| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// | 
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// | 
| 3 | #include "BsShadowRendering.h" | 
| 4 | #include "BsRendererView.h" | 
| 5 | #include "BsRendererScene.h" | 
| 6 | #include "Renderer/BsLight.h" | 
| 7 | #include "Renderer/BsRendererUtility.h" | 
| 8 | #include "Material/BsGpuParamsSet.h" | 
| 9 | #include "Mesh/BsMesh.h" | 
| 10 | #include "Renderer/BsCamera.h" | 
| 11 | #include "Utility/BsBitwise.h" | 
| 12 | #include "RenderAPI/BsVertexDataDesc.h" | 
| 13 | #include "Renderer/BsRenderer.h" | 
| 14 | #include "BsRendererRenderable.h" | 
| 15 |  | 
| 16 | namespace bs { namespace ct | 
| 17 | { | 
| 18 | 	ShadowParamsDef gShadowParamsDef; | 
| 19 |  | 
| 20 | 	void ShadowDepthNormalMat::bind(const SPtr<GpuParamBlockBuffer>& shadowParams) | 
| 21 | 	{ | 
| 22 | 		mParams->setParamBlockBuffer("ShadowParams" , shadowParams); | 
| 23 |  | 
| 24 | 		RenderAPI::instance().setGraphicsPipeline(mGfxPipeline); | 
| 25 | 		RenderAPI::instance().setStencilRef(mStencilRef); | 
| 26 | 	} | 
| 27 | 	 | 
| 28 | 	void ShadowDepthNormalMat::setPerObjectBuffer(const SPtr<GpuParamBlockBuffer>& perObjectParams) | 
| 29 | 	{ | 
| 30 | 		mParams->setParamBlockBuffer("PerObject" , perObjectParams); | 
| 31 |  | 
| 32 | 		RenderAPI::instance().setGpuParams(mParams); | 
| 33 | 	} | 
| 34 | 	 | 
| 35 | 	ShadowDepthNormalMat* ShadowDepthNormalMat::getVariation(bool skinned, bool morph) | 
| 36 | 	{ | 
| 37 | 		if(skinned) | 
| 38 | 		{ | 
| 39 | 			if(morph) | 
| 40 | 				return get(getVariation<true, true>()); | 
| 41 |  | 
| 42 | 			return get(getVariation<true, false>()); | 
| 43 | 		} | 
| 44 | 		else | 
| 45 | 		{ | 
| 46 | 			if(morph) | 
| 47 | 				return get(getVariation<false, true>()); | 
| 48 |  | 
| 49 | 			return get(getVariation<false, false>()); | 
| 50 | 		} | 
| 51 | 	} | 
| 52 |  | 
| 53 | 	ShadowDepthNormalNoPSMat::ShadowDepthNormalNoPSMat() | 
| 54 | 	{ } | 
| 55 |  | 
| 56 | 	void ShadowDepthNormalNoPSMat::bind(const SPtr<GpuParamBlockBuffer>& shadowParams) | 
| 57 | 	{ | 
| 58 | 		mParams->setParamBlockBuffer("ShadowParams" , shadowParams); | 
| 59 |  | 
| 60 | 		RenderAPI::instance().setGraphicsPipeline(mGfxPipeline); | 
| 61 | 		RenderAPI::instance().setStencilRef(mStencilRef); | 
| 62 | 	} | 
| 63 |  | 
| 64 | 	void ShadowDepthNormalNoPSMat::setPerObjectBuffer(const SPtr<GpuParamBlockBuffer>& perObjectParams) | 
| 65 | 	{ | 
| 66 | 		mParams->setParamBlockBuffer("PerObject" , perObjectParams); | 
| 67 |  | 
| 68 | 		RenderAPI::instance().setGpuParams(mParams); | 
| 69 | 	} | 
| 70 |  | 
| 71 | 	ShadowDepthNormalNoPSMat* ShadowDepthNormalNoPSMat::getVariation(bool skinned, bool morph) | 
| 72 | 	{ | 
| 73 | 		if(skinned) | 
| 74 | 		{ | 
| 75 | 			if(morph) | 
| 76 | 				return get(getVariation<true, true>()); | 
| 77 |  | 
| 78 | 			return get(getVariation<true, false>()); | 
| 79 | 		} | 
| 80 | 		else | 
| 81 | 		{ | 
| 82 | 			if(morph) | 
| 83 | 				return get(getVariation<false, true>()); | 
| 84 |  | 
| 85 | 			return get(getVariation<false, false>()); | 
| 86 | 		} | 
| 87 | 	} | 
| 88 |  | 
| 89 | 	ShadowDepthDirectionalMat::ShadowDepthDirectionalMat() | 
| 90 | 	{ } | 
| 91 |  | 
| 92 | 	void ShadowDepthDirectionalMat::bind(const SPtr<GpuParamBlockBuffer>& shadowParams) | 
| 93 | 	{ | 
| 94 | 		mParams->setParamBlockBuffer("ShadowParams" , shadowParams); | 
| 95 |  | 
| 96 | 		RenderAPI::instance().setGraphicsPipeline(mGfxPipeline); | 
| 97 | 		RenderAPI::instance().setStencilRef(mStencilRef); | 
| 98 | 	} | 
| 99 | 	 | 
| 100 | 	void ShadowDepthDirectionalMat::setPerObjectBuffer(const SPtr<GpuParamBlockBuffer>& perObjectParams) | 
| 101 | 	{ | 
| 102 | 		mParams->setParamBlockBuffer("PerObject" , perObjectParams); | 
| 103 | 		RenderAPI::instance().setGpuParams(mParams); | 
| 104 | 	} | 
| 105 | 	 | 
| 106 | 	ShadowDepthDirectionalMat* ShadowDepthDirectionalMat::getVariation(bool skinned, bool morph) | 
| 107 | 	{ | 
| 108 | 		if(skinned) | 
| 109 | 		{ | 
| 110 | 			if(morph) | 
| 111 | 				return get(getVariation<true, true>()); | 
| 112 |  | 
| 113 | 			return get(getVariation<true, false>()); | 
| 114 | 		} | 
| 115 | 		else | 
| 116 | 		{ | 
| 117 | 			if(morph) | 
| 118 | 				return get(getVariation<false, true>()); | 
| 119 |  | 
| 120 | 			return get(getVariation<false, false>()); | 
| 121 | 		} | 
| 122 | 	} | 
| 123 |  | 
| 124 | 	ShadowCubeMatricesDef gShadowCubeMatricesDef; | 
| 125 | 	ShadowCubeMasksDef gShadowCubeMasksDef; | 
| 126 |  | 
| 127 | 	ShadowDepthCubeMat::ShadowDepthCubeMat() | 
| 128 | 	{ } | 
| 129 |  | 
| 130 | 	void ShadowDepthCubeMat::bind(const SPtr<GpuParamBlockBuffer>& shadowParams,  | 
| 131 | 		const SPtr<GpuParamBlockBuffer>& shadowCubeMatrices) | 
| 132 | 	{ | 
| 133 | 		mParams->setParamBlockBuffer("ShadowParams" , shadowParams); | 
| 134 | 		mParams->setParamBlockBuffer("ShadowCubeMatrices" , shadowCubeMatrices); | 
| 135 |  | 
| 136 | 		RenderAPI::instance().setGraphicsPipeline(mGfxPipeline); | 
| 137 | 		RenderAPI::instance().setStencilRef(mStencilRef); | 
| 138 | 	} | 
| 139 |  | 
| 140 | 	void ShadowDepthCubeMat::setPerObjectBuffer(const SPtr<GpuParamBlockBuffer>& perObjectParams, | 
| 141 | 		const SPtr<GpuParamBlockBuffer>& shadowCubeMasks) | 
| 142 | 	{ | 
| 143 | 		mParams->setParamBlockBuffer("PerObject" , perObjectParams); | 
| 144 | 		mParams->setParamBlockBuffer("ShadowCubeMasks" , shadowCubeMasks); | 
| 145 |  | 
| 146 | 		RenderAPI::instance().setGpuParams(mParams); | 
| 147 | 	} | 
| 148 | 	 | 
| 149 | 	ShadowDepthCubeMat* ShadowDepthCubeMat::getVariation(bool skinned, bool morph) | 
| 150 | 	{ | 
| 151 | 		if(skinned) | 
| 152 | 		{ | 
| 153 | 			if(morph) | 
| 154 | 				return get(getVariation<true, true>()); | 
| 155 |  | 
| 156 | 			return get(getVariation<true, false>()); | 
| 157 | 		} | 
| 158 | 		else | 
| 159 | 		{ | 
| 160 | 			if(morph) | 
| 161 | 				return get(getVariation<false, true>()); | 
| 162 |  | 
| 163 | 			return get(getVariation<false, false>()); | 
| 164 | 		} | 
| 165 | 	} | 
| 166 |  | 
| 167 | 	ShadowProjectParamsDef gShadowProjectParamsDef; | 
| 168 | 	ShadowProjectVertParamsDef gShadowProjectVertParamsDef; | 
| 169 |  | 
| 170 | 	ShadowProjectStencilMat::ShadowProjectStencilMat() | 
| 171 | 	{ | 
| 172 | 		mVertParams = gShadowProjectVertParamsDef.createBuffer(); | 
| 173 | 		if(mParams->hasParamBlock(GPT_VERTEX_PROGRAM, "VertParams" )) | 
| 174 | 			mParams->setParamBlockBuffer(GPT_VERTEX_PROGRAM, "VertParams" , mVertParams); | 
| 175 | 	} | 
| 176 |  | 
| 177 | 	void ShadowProjectStencilMat::bind(const SPtr<GpuParamBlockBuffer>& perCamera) | 
| 178 | 	{ | 
| 179 | 		Vector4 lightPosAndScale(0, 0, 0, 1); | 
| 180 | 		gShadowProjectVertParamsDef.gPositionAndScale.set(mVertParams, lightPosAndScale); | 
| 181 |  | 
| 182 | 		mParams->setParamBlockBuffer("PerCamera" , perCamera); | 
| 183 |  | 
| 184 | 		RendererMaterial::bind(); | 
| 185 | 	} | 
| 186 |  | 
| 187 | 	ShadowProjectStencilMat* ShadowProjectStencilMat::getVariation(bool directional, bool useZFailStencil) | 
| 188 | 	{ | 
| 189 | 		if(directional) | 
| 190 | 			return get(getVariation<true, true>()); | 
| 191 | 		else | 
| 192 | 		{ | 
| 193 | 			if (useZFailStencil) | 
| 194 | 				return get(getVariation<false, true>()); | 
| 195 | 			else | 
| 196 | 				return get(getVariation<false, false>()); | 
| 197 | 		} | 
| 198 | 	} | 
| 199 |  | 
| 200 | 	ShadowProjectMat::ShadowProjectMat() | 
| 201 | 		: mGBufferParams(GPT_FRAGMENT_PROGRAM, mParams) | 
| 202 | 	{ | 
| 203 | 		mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gShadowTex" , mShadowMapParam); | 
| 204 | 		if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gShadowSampler" )) | 
| 205 | 			mParams->getSamplerStateParam(GPT_FRAGMENT_PROGRAM, "gShadowSampler" , mShadowSamplerParam); | 
| 206 | 		else | 
| 207 | 			mParams->getSamplerStateParam(GPT_FRAGMENT_PROGRAM, "gShadowTex" , mShadowSamplerParam); | 
| 208 |  | 
| 209 | 		SAMPLER_STATE_DESC desc; | 
| 210 | 		desc.minFilter = FO_POINT; | 
| 211 | 		desc.magFilter = FO_POINT; | 
| 212 | 		desc.mipFilter = FO_POINT; | 
| 213 | 		desc.addressMode.u = TAM_CLAMP; | 
| 214 | 		desc.addressMode.v = TAM_CLAMP; | 
| 215 | 		desc.addressMode.w = TAM_CLAMP; | 
| 216 |  | 
| 217 | 		mSamplerState = SamplerState::create(desc); | 
| 218 |  | 
| 219 | 		mVertParams = gShadowProjectVertParamsDef.createBuffer(); | 
| 220 | 		if(mParams->hasParamBlock(GPT_VERTEX_PROGRAM, "VertParams" )) | 
| 221 | 			mParams->setParamBlockBuffer(GPT_VERTEX_PROGRAM, "VertParams" , mVertParams); | 
| 222 | 	} | 
| 223 |  | 
| 224 | 	void ShadowProjectMat::bind(const ShadowProjectParams& params) | 
| 225 | 	{ | 
| 226 | 		Vector4 lightPosAndScale(Vector3(0.0f, 0.0f, 0.0f), 1.0f); | 
| 227 | 		gShadowProjectVertParamsDef.gPositionAndScale.set(mVertParams, lightPosAndScale); | 
| 228 |  | 
| 229 | 		mGBufferParams.bind(params.gbuffer); | 
| 230 |  | 
| 231 | 		mShadowMapParam.set(params.shadowMap); | 
| 232 | 		mShadowSamplerParam.set(mSamplerState); | 
| 233 |  | 
| 234 | 		mParams->setParamBlockBuffer("Params" , params.shadowParams); | 
| 235 | 		mParams->setParamBlockBuffer("PerCamera" , params.perCamera); | 
| 236 |  | 
| 237 | 		RendererMaterial::bind(); | 
| 238 | 	} | 
| 239 |  | 
| 240 | 	ShadowProjectMat* ShadowProjectMat::getVariation(UINT32 quality, bool directional, bool MSAA) | 
| 241 | 	{ | 
| 242 | #define BIND_MAT(QUALITY)											\ | 
| 243 | 	{																\ | 
| 244 | 		if(directional)												\ | 
| 245 | 			if (MSAA)												\ | 
| 246 | 				return get(getVariation<QUALITY, true, true>());	\ | 
| 247 | 			else													\ | 
| 248 | 				return get(getVariation<QUALITY, true, false>());	\ | 
| 249 | 		else														\ | 
| 250 | 			if (MSAA)												\ | 
| 251 | 				return get(getVariation<QUALITY, false, true>());	\ | 
| 252 | 			else													\ | 
| 253 | 				return get(getVariation<QUALITY, false, false>());	\ | 
| 254 | 	} | 
| 255 |  | 
| 256 | 		if(quality <= 1) | 
| 257 | 			BIND_MAT(1) | 
| 258 | 		else if(quality == 2) | 
| 259 | 			BIND_MAT(2) | 
| 260 | 		else if(quality == 3) | 
| 261 | 			BIND_MAT(3) | 
| 262 | 		else // 4 or higher | 
| 263 | 			BIND_MAT(4) | 
| 264 |  | 
| 265 | #undef BIND_MAT | 
| 266 | 	} | 
| 267 |  | 
| 268 | 	ShadowProjectOmniParamsDef gShadowProjectOmniParamsDef; | 
| 269 |  | 
| 270 | 	ShadowProjectOmniMat::ShadowProjectOmniMat() | 
| 271 | 		: mGBufferParams(GPT_FRAGMENT_PROGRAM, mParams) | 
| 272 | 	{ | 
| 273 | 		mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gShadowCubeTex" , mShadowMapParam); | 
| 274 |  | 
| 275 | 		if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gShadowCubeSampler" )) | 
| 276 | 			mParams->getSamplerStateParam(GPT_FRAGMENT_PROGRAM, "gShadowCubeSampler" , mShadowSamplerParam); | 
| 277 | 		else | 
| 278 | 			mParams->getSamplerStateParam(GPT_FRAGMENT_PROGRAM, "gShadowCubeTex" , mShadowSamplerParam); | 
| 279 |  | 
| 280 | 		SAMPLER_STATE_DESC desc; | 
| 281 | 		desc.minFilter = FO_LINEAR; | 
| 282 | 		desc.magFilter = FO_LINEAR; | 
| 283 | 		desc.mipFilter = FO_POINT; | 
| 284 | 		desc.addressMode.u = TAM_CLAMP; | 
| 285 | 		desc.addressMode.v = TAM_CLAMP; | 
| 286 | 		desc.addressMode.w = TAM_CLAMP; | 
| 287 | 		desc.comparisonFunc = CMPF_GREATER_EQUAL; | 
