| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "BsShadowRendering.h" |
| 4 | #include "BsRendererView.h" |
| 5 | #include "BsRendererScene.h" |
| 6 | #include "Renderer/BsLight.h" |
| 7 | #include "Renderer/BsRendererUtility.h" |
| 8 | #include "Material/BsGpuParamsSet.h" |
| 9 | #include "Mesh/BsMesh.h" |
| 10 | #include "Renderer/BsCamera.h" |
| 11 | #include "Utility/BsBitwise.h" |
| 12 | #include "RenderAPI/BsVertexDataDesc.h" |
| 13 | #include "Renderer/BsRenderer.h" |
| 14 | #include "BsRendererRenderable.h" |
| 15 | |
| 16 | namespace bs { namespace ct |
| 17 | { |
| 18 | ShadowParamsDef gShadowParamsDef; |
| 19 | |
| 20 | void ShadowDepthNormalMat::bind(const SPtr<GpuParamBlockBuffer>& shadowParams) |
| 21 | { |
| 22 | mParams->setParamBlockBuffer("ShadowParams" , shadowParams); |
| 23 | |
| 24 | RenderAPI::instance().setGraphicsPipeline(mGfxPipeline); |
| 25 | RenderAPI::instance().setStencilRef(mStencilRef); |
| 26 | } |
| 27 | |
| 28 | void ShadowDepthNormalMat::setPerObjectBuffer(const SPtr<GpuParamBlockBuffer>& perObjectParams) |
| 29 | { |
| 30 | mParams->setParamBlockBuffer("PerObject" , perObjectParams); |
| 31 | |
| 32 | RenderAPI::instance().setGpuParams(mParams); |
| 33 | } |
| 34 | |
| 35 | ShadowDepthNormalMat* ShadowDepthNormalMat::getVariation(bool skinned, bool morph) |
| 36 | { |
| 37 | if(skinned) |
| 38 | { |
| 39 | if(morph) |
| 40 | return get(getVariation<true, true>()); |
| 41 | |
| 42 | return get(getVariation<true, false>()); |
| 43 | } |
| 44 | else |
| 45 | { |
| 46 | if(morph) |
| 47 | return get(getVariation<false, true>()); |
| 48 | |
| 49 | return get(getVariation<false, false>()); |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | ShadowDepthNormalNoPSMat::ShadowDepthNormalNoPSMat() |
| 54 | { } |
| 55 | |
| 56 | void ShadowDepthNormalNoPSMat::bind(const SPtr<GpuParamBlockBuffer>& shadowParams) |
| 57 | { |
| 58 | mParams->setParamBlockBuffer("ShadowParams" , shadowParams); |
| 59 | |
| 60 | RenderAPI::instance().setGraphicsPipeline(mGfxPipeline); |
| 61 | RenderAPI::instance().setStencilRef(mStencilRef); |
| 62 | } |
| 63 | |
| 64 | void ShadowDepthNormalNoPSMat::setPerObjectBuffer(const SPtr<GpuParamBlockBuffer>& perObjectParams) |
| 65 | { |
| 66 | mParams->setParamBlockBuffer("PerObject" , perObjectParams); |
| 67 | |
| 68 | RenderAPI::instance().setGpuParams(mParams); |
| 69 | } |
| 70 | |
| 71 | ShadowDepthNormalNoPSMat* ShadowDepthNormalNoPSMat::getVariation(bool skinned, bool morph) |
| 72 | { |
| 73 | if(skinned) |
| 74 | { |
| 75 | if(morph) |
| 76 | return get(getVariation<true, true>()); |
| 77 | |
| 78 | return get(getVariation<true, false>()); |
| 79 | } |
| 80 | else |
| 81 | { |
| 82 | if(morph) |
| 83 | return get(getVariation<false, true>()); |
| 84 | |
