get_or_null(p_rid); |
2587 | ERR_FAIL_NULL_V(sky, false); |
2588 | _free_sky_data(sky); |
2589 | sky_owner.free(p_rid); |
2590 | } else if (GLES3::LightStorage::get_singleton()->owns_light_instance(p_rid)) { |
2591 | GLES3::LightStorage::get_singleton()->light_instance_free(p_rid); |
2592 | } else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) { |
2593 | //not much to delete, just free it |
2594 | RSG::camera_attributes->camera_attributes_free(p_rid); |
2595 | } else { |
2596 | return false; |
2597 | } |
2598 | return true; |
2599 | } |
2600 | |
2601 | void RasterizerSceneGLES3::update() { |
2602 | _update_dirty_skys(); |
2603 | } |
2604 | |
2605 | void RasterizerSceneGLES3::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) { |
2606 | } |
2607 | |
2608 | void RasterizerSceneGLES3::decals_set_filter(RS::DecalFilter p_filter) { |
2609 | } |
2610 | |
2611 | void RasterizerSceneGLES3::light_projectors_set_filter(RS::LightProjectorFilter p_filter) { |
2612 | } |
2613 | |
2614 | RasterizerSceneGLES3::RasterizerSceneGLES3() { |
2615 | singleton = this; |
2616 | |
2617 | GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); |
2618 | GLES3::Config *config = GLES3::Config::get_singleton(); |
2619 | |
2620 | // Quality settings. |
2621 | use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units" ); |
2622 | |
2623 | { |
2624 | // Setup Lights |
2625 | |
2626 | config->max_renderable_lights = MIN(config->max_renderable_lights, config->max_uniform_buffer_size / (int)sizeof(RasterizerSceneGLES3::LightData)); |
2627 | config->max_lights_per_object = MIN(config->max_lights_per_object, config->max_renderable_lights); |
2628 | |
2629 | uint32_t light_buffer_size = config->max_renderable_lights * sizeof(LightData); |
2630 | scene_state.omni_lights = memnew_arr(LightData, config->max_renderable_lights); |
2631 | scene_state.omni_light_sort = memnew_arr(InstanceSort<GLES3::LightInstance>, config->max_renderable_lights); |
2632 | glGenBuffers(1, &scene_state.omni_light_buffer); |
2633 | glBindBuffer(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer); |
2634 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer, light_buffer_size, nullptr, GL_STREAM_DRAW, "OmniLight UBO" ); |
2635 | |
2636 | scene_state.spot_lights = memnew_arr(LightData, config->max_renderable_lights); |
2637 | scene_state.spot_light_sort = memnew_arr(InstanceSort<GLES3::LightInstance>, config->max_renderable_lights); |
2638 | glGenBuffers(1, &scene_state.spot_light_buffer); |
2639 | glBindBuffer(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer); |
2640 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer, light_buffer_size, nullptr, GL_STREAM_DRAW, "SpotLight UBO" ); |
2641 | |
2642 | uint32_t directional_light_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalLightData); |
2643 | scene_state.directional_lights = memnew_arr(DirectionalLightData, MAX_DIRECTIONAL_LIGHTS); |
2644 | glGenBuffers(1, &scene_state.directional_light_buffer); |
2645 | glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer); |
2646 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "DirectionalLight UBO" ); |
2647 | |
2648 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
2649 | } |
2650 | |
2651 | { |
2652 | sky_globals.max_directional_lights = 4; |
2653 | uint32_t directional_light_buffer_size = sky_globals.max_directional_lights * sizeof(DirectionalLightData); |
2654 | sky_globals.directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights); |
2655 | sky_globals.last_frame_directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights); |
2656 | sky_globals.last_frame_directional_light_count = sky_globals.max_directional_lights + 1; |
2657 | glGenBuffers(1, &sky_globals.directional_light_buffer); |
2658 | glBindBuffer(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer); |
2659 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer, directional_light_buffer_size, nullptr, GL_STREAM_DRAW, "Sky DirectionalLight UBO" ); |