| 288 |  | 
| 289 | 		mSamplerState = SamplerState::create(desc); | 
| 290 |  | 
| 291 | 		mVertParams = gShadowProjectVertParamsDef.createBuffer(); | 
| 292 | 		if(mParams->hasParamBlock(GPT_VERTEX_PROGRAM, "VertParams" )) | 
| 293 | 			mParams->setParamBlockBuffer(GPT_VERTEX_PROGRAM, "VertParams" , mVertParams); | 
| 294 | 	} | 
| 295 |  | 
| 296 | 	void ShadowProjectOmniMat::bind(const ShadowProjectParams& params) | 
| 297 | 	{ | 
| 298 | 		Vector4 lightPosAndScale(params.light.getTransform().getPosition(), params.light.getAttenuationRadius()); | 
| 299 | 		gShadowProjectVertParamsDef.gPositionAndScale.set(mVertParams, lightPosAndScale); | 
| 300 |  | 
| 301 | 		mGBufferParams.bind(params.gbuffer); | 
| 302 |  | 
| 303 | 		mShadowMapParam.set(params.shadowMap); | 
| 304 | 		mShadowSamplerParam.set(mSamplerState); | 
| 305 |  | 
| 306 | 		mParams->setParamBlockBuffer("Params" , params.shadowParams); | 
| 307 | 		mParams->setParamBlockBuffer("PerCamera" , params.perCamera); | 
| 308 |  | 
| 309 | 		RendererMaterial::bind(); | 
| 310 | 	} | 
| 311 |  | 
| 312 | 	ShadowProjectOmniMat* ShadowProjectOmniMat::getVariation(UINT32 quality, bool inside, bool MSAA) | 
| 313 | 	{ | 
| 314 | #define BIND_MAT(QUALITY)											\ | 
| 315 | 	{																\ | 
| 316 | 		if(inside)													\ | 
| 317 | 			if (MSAA)												\ | 
| 318 | 				return get(getVariation<QUALITY, true, true>());	\ | 
| 319 | 			else													\ | 
| 320 | 				return get(getVariation<QUALITY, true, false>());	\ | 
| 321 | 		else														\ | 
| 322 | 			if (MSAA)												\ | 
| 323 | 				return get(getVariation<QUALITY, false, true>());	\ | 
| 324 | 			else													\ | 
| 325 | 				return get(getVariation<QUALITY, false, false>());	\ | 
| 326 | 	} | 
| 327 |  | 
| 328 | 		if(quality <= 1) | 
| 329 | 			BIND_MAT(1) | 
| 330 | 		else if(quality == 2) | 
| 331 | 			BIND_MAT(2) | 
| 332 | 		else if(quality == 3) | 
| 333 | 			BIND_MAT(3) | 
| 334 | 		else // 4 or higher | 
| 335 | 			BIND_MAT(4) | 
| 336 |  | 
| 337 | #undef BIND_MAT | 
| 338 | 	} | 
| 339 |  | 
| 340 | 	void ShadowInfo::updateNormArea(UINT32 atlasSize) | 
| 341 | 	{ | 
| 342 | 		normArea.x = area.x / (float)atlasSize; | 
| 343 | 		normArea.y = area.y / (float)atlasSize; | 
| 344 | 		normArea.width = area.width / (float)atlasSize; | 
| 345 | 		normArea.height = area.height / (float)atlasSize; | 
| 346 | 	} | 
| 347 |  | 
| 348 | 	ShadowMapAtlas::ShadowMapAtlas(UINT32 size) | 
| 349 | 		: mLayout(0, 0, size, size, true), mLastUsedCounter(0) | 
| 350 | 	{ | 
| 351 | 		mAtlas = GpuResourcePool::instance().get( | 
| 352 | 			POOLED_RENDER_TEXTURE_DESC::create2D(SHADOW_MAP_FORMAT, size, size, TU_DEPTHSTENCIL)); | 
| 353 | 	} | 
| 354 |  | 
| 355 | 	bool ShadowMapAtlas::addMap(UINT32 size, Rect2I& area, UINT32 border) | 
| 356 | 	{ | 
| 357 | 		UINT32 sizeWithBorder = size + border * 2; | 
| 358 |  | 
| 359 | 		UINT32 x, y; | 
| 360 | 		if (!mLayout.addElement(sizeWithBorder, sizeWithBorder, x, y)) | 
| 361 | 			return false; | 
| 362 |  | 
| 363 | 		area.width = area.height = size; | 
| 364 | 		area.x = x + border; | 
| 365 | 		area.y = y + border; | 
| 366 |  | 
| 367 | 		mLastUsedCounter = 0; | 
| 368 | 		return true; | 
| 369 | 	} | 
| 370 |  | 
| 371 | 	void ShadowMapAtlas::clear() | 
| 372 | 	{ | 
| 373 | 		mLayout.clear(); | 
| 374 | 		mLastUsedCounter++; | 
| 375 | 	} | 
| 376 |  | 
| 377 | 	bool ShadowMapAtlas::isEmpty() const | 
| 378 | 	{ | 
| 379 | 		return mLayout.isEmpty(); | 
| 380 | 	} | 
| 381 |  | 
| 382 | 	SPtr<Texture> ShadowMapAtlas::getTexture() const | 
| 383 | 	{ | 
| 384 | 		return mAtlas->texture; | 
| 385 | 	} | 
| 386 |  | 
| 387 | 	SPtr<RenderTexture> ShadowMapAtlas::getTarget() const | 
| 388 | 	{ | 
| 389 | 		return mAtlas->renderTexture; | 
| 390 | 	} | 
| 391 |  | 
| 392 | 	ShadowMapBase::ShadowMapBase(UINT32 size) | 
| 393 | 		: mSize(size), mIsUsed(false), mLastUsedCounter (0) | 
| 394 | 	{ } | 
| 395 |  | 
| 396 | 	SPtr<Texture> ShadowMapBase::getTexture() const | 
| 397 | 	{ | 
| 398 | 		return mShadowMap->texture; | 
| 399 | 	} | 
| 400 |  | 
| 401 | 	ShadowCubemap::ShadowCubemap(UINT32 size) | 
| 402 | 		:ShadowMapBase(size) | 
| 403 | 	{ | 
| 404 | 		mShadowMap = GpuResourcePool::instance().get( | 
| 405 | 			POOLED_RENDER_TEXTURE_DESC::createCube(SHADOW_MAP_FORMAT, size, size, TU_DEPTHSTENCIL)); | 
| 406 | 	} | 
| 407 |  | 
| 408 | 	SPtr<RenderTexture> ShadowCubemap::getTarget() const | 
| 409 | 	{ | 
| 410 | 		return mShadowMap->renderTexture; | 
| 411 | 	} | 
| 412 |  | 
| 413 | 	ShadowCascadedMap::ShadowCascadedMap(UINT32 size, UINT32 numCascades) | 
| 414 | 		:ShadowMapBase(size), mNumCascades(numCascades), mTargets(numCascades), mShadowInfos(numCascades) | 
| 415 | 	{ | 
| 416 | 		mShadowMap = GpuResourcePool::instance().get(POOLED_RENDER_TEXTURE_DESC::create2D(SHADOW_MAP_FORMAT, size, size,  | 
| 417 | 			TU_DEPTHSTENCIL, 0, false, numCascades)); | 
| 418 |  | 
| 419 | 		RENDER_TEXTURE_DESC rtDesc; | 
| 420 | 		rtDesc.depthStencilSurface.texture = mShadowMap->texture; | 
| 421 | 		rtDesc.depthStencilSurface.numFaces = 1; | 
| 422 |  | 
| 423 | 		for (UINT32 i = 0; i < mNumCascades; ++i) | 
| 424 | 		{ | 
| 425 | 			rtDesc.depthStencilSurface.face = i; | 
| 426 | 			mTargets[i] = RenderTexture::create(rtDesc); | 
| 427 | 		} | 
| 428 | 	} | 
| 429 |  | 
| 430 | 	SPtr<RenderTexture> ShadowCascadedMap::getTarget(UINT32 cascadeIdx) const | 
| 431 | 	{ | 
| 432 | 		return mTargets[cascadeIdx]; | 
| 433 | 	} | 
| 434 |  | 
| 435 | 	/**  | 
| 436 | 	 * Provides a common way for all types of shadow depth rendering to render the relevant objects into the depth map.  | 
| 437 | 	 * Iterates over all relevant objects in the scene, binds the relevant materials and renders the objects into the depth | 
| 438 | 	 * map. | 
| 439 | 	 */ | 
| 440 | 	class ShadowRenderQueue | 
| 441 | 	{ | 
| 442 | 	public: | 
| 443 | 		struct Command | 
| 444 | 		{ | 
| 445 | 			Command() | 
| 446 | 			{ } | 
| 447 |  | 
| 448 | 			Command(RenderableElement* element) | 
| 449 | 				:element(element), isElement(true) | 
| 450 | 			{ } | 
| 451 |  | 
| 452 | 			union | 
| 453 | 			{ | 
| 454 | 				RenderableElement* element; | 
| 455 | 				RendererRenderable* renderable; | 
| 456 | 			}; | 
| 457 |  | 
| 458 |  | 
| 459 | 			bool isElement : 1; | 
| 460 | 			UINT32 mask : 6; | 
| 461 | 		}; | 
| 462 |  | 
| 463 | 		template<class Options> | 
| 464 | 		static void execute(RendererScene& scene, const FrameInfo& frameInfo, const Options& opt) | 
| 465 | 		{ | 
| 466 | 			static_assert((UINT32)RenderableAnimType::Count == 4, "RenderableAnimType is expected to have four sequential entries." ); | 
| 467 |  | 
| 468 | 			const SceneInfo& sceneInfo = scene.getSceneInfo(); | 
| 469 |  | 
| 470 | 			bs_frame_mark(); | 
| 471 | 			{ | 
| 472 | 				FrameVector<Command> commands[4]; | 
| 473 |  | 
| 474 | 				// Make a list of relevant renderables and prepare them for rendering | 
| 475 | 				for (UINT32 i = 0; i < sceneInfo.renderables.size(); i++) | 
| 476 | 				{ | 
| 477 | 					const Sphere& bounds = sceneInfo.renderableCullInfos[i].bounds.getSphere(); | 
| 478 | 					if (!opt.intersects(bounds)) | 
| 479 | 						continue; | 
| 480 |  | 
| 481 | 					scene.prepareRenderable(i, frameInfo); | 
| 482 |  | 
| 483 | 					Command renderableCommand; | 
| 484 | 					renderableCommand.mask = 0; | 
| 485 |  | 
| 486 | 					RendererRenderable* renderable = sceneInfo.renderables[i]; | 
| 487 | 					renderableCommand.isElement = false; | 
| 488 | 					renderableCommand.renderable = renderable; | 
| 489 |  | 
| 490 | 					opt.prepare(renderableCommand, bounds); | 
| 491 |  | 
| 492 | 					bool renderableBound[4]; | 
| 493 | 					bs_zero_out(renderableBound); | 
| 494 |  | 
| 495 | 					for (auto& element : renderable->elements) | 
| 496 | 					{ | 
| 497 | 						UINT32 arrayIdx = (int)element.animType; | 
| 498 |  | 
| 499 | 						if (!renderableBound[arrayIdx]) | 
| 500 | 						{ | 
| 501 | 							commands[arrayIdx].push_back(renderableCommand); | 
| 502 | 							renderableBound[arrayIdx] = true; | 
| 503 | 						} | 
| 504 |  | 
| 505 | 						commands[arrayIdx].push_back(Command(&element)); | 
| 506 | 					} | 
| 507 | 				} | 
| 508 |  | 
| 509 | 				static const ShaderVariation* VAR_LOOKUP[4]; | 
| 510 | 				VAR_LOOKUP[0] = &getVertexInputVariation<false, false>(); | 
| 511 | 				VAR_LOOKUP[1] = &getVertexInputVariation<true, false>(); | 
| 512 | 				VAR_LOOKUP[2] = &getVertexInputVariation<false, true>(); | 
| 513 | 				VAR_LOOKUP[3] = &getVertexInputVariation<true, true>(); | 
| 514 |  | 
| 515 | 				for (UINT32 i = 0; i < (UINT32)RenderableAnimType::Count; i++) | 
| 516 | 				{ | 
| 517 | 					opt.bindMaterial(*VAR_LOOKUP[i]); | 
| 518 |  | 
| 519 | 					for (auto& command : commands[i]) | 
| 520 | 					{ | 
| 521 | 						if (command.isElement) | 
| 522 | 						{ | 
| 523 | 							const RenderableElement& element = *command.element; | 
| 524 |  | 
| 525 | 							if (element.morphVertexDeclaration == nullptr) | 
| 526 | 								gRendererUtility().draw(element.mesh, element.subMesh); | 
| 527 | 							else | 
| 528 | 								gRendererUtility().drawMorph(element.mesh, element.subMesh, element.morphShapeBuffer, | 
| 529 | 									element.morphVertexDeclaration); | 
| 530 | 						} | 
| 531 | 						else | 
| 532 | 							opt.bindRenderable(command); | 
| 533 | 					} | 
| 534 | 				} | 
| 535 | 			} | 
| 536 | 			bs_frame_clear(); | 
| 537 | 		} | 
| 538 | 	}; | 
| 539 |  | 
| 540 | 	/** Specialization used for ShadowRenderQueue when rendering cube (omnidirectional) shadow maps (all faces at once). */ | 
| 541 | 	struct ShadowRenderQueueCubeOptions | 
| 542 | 	{ | 
| 543 | 		ShadowRenderQueueCubeOptions( | 
| 544 | 			const ConvexVolume (&frustums)[6],  | 
| 545 | 			const ConvexVolume& boundingVolume,  | 
| 546 | 			const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer,  | 
| 547 | 			const SPtr<GpuParamBlockBuffer>& shadowCubeMatricesBuffer, | 
| 548 | 			const SPtr<GpuParamBlockBuffer>& shadowCubeMasksBuffer) | 
| 549 | 			: frustums(frustums), boundingVolume(boundingVolume), shadowParamsBuffer(shadowParamsBuffer) | 
| 550 | 			, shadowCubeMatricesBuffer(shadowCubeMatricesBuffer), shadowCubeMasksBuffer(shadowCubeMasksBuffer) | 
| 551 | 		{ } | 
| 552 |  | 
| 553 | 		bool intersects(const Sphere& bounds) const | 
| 554 | 		{ | 
| 555 | 			return boundingVolume.intersects(bounds); | 
| 556 | 		} | 
| 557 |  | 
| 558 | 		void prepare(ShadowRenderQueue::Command& command, const Sphere& bounds) const | 
| 559 | 		{ | 
| 560 | 			for (UINT32 j = 0; j < 6; j++) | 
| 561 | 				command.mask |= (frustums[j].intersects(bounds) ? 1 : 0) << j; | 
| 562 | 		} | 
| 563 |  | 
| 564 | 		void bindMaterial(const ShaderVariation& variation) const | 
| 565 | 		{ | 
| 566 | 			material = ShadowDepthCubeMat::get(variation); | 
| 567 | 			material->bind(shadowParamsBuffer, shadowCubeMatricesBuffer); | 
| 568 | 		} | 
| 569 |  | 
| 570 | 		void bindRenderable(ShadowRenderQueue::Command& command) const | 
| 571 | 		{ | 
| 572 | 			RendererRenderable* renderable = command.renderable; | 
| 573 |  | 
| 574 | 			for (UINT32 j = 0; j < 6; j++) | 
| 575 | 				gShadowCubeMasksDef.gFaceMasks.set(shadowCubeMasksBuffer, (command.mask & (1 << j)), j); | 