| 85 | return get(getVariation<false, false>()); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | ShadowDepthDirectionalMat::ShadowDepthDirectionalMat() |
| 90 | { } |
| 91 | |
| 92 | void ShadowDepthDirectionalMat::bind(const SPtr<GpuParamBlockBuffer>& shadowParams) |
| 93 | { |
| 94 | mParams->setParamBlockBuffer("ShadowParams" , shadowParams); |
| 95 | |
| 96 | RenderAPI::instance().setGraphicsPipeline(mGfxPipeline); |
| 97 | RenderAPI::instance().setStencilRef(mStencilRef); |
| 98 | } |
| 99 | |
| 100 | void ShadowDepthDirectionalMat::setPerObjectBuffer(const SPtr<GpuParamBlockBuffer>& perObjectParams) |
| 101 | { |
| 102 | mParams->setParamBlockBuffer("PerObject" , perObjectParams); |
| 103 | RenderAPI::instance().setGpuParams(mParams); |
| 104 | } |
| 105 | |
| 106 | ShadowDepthDirectionalMat* ShadowDepthDirectionalMat::getVariation(bool skinned, bool morph) |
| 107 | { |
| 108 | if(skinned) |
| 109 | { |
| 110 | if(morph) |
| 111 | return get(getVariation<true, true>()); |
| 112 | |
| 113 | return get(getVariation<true, false>()); |
| 114 | } |
| 115 | else |
| 116 | { |
| 117 | if(morph) |
| 118 | return get(getVariation<false, true>()); |
| 119 | |
| 120 | return get(getVariation<false, false>()); |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | ShadowCubeMatricesDef gShadowCubeMatricesDef; |
| 125 | ShadowCubeMasksDef gShadowCubeMasksDef; |
| 126 | |
| 127 | ShadowDepthCubeMat::ShadowDepthCubeMat() |
| 128 | { } |
| 129 | |
| 130 | void ShadowDepthCubeMat::bind(const SPtr<GpuParamBlockBuffer>& shadowParams, |
| 131 | const SPtr<GpuParamBlockBuffer>& shadowCubeMatrices) |
| 132 | { |
| 133 | mParams->setParamBlockBuffer("ShadowParams" , shadowParams); |
| 134 | mParams->setParamBlockBuffer("ShadowCubeMatrices" , shadowCubeMatrices); |
| 135 | |
| 136 | RenderAPI::instance().setGraphicsPipeline(mGfxPipeline); |
| 137 | RenderAPI::instance().setStencilRef(mStencilRef); |
| 138 | } |
| 139 | |
| 140 | void ShadowDepthCubeMat::setPerObjectBuffer(const SPtr<GpuParamBlockBuffer>& perObjectParams, |
| 141 | const SPtr<GpuParamBlockBuffer>& shadowCubeMasks) |
| 142 | { |
| 143 | mParams->setParamBlockBuffer("PerObject" , perObjectParams); |
| 144 | mParams->setParamBlockBuffer("ShadowCubeMasks" , shadowCubeMasks); |
| 145 | |
| 146 | RenderAPI::instance().setGpuParams(mParams); |
| 147 | } |
| 148 | |
| 149 | ShadowDepthCubeMat* ShadowDepthCubeMat::getVariation(bool skinned, bool morph) |
| 150 | { |
| 151 | if(skinned) |
| 152 | { |
| 153 | if(morph) |
| 154 | return get(getVariation<true, true>()); |
| 155 | |
| 156 | return get(getVariation<true, false>()); |
| 157 | } |
| 158 | else |
| 159 | { |
| 160 | if(morph) |
| 161 | return get(getVariation<false, true>()); |
| 162 | |
| 163 | return get(getVariation<false, false>()); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | ShadowProjectParamsDef gShadowProjectParamsDef; |