2660 | |
2661 | glBindBuffer(GL_UNIFORM_BUFFER, 0); |
2662 | } |
2663 | |
2664 | { |
2665 | String global_defines; |
2666 | global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n" ; // TODO: this is arbitrary for now |
2667 | global_defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(config->max_renderable_lights) + "\n" ; |
2668 | global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(MAX_DIRECTIONAL_LIGHTS) + "\n" ; |
2669 | global_defines += "\n#define MAX_FORWARD_LIGHTS " + itos(config->max_lights_per_object) + "u\n" ; |
2670 | material_storage->shaders.scene_shader.initialize(global_defines); |
2671 | scene_globals.shader_default_version = material_storage->shaders.scene_shader.version_create(); |
2672 | material_storage->shaders.scene_shader.version_bind_shader(scene_globals.shader_default_version, SceneShaderGLES3::MODE_COLOR); |
2673 | } |
2674 | |
2675 | { |
2676 | //default material and shader |
2677 | scene_globals.default_shader = material_storage->shader_allocate(); |
2678 | material_storage->shader_initialize(scene_globals.default_shader); |
2679 | material_storage->shader_set_code(scene_globals.default_shader, R"( |
2680 | // Default 3D material shader. |
2681 | |
2682 | shader_type spatial; |
2683 | |
2684 | void vertex() { |
2685 | ROUGHNESS = 0.8; |
2686 | } |
2687 | |
2688 | void fragment() { |
2689 | ALBEDO = vec3(0.6); |
2690 | ROUGHNESS = 0.8; |
2691 | METALLIC = 0.2; |
2692 | } |
2693 | )" ); |
2694 | scene_globals.default_material = material_storage->material_allocate(); |
2695 | material_storage->material_initialize(scene_globals.default_material); |
2696 | material_storage->material_set_shader(scene_globals.default_material, scene_globals.default_shader); |
2697 | } |
2698 | |
2699 | { |
2700 | // Initialize Sky stuff |
2701 | sky_globals.roughness_layers = GLOBAL_GET("rendering/reflections/sky_reflections/roughness_layers" ); |
2702 | sky_globals.ggx_samples = GLOBAL_GET("rendering/reflections/sky_reflections/ggx_samples" ); |
2703 | |
2704 | String global_defines; |
2705 | global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n" ; // TODO: this is arbitrary for now |
2706 | global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_globals.max_directional_lights) + "\n" ; |
2707 | material_storage->shaders.sky_shader.initialize(global_defines); |
2708 | sky_globals.shader_default_version = material_storage->shaders.sky_shader.version_create(); |
2709 | } |
2710 | |
2711 | { |
2712 | String global_defines; |
2713 | global_defines += "\n#define MAX_SAMPLE_COUNT " + itos(sky_globals.ggx_samples) + "\n" ; |
2714 | material_storage->shaders.cubemap_filter_shader.initialize(global_defines); |
2715 | scene_globals.cubemap_filter_shader_version = material_storage->shaders.cubemap_filter_shader.version_create(); |
2716 | } |
2717 | |
2718 | { |
2719 | sky_globals.default_shader = material_storage->shader_allocate(); |
2720 | |
2721 | material_storage->shader_initialize(sky_globals.default_shader); |
2722 | |
2723 | material_storage->shader_set_code(sky_globals.default_shader, R"( |
2724 | // Default sky shader. |
2725 | |
2726 | shader_type sky; |
2727 | |
2728 | void sky() { |
2729 | COLOR = vec3(0.0); |
2730 | } |
2731 | )" ); |
2732 | sky_globals.default_material = material_storage->material_allocate(); |
2733 | material_storage->material_initialize(sky_globals.default_material); |
2734 | |
2735 | material_storage->material_set_shader(sky_globals.default_material, sky_globals.default_shader); |
2736 | } |
2737 | { |
2738 | sky_globals.fog_shader = material_storage->shader_allocate(); |
2739 | material_storage->shader_initialize(sky_globals.fog_shader); |
2740 | |
2741 | material_storage->shader_set_code(sky_globals.fog_shader, R"( |
2742 | // Default clear color sky shader. |
2743 | |
2744 | shader_type sky; |
2745 | |
2746 | uniform vec4 clear_color; |
2747 | |
2748 | void sky() { |