| 576 |  | 
| 577 | 			material->setPerObjectBuffer(renderable->perObjectParamBuffer, shadowCubeMasksBuffer); | 
| 578 | 		} | 
| 579 | 		 | 
| 580 | 		const ConvexVolume (&frustums)[6]; | 
| 581 | 		const ConvexVolume& boundingVolume; | 
| 582 | 		const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer; | 
| 583 | 		const SPtr<GpuParamBlockBuffer>& shadowCubeMatricesBuffer; | 
| 584 | 		const SPtr<GpuParamBlockBuffer>& shadowCubeMasksBuffer; | 
| 585 |  | 
| 586 | 		mutable ShadowDepthCubeMat* material = nullptr; | 
| 587 | 	}; | 
| 588 |  | 
| 589 | 	/** Specialization used for ShadowRenderQueue when rendering cube (omnidirectional) shadow maps (one face at a time). */ | 
| 590 | 	struct ShadowRenderQueueCubeSingleOptions | 
| 591 | 	{ | 
| 592 | 		ShadowRenderQueueCubeSingleOptions( | 
| 593 | 				const ConvexVolume& boundingVolume, | 
| 594 | 				const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer) | 
| 595 | 				: boundingVolume(boundingVolume), shadowParamsBuffer(shadowParamsBuffer) | 
| 596 | 		{ } | 
| 597 |  | 
| 598 | 		bool intersects(const Sphere& bounds) const | 
| 599 | 		{ | 
| 600 | 			return boundingVolume.intersects(bounds); | 
| 601 | 		} | 
| 602 |  | 
| 603 | 		void prepare(ShadowRenderQueue::Command& command, const Sphere& bounds) const | 
| 604 | 		{ | 
| 605 | 		} | 
| 606 |  | 
| 607 | 		void bindMaterial(const ShaderVariation& variation) const | 
| 608 | 		{ | 
| 609 | 			material = ShadowDepthNormalNoPSMat::get(variation); | 
| 610 | 			material->bind(shadowParamsBuffer); | 
| 611 | 		} | 
| 612 |  | 
| 613 | 		void bindRenderable(ShadowRenderQueue::Command& command) const | 
| 614 | 		{ | 
| 615 | 			RendererRenderable* renderable = command.renderable; | 
| 616 |  | 
| 617 | 			material->setPerObjectBuffer(renderable->perObjectParamBuffer); | 
| 618 | 		} | 
| 619 |  | 
| 620 | 		const ConvexVolume& boundingVolume; | 
| 621 | 		const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer; | 
| 622 |  | 
| 623 | 		mutable ShadowDepthNormalNoPSMat* material = nullptr; | 
| 624 | 	}; | 
| 625 |  | 
| 626 | 	/** Specialization used for ShadowRenderQueue when rendering spot light shadow maps. */ | 
| 627 | 	struct ShadowRenderQueueSpotOptions | 
| 628 | 	{ | 
| 629 | 		ShadowRenderQueueSpotOptions( | 
| 630 | 			const ConvexVolume& boundingVolume,  | 
| 631 | 			const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer) | 
| 632 | 			: boundingVolume(boundingVolume), shadowParamsBuffer(shadowParamsBuffer) | 
| 633 | 		{ } | 
| 634 |  | 
| 635 | 		bool intersects(const Sphere& bounds) const | 
| 636 | 		{ | 
| 637 | 			return boundingVolume.intersects(bounds); | 
| 638 | 		} | 
| 639 |  | 
| 640 | 		void prepare(ShadowRenderQueue::Command& command, const Sphere& bounds) const | 
| 641 | 		{ | 
| 642 | 		} | 
| 643 |  | 
| 644 | 		void bindMaterial(const ShaderVariation& variation) const | 
| 645 | 		{ | 
| 646 | 			material = ShadowDepthNormalMat::get(variation); | 
| 647 | 			material->bind(shadowParamsBuffer); | 
| 648 | 		} | 
| 649 |  | 
| 650 | 		void bindRenderable(ShadowRenderQueue::Command& command) const | 
| 651 | 		{ | 
| 652 | 			RendererRenderable* renderable = command.renderable; | 
| 653 |  | 
| 654 | 			material->setPerObjectBuffer(renderable->perObjectParamBuffer); | 
| 655 | 		} | 
| 656 | 		 | 
| 657 | 		const ConvexVolume& boundingVolume; | 
| 658 | 		const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer; | 
| 659 |  | 
| 660 | 		mutable ShadowDepthNormalMat* material = nullptr; | 
| 661 | 	}; | 
| 662 |  | 
| 663 | 	/** Specialization used for ShadowRenderQueue when rendering directional light shadow maps. */ | 
| 664 | 	struct ShadowRenderQueueDirOptions | 
| 665 | 	{ | 
| 666 | 		ShadowRenderQueueDirOptions( | 
| 667 | 			const ConvexVolume& boundingVolume,  | 
| 668 | 			const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer) | 
| 669 | 			: boundingVolume(boundingVolume), shadowParamsBuffer(shadowParamsBuffer) | 
| 670 | 		{ } | 
| 671 |  | 
| 672 | 		bool intersects(const Sphere& bounds) const | 
| 673 | 		{ | 
| 674 | 			return boundingVolume.intersects(bounds); | 
| 675 | 		} | 
| 676 |  | 
| 677 | 		void prepare(ShadowRenderQueue::Command& command, const Sphere& bounds) const | 
| 678 | 		{ | 
| 679 | 		} | 
| 680 |  | 
| 681 | 		void bindMaterial(const ShaderVariation& variation) const | 
| 682 | 		{ | 
| 683 | 			material = ShadowDepthDirectionalMat::get(variation); | 
| 684 | 			material->bind(shadowParamsBuffer); | 
| 685 | 		} | 
| 686 |  | 
| 687 | 		void bindRenderable(ShadowRenderQueue::Command& command) const | 
| 688 | 		{ | 
| 689 | 			RendererRenderable* renderable = command.renderable; | 
| 690 |  | 
| 691 | 			material->setPerObjectBuffer(renderable->perObjectParamBuffer); | 
| 692 | 		} | 
| 693 | 		 | 
| 694 | 		const ConvexVolume& boundingVolume; | 
| 695 | 		const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer; | 
| 696 |  | 
| 697 | 		mutable ShadowDepthDirectionalMat* material = nullptr; | 
| 698 | 	}; | 
| 699 |  | 
| 700 | 	const UINT32 ShadowRendering::MAX_ATLAS_SIZE = 4096; | 
| 701 | 	const UINT32 ShadowRendering::MAX_UNUSED_FRAMES = 60; | 
| 702 | 	const UINT32 ShadowRendering::MIN_SHADOW_MAP_SIZE = 32; | 
| 703 | 	const UINT32 ShadowRendering::SHADOW_MAP_FADE_SIZE = 64; | 
| 704 | 	const UINT32 ShadowRendering::SHADOW_MAP_BORDER = 4; | 
| 705 | 	const float ShadowRendering::CASCADE_FRACTION_FADE = 0.1f; | 
| 706 |  | 
| 707 | 	ShadowRendering::ShadowRendering(UINT32 shadowMapSize) | 
| 708 | 		: mShadowMapSize(shadowMapSize) | 
| 709 | 	{ | 
| 710 | 		SPtr<VertexDataDesc> vertexDesc = VertexDataDesc::create(); | 
| 711 | 		vertexDesc->addVertElem(VET_FLOAT3, VES_POSITION); | 
| 712 |  | 
| 713 | 		mPositionOnlyVD = VertexDeclaration::create(vertexDesc); | 
| 714 |  | 
| 715 | 		// Create plane index and vertex buffers | 
| 716 | 		{ | 
| 717 | 			VERTEX_BUFFER_DESC vbDesc; | 
| 718 | 			vbDesc.numVerts = 8; | 
| 719 | 			vbDesc.usage = GBU_DYNAMIC; | 
| 720 | 			vbDesc.vertexSize = mPositionOnlyVD->getProperties().getVertexSize(0); | 
| 721 |  | 
| 722 | 			mPlaneVB = VertexBuffer::create(vbDesc); | 
| 723 |  | 
| 724 | 			INDEX_BUFFER_DESC ibDesc; | 
| 725 | 			ibDesc.indexType = IT_32BIT; | 
| 726 | 			ibDesc.numIndices = 12; | 
| 727 |  | 
| 728 | 			mPlaneIB = IndexBuffer::create(ibDesc); | 
| 729 |  | 
| 730 | 			UINT32 indices[] = | 
| 731 | 			{ | 
| 732 | 				// Far plane, back facing | 
| 733 | 				4, 7, 6, | 
| 734 | 				4, 6, 5, | 
| 735 |  | 
| 736 | 				// Near plane, front facing | 
| 737 | 				0, 1, 2, | 
| 738 | 				0, 2, 3 | 
| 739 | 			}; | 
| 740 |  | 
| 741 | 			mPlaneIB->writeData(0, sizeof(indices), indices); | 
| 742 | 		} | 
| 743 |  | 
| 744 | 		// Create frustum index and vertex buffers | 
| 745 | 		{ | 
| 746 | 			VERTEX_BUFFER_DESC vbDesc; | 
| 747 | 			vbDesc.numVerts = 8; | 
| 748 | 			vbDesc.usage = GBU_DYNAMIC; | 
| 749 | 			vbDesc.vertexSize = mPositionOnlyVD->getProperties().getVertexSize(0); | 
| 750 |  | 
| 751 | 			mFrustumVB = VertexBuffer::create(vbDesc); | 
| 752 |  | 
| 753 | 			INDEX_BUFFER_DESC ibDesc; | 
| 754 | 			ibDesc.indexType = IT_32BIT; | 
| 755 | 			ibDesc.numIndices = 36; | 
| 756 |  | 
| 757 | 			mFrustumIB = IndexBuffer::create(ibDesc); | 
| 758 | 			mFrustumIB->writeData(0, sizeof(AABox::CUBE_INDICES), AABox::CUBE_INDICES); | 
| 759 | 		} | 
| 760 | 	} | 
| 761 |  | 
| 762 | 	void ShadowRendering::setShadowMapSize(UINT32 size) | 
| 763 | 	{ | 
| 764 | 		if (mShadowMapSize == size) | 
| 765 | 			return; | 
| 766 |  | 
| 767 | 		mCascadedShadowMaps.clear(); | 
| 768 | 		mDynamicShadowMaps.clear(); | 
| 769 | 		mShadowCubemaps.clear(); | 
| 770 |  | 
| 771 | 		mShadowMapSize = size; | 
| 772 | 	} | 
| 773 |  | 
| 774 | 	void ShadowRendering::renderShadowMaps(RendererScene& scene, const RendererViewGroup& viewGroup,  | 
| 775 | 		const FrameInfo& frameInfo) | 
| 776 | 	{ | 
| 777 | 		// Note: Currently all shadows are dynamic and are rebuilt every frame. I should later added support for static | 
| 778 | 		// shadow maps which can be used for immovable lights. Such a light can then maintain a set of shadow maps, | 
| 779 | 		// one of which is static and only effects the static geometry, while the rest are per-object shadow maps used | 
| 780 | 		// for dynamic objects. Then only a small subset of geometry needs to be redrawn, instead of everything. | 
| 781 |  | 
| 782 | 		// Note: Add support for per-object shadows and a way to force a renderable to use per-object shadows. This can be | 
| 783 | 		// used for adding high quality shadows on specific objects (e.g. important characters during cinematics). | 
| 784 |  | 
| 785 | 		const SceneInfo& sceneInfo = scene.getSceneInfo(); | 
| 786 | 		const VisibilityInfo& visibility = viewGroup.getVisibilityInfo(); | 
| 787 | 		 | 
| 788 | 		// Clear all transient data from last frame | 
| 789 | 		mShadowInfos.clear(); | 
| 790 |  | 
| 791 | 		mSpotLightShadows.resize(sceneInfo.spotLights.size()); | 
| 792 | 		mRadialLightShadows.resize(sceneInfo.radialLights.size()); | 
| 793 | 		mDirectionalLightShadows.resize(sceneInfo.directionalLights.size()); | 
| 794 |  | 
| 795 | 		mSpotLightShadowOptions.clear(); | 
| 796 | 		mRadialLightShadowOptions.clear(); | 
| 797 |  | 
| 798 | 		// Clear all dynamic light atlases | 
| 799 | 		for (auto& entry : mCascadedShadowMaps) | 
| 800 | 			entry.clear(); | 
| 801 |  | 
| 802 | 		for (auto& entry : mDynamicShadowMaps) | 
| 803 | 			entry.clear(); | 
| 804 |  | 
| 805 | 		for (auto& entry : mShadowCubemaps) | 
| 806 | 			entry.clear(); | 
| 807 |  | 
| 808 | 		// Determine shadow map sizes and sort them | 
| 809 | 		UINT32 shadowInfoCount = 0; | 
| 810 | 		for (UINT32 i = 0; i < (UINT32)sceneInfo.spotLights.size(); ++i) | 
| 811 | 		{ | 
| 812 | 			const RendererLight& light = sceneInfo.spotLights[i]; | 
| 813 | 			mSpotLightShadows[i].startIdx = shadowInfoCount; | 
| 814 | 			mSpotLightShadows[i].numShadows = 0; | 
| 815 |  | 
| 816 | 			// Note: I'm using visibility across all views, while I could be using visibility for every view individually, | 
| 817 | 			// if I kept that information somewhere | 
| 818 | 			if (!light.internal->getCastsShadow() || !visibility.spotLights[i]) | 
| 819 | 				continue; | 
| 820 |  | 
| 821 | 			ShadowMapOptions options; | 
| 822 | 			options.lightIdx = i; | 
| 823 |  | 
| 824 | 			float maxFadePercent; | 
| 825 | 			calcShadowMapProperties(light, viewGroup, SHADOW_MAP_BORDER, options.mapSize, options.fadePercents, maxFadePercent); | 
| 826 |  | 
| 827 | 			// Don't render shadow maps that will end up nearly completely faded out | 
| 828 | 			if (maxFadePercent < 0.005f) | 
| 829 | 				continue; | 
| 830 |  | 
| 831 | 			mSpotLightShadowOptions.push_back(options); | 
| 832 | 			shadowInfoCount++; // For now, always a single fully dynamic shadow for a single light, but that may change | 
| 833 | 		} | 
| 834 |  | 
| 835 | 		for (UINT32 i = 0; i < (UINT32)sceneInfo.radialLights.size(); ++i) | 
| 836 | 		{ | 
| 837 | 			const RendererLight& light = sceneInfo.radialLights[i]; | 
| 838 | 			mRadialLightShadows[i].startIdx = shadowInfoCount; | 
| 839 | 			mRadialLightShadows[i].numShadows = 0; | 
| 840 |  | 
| 841 | 			// Note: I'm using visibility across all views, while I could be using visibility for every view individually, | 