| 168 | ShadowProjectVertParamsDef gShadowProjectVertParamsDef; |
| 169 | |
| 170 | ShadowProjectStencilMat::ShadowProjectStencilMat() |
| 171 | { |
| 172 | mVertParams = gShadowProjectVertParamsDef.createBuffer(); |
| 173 | if(mParams->hasParamBlock(GPT_VERTEX_PROGRAM, "VertParams" )) |
| 174 | mParams->setParamBlockBuffer(GPT_VERTEX_PROGRAM, "VertParams" , mVertParams); |
| 175 | } |
| 176 | |
| 177 | void ShadowProjectStencilMat::bind(const SPtr<GpuParamBlockBuffer>& perCamera) |
| 178 | { |
| 179 | Vector4 lightPosAndScale(0, 0, 0, 1); |
| 180 | gShadowProjectVertParamsDef.gPositionAndScale.set(mVertParams, lightPosAndScale); |
| 181 | |
| 182 | mParams->setParamBlockBuffer("PerCamera" , perCamera); |
| 183 | |
| 184 | RendererMaterial::bind(); |
| 185 | } |
| 186 | |
| 187 | ShadowProjectStencilMat* ShadowProjectStencilMat::getVariation(bool directional, bool useZFailStencil) |
| 188 | { |
| 189 | if(directional) |
| 190 | return get(getVariation<true, true>()); |
| 191 | else |
| 192 | { |
| 193 | if (useZFailStencil) |
| 194 | return get(getVariation<false, true>()); |
| 195 | else |
| 196 | return get(getVariation<false, false>()); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | ShadowProjectMat::ShadowProjectMat() |
| 201 | : mGBufferParams(GPT_FRAGMENT_PROGRAM, mParams) |
| 202 | { |
| 203 | mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gShadowTex" , mShadowMapParam); |
| 204 | if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gShadowSampler" )) |
| 205 | mParams->getSamplerStateParam(GPT_FRAGMENT_PROGRAM, "gShadowSampler" , mShadowSamplerParam); |
| 206 | else |
| 207 | mParams->getSamplerStateParam(GPT_FRAGMENT_PROGRAM, "gShadowTex" , mShadowSamplerParam); |
| 208 | |
| 209 | SAMPLER_STATE_DESC desc; |
| 210 | desc.minFilter = FO_POINT; |
| 211 | desc.magFilter = FO_POINT; |
| 212 | desc.mipFilter = FO_POINT; |
| 213 | desc.addressMode.u = TAM_CLAMP; |
| 214 | desc.addressMode.v = TAM_CLAMP; |
| 215 | desc.addressMode.w = TAM_CLAMP; |
| 216 | |
| 217 | mSamplerState = SamplerState::create(desc); |
| 218 | |
| 219 | mVertParams = gShadowProjectVertParamsDef.createBuffer(); |
| 220 | if(mParams->hasParamBlock(GPT_VERTEX_PROGRAM, "VertParams" )) |
| 221 | mParams->setParamBlockBuffer(GPT_VERTEX_PROGRAM, "VertParams" , mVertParams); |
| 222 | } |
| 223 | |
| 224 | void ShadowProjectMat::bind(const ShadowProjectParams& params) |
| 225 | { |
| 226 | Vector4 lightPosAndScale(Vector3(0.0f, 0.0f, 0.0f), 1.0f); |
| 227 | gShadowProjectVertParamsDef.gPositionAndScale.set(mVertParams, lightPosAndScale); |
| 228 | |
| 229 | mGBufferParams.bind(params.gbuffer); |
| 230 | |
| 231 | mShadowMapParam.set(params.shadowMap); |
| 232 | mShadowSamplerParam.set(mSamplerState); |
| 233 | |
| 234 | mParams->setParamBlockBuffer("Params" , params.shadowParams); |
| 235 | mParams->setParamBlockBuffer("PerCamera" , params.perCamera); |