2749 | COLOR = clear_color.rgb; |
2750 | } |
2751 | )" ); |
2752 | sky_globals.fog_material = material_storage->material_allocate(); |
2753 | material_storage->material_initialize(sky_globals.fog_material); |
2754 | |
2755 | material_storage->material_set_shader(sky_globals.fog_material, sky_globals.fog_shader); |
2756 | } |
2757 | |
2758 | { |
2759 | glGenVertexArrays(1, &sky_globals.screen_triangle_array); |
2760 | glBindVertexArray(sky_globals.screen_triangle_array); |
2761 | glGenBuffers(1, &sky_globals.screen_triangle); |
2762 | glBindBuffer(GL_ARRAY_BUFFER, sky_globals.screen_triangle); |
2763 | |
2764 | const float qv[6] = { |
2765 | -1.0f, |
2766 | -1.0f, |
2767 | 3.0f, |
2768 | -1.0f, |
2769 | -1.0f, |
2770 | 3.0f, |
2771 | }; |
2772 | |
2773 | GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, sky_globals.screen_triangle, sizeof(float) * 6, qv, GL_STATIC_DRAW, "Screen triangle vertex buffer" ); |
2774 | |
2775 | glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr); |
2776 | glEnableVertexAttribArray(RS::ARRAY_VERTEX); |
2777 | glBindVertexArray(0); |
2778 | glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind |
2779 | } |
2780 | |
2781 | #ifdef GLES_OVER_GL |
2782 | glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS); |
2783 | #endif |
2784 | |
2785 | // MultiMesh may read from color when color is disabled, so make sure that the color defaults to white instead of black; |
2786 | glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); |
2787 | } |
2788 | |
2789 | RasterizerSceneGLES3::~RasterizerSceneGLES3() { |
2790 | GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.directional_light_buffer); |
2791 | GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.omni_light_buffer); |
2792 | GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.spot_light_buffer); |
2793 | memdelete_arr(scene_state.directional_lights); |
2794 | memdelete_arr(scene_state.omni_lights); |
2795 | memdelete_arr(scene_state.spot_lights); |
2796 | memdelete_arr(scene_state.omni_light_sort); |
2797 | memdelete_arr(scene_state.spot_light_sort); |
2798 | |
2799 | // Scene Shader |
2800 | GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version); |
2801 | GLES3::MaterialStorage::get_singleton()->shaders.cubemap_filter_shader.version_free(scene_globals.cubemap_filter_shader_version); |
2802 | RSG::material_storage->material_free(scene_globals.default_material); |
2803 | RSG::material_storage->shader_free(scene_globals.default_shader); |
2804 | |
2805 | // Sky Shader |
2806 | GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_free(sky_globals.shader_default_version); |
2807 | RSG::material_storage->material_free(sky_globals.default_material); |
2808 | RSG::material_storage->shader_free(sky_globals.default_shader); |
2809 | RSG::material_storage->material_free(sky_globals.fog_material); |
2810 | RSG::material_storage->shader_free(sky_globals.fog_shader); |
2811 | GLES3::Utilities::get_singleton()->buffer_free_data(sky_globals.screen_triangle); |
2812 | glDeleteVertexArrays(1, &sky_globals.screen_triangle_array); |
2813 | glDeleteTextures(1, &sky_globals.radical_inverse_vdc_cache_tex); |
2814 | GLES3::Utilities::get_singleton()->buffer_free_data(sky_globals.directional_light_buffer); |
2815 | memdelete_arr(sky_globals.directional_lights); |
2816 | memdelete_arr(sky_globals.last_frame_directional_lights); |
2817 | |
2818 | // UBOs |
2819 | if (scene_state.ubo_buffer != 0) { |
2820 | GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.ubo_buffer); |
2821 | } |
2822 | |
2823 | if (scene_state.multiview_buffer != 0) { |
2824 | GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.multiview_buffer); |
2825 | } |
2826 | |
2827 | if (scene_state.tonemap_buffer != 0) { |
2828 | GLES3::Utilities::get_singleton()->buffer_free_data(scene_state.tonemap_buffer); |
2829 | } |
2830 | |
2831 | singleton = nullptr; |
2832 | } |
2833 | |
2834 | #endif // GLES3_ENABLED |
2835 | |