| 842 | 			// if I kept that information somewhere | 
| 843 | 			if (!light.internal->getCastsShadow() || !visibility.radialLights[i]) | 
| 844 | 				continue; | 
| 845 |  | 
| 846 | 			ShadowMapOptions options; | 
| 847 | 			options.lightIdx = i; | 
| 848 |  | 
| 849 | 			float maxFadePercent; | 
| 850 | 			calcShadowMapProperties(light, viewGroup, 0, options.mapSize, options.fadePercents, maxFadePercent); | 
| 851 |  | 
| 852 | 			// Don't render shadow maps that will end up nearly completely faded out | 
| 853 | 			if (maxFadePercent < 0.005f) | 
| 854 | 				continue; | 
| 855 |  | 
| 856 | 			mRadialLightShadowOptions.push_back(options); | 
| 857 |  | 
| 858 | 			shadowInfoCount++; // For now, always a single fully dynamic shadow for a single light, but that may change | 
| 859 | 		} | 
| 860 |  | 
| 861 | 		// Sort spot lights by size so they fit neatly in the texture atlas | 
| 862 | 		std::sort(mSpotLightShadowOptions.begin(), mSpotLightShadowOptions.end(), | 
| 863 | 			[](const ShadowMapOptions& a, const ShadowMapOptions& b) { return a.mapSize > b.mapSize; } ); | 
| 864 |  | 
| 865 | 		// Reserve space for shadow infos | 
| 866 | 		mShadowInfos.resize(shadowInfoCount); | 
| 867 |  | 
| 868 | 		// Deallocate unused textures (must be done before rendering shadows, in order to ensure indices don't change) | 
| 869 | 		for(auto iter = mDynamicShadowMaps.begin(); iter != mDynamicShadowMaps.end(); ++iter) | 
| 870 | 		{ | 
| 871 | 			if(iter->getLastUsedCounter() >= MAX_UNUSED_FRAMES) | 
| 872 | 			{ | 
| 873 | 				// These are always populated in order, so we can assume all following atlases are also empty | 
| 874 | 				mDynamicShadowMaps.erase(iter, mDynamicShadowMaps.end()); | 
| 875 | 				break; | 
| 876 | 			} | 
| 877 | 		} | 
| 878 |  | 
| 879 | 		for(auto iter = mCascadedShadowMaps.begin(); iter != mCascadedShadowMaps.end();) | 
| 880 | 		{ | 
| 881 | 			if (iter->getLastUsedCounter() >= MAX_UNUSED_FRAMES) | 
| 882 | 				iter = mCascadedShadowMaps.erase(iter); | 
| 883 | 			else | 
| 884 | 				++iter; | 
| 885 | 		} | 
| 886 | 		 | 
| 887 | 		for(auto iter = mShadowCubemaps.begin(); iter != mShadowCubemaps.end();) | 
| 888 | 		{ | 
| 889 | 			if (iter->getLastUsedCounter() >= MAX_UNUSED_FRAMES) | 
| 890 | 				iter = mShadowCubemaps.erase(iter); | 
| 891 | 			else | 
| 892 | 				++iter; | 
| 893 | 		} | 
| 894 |  | 
| 895 | 		// Render shadow maps | 
| 896 | 		for (UINT32 i = 0; i < (UINT32)sceneInfo.directionalLights.size(); ++i) | 
| 897 | 		{ | 
| 898 | 			const RendererLight& light = sceneInfo.directionalLights[i]; | 
| 899 |  | 
| 900 | 			if (!light.internal->getCastsShadow()) | 
| 901 | 				return; | 
| 902 |  | 
| 903 | 			UINT32 numViews = viewGroup.getNumViews(); | 
| 904 | 			mDirectionalLightShadows[i].viewShadows.resize(numViews); | 
| 905 |  | 
| 906 | 			for (UINT32 j = 0; j < numViews; ++j) | 
| 907 | 				renderCascadedShadowMaps(*viewGroup.getView(j), i, scene, frameInfo); | 
| 908 | 		} | 
| 909 |  | 
| 910 | 		for(auto& entry : mSpotLightShadowOptions) | 
| 911 | 		{ | 
| 912 | 			UINT32 lightIdx = entry.lightIdx; | 
| 913 | 			renderSpotShadowMap(sceneInfo.spotLights[lightIdx], entry, scene, frameInfo); | 
| 914 | 		} | 
| 915 |  | 
| 916 | 		for (auto& entry : mRadialLightShadowOptions) | 
| 917 | 		{ | 
| 918 | 			UINT32 lightIdx = entry.lightIdx; | 
| 919 | 			renderRadialShadowMap(sceneInfo.radialLights[lightIdx], entry, scene, frameInfo); | 
| 920 | 		} | 
| 921 | 	} | 
| 922 |  | 
| 923 | 	/** | 
| 924 | 	 * Generates a frustum from the provided view-projection matrix. | 
| 925 | 	 *  | 
| 926 | 	 * @param[in]	invVP			Inverse of the view-projection matrix to use for generating the frustum. | 
| 927 | 	 * @param[out]	worldFrustum	Generated frustum planes, in world space. | 
| 928 | 	 * @return						Individual vertices of the frustum corners, in world space. Ordered using the | 
| 929 | 	 *								AABox::CornerEnum. | 
| 930 | 	 */ | 
| 931 | 	std::array<Vector3, 8> getFrustum(const Matrix4& invVP, ConvexVolume& worldFrustum) | 
| 932 | 	{ | 
| 933 | 		std::array<Vector3, 8> output; | 
| 934 |  | 
| 935 | 		const RenderAPICapabilities& caps = gCaps(); | 
| 936 |  | 
| 937 | 		float flipY = 1.0f; | 
| 938 | 		if (caps.conventions.ndcYAxis == Conventions::Axis::Down) | 
| 939 | 			flipY = -1.0f; | 
| 940 |  | 
| 941 | 		AABox frustumCube( | 
| 942 | 			Vector3(-1, -1 * flipY, caps.minDepth), | 
| 943 | 			Vector3(1, 1 * flipY, caps.maxDepth) | 
| 944 | 		); | 
| 945 |  | 
| 946 | 		for(size_t i = 0; i < output.size(); i++) | 
| 947 | 		{ | 
| 948 | 			Vector3 corner = frustumCube.getCorner((AABox::Corner)i); | 
| 949 | 			output[i] = invVP.multiply(corner); | 
| 950 | 		} | 
| 951 |  | 
| 952 | 		Vector<Plane> planes(6); | 
| 953 | 		planes[FRUSTUM_PLANE_NEAR] = Plane(output[AABox::NEAR_LEFT_BOTTOM], output[AABox::NEAR_RIGHT_BOTTOM], output[AABox::NEAR_RIGHT_TOP]); | 
| 954 | 		planes[FRUSTUM_PLANE_FAR] = Plane(output[AABox::FAR_LEFT_BOTTOM], output[AABox::FAR_LEFT_TOP], output[AABox::FAR_RIGHT_TOP]); | 
| 955 | 		planes[FRUSTUM_PLANE_LEFT] = Plane(output[AABox::NEAR_LEFT_BOTTOM], output[AABox::NEAR_LEFT_TOP], output[AABox::FAR_LEFT_TOP]); | 
| 956 | 		planes[FRUSTUM_PLANE_RIGHT] = Plane(output[AABox::FAR_RIGHT_TOP], output[AABox::NEAR_RIGHT_TOP], output[AABox::NEAR_RIGHT_BOTTOM]); | 
| 957 | 		planes[FRUSTUM_PLANE_TOP] = Plane(output[AABox::NEAR_LEFT_TOP], output[AABox::NEAR_RIGHT_TOP], output[AABox::FAR_RIGHT_TOP]); | 
| 958 | 		planes[FRUSTUM_PLANE_BOTTOM] = Plane(output[AABox::NEAR_LEFT_BOTTOM], output[AABox::FAR_LEFT_BOTTOM], output[AABox::FAR_RIGHT_BOTTOM]); | 
| 959 |  | 
| 960 | 		worldFrustum = ConvexVolume(planes); | 
| 961 | 		return output; | 
| 962 | 	} | 
| 963 |  | 
| 964 | 	/** | 
| 965 | 	 * Converts a point in mixed space (clip_x, clip_y, view_z, view_w) to UV coordinates on a shadow map (x, y), | 
| 966 | 	 * and normalized linear depth from the shadow caster's perspective (z). | 
| 967 | 	 */ | 
| 968 | 	Matrix4 createMixedToShadowUVMatrix(const Matrix4& viewP, const Matrix4& viewInvVP, const Rect2& shadowMapArea, | 
| 969 | 		float depthScale, float depthOffset, const Matrix4& shadowViewProj) | 
| 970 | 	{ | 
| 971 | 		// Projects a point from (clip_x, clip_y, view_z, view_w) into clip space | 
| 972 | 		Matrix4 mixedToShadow = Matrix4::IDENTITY; | 
| 973 | 		mixedToShadow[2][2] = viewP[2][2]; | 
| 974 | 		mixedToShadow[2][3] = viewP[2][3]; | 
| 975 | 		mixedToShadow[3][2] = viewP[3][2]; | 
| 976 | 		mixedToShadow[3][3] = 0.0f; | 
| 977 |  | 
| 978 | 		// Projects a point in clip space back to homogeneus world space | 
| 979 | 		mixedToShadow = viewInvVP * mixedToShadow; | 
| 980 |  | 
| 981 | 		// Projects a point in world space to shadow clip space | 
| 982 | 		mixedToShadow = shadowViewProj * mixedToShadow; | 
| 983 | 		 | 
| 984 | 		// Convert shadow clip space coordinates to UV coordinates relative to the shadow map rectangle, and normalize | 
| 985 | 		// depth | 
| 986 | 		const Conventions& rapiConventions = gCaps().conventions; | 
| 987 |  | 
| 988 | 		float flipY = -1.0f; | 
| 989 | 		// Either of these flips the Y axis, but if they're both true they cancel out | 
| 990 | 		if ((rapiConventions.uvYAxis == Conventions::Axis::Up) ^ (rapiConventions.ndcYAxis == Conventions::Axis::Down)) | 
| 991 | 			flipY = -flipY; | 
| 992 |  | 
| 993 | 		Matrix4 shadowMapTfrm | 
| 994 | 		( | 
| 995 | 			shadowMapArea.width * 0.5f, 0, 0, shadowMapArea.x + 0.5f * shadowMapArea.width, | 
| 996 | 			0, flipY * shadowMapArea.height * 0.5f, 0, shadowMapArea.y + 0.5f * shadowMapArea.height, | 
| 997 | 			0, 0, depthScale, depthOffset, | 
| 998 | 			0, 0, 0, 1 | 
| 999 | 		); | 
| 1000 |  | 
| 1001 | 		return shadowMapTfrm * mixedToShadow; | 
| 1002 | 	} | 
| 1003 |  | 
| 1004 | 	void ShadowRendering::renderShadowOcclusion(const RendererView& view, const RendererLight& rendererLight,  | 
| 1005 | 		GBufferTextures gbuffer) const | 
| 1006 | 	{ | 
| 1007 | 		UINT32 shadowQuality = view.getRenderSettings().shadowSettings.shadowFilteringQuality; | 
| 1008 |  | 
| 1009 | 		const Light* light = rendererLight.internal; | 
| 1010 | 		UINT32 lightIdx = light->getRendererId(); | 
| 1011 |  | 
| 1012 | 		auto viewProps = view.getProperties(); | 
| 1013 |  | 
| 1014 | 		const Matrix4& viewP = viewProps.projTransform; | 
| 1015 | 		Matrix4 viewInvVP = viewProps.viewProjTransform.inverse(); | 
| 1016 |  | 
| 1017 | 		SPtr<GpuParamBlockBuffer> perViewBuffer = view.getPerViewBuffer(); | 
| 1018 |  | 
| 1019 | 		ProfileGPUBlock sampleBlock("Render shadow occlusion" ); | 
| 1020 |  | 
| 1021 | 		const RenderAPICapabilities& caps = gCaps(); | 
| 1022 | 		// TODO - Calculate and set a scissor rectangle for the light | 
| 1023 |  | 
| 1024 | 		SPtr<GpuParamBlockBuffer> shadowParamBuffer = gShadowProjectParamsDef.createBuffer(); | 
| 1025 | 		SPtr<GpuParamBlockBuffer> shadowOmniParamBuffer = gShadowProjectOmniParamsDef.createBuffer(); | 
| 1026 |  | 
| 1027 | 		UINT32 viewIdx = view.getViewIdx(); | 
| 1028 | 		Vector<const ShadowInfo*> shadowInfos; | 
| 1029 |  | 
| 1030 | 		if(light->getType() == LightType::Radial) | 
| 1031 | 		{ | 
| 1032 | 			const LightShadows& shadows = mRadialLightShadows[lightIdx]; | 
| 1033 |  | 
| 1034 | 			for(UINT32 i = 0; i < shadows.numShadows; ++i) | 
| 1035 | 			{ | 
| 1036 | 				UINT32 shadowIdx = shadows.startIdx + i; | 
| 1037 | 				const ShadowInfo& shadowInfo = mShadowInfos[shadowIdx]; | 
| 1038 |  | 
| 1039 | 				if (shadowInfo.fadePerView[viewIdx] < 0.005f) | 
| 1040 | 					continue; | 
| 1041 |  | 
| 1042 | 				for(UINT32 j = 0; j < 6; j++) | 
| 1043 | 					gShadowProjectOmniParamsDef.gFaceVPMatrices.set(shadowOmniParamBuffer, shadowInfo.shadowVPTransforms[j], j); | 
| 1044 |  | 
| 1045 | 				gShadowProjectOmniParamsDef.gDepthBias.set(shadowOmniParamBuffer, shadowInfo.depthBias); | 
| 1046 | 				gShadowProjectOmniParamsDef.gFadePercent.set(shadowOmniParamBuffer, shadowInfo.fadePerView[viewIdx]); | 
| 1047 | 				gShadowProjectOmniParamsDef.gInvResolution.set(shadowOmniParamBuffer, 1.0f / shadowInfo.area.width); | 
| 1048 |  | 
| 1049 | 				const Transform& tfrm = light->getTransform(); | 
| 1050 | 				Vector4 lightPosAndRadius(tfrm.getPosition(), light->getAttenuationRadius()); | 
| 1051 | 				gShadowProjectOmniParamsDef.gLightPosAndRadius.set(shadowOmniParamBuffer, lightPosAndRadius); | 
| 1052 |  | 
| 1053 | 				// Reduce shadow quality based on shadow map resolution for spot lights | 
| 1054 | 				UINT32 effectiveShadowQuality = getShadowQuality(shadowQuality, shadowInfo.area.width, 2); | 
| 1055 |  | 
| 1056 | 				// Check if viewer is inside the light bounds | 
| 1057 | 				//// Expand the light bounds slightly to handle the case when the near plane is intersecting the light volume | 
| 1058 | 				float lightRadius = light->getAttenuationRadius() + viewProps.nearPlane * 3.0f; | 
| 1059 | 				bool viewerInsideVolume = (tfrm.getPosition() - viewProps.viewOrigin).length() < lightRadius; | 
| 1060 |  | 
| 1061 | 				SPtr<Texture> shadowMap = mShadowCubemaps[shadowInfo.textureIdx].getTexture(); | 
| 1062 | 				ShadowProjectParams shadowParams(*light, shadowMap, shadowOmniParamBuffer, perViewBuffer, gbuffer); | 
| 1063 |  | 