| 236 | |
| 237 | RendererMaterial::bind(); |
| 238 | } |
| 239 | |
| 240 | ShadowProjectMat* ShadowProjectMat::getVariation(UINT32 quality, bool directional, bool MSAA) |
| 241 | { |
| 242 | #define BIND_MAT(QUALITY) \ |
| 243 | { \ |
| 244 | if(directional) \ |
| 245 | if (MSAA) \ |
| 246 | return get(getVariation<QUALITY, true, true>()); \ |
| 247 | else \ |
| 248 | return get(getVariation<QUALITY, true, false>()); \ |
| 249 | else \ |
| 250 | if (MSAA) \ |
| 251 | return get(getVariation<QUALITY, false, true>()); \ |
| 252 | else \ |
| 253 | return get(getVariation<QUALITY, false, false>()); \ |
| 254 | } |
| 255 | |
| 256 | if(quality <= 1) |
| 257 | BIND_MAT(1) |
| 258 | else if(quality == 2) |
| 259 | BIND_MAT(2) |
| 260 | else if(quality == 3) |
| 261 | BIND_MAT(3) |
| 262 | else // 4 or higher |
| 263 | BIND_MAT(4) |
| 264 | |
| 265 | #undef BIND_MAT |
| 266 | } |
| 267 | |
| 268 | ShadowProjectOmniParamsDef gShadowProjectOmniParamsDef; |
| 269 | |
| 270 | ShadowProjectOmniMat::ShadowProjectOmniMat() |
| 271 | : mGBufferParams(GPT_FRAGMENT_PROGRAM, mParams) |
| 272 | { |
| 273 | mParams->getTextureParam(GPT_FRAGMENT_PROGRAM, "gShadowCubeTex" , mShadowMapParam); |
| 274 | |
| 275 | if(mParams->hasSamplerState(GPT_FRAGMENT_PROGRAM, "gShadowCubeSampler" )) |
| 276 | mParams->getSamplerStateParam(GPT_FRAGMENT_PROGRAM, "gShadowCubeSampler" , mShadowSamplerParam); |
| 277 | else |
| 278 | mParams->getSamplerStateParam(GPT_FRAGMENT_PROGRAM, "gShadowCubeTex" , mShadowSamplerParam); |
| 279 | |
| 280 | SAMPLER_STATE_DESC desc; |
| 281 | desc.minFilter = FO_LINEAR; |
| 282 | desc.magFilter = FO_LINEAR; |
| 283 | desc.mipFilter = FO_POINT; |
| 284 | desc.addressMode.u = TAM_CLAMP; |
| 285 | desc.addressMode.v = TAM_CLAMP; |
| 286 | desc.addressMode.w = TAM_CLAMP; |
| 287 | desc.comparisonFunc = CMPF_GREATER_EQUAL; |
| 288 | |
| 289 | mSamplerState = SamplerState::create(desc); |
| 290 | |
| 291 | mVertParams = gShadowProjectVertParamsDef.createBuffer(); |
| 292 | if(mParams->hasParamBlock(GPT_VERTEX_PROGRAM, "VertParams" )) |
| 293 | mParams->setParamBlockBuffer(GPT_VERTEX_PROGRAM, "VertParams" , mVertParams); |
| 294 | } |
| 295 | |
| 296 | void ShadowProjectOmniMat::bind(const ShadowProjectParams& params) |
| 297 | { |
| 298 | Vector4 lightPosAndScale(params.light.getTransform().getPosition(), params.light.getAttenuationRadius()); |
| 299 | gShadowProjectVertParamsDef.gPositionAndScale.set(mVertParams, lightPosAndScale); |
| 300 | |
| 301 | mGBufferParams.bind(params.gbuffer); |
| 302 | |
| 303 | mShadowMapParam.set(params.shadowMap); |
| 304 | mShadowSamplerParam.set(mSamplerState); |
| 305 | |
| 306 | mParams->setParamBlockBuffer("Params" , params.shadowParams); |
| 307 | mParams->setParamBlockBuffer("PerCamera" , params.perCamera); |
| 308 | |
| 309 | RendererMaterial::bind(); |
| 310 | } |
| 311 | |
| 312 | ShadowProjectOmniMat* ShadowProjectOmniMat::getVariation(UINT32 quality, bool inside, bool MSAA) |
| 313 | { |
| 314 | #define BIND_MAT(QUALITY) \ |
| 315 | { \ |
| 316 | if(inside) \ |
| 317 | if (MSAA) \ |
| 318 | return get(getVariation<QUALITY, true, true>()); \ |
| 319 | else \ |
| 320 | return get(getVariation<QUALITY, true, false>()); \ |
| 321 | else \ |
| 322 | if (MSAA) \ |
| 323 | return get(getVariation<QUALITY, false, true>()); \ |
| 324 | else \ |
| 325 | return get(getVariation<QUALITY, false, false>()); \ |
| 326 | } |
| 327 | |
| 328 | if(quality <= 1) |
| 329 | BIND_MAT(1) |
| 330 | else if(quality == 2) |
| 331 | BIND_MAT(2) |
| 332 | else if(quality == 3) |
| 333 | BIND_MAT(3) |
| 334 | else // 4 or higher |
| 335 | BIND_MAT(4) |
| 336 | |
| 337 | #undef BIND_MAT |
| 338 | } |
| 339 | |
| 340 | void ShadowInfo::updateNormArea(UINT32 atlasSize) |
| 341 | { |
| 342 | normArea.x = area.x / (float)atlasSize; |
| 343 | normArea.y = area.y / (float)atlasSize; |
| 344 | normArea.width = area.width / (float)atlasSize; |
| 345 | normArea.height = area.height / (float)atlasSize; |
| 346 | } |
| 347 | |
| 348 | ShadowMapAtlas::ShadowMapAtlas(UINT32 size) |
| 349 | : mLayout(0, 0, size, size, true), mLastUsedCounter(0) |
| 350 | { |
| 351 | mAtlas = GpuResourcePool::instance().get( |
| 352 | POOLED_RENDER_TEXTURE_DESC::create2D(SHADOW_MAP_FORMAT, size, size, TU_DEPTHSTENCIL)); |
| 353 | } |
| 354 | |
| 355 | bool ShadowMapAtlas::addMap(UINT32 size, Rect2I& area, UINT32 border) |
| 356 | { |
| 357 | UINT32 sizeWithBorder = size + border * 2; |
| 358 | |
| 359 | UINT32 x, y; |
| 360 | if (!mLayout.addElement(sizeWithBorder, sizeWithBorder, x, y)) |
| 361 | return false; |
| 362 | |
| 363 | area.width = area.height = size; |
| 364 | area.x = x + border; |
| 365 | area.y = y + border; |
| 366 | |
| 367 | mLastUsedCounter = 0; |
| 368 | return true; |
| 369 | } |
| 370 | |
| 371 | void ShadowMapAtlas::clear() |
| 372 | { |
| 373 | mLayout.clear(); |
| 374 | mLastUsedCounter++; |
| 375 | } |
| 376 | |
| 377 | bool ShadowMapAtlas::isEmpty() const |
| 378 | { |
| 379 | return mLayout.isEmpty(); |
| 380 | } |
| 381 | |
| 382 | SPtr<Texture> ShadowMapAtlas::getTexture() const |
| 383 | { |
| 384 | return mAtlas->texture; |
| 385 | } |
| 386 | |
| 387 | SPtr<RenderTexture> ShadowMapAtlas::getTarget() const |
| 388 | { |
| 389 | return mAtlas->renderTexture; |
| 390 | } |
| 391 | |
| 392 | ShadowMapBase::ShadowMapBase(UINT32 size) |
| 393 | : mSize(size), mIsUsed(false), mLastUsedCounter (0) |
| 394 | { } |
| 395 | |
| 396 | SPtr<Texture> ShadowMapBase::getTexture() const |
| 397 | { |
| 398 | return mShadowMap->texture; |
| 399 | } |
| 400 | |
| 401 | ShadowCubemap::ShadowCubemap(UINT32 size) |
| 402 | :ShadowMapBase(size) |
| 403 | { |