| 1064 | 				ShadowProjectOmniMat* mat = ShadowProjectOmniMat::getVariation(effectiveShadowQuality, viewerInsideVolume,  | 
| 1065 | 					viewProps.target.numSamples > 1); | 
| 1066 | 				mat->bind(shadowParams); | 
| 1067 |  | 
| 1068 | 				gRendererUtility().draw(gRendererUtility().getSphereStencil()); | 
| 1069 | 			} | 
| 1070 | 		} | 
| 1071 | 		else // Directional & spot | 
| 1072 | 		{ | 
| 1073 | 			shadowInfos.clear(); | 
| 1074 |  | 
| 1075 | 			bool isCSM = light->getType() == LightType::Directional; | 
| 1076 | 			if(!isCSM) | 
| 1077 | 			{ | 
| 1078 | 				const LightShadows& shadows = mSpotLightShadows[lightIdx]; | 
| 1079 | 				for (UINT32 i = 0; i < shadows.numShadows; ++i) | 
| 1080 | 				{ | 
| 1081 | 					UINT32 shadowIdx = shadows.startIdx + i; | 
| 1082 | 					const ShadowInfo& shadowInfo = mShadowInfos[shadowIdx]; | 
| 1083 |  | 
| 1084 | 					if (shadowInfo.fadePerView[viewIdx] < 0.005f) | 
| 1085 | 						continue; | 
| 1086 |  | 
| 1087 | 					shadowInfos.push_back(&shadowInfo); | 
| 1088 | 				} | 
| 1089 | 			} | 
| 1090 | 			else // Directional | 
| 1091 | 			{ | 
| 1092 | 				const LightShadows& shadows = mDirectionalLightShadows[lightIdx].viewShadows[viewIdx]; | 
| 1093 | 				if (shadows.numShadows > 0) | 
| 1094 | 				{ | 
| 1095 | 					UINT32 mapIdx = shadows.startIdx; | 
| 1096 | 					const ShadowCascadedMap& cascadedMap = mCascadedShadowMaps[mapIdx]; | 
| 1097 |  | 
| 1098 | 					// Render cascades in far to near order. | 
| 1099 | 					// Note: If rendering other non-cascade maps they should be rendered after cascades. | 
| 1100 | 					for (INT32 i = cascadedMap.getNumCascades() - 1; i >= 0; i--) | 
| 1101 | 						shadowInfos.push_back(&cascadedMap.getShadowInfo(i)); | 
| 1102 | 				} | 
| 1103 | 			} | 
| 1104 |  | 
| 1105 | 			for(auto& shadowInfo : shadowInfos) | 
| 1106 | 			{ | 
| 1107 | 				float depthScale, depthOffset; | 
| 1108 |  | 
| 1109 | 				// Depth range scale is already baked into the ortho projection matrix, so avoid doing it here | 
| 1110 | 				if (isCSM) | 
| 1111 | 				{ | 
| 1112 | 					// Need to map from API-specific clip space depth to [0, 1] range | 
| 1113 | 					depthScale = 1.0f / (caps.maxDepth - caps.minDepth); | 
| 1114 | 					depthOffset = -caps.minDepth * depthScale; | 
| 1115 | 				} | 
| 1116 | 				else | 
| 1117 | 				{ | 
| 1118 | 					depthScale = 1.0f / shadowInfo->depthRange; | 
| 1119 | 					depthOffset = 0.0f; | 
| 1120 | 				} | 
| 1121 |  | 
| 1122 | 				SPtr<Texture> shadowMap; | 
| 1123 | 				UINT32 shadowMapFace = 0; | 
| 1124 | 				if(!isCSM) | 
| 1125 | 					shadowMap = mDynamicShadowMaps[shadowInfo->textureIdx].getTexture(); | 
| 1126 | 				else | 
| 1127 | 				{ | 
| 1128 | 					shadowMap = mCascadedShadowMaps[shadowInfo->textureIdx].getTexture(); | 
| 1129 | 					shadowMapFace = shadowInfo->cascadeIdx; | 
| 1130 | 				} | 
| 1131 |  | 
| 1132 | 				Matrix4 mixedToShadowUV = createMixedToShadowUVMatrix(viewP, viewInvVP, shadowInfo->normArea,  | 
| 1133 | 					depthScale, depthOffset, shadowInfo->shadowVPTransform); | 
| 1134 |  | 
| 1135 | 				auto shadowMapProps = shadowMap->getProperties(); | 
| 1136 |  | 
| 1137 | 				Vector2 shadowMapSize((float)shadowMapProps.getWidth(), (float)shadowMapProps.getHeight()); | 
| 1138 | 				float transitionScale = getFadeTransition(*light, shadowInfo->subjectBounds.getRadius(),  | 
| 1139 | 					shadowInfo->depthRange, shadowInfo->area.width); | 
| 1140 |  | 
| 1141 | 				gShadowProjectParamsDef.gFadePlaneDepth.set(shadowParamBuffer, shadowInfo->depthFade); | 
| 1142 | 				gShadowProjectParamsDef.gMixedToShadowSpace.set(shadowParamBuffer, mixedToShadowUV); | 
| 1143 | 				gShadowProjectParamsDef.gShadowMapSize.set(shadowParamBuffer, shadowMapSize); | 
| 1144 | 				gShadowProjectParamsDef.gShadowMapSizeInv.set(shadowParamBuffer, 1.0f / shadowMapSize); | 
| 1145 | 				gShadowProjectParamsDef.gSoftTransitionScale.set(shadowParamBuffer, transitionScale); | 
| 1146 |  | 
| 1147 | 				if(isCSM) | 
| 1148 | 					gShadowProjectParamsDef.gFadePercent.set(shadowParamBuffer, 1.0f); | 
| 1149 | 				else | 
| 1150 | 					gShadowProjectParamsDef.gFadePercent.set(shadowParamBuffer, shadowInfo->fadePerView[viewIdx]); | 
| 1151 |  | 
| 1152 | 				if(shadowInfo->fadeRange == 0.0f) | 
| 1153 | 					gShadowProjectParamsDef.gInvFadePlaneRange.set(shadowParamBuffer, 0.0f); | 
| 1154 | 				else | 
| 1155 | 					gShadowProjectParamsDef.gInvFadePlaneRange.set(shadowParamBuffer, 1.0f / shadowInfo->fadeRange); | 
| 1156 |  | 
| 1157 | 				// Generate a stencil buffer to avoid evaluating pixels without any receiver geometry in the shadow area | 
| 1158 | 				std::array<Vector3, 8> frustumVertices; | 
| 1159 | 				UINT32 effectiveShadowQuality = shadowQuality; | 
| 1160 | 				if(!isCSM) | 
| 1161 | 				{ | 
| 1162 | 					ConvexVolume shadowFrustum; | 
| 1163 | 					frustumVertices = getFrustum(shadowInfo->shadowVPTransform.inverse(), shadowFrustum); | 
| 1164 |  | 
| 1165 | 					// Check if viewer is inside the frustum. Frustum is slightly expanded so that if the near plane is | 
| 1166 | 					// intersecting the shadow frustum, it is counted as inside. This needs to be conservative as the code | 
| 1167 | 					// for handling viewer outside the frustum will not properly render intersections with the near plane. | 
| 1168 | 					bool viewerInsideFrustum = shadowFrustum.contains(viewProps.viewOrigin, viewProps.nearPlane * 3.0f); | 
| 1169 |  | 
| 1170 | 					ShadowProjectStencilMat* mat = ShadowProjectStencilMat::getVariation(false, viewerInsideFrustum); | 
| 1171 | 					mat->bind(perViewBuffer); | 
| 1172 | 					drawFrustum(frustumVertices); | 
| 1173 |  | 
| 1174 | 					// Reduce shadow quality based on shadow map resolution for spot lights | 
| 1175 | 					effectiveShadowQuality = getShadowQuality(shadowQuality, shadowInfo->area.width, 2); | 
| 1176 | 				} | 
| 1177 | 				else | 
| 1178 | 				{ | 
| 1179 | 					// Need to generate near and far planes to clip the geometry within the current CSM slice. | 
| 1180 | 					// Note: If the render API supports built-in depth bound tests that could be used instead. | 
| 1181 |  | 
| 1182 | 					Vector3 near = viewProps.projTransform.multiply(Vector3(0, 0, -shadowInfo->depthNear)); | 
| 1183 | 					Vector3 far = viewProps.projTransform.multiply(Vector3(0, 0, -shadowInfo->depthFar)); | 
| 1184 |  | 
| 1185 | 					ShadowProjectStencilMat* mat = ShadowProjectStencilMat::getVariation(true, true); | 
| 1186 | 					mat->bind(perViewBuffer); | 
| 1187 |  | 
| 1188 | 					drawNearFarPlanes(near.z, far.z, shadowInfo->cascadeIdx != 0); | 
| 1189 | 				} | 
| 1190 |  | 
| 1191 | 				gShadowProjectParamsDef.gFace.set(shadowParamBuffer, (float)shadowMapFace); | 
| 1192 | 				ShadowProjectParams shadowParams(*light, shadowMap, shadowParamBuffer, perViewBuffer, gbuffer); | 
| 1193 |  | 
| 1194 | 				ShadowProjectMat* mat = ShadowProjectMat::getVariation(effectiveShadowQuality, isCSM,  | 
| 1195 | 					viewProps.target.numSamples > 1); | 
| 1196 | 				mat->bind(shadowParams); | 
| 1197 |  | 
| 1198 | 				if (!isCSM) | 
| 1199 | 					drawFrustum(frustumVertices); | 
| 1200 | 				else | 
| 1201 | 					gRendererUtility().drawScreenQuad(); | 
| 1202 | 			} | 
| 1203 | 		} | 
| 1204 | 	} | 
| 1205 |  | 
| 1206 | 	void ShadowRendering::renderCascadedShadowMaps(const RendererView& view, UINT32 lightIdx, RendererScene& scene,  | 
| 1207 | 		const FrameInfo& frameInfo) | 
| 1208 | 	{ | 
| 1209 | 		UINT32 viewIdx = view.getViewIdx(); | 
| 1210 | 		LightShadows& lightShadows = mDirectionalLightShadows[lightIdx].viewShadows[viewIdx]; | 
| 1211 |  | 
| 1212 | 		if (!view.getRenderSettings().enableShadows) | 
| 1213 | 		{ | 
| 1214 | 			lightShadows.startIdx = -1; | 
| 1215 | 			lightShadows.numShadows = 0; | 
| 1216 | 			return; | 
| 1217 | 		} | 
| 1218 |  | 
| 1219 | 		// Note: Currently I'm using spherical bounds for the cascaded frustum which might result in non-optimal usage | 
| 1220 | 		// of the shadow map. A different approach would be to generate a bounding box and then both adjust the aspect | 
| 1221 | 		// ratio (and therefore dimensions) of the shadow map, as well as rotate the camera so the visible area best fits | 
| 1222 | 		// in the map. It remains to be seen if this is viable. | 
| 1223 | 		//  - Note2: Actually both of these will likely have serious negative impact on shadow stability. | 
| 1224 | 		const SceneInfo& sceneInfo = scene.getSceneInfo(); | 
| 1225 |  | 
| 1226 | 		const RendererLight& rendererLight = sceneInfo.directionalLights[lightIdx]; | 
| 1227 | 		Light* light = rendererLight.internal; | 
| 1228 |  | 
| 1229 | 		RenderAPI& rapi = RenderAPI::instance(); | 
| 1230 |  | 
| 1231 | 		const Transform& tfrm = light->getTransform(); | 
| 1232 | 		Vector3 lightDir = -tfrm.getRotation().zAxis(); | 
| 1233 | 		SPtr<GpuParamBlockBuffer> shadowParamsBuffer = gShadowParamsDef.createBuffer(); | 
| 1234 |  | 
| 1235 | 		ShadowInfo shadowInfo; | 
| 1236 | 		shadowInfo.lightIdx = lightIdx; | 
| 1237 | 		shadowInfo.textureIdx = -1; | 
| 1238 |  | 
| 1239 | 		UINT32 mapSize = std::min(mShadowMapSize, MAX_ATLAS_SIZE); | 
| 1240 | 		shadowInfo.area = Rect2I(0, 0, mapSize, mapSize); | 
| 1241 | 		shadowInfo.updateNormArea(mapSize); | 
| 1242 |  | 
| 1243 | 		UINT32 numCascades = view.getRenderSettings().shadowSettings.numCascades; | 
| 1244 | 		for (UINT32 i = 0; i < (UINT32)mCascadedShadowMaps.size(); i++) | 
| 1245 | 		{ | 
| 1246 | 			ShadowCascadedMap& shadowMap = mCascadedShadowMaps[i]; | 
| 1247 |  | 
| 1248 | 			if (!shadowMap.isUsed() && shadowMap.getSize() == mapSize && shadowMap.getNumCascades() == numCascades) | 
| 1249 | 			{ | 
| 1250 | 				shadowInfo.textureIdx = i; | 
| 1251 | 				shadowMap.markAsUsed(); | 
| 1252 |  | 
| 1253 | 				break; | 
| 1254 | 			} | 
| 1255 | 		} | 
| 1256 |  | 
| 1257 | 		if (shadowInfo.textureIdx == (UINT32)-1) | 
| 1258 | 		{ | 
| 1259 | 			shadowInfo.textureIdx = (UINT32)mCascadedShadowMaps.size(); | 
| 1260 | 			mCascadedShadowMaps.push_back(ShadowCascadedMap(mapSize, numCascades)); | 
| 1261 |  | 
| 1262 | 			ShadowCascadedMap& shadowMap = mCascadedShadowMaps.back(); | 
| 1263 | 			shadowMap.markAsUsed(); | 
| 1264 | 		} | 
| 1265 |  | 
| 1266 | 		ShadowCascadedMap& shadowMap = mCascadedShadowMaps[shadowInfo.textureIdx]; | 
| 1267 |  | 
| 1268 | 		Quaternion lightRotation(BsIdentity); | 
| 1269 | 		lightRotation.lookRotation(lightDir, Vector3::UNIT_Y); | 
| 1270 |  | 
| 1271 | 		ProfileGPUBlock profileSample("Project directional light shadow" ); | 
| 1272 |  | 
| 1273 | 		for (UINT32 i = 0; i < numCascades; ++i) | 
| 1274 | 		{ | 
| 1275 | 			Sphere frustumBounds; | 
| 1276 | 			ConvexVolume cascadeCullVolume = getCSMSplitFrustum(view, lightDir, i, numCascades, frustumBounds); | 
| 1277 |  | 
| 1278 | 			// Make sure the size of the projected area is in multiples of shadow map pixel size (for stability) | 
| 1279 | 			float worldUnitsPerTexel = frustumBounds.getRadius() * 2.0f / shadowMap.getSize(); | 
| 1280 |  | 
| 1281 | 			float orthoSize = floor(frustumBounds.getRadius() * 2.0f / worldUnitsPerTexel) * worldUnitsPerTexel * 0.5f; | 
| 1282 | 			worldUnitsPerTexel = orthoSize * 2.0f / shadowMap.getSize(); | 
| 1283 | 			 | 
| 1284 | 			// Snap caster origin to the shadow map pixel grid, to ensure shadow map stability | 
| 1285 | 			Vector3 casterOrigin = frustumBounds.getCenter(); | 
| 1286 | 			Matrix4 shadowView = Matrix4::view(Vector3::ZERO, lightRotation); | 
| 1287 | 			Vector3 shadowSpaceOrigin = shadowView.multiplyAffine(casterOrigin); | 
| 1288 |  | 
| 1289 | 			Vector2 snapOffset(fmod(shadowSpaceOrigin.x, worldUnitsPerTexel), fmod(shadowSpaceOrigin.y, worldUnitsPerTexel)); | 
| 1290 | 			shadowSpaceOrigin.x -= snapOffset.x; | 
| 1291 | 			shadowSpaceOrigin.y -= snapOffset.y; | 
| 1292 |  | 
| 1293 | 			Matrix4 shadowViewInv = shadowView.inverseAffine(); | 
| 1294 | 			casterOrigin = shadowViewInv.multiplyAffine(shadowSpaceOrigin); | 
| 1295 |  | 
| 1296 | 			// Move the light so it is centered at the subject frustum, with depth range covering the frustum bounds | 
| 1297 | 			shadowInfo.depthRange = frustumBounds.getRadius() * 2.0f; | 
| 1298 |  | 
| 1299 | 			Vector3 offsetLightPos = casterOrigin - lightDir * frustumBounds.getRadius(); | 
| 1300 | 			Matrix4 offsetViewMat = Matrix4::view(offsetLightPos, lightRotation); | 
| 1301 |  | 
| 1302 | 			Matrix4 proj = Matrix4::projectionOrthographic(-orthoSize, orthoSize, orthoSize, -orthoSize, 0.0f,  | 
| 1303 | 				shadowInfo.depthRange); | 
| 1304 |  | 
| 1305 | 			RenderAPI::instance().convertProjectionMatrix(proj, proj); | 
| 1306 |  | 
| 1307 | 			shadowInfo.cascadeIdx = i; | 
| 1308 | 			shadowInfo.shadowVPTransform = proj * offsetViewMat; | 
| 1309 |  | 
| 1310 | 			// Determine split range | 
| 1311 | 			float splitNear = getCSMSplitDistance(view, i, numCascades); | 
| 1312 | 			float splitFar = getCSMSplitDistance(view, i + 1, numCascades); | 
| 1313 |  | 
| 1314 | 			shadowInfo.depthNear = splitNear; | 
| 1315 | 			shadowInfo.depthFade = splitFar; | 
| 1316 | 			shadowInfo.subjectBounds = frustumBounds; | 
| 1317 | 			 | 
| 1318 | 			if ((UINT32)(i + 1) < numCascades) | 
| 1319 | 				shadowInfo.fadeRange = CASCADE_FRACTION_FADE * (shadowInfo.depthFade - shadowInfo.depthNear); | 
| 1320 | 			else | 
| 1321 | 				shadowInfo.fadeRange = 0.0f; | 
| 1322 |  | 
| 1323 | 			shadowInfo.depthFar = shadowInfo.depthFade + shadowInfo.fadeRange; | 
| 1324 | 			shadowInfo.depthBias = getDepthBias(*light, frustumBounds.getRadius(), shadowInfo.depthRange, mapSize); | 
| 1325 |  | 
| 1326 | 			gShadowParamsDef.gDepthBias.set(shadowParamsBuffer, shadowInfo.depthBias); | 
| 1327 | 			gShadowParamsDef.gInvDepthRange.set(shadowParamsBuffer, 1.0f / shadowInfo.depthRange); | 
| 1328 | 			gShadowParamsDef.gMatViewProj.set(shadowParamsBuffer, shadowInfo.shadowVPTransform); | 
| 1329 | 			gShadowParamsDef.gNDCZToDeviceZ.set(shadowParamsBuffer, RendererView::getNDCZToDeviceZ()); | 
| 1330 |  | 
| 1331 | 			rapi.setRenderTarget(shadowMap.getTarget(i)); | 
| 1332 | 			rapi.clearRenderTarget(FBT_DEPTH); | 
| 1333 |  | 
| 1334 | 			ShadowDepthDirectionalMat* depthDirMat = ShadowDepthDirectionalMat::get(); | 
| 1335 | 			depthDirMat->bind(shadowParamsBuffer); | 
| 1336 |  | 
| 1337 | 			// Render all renderables into the shadow map | 
| 1338 | 			ShadowRenderQueueDirOptions dirOptions( | 
| 1339 | 				cascadeCullVolume, | 
| 1340 | 				shadowParamsBuffer); | 
| 1341 | 			 | 
| 1342 | 			ShadowRenderQueue::execute(scene, frameInfo, dirOptions); | 
| 1343 |  | 
| 1344 | 			shadowMap.setShadowInfo(i, shadowInfo); | 
| 1345 | 		} | 
| 1346 |  | 
| 1347 | 		lightShadows.startIdx = shadowInfo.textureIdx; | 
| 1348 | 		lightShadows.numShadows = 1; | 
| 1349 | 	} | 
| 1350 |  | 
| 1351 | 	void ShadowRendering::renderSpotShadowMap(const RendererLight& rendererLight, const ShadowMapOptions& options, | 
| 1352 | 		RendererScene& scene, const FrameInfo& frameInfo) | 
| 1353 | 	{ | 
| 1354 | 		Light* light = rendererLight.internal; | 
| 1355 |  | 
| 1356 | 		SPtr<GpuParamBlockBuffer> shadowParamsBuffer = gShadowParamsDef.createBuffer(); | 
| 1357 |  | 
| 1358 | 		ShadowInfo mapInfo; | 
| 1359 | 		mapInfo.fadePerView = options.fadePercents; | 
| 1360 | 		mapInfo.lightIdx = options.lightIdx; | 
| 1361 | 		mapInfo.cascadeIdx = -1; | 
| 1362 |  | 
| 1363 | 		bool foundSpace = false; | 
| 1364 | 		for (UINT32 i = 0; i < (UINT32)mDynamicShadowMaps.size(); i++) | 
| 1365 | 		{ | 
| 1366 | 			ShadowMapAtlas& atlas = mDynamicShadowMaps[i]; | 
| 1367 |  | 
| 1368 | 			if (atlas.addMap(options.mapSize, mapInfo.area, SHADOW_MAP_BORDER)) | 
| 1369 | 			{ | 
| 1370 | 				mapInfo.textureIdx = i; | 
| 1371 |  | 
| 1372 | 				foundSpace = true; | 
| 1373 | 				break; | 
| 1374 | 			} | 
| 1375 | 		} | 
| 1376 |  | 
| 1377 | 		if (!foundSpace) | 
| 1378 | 		{ | 
| 1379 | 			mapInfo.textureIdx = (UINT32)mDynamicShadowMaps.size(); | 
| 1380 | 			mDynamicShadowMaps.push_back(ShadowMapAtlas(MAX_ATLAS_SIZE)); | 
| 1381 |  | 
| 1382 | 			ShadowMapAtlas& atlas = mDynamicShadowMaps.back(); | 
| 1383 | 			atlas.addMap(options.mapSize, mapInfo.area, SHADOW_MAP_BORDER); | 
| 1384 | 		} | 
| 1385 |  | 
| 1386 | 		mapInfo.updateNormArea(MAX_ATLAS_SIZE); | 
| 1387 | 		ShadowMapAtlas& atlas = mDynamicShadowMaps[mapInfo.textureIdx]; | 
| 1388 |  | 
| 1389 | 		ProfileGPUBlock profileSample("Project spot light shadows" ); | 
| 1390 |  | 
| 1391 | 		RenderAPI& rapi = RenderAPI::instance(); | 
| 1392 | 		rapi.setRenderTarget(atlas.getTarget()); | 
| 1393 | 		rapi.setViewport(mapInfo.normArea); | 
| 1394 | 		rapi.clearViewport(FBT_DEPTH); | 
| 1395 |  | 
| 1396 | 		mapInfo.depthNear = 0.05f; | 
| 1397 | 		mapInfo.depthFar = light->getAttenuationRadius(); | 
| 1398 | 		mapInfo.depthFade = mapInfo.depthFar; | 
| 1399 | 		mapInfo.fadeRange = 0.0f; | 
| 1400 | 		mapInfo.depthRange = mapInfo.depthFar - mapInfo.depthNear; | 
| 1401 | 		mapInfo.depthBias = getDepthBias(*light, light->getBounds().getRadius(), mapInfo.depthRange, options.mapSize); | 
| 1402 | 		mapInfo.subjectBounds = light->getBounds(); | 
| 1403 |  | 
| 1404 | 		Quaternion lightRotation = light->getTransform().getRotation(); | 
| 1405 |  | 
| 1406 | 		Matrix4 view = Matrix4::view(rendererLight.getShiftedLightPosition(), lightRotation); | 
| 1407 | 		Matrix4 proj = Matrix4::projectionPerspective(light->getSpotAngle(), 1.0f, 0.05f, light->getAttenuationRadius()); | 
| 1408 |  | 
| 1409 | 		ConvexVolume localFrustum = ConvexVolume(proj); | 
| 1410 | 		RenderAPI::instance().convertProjectionMatrix(proj, proj); | 
| 1411 |  | 
| 1412 | 		mapInfo.shadowVPTransform = proj * view; | 
| 1413 |  | 
| 1414 | 		gShadowParamsDef.gDepthBias.set(shadowParamsBuffer, mapInfo.depthBias); | 
| 1415 | 		gShadowParamsDef.gInvDepthRange.set(shadowParamsBuffer, 1.0f / mapInfo.depthRange); | 
| 1416 | 		gShadowParamsDef.gMatViewProj.set(shadowParamsBuffer, mapInfo.shadowVPTransform); | 
| 1417 | 		gShadowParamsDef.gNDCZToDeviceZ.set(shadowParamsBuffer, RendererView::getNDCZToDeviceZ()); | 
| 1418 |  | 
| 1419 | 		const Vector<Plane>& frustumPlanes = localFrustum.getPlanes(); | 
| 1420 | 		Matrix4 worldMatrix = view.inverseAffine(); | 
| 1421 |  | 
| 1422 | 		Vector<Plane> worldPlanes(frustumPlanes.size()); | 
| 1423 | 		UINT32 j = 0; | 
| 1424 | 		for (auto& plane : frustumPlanes) | 
| 1425 | 		{ | 
| 1426 | 			worldPlanes[j] = worldMatrix.multiplyAffine(plane); | 
| 1427 | 			j++; | 
| 1428 | 		} | 
| 1429 |  | 
| 1430 | 		ConvexVolume worldFrustum(worldPlanes); | 
| 1431 |  | 
| 1432 | 		// Render all renderables into the shadow map | 
| 1433 | 		ShadowRenderQueueSpotOptions spotOptions( | 
| 1434 | 			worldFrustum, | 
| 1435 | 			shadowParamsBuffer); | 
| 1436 |  | 
| 1437 | 		ShadowRenderQueue::execute(scene, frameInfo, spotOptions); | 
| 1438 |  | 
| 1439 | 		// Restore viewport | 
| 1440 | 		rapi.setViewport(Rect2(0.0f, 0.0f, 1.0f, 1.0f)); | 
| 1441 |  | 
| 1442 | 		LightShadows& lightShadows = mSpotLightShadows[options.lightIdx]; | 
| 1443 |  | 
| 1444 | 		mShadowInfos[lightShadows.startIdx + lightShadows.numShadows] = mapInfo; | 
| 1445 | 		lightShadows.numShadows++; | 
| 1446 | 	} | 
| 1447 |  | 
| 1448 | 	void ShadowRendering::renderRadialShadowMap(const RendererLight& rendererLight,  | 
| 1449 | 		const ShadowMapOptions& options, RendererScene& scene, const FrameInfo& frameInfo) | 
| 1450 | 	{ | 
| 1451 | 		Light* light = rendererLight.internal; | 
| 1452 |  | 
| 1453 | 		SPtr<GpuParamBlockBuffer> shadowParamsBuffer = gShadowParamsDef.createBuffer(); | 
| 1454 |  | 
| 1455 | 		ShadowInfo mapInfo; | 
| 1456 | 		mapInfo.lightIdx = options.lightIdx; | 
| 1457 | 		mapInfo.textureIdx = -1; | 
| 1458 | 		mapInfo.fadePerView = options.fadePercents; | 
| 1459 | 		mapInfo.cascadeIdx = -1; | 
| 1460 | 		mapInfo.area = Rect2I(0, 0, options.mapSize, options.mapSize); | 
| 1461 | 		mapInfo.updateNormArea(options.mapSize); | 
| 1462 |  | 
| 1463 | 		for (UINT32 i = 0; i < (UINT32)mShadowCubemaps.size(); i++) | 
| 1464 | 		{ | 
| 1465 | 			ShadowCubemap& cubemap = mShadowCubemaps[i]; | 
| 1466 |  | 
| 1467 | 			if (!cubemap.isUsed() && cubemap.getSize() == options.mapSize) | 
| 1468 | 			{ | 
| 1469 | 				mapInfo.textureIdx = i; | 
| 1470 | 				cubemap.markAsUsed(); | 
| 1471 |  | 
| 1472 | 				break; | 
| 1473 | 			} | 
| 1474 | 		} | 
| 1475 |  | 
| 1476 | 		if (mapInfo.textureIdx == (UINT32)-1) | 
| 1477 | 		{ | 
| 1478 | 			mapInfo.textureIdx = (UINT32)mShadowCubemaps.size(); | 
| 1479 | 			mShadowCubemaps.push_back(ShadowCubemap(options.mapSize)); | 
| 1480 |  | 
| 1481 | 			ShadowCubemap& cubemap = mShadowCubemaps.back(); | 
| 1482 | 			cubemap.markAsUsed(); | 
| 1483 | 		} | 
| 1484 |  | 
| 1485 | 		ShadowCubemap& cubemap = mShadowCubemaps[mapInfo.textureIdx]; | 
| 1486 |  | 
| 1487 | 		mapInfo.depthNear = 0.05f; | 
| 1488 | 		mapInfo.depthFar = light->getAttenuationRadius(); | 
| 1489 | 		mapInfo.depthFade = mapInfo.depthFar; | 
| 1490 | 		mapInfo.fadeRange = 0.0f; | 
| 1491 | 		mapInfo.depthRange = mapInfo.depthFar - mapInfo.depthNear; | 
| 1492 | 		mapInfo.depthBias = getDepthBias(*light, light->getBounds().getRadius(), mapInfo.depthRange, options.mapSize); | 
| 1493 | 		mapInfo.subjectBounds = light->getBounds(); | 
| 1494 |  | 
| 1495 | 		// Note: Projecting on positive Z axis, because cubemaps use a left-handed coordinate system | 
| 1496 | 		Matrix4 proj = Matrix4::projectionPerspective(Degree(90.0f), 1.0f, 0.05f, light->getAttenuationRadius(), true); | 
| 1497 | 		ConvexVolume localFrustum(proj); | 
| 1498 |  | 
| 1499 | 		ProfileGPUBlock profileSample("Project radial light shadows" ); | 
| 1500 |  | 
| 1501 | 		const RenderAPICapabilities& caps = gCaps(); | 
| 1502 | 		const Conventions& rapiConventions = gCaps().conventions; | 
| 1503 |  | 
| 1504 | 		RenderAPI& rapi = RenderAPI::instance(); | 
| 1505 | 		rapi.convertProjectionMatrix(proj, proj); | 
| 1506 |  | 
| 1507 | 		// Render cubemaps upside down if necessary | 
| 1508 | 		Matrix4 adjustedProj = proj; | 
| 1509 | 		if(caps.conventions.uvYAxis == Conventions::Axis::Up) | 
| 1510 | 		{ | 
| 1511 | 			// All big APIs use the same cubemap sampling coordinates, as well as the same face order. But APIs that | 
| 1512 | 			// use bottom-up UV coordinates require the cubemap faces to be stored upside down in order to get the same | 
| 1513 | 			// behaviour. APIs that use an upside-down NDC Y axis have the same problem as the rendered image will be | 
| 1514 | 			// upside down, but this is handled by the projection matrix. If both of those are enabled, then the effect | 
| 1515 | 			// cancels out. | 
| 1516 |  | 