| 404 | mShadowMap = GpuResourcePool::instance().get( |
| 405 | POOLED_RENDER_TEXTURE_DESC::createCube(SHADOW_MAP_FORMAT, size, size, TU_DEPTHSTENCIL)); |
| 406 | } |
| 407 | |
| 408 | SPtr<RenderTexture> ShadowCubemap::getTarget() const |
| 409 | { |
| 410 | return mShadowMap->renderTexture; |
| 411 | } |
| 412 | |
| 413 | ShadowCascadedMap::ShadowCascadedMap(UINT32 size, UINT32 numCascades) |
| 414 | :ShadowMapBase(size), mNumCascades(numCascades), mTargets(numCascades), mShadowInfos(numCascades) |
| 415 | { |
| 416 | mShadowMap = GpuResourcePool::instance().get(POOLED_RENDER_TEXTURE_DESC::create2D(SHADOW_MAP_FORMAT, size, size, |
| 417 | TU_DEPTHSTENCIL, 0, false, numCascades)); |
| 418 | |
| 419 | RENDER_TEXTURE_DESC rtDesc; |
| 420 | rtDesc.depthStencilSurface.texture = mShadowMap->texture; |
| 421 | rtDesc.depthStencilSurface.numFaces = 1; |
| 422 | |
| 423 | for (UINT32 i = 0; i < mNumCascades; ++i) |
| 424 | { |
| 425 | rtDesc.depthStencilSurface.face = i; |
| 426 | mTargets[i] = RenderTexture::create(rtDesc); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | SPtr<RenderTexture> ShadowCascadedMap::getTarget(UINT32 cascadeIdx) const |
| 431 | { |
| 432 | return mTargets[cascadeIdx]; |
| 433 | } |
| 434 | |
| 435 | /** |
| 436 | * Provides a common way for all types of shadow depth rendering to render the relevant objects into the depth map. |
| 437 | * Iterates over all relevant objects in the scene, binds the relevant materials and renders the objects into the depth |
| 438 | * map. |
| 439 | */ |
| 440 | class ShadowRenderQueue |
| 441 | { |
| 442 | public: |
| 443 | struct Command |
| 444 | { |
| 445 | Command() |
| 446 | { } |
| 447 | |
| 448 | Command(RenderableElement* element) |
| 449 | :element(element), isElement(true) |
| 450 | { } |
| 451 | |
| 452 | union |
| 453 | { |
| 454 | RenderableElement* element; |
| 455 | RendererRenderable* renderable; |
| 456 | }; |
| 457 | |
| 458 | |
| 459 | bool isElement : 1; |
| 460 | UINT32 mask : 6; |
| 461 | }; |
| 462 | |
| 463 | template<class Options> |
| 464 | static void execute(RendererScene& scene, const FrameInfo& frameInfo, const Options& opt) |
| 465 | { |
| 466 | static_assert((UINT32)RenderableAnimType::Count == 4, "RenderableAnimType is expected to have four sequential entries." ); |
| 467 | |
| 468 | const SceneInfo& sceneInfo = scene.getSceneInfo(); |
| 469 | |
| 470 | bs_frame_mark(); |
| 471 | { |
| 472 | FrameVector<Command> commands[4]; |
| 473 | |
| 474 | // Make a list of relevant renderables and prepare them for rendering |
| 475 | for (UINT32 i = 0; i < sceneInfo.renderables.size(); i++) |
| 476 | { |
| 477 | const Sphere& bounds = sceneInfo.renderableCullInfos[i].bounds.getSphere(); |
| 478 | if (!opt.intersects(bounds)) |
| 479 | continue; |
| 480 | |
| 481 | scene.prepareRenderable(i, frameInfo); |
| 482 | |
| 483