| 1517 | 			adjustedProj[1][1] = -proj[1][1]; | 
| 1518 | 		} | 
| 1519 |  | 
| 1520 | 		bool renderAllFacesAtOnce = caps.hasCapability(RSC_RENDER_TARGET_LAYERS); | 
| 1521 |  | 
| 1522 | 		SPtr<GpuParamBlockBuffer> shadowCubeMatricesBuffer; | 
| 1523 | 		SPtr<GpuParamBlockBuffer> shadowCubeMasksBuffer; | 
| 1524 | 		if(renderAllFacesAtOnce) | 
| 1525 | 		{ | 
| 1526 | 			shadowCubeMatricesBuffer = gShadowCubeMatricesDef.createBuffer(); | 
| 1527 | 			shadowCubeMasksBuffer = gShadowCubeMasksDef.createBuffer(); | 
| 1528 | 		} | 
| 1529 |  | 
| 1530 | 		gShadowParamsDef.gDepthBias.set(shadowParamsBuffer, mapInfo.depthBias); | 
| 1531 | 		gShadowParamsDef.gInvDepthRange.set(shadowParamsBuffer, 1.0f / mapInfo.depthRange); | 
| 1532 | 		gShadowParamsDef.gMatViewProj.set(shadowParamsBuffer, Matrix4::IDENTITY); | 
| 1533 | 		gShadowParamsDef.gNDCZToDeviceZ.set(shadowParamsBuffer, RendererView::getNDCZToDeviceZ()); | 
| 1534 |  | 
| 1535 | 		ConvexVolume frustums[6]; | 
| 1536 | 		Vector<Plane> boundingPlanes; | 
| 1537 | 		for (UINT32 i = 0; i < 6; i++) | 
| 1538 | 		{ | 
| 1539 | 			// Calculate view matrix | 
| 1540 | 			Vector3 forward; | 
| 1541 | 			Vector3 up = Vector3::UNIT_Y; | 
| 1542 |  | 
| 1543 | 			switch (i) | 
| 1544 | 			{ | 
| 1545 | 			case CF_PositiveX: | 
| 1546 | 				forward = Vector3::UNIT_X; | 
| 1547 | 				break; | 
| 1548 | 			case CF_NegativeX: | 
| 1549 | 				forward = -Vector3::UNIT_X; | 
| 1550 | 				break; | 
| 1551 | 			case CF_PositiveY: | 
| 1552 | 				forward = Vector3::UNIT_Y; | 
| 1553 | 				up = -Vector3::UNIT_Z; | 
| 1554 | 				break; | 
| 1555 | 			case CF_NegativeY: | 
| 1556 | 				forward = -Vector3::UNIT_Y; | 
| 1557 | 				up = Vector3::UNIT_Z; | 
| 1558 | 				break; | 
| 1559 | 			case CF_PositiveZ: | 
| 1560 | 				forward = Vector3::UNIT_Z; | 
| 1561 | 				break; | 
| 1562 | 			case CF_NegativeZ: | 
| 1563 | 				forward = -Vector3::UNIT_Z; | 
| 1564 | 				break; | 
| 1565 | 			} | 
| 1566 |  | 
| 1567 | 			Vector3 right = Vector3::cross(up, forward); | 
| 1568 | 			Matrix3 viewRotationMat = Matrix3(right, up, forward); | 
| 1569 |  | 
| 1570 | 			Vector3 lightPos = light->getTransform().getPosition(); | 
| 1571 | 			Matrix4 viewOffsetMat = Matrix4::translation(-lightPos); | 
| 1572 |  | 
| 1573 | 			Matrix4 view = Matrix4(viewRotationMat.transpose()) * viewOffsetMat; | 
| 1574 | 			mapInfo.shadowVPTransforms[i] = proj * view; | 
| 1575 |  | 
| 1576 | 			Matrix4 shadowViewProj = adjustedProj * view; | 
| 1577 |  | 
| 1578 | 			// Calculate world frustum for culling | 
| 1579 | 			const Vector<Plane>& frustumPlanes = localFrustum.getPlanes(); | 
| 1580 |  | 
| 1581 | 			Matrix4 worldMatrix = Matrix4::translation(lightPos) * Matrix4(viewRotationMat); | 
| 1582 |  | 
| 1583 | 			Vector<Plane> worldPlanes(frustumPlanes.size()); | 
| 1584 | 			UINT32 j = 0; | 
| 1585 | 			for (auto& plane : frustumPlanes) | 
| 1586 | 			{ | 
| 1587 | 				worldPlanes[j] = worldMatrix.multiplyAffine(plane); | 
| 1588 | 				j++; | 
| 1589 | 			} | 
| 1590 |  | 
| 1591 | 			ConvexVolume frustum(worldPlanes); | 
| 1592 |  | 
| 1593 | 			if(renderAllFacesAtOnce) | 
| 1594 | 			{ | 
| 1595 | 				frustums[i] = frustum; | 
| 1596 |  | 
| 1597 | 				// Register far plane of all frustums | 
| 1598 | 				boundingPlanes.push_back(worldPlanes[FRUSTUM_PLANE_FAR]); | 
| 1599 | 				gShadowCubeMatricesDef.gFaceVPMatrices.set(shadowCubeMatricesBuffer, shadowViewProj, i); | 
| 1600 | 			} | 
| 1601 | 			else | 
| 1602 | 			{ | 
| 1603 | 				gShadowParamsDef.gMatViewProj.set(shadowParamsBuffer, shadowViewProj); | 
| 1604 |  | 
| 1605 | 				RENDER_TEXTURE_DESC rtDesc; | 
| 1606 | 				rtDesc.depthStencilSurface.texture = cubemap.getTexture(); | 
| 1607 | 				rtDesc.depthStencilSurface.face = i; | 
| 1608 | 				rtDesc.depthStencilSurface.numFaces = 1; | 
| 1609 |  | 
| 1610 | 				SPtr<RenderTarget> faceRt = RenderTexture::create(rtDesc); | 
| 1611 |  | 
| 1612 | 				rapi.setRenderTarget(faceRt); | 
| 1613 | 				rapi.clearRenderTarget(FBT_DEPTH); | 
| 1614 |  | 
| 1615 | 				// Render all renderables into the shadow map | 
| 1616 | 				ConvexVolume boundingVolume(boundingPlanes); | 
| 1617 | 				ShadowRenderQueueCubeSingleOptions cubeOptions( | 
| 1618 | 						frustum, | 
| 1619 | 						shadowParamsBuffer | 
| 1620 | 				); | 
| 1621 |  | 
| 1622 | 				ShadowRenderQueue::execute(scene, frameInfo, cubeOptions); | 
| 1623 | 			} | 
| 1624 | 		} | 
| 1625 |  | 
| 1626 | 		if(renderAllFacesAtOnce) | 
| 1627 | 		{ | 
| 1628 | 			rapi.setRenderTarget(cubemap.getTarget()); | 
| 1629 | 			rapi.clearRenderTarget(FBT_DEPTH); | 
| 1630 |  | 
| 1631 | 			// Render all renderables into the shadow map | 
| 1632 | 			ConvexVolume boundingVolume(boundingPlanes); | 
| 1633 | 			ShadowRenderQueueCubeOptions cubeOptions( | 
| 1634 | 					frustums, | 
| 1635 | 					boundingVolume, | 
| 1636 | 					shadowParamsBuffer, | 
| 1637 | 					shadowCubeMatricesBuffer, | 
| 1638 | 					shadowCubeMasksBuffer | 
| 1639 | 			); | 
| 1640 |  | 
| 1641 | 			ShadowRenderQueue::execute(scene, frameInfo, cubeOptions); | 
| 1642 | 		} | 
| 1643 |  | 
| 1644 | 		LightShadows& lightShadows = mRadialLightShadows[options.lightIdx]; | 
| 1645 |  | 
| 1646 | 		mShadowInfos[lightShadows.startIdx + lightShadows.numShadows] = mapInfo; | 
| 1647 | 		lightShadows.numShadows++; | 
| 1648 | 	} | 
| 1649 |  | 
| 1650 | 	void ShadowRendering::calcShadowMapProperties(const RendererLight& light, const RendererViewGroup& viewGroup,  | 
| 1651 | 		UINT32 border, UINT32& size, SmallVector<float, 6>& fadePercents, float& maxFadePercent) const | 
| 1652 | 	{ | 
| 1653 | 		const static float SHADOW_TEXELS_PER_PIXEL = 1.0f; | 
| 1654 |  | 
| 1655 | 		// Find a view in which the light has the largest radius | 
| 1656 | 		float maxMapSize = 0.0f; | 
| 1657 | 		maxFadePercent = 0.0f; | 
| 1658 | 		for (int i = 0; i < (int)viewGroup.getNumViews(); ++i) | 
| 1659 | 		{ | 
| 1660 | 			const RendererView& view = *viewGroup.getView(i); | 
| 1661 | 			const RendererViewProperties& viewProps = view.getProperties(); | 
| 1662 | 			const RenderSettings& viewSettings = view.getRenderSettings(); | 
| 1663 |  | 
| 1664 | 			if(!viewSettings.enableShadows) | 
| 1665 | 				fadePercents.add(0.0f); | 
| 1666 | 			else | 
| 1667 | 			{ | 
| 1668 | 				// Approximation for screen space sphere radius: screenSize * 0.5 * cot(fov) * radius / Z, where FOV is the  | 
| 1669 | 				// largest one | 
| 1670 | 				//// First get sphere depth | 
| 1671 | 				const Matrix4& viewVP = viewProps.viewProjTransform; | 
| 1672 | 				float depth = viewVP.multiply(Vector4(light.internal->getTransform().getPosition(), 1.0f)).w; | 
| 1673 |  | 
| 1674 | 				// This is just 1/tan(fov), for both horz. and vert. FOV | 
| 1675 | 				float viewScaleX = viewProps.projTransform[0][0]; | 
| 1676 | 				float viewScaleY = viewProps.projTransform[1][1]; | 
| 1677 |  | 
| 1678 | 				float screenScaleX = viewScaleX * viewProps.target.viewRect.width * 0.5f; | 
| 1679 | 				float screenScaleY = viewScaleY * viewProps.target.viewRect.height * 0.5f; | 
| 1680 |  | 
| 1681 | 				float screenScale = std::max(screenScaleX, screenScaleY); | 
| 1682 |  | 
| 1683 | 				//// Calc radius (clamp if too close to avoid massive numbers) | 
| 1684 | 				float radiusNDC = light.internal->getBounds().getRadius() / std::max(depth, 1.0f); | 
| 1685 |  | 
| 1686 | 				//// Radius of light bounds in percent of the view surface, multiplied by screen size in pixels | 
| 1687 | 				float radiusScreen = radiusNDC * screenScale; | 
| 1688 |  | 
| 1689 | 				float optimalMapSize = SHADOW_TEXELS_PER_PIXEL * radiusScreen; | 
| 1690 | 				maxMapSize = std::max(maxMapSize, optimalMapSize); | 
| 1691 |  | 
| 1692 | 				// Determine if the shadow should fade out | 
| 1693 | 				float fadePercent = Math::invLerp(optimalMapSize, (float)MIN_SHADOW_MAP_SIZE, (float)SHADOW_MAP_FADE_SIZE); | 
| 1694 | 				fadePercents.add(fadePercent); | 
| 1695 | 				maxFadePercent = std::max(maxFadePercent, fadePercent); | 
| 1696 | 			} | 
| 1697 | 		} | 
| 1698 |  | 
| 1699 | 		// If light fully (or nearly fully) covers the screen, use full shadow map resolution, otherwise | 
| 1700 | 		// scale it down to smaller power of two, while clamping to minimal allowed resolution | 
| 1701 | 		UINT32 effectiveMapSize = Bitwise::nextPow2((UINT32)maxMapSize); | 
| 1702 | 		effectiveMapSize = Math::clamp(effectiveMapSize, MIN_SHADOW_MAP_SIZE, mShadowMapSize); | 
| 1703 |  | 
| 1704 | 		// Leave room for border | 
| 1705 | 		size = std::max(effectiveMapSize - 2 * border, 1u); | 
| 1706 | 	} | 
| 1707 |  | 
| 1708 | 	void ShadowRendering::drawNearFarPlanes(float near, float far, bool drawNear) const | 
| 1709 | 	{ | 
| 1710 | 		const Conventions& rapiConventions = gCaps().conventions; | 
| 1711 | 		float flipY = (rapiConventions.ndcYAxis == Conventions::Axis::Down) ? -1.0f : 1.0f; | 
| 1712 |  | 
| 1713 | 		// Update VB with new vertices | 
| 1714 | 		Vector3 vertices[8] = | 
| 1715 | 		{ | 
| 1716 | 			// Near plane | 
| 1717 | 			{ -1.0f, -1.0f * flipY, near }, | 
| 1718 | 			{  1.0f, -1.0f * flipY, near }, | 
| 1719 | 			{  1.0f,  1.0f * flipY, near }, | 
| 1720 | 			{ -1.0f,  1.0f * flipY, near }, | 
| 1721 |  | 
| 1722 | 			// Far plane | 
| 1723 | 			{ -1.0f, -1.0f * flipY, far }, | 
| 1724 | 			{  1.0f, -1.0f * flipY, far }, | 
| 1725 | 			{  1.0f,  1.0f * flipY, far }, | 
| 1726 | 			{ -1.0f,  1.0f * flipY, far }, | 
| 1727 | 		}; | 
| 1728 |  | 
| 1729 | 		mPlaneVB->writeData(0, sizeof(vertices), vertices, BWT_DISCARD); | 
| 1730 |  | 
| 1731 | 		// Draw the mesh | 
| 1732 | 		RenderAPI& rapi = RenderAPI::instance(); | 
| 1733 | 		rapi.setVertexDeclaration(mPositionOnlyVD); | 
| 1734 | 		rapi.setVertexBuffers(0, &mPlaneVB, 1); | 
| 1735 | 		rapi.setIndexBuffer(mPlaneIB); | 
| 1736 | 		rapi.setDrawOperation(DOT_TRIANGLE_LIST); | 
| 1737 |  | 
| 1738 | 		rapi.drawIndexed(0, drawNear ? 12 : 6, 0, drawNear ? 8 : 4); | 
| 1739 | 	} | 
| 1740 |  | 
| 1741 | 	void ShadowRendering::drawFrustum(const std::array<Vector3, 8>& corners) const | 
| 1742 | 	{ | 
| 1743 | 		RenderAPI& rapi = RenderAPI::instance(); | 
| 1744 |  | 
| 1745 | 		// Update VB with new vertices | 
| 1746 | 		mFrustumVB->writeData(0, sizeof(Vector3) * 8, corners.data(), BWT_DISCARD); | 
| 1747 |  | 
| 1748 | 		// Draw the mesh | 
| 1749 | 		rapi.setVertexDeclaration(mPositionOnlyVD); | 
| 1750 | 		rapi.setVertexBuffers(0, &mFrustumVB, 1); | 
| 1751 | 		rapi.setIndexBuffer(mFrustumIB); | 
| 1752 | 		rapi.setDrawOperation(DOT_TRIANGLE_LIST); | 
| 1753 |  | 
| 1754 | 		rapi.drawIndexed(0, 36, 0, 8); | 
| 1755 | 	} | 
| 1756 |  | 
| 1757 | 	UINT32 ShadowRendering::getShadowQuality(UINT32 requestedQuality, UINT32 shadowMapResolution, UINT32 minAllowedQuality) | 
| 1758 | 	{ | 
| 1759 | 		static const UINT32 TARGET_RESOLUTION = 512; | 
| 1760 |  | 
| 1761 | 		// If shadow map resolution is smaller than some target resolution drop the number of PCF samples (shadow quality) | 
| 1762 | 		// so that the penumbra better matches with larger sized shadow maps. | 
| 1763 | 		while(requestedQuality > minAllowedQuality && shadowMapResolution < TARGET_RESOLUTION) | 
| 1764 | 		{ | 
| 1765 | 			shadowMapResolution *= 2; | 
| 1766 | 			requestedQuality = std::max(requestedQuality - 1, 1U); | 
| 1767 | 		} | 
| 1768 |  | 
| 1769 | 		return requestedQuality; | 
| 1770 | 	} | 
| 1771 |  | 
| 1772 | 	ConvexVolume ShadowRendering::getCSMSplitFrustum(const RendererView& view, const Vector3& lightDir, UINT32 cascade,  | 
| 1773 | 		UINT32 numCascades, Sphere& outBounds) | 
| 1774 | 	{ | 
| 1775 | 		// Determine split range | 
| 1776 | 		float splitNear = getCSMSplitDistance(view, cascade, numCascades); | 
| 1777 | 		float splitFar = getCSMSplitDistance(view, cascade + 1, numCascades); | 
| 1778 |  | 
| 1779 | 		// Increase by fade range, unless last cascade | 
| 1780 | 		if ((UINT32)(cascade + 1) < numCascades) | 
| 1781 | 				splitFar += CASCADE_FRACTION_FADE * (splitFar - splitNear); | 
| 1782 | 		 | 
| 1783 | 		// Calculate the eight vertices of the split frustum | 
| 1784 | 		auto& viewProps = view.getProperties(); | 
| 1785 |  | 
| 1786 | 		const Matrix4& projMat = viewProps.projTransform; | 
| 1787 |  | 
| 1788 | 		float aspect; | 
| 1789 | 		float nearHalfWidth, nearHalfHeight; | 
| 1790 | 		float farHalfWidth, farHalfHeight; | 
| 1791 | 		if(viewProps.projType == PT_PERSPECTIVE) | 
| 1792 | 		{ | 
| 1793 | 			aspect = fabs(projMat[0][0] / projMat[1][1]); | 
| 1794 | 			float tanHalfFOV = 1.0f / projMat[0][0]; | 
| 1795 |  | 
| 1796 | 			nearHalfWidth = splitNear * tanHalfFOV; | 
| 1797 | 			nearHalfHeight = nearHalfWidth * aspect; | 
| 1798 |  | 
| 1799 | 			farHalfWidth = splitFar * tanHalfFOV; | 
| 1800 | 			farHalfHeight = farHalfWidth * aspect; | 
| 1801 | 		} | 
| 1802 | 		else | 
| 1803 | 		{ | 
| 1804 | 			aspect = projMat[0][0] / projMat[1][1]; | 
| 1805 |  | 
| 1806 | 			nearHalfWidth = farHalfWidth = projMat[0][0] / 4.0f; | 
| 1807 | 			nearHalfHeight = farHalfHeight = projMat[1][1] / 4.0f; | 
| 1808 | 		} | 
| 1809 |  | 
| 1810 | 		const Matrix4& viewMat = viewProps.viewTransform; | 
| 1811 | 		Vector3 cameraRight = Vector3(viewMat[0]); | 
| 1812 | 		Vector3 cameraUp = Vector3(viewMat[1]); | 
| 1813 |  | 
| 1814 | 		const Vector3& viewOrigin = viewProps.viewOrigin; | 
| 1815 | 		const Vector3& viewDir = viewProps.viewDirection; | 
| 1816 |  | 
| 1817 | 		Vector3 frustumVerts[] = | 
| 1818 | 		{ | 
| 1819 | 			viewOrigin + viewDir * splitNear - cameraRight * nearHalfWidth + cameraUp * nearHalfHeight, // Near, left, top | 
| 1820 | 			viewOrigin + viewDir * splitNear + cameraRight * nearHalfWidth + cameraUp * nearHalfHeight, // Near, right, top | 
| 1821 | 			viewOrigin + viewDir * splitNear + cameraRight * nearHalfWidth - cameraUp * nearHalfHeight, // Near, right, bottom | 
| 1822 | 			viewOrigin + viewDir * splitNear - cameraRight * nearHalfWidth - cameraUp * nearHalfHeight, // Near, left, bottom | 
| 1823 | 			viewOrigin + viewDir * splitFar - cameraRight * farHalfWidth + cameraUp * farHalfHeight, // Far, left, top | 
| 1824 | 			viewOrigin + viewDir * splitFar + cameraRight * farHalfWidth + cameraUp * farHalfHeight, // Far, right, top | 
| 1825 | 			viewOrigin + viewDir * splitFar + cameraRight * farHalfWidth - cameraUp * farHalfHeight, // Far, right, bottom | 
| 1826 | 			viewOrigin + viewDir * splitFar - cameraRight * farHalfWidth - cameraUp * farHalfHeight, // Far, left, bottom | 
| 1827 | 		}; | 
| 1828 |  | 
| 1829 | 		// Calculate the bounding sphere of the frustum | 
| 1830 | 		float diagonalNearSq = nearHalfWidth * nearHalfWidth + nearHalfHeight * nearHalfHeight; | 
| 1831 | 		float diagonalFarSq = farHalfWidth * farHalfWidth + farHalfHeight * farHalfHeight; | 
| 1832 |  | 
| 1833 | 		float length = splitFar - splitNear; | 
| 1834 | 		float offset = (diagonalNearSq - diagonalFarSq) / (2 * length) + length * 0.5f; | 
| 1835 | 		float distToCenter = Math::clamp(splitFar - offset, splitNear, splitFar); | 
| 1836 |  | 
| 1837 | 		Vector3 center = viewOrigin + viewDir * distToCenter; | 
| 1838 |  | 
| 1839 | 		float radius = 0.0f; | 
| 1840 | 		for (auto& entry : frustumVerts) | 
| 1841 | 			radius = std::max(radius, center.squaredDistance(entry)); | 
| 1842 |  | 
| 1843 | 		radius = std::max((float)sqrt(radius), 1.0f); | 
| 1844 | 		outBounds = Sphere(center, radius); | 
| 1845 |  | 
| 1846 | 		// Generate light frustum planes | 
| 1847 | 		Plane viewPlanes[6]; | 
| 1848 | 		viewPlanes[FRUSTUM_PLANE_NEAR] = Plane(frustumVerts[0], frustumVerts[1], frustumVerts[2]); | 
| 1849 | 		viewPlanes[FRUSTUM_PLANE_FAR] = Plane(frustumVerts[5], frustumVerts[4], frustumVerts[7]); | 
| 1850 | 		viewPlanes[FRUSTUM_PLANE_LEFT] = Plane(frustumVerts[4], frustumVerts[0], frustumVerts[3]); | 
| 1851 | 		viewPlanes[FRUSTUM_PLANE_RIGHT] = Plane(frustumVerts[1], frustumVerts[5], frustumVerts[6]); | 
| 1852 | 		viewPlanes[FRUSTUM_PLANE_TOP] = Plane(frustumVerts[4], frustumVerts[5], frustumVerts[1]); | 
| 1853 | 		viewPlanes[FRUSTUM_PLANE_BOTTOM] = Plane(frustumVerts[3], frustumVerts[2], frustumVerts[6]); | 
| 1854 |  | 
| 1855 | 		//// Add camera's planes facing towards the lights (forming the back of the volume) | 
| 1856 | 		Vector<Plane> lightVolume; | 
| 1857 | 		for(auto& entry : viewPlanes) | 
| 1858 | 		{ | 
| 1859 | 			if (entry.normal.dot(lightDir) < 0.0f) | 
| 1860 | 				lightVolume.push_back(entry); | 
| 1861 | 		} | 
| 1862 |  | 
| 1863 | 		//// Determine edge planes by testing adjacent planes with different facing | 
| 1864 | 		////// Pairs of frustum planes that share an edge | 
| 1865 | 		UINT32 adjacentPlanes[][2] = | 
| 1866 | 		{ | 
| 1867 | 			{ FRUSTUM_PLANE_NEAR, FRUSTUM_PLANE_LEFT }, | 
| 1868 | 			{ FRUSTUM_PLANE_NEAR, FRUSTUM_PLANE_RIGHT }, | 
| 1869 | 			{ FRUSTUM_PLANE_NEAR, FRUSTUM_PLANE_TOP }, | 
| 1870 | 			{ FRUSTUM_PLANE_NEAR, FRUSTUM_PLANE_BOTTOM }, | 
| 1871 |  | 
| 1872 | 			{ FRUSTUM_PLANE_FAR, FRUSTUM_PLANE_LEFT }, | 
| 1873 | 			{ FRUSTUM_PLANE_FAR, FRUSTUM_PLANE_RIGHT }, | 
| 1874 | 			{ FRUSTUM_PLANE_FAR, FRUSTUM_PLANE_TOP }, | 
| 1875 | 			{ FRUSTUM_PLANE_FAR, FRUSTUM_PLANE_BOTTOM }, | 
| 1876 |  | 
| 1877 | 			{ FRUSTUM_PLANE_LEFT, FRUSTUM_PLANE_TOP }, | 
| 1878 | 			{ FRUSTUM_PLANE_TOP, FRUSTUM_PLANE_RIGHT }, | 
| 1879 | 			{ FRUSTUM_PLANE_RIGHT, FRUSTUM_PLANE_BOTTOM }, | 
| 1880 | 			{ FRUSTUM_PLANE_BOTTOM, FRUSTUM_PLANE_LEFT }, | 
| 1881 | 		}; | 
| 1882 |  | 
| 1883 | 		////// Vertex indices of edges on the boundary between two planes | 
| 1884 | 		UINT32 sharedEdges[][2] = | 
| 1885 | 		{ | 
| 1886 | 			{ 3, 0 },{ 1, 2 },{ 0, 1 },{ 2, 3 }, | 
| 1887 | 			{ 4, 7 },{ 6, 5 },{ 5, 4 },{ 7, 6 }, | 
| 1888 | 			{ 4, 0 },{ 5, 1 },{ 6, 2 },{ 7, 3 } | 
| 1889 | 		}; | 
| 1890 |  | 
| 1891 | 		for(UINT32 i = 0; i < 12; i++) | 
| 1892 | 		{ | 
| 1893 | 			const Plane& planeA = viewPlanes[adjacentPlanes[i][0]]; | 
| 1894 | 			const Plane& planeB = viewPlanes[adjacentPlanes[i][1]]; | 
| 1895 |  | 
| 1896 | 			float dotA = planeA.normal.dot(lightDir); | 
| 1897 | 			float dotB = planeB.normal.dot(lightDir); | 
| 1898 |  | 
| 1899 | 			if((dotA * dotB) < 0.0f) | 
| 1900 | 			{ | 
| 1901 | 				const Vector3& vertA = frustumVerts[sharedEdges[i][0]]; | 
| 1902 | 				const Vector3& vertB = frustumVerts[sharedEdges[i][1]]; | 
| 1903 | 				Vector3 vertC = vertA + lightDir; | 
| 1904 |  | 
| 1905 | 				if (dotA < 0.0f) | 
| 1906 | 					lightVolume.push_back(Plane(vertA, vertB, vertC)); | 
| 1907 | 				else | 
| 1908 | 					lightVolume.push_back(Plane(vertB, vertA, vertC)); | 
| 1909 | 			} | 
| 1910 | 		} | 
| 1911 |  | 
| 1912 | 		return ConvexVolume(lightVolume); | 
| 1913 | 	} | 
| 1914 |  | 
| 1915 | 	float ShadowRendering::getCSMSplitDistance(const RendererView& view, UINT32 index, UINT32 numCascades) | 
| 1916 | 	{ | 
| 1917 | 		auto& shadowSettings = view.getRenderSettings().shadowSettings; | 
| 1918 | 		float distributionExponent = shadowSettings.cascadeDistributionExponent; | 
| 1919 |  | 
| 1920 | 		// First determine the scale of the split, relative to the entire range | 
| 1921 | 		float scaleModifier = 1.0f; | 
| 1922 | 		float scale = 0.0f; | 
| 1923 | 		float totalScale = 0.0f; | 
| 1924 |  | 
| 1925 | 		//// Split 0 corresponds to near plane | 
| 1926 | 		if (index > 0) | 
| 1927 | 		{ | 
| 1928 | 			for (UINT32 i = 0; i < numCascades; i++) | 
| 1929 | 			{ | 
| 1930 | 				if (i < index) | 
| 1931 | 					scale += scaleModifier; | 
| 1932 |  | 
| 1933 | 				totalScale += scaleModifier; | 
| 1934 | 				scaleModifier *= distributionExponent; | 
| 1935 | 			} | 
| 1936 |  | 
| 1937 | 			scale = scale / totalScale; | 
| 1938 | 		} | 
| 1939 |  | 
| 1940 | 		// Calculate split distance in Z | 
| 1941 | 		auto& viewProps = view.getProperties(); | 
| 1942 | 		float near = viewProps.nearPlane; | 
| 1943 | 		float far = Math::clamp(shadowSettings.directionalShadowDistance, viewProps.nearPlane, viewProps.farPlane); | 
| 1944 |  | 
| 1945 | 		return near + (far - near) * scale; | 
| 1946 | 	} | 
| 1947 |  | 
| 1948 | 	float ShadowRendering::getDepthBias(const Light& light, float radius, float depthRange, UINT32 mapSize) | 
| 1949 | 	{ | 
| 1950 | 		const static float RADIAL_LIGHT_BIAS = 0.005f; | 
| 1951 | 		const static float SPOT_DEPTH_BIAS = 0.01f; | 
| 1952 | 		const static float DIR_DEPTH_BIAS = 0.001f; // In clip space units | 
| 1953 | 		const static float DEFAULT_RESOLUTION = 512.0f; | 
| 1954 | 		 | 
| 1955 | 		// Increase bias if map size smaller than some resolution | 
| 1956 | 		float resolutionScale = 1.0f; | 
| 1957 | 		 | 
| 1958 | 		if (light.getType() != LightType::Directional) | 
| 1959 | 			resolutionScale = DEFAULT_RESOLUTION / (float)mapSize; | 
| 1960 |  | 
| 1961 | 		// Adjust range because in shader we compare vs. clip space depth | 
| 1962 | 		float rangeScale = 1.0f; | 
| 1963 | 		if (light.getType() == LightType::Spot) | 
| 1964 | 			rangeScale = 1.0f / depthRange; | 
| 1965 | 		 | 
| 1966 | 		const RenderAPICapabilities& caps = gCaps(); | 
| 1967 | 		float deviceDepthRange = caps.maxDepth - caps.minDepth; | 
| 1968 |  | 
| 1969 | 		float defaultBias = 1.0f; | 
| 1970 | 		switch(light.getType()) | 
| 1971 | 		{ | 
| 1972 | 		case LightType::Directional:  | 
| 1973 | 			defaultBias = DIR_DEPTH_BIAS * deviceDepthRange; | 
| 1974 |  | 
| 1975 | 			// Use larger bias for further away cascades | 
| 1976 | 			defaultBias *= depthRange * 0.01f; | 
| 1977 | 			break; | 
| 1978 | 		case LightType::Radial:  | 
| 1979 | 			defaultBias = RADIAL_LIGHT_BIAS; | 
| 1980 | 			break; | 
| 1981 | 		case LightType::Spot:  | 
| 1982 | 			defaultBias = SPOT_DEPTH_BIAS; | 
| 1983 | 			break; | 
| 1984 | 		default: | 
| 1985 | 			break; | 
| 1986 | 		} | 
| 1987 | 		 | 
| 1988 | 		return defaultBias * light.getShadowBias() * resolutionScale * rangeScale; | 
| 1989 | 	} | 
| 1990 |  | 
| 1991 | 	float ShadowRendering::getFadeTransition(const Light& light, float radius, float depthRange, UINT32 mapSize) | 
| 1992 | 	{ | 
| 1993 | 		const static float SPOT_LIGHT_SCALE = 1000.0f; | 
| 1994 | 		const static float DIR_LIGHT_SCALE = 50000000.0f; | 
| 1995 |  | 
| 1996 | 		// Note: Currently fade transitions are only used in spot & directional (non omni-directional) lights, so no need | 
| 1997 | 		// to account for radial light type. | 
| 1998 | 		if (light.getType() == LightType::Directional) | 
| 1999 | 		{ | 
| 2000 | 			// Just use a large value, as we want a minimal transition region | 
| 2001 | 			return DIR_LIGHT_SCALE; | 
| 2002 | 		} | 
| 2003 | 		else | 
| 2004 | 			return fabs(light.getShadowBias()) * SPOT_LIGHT_SCALE; | 
| 2005 | 	} | 
| 2006 | }} | 
| 2007 |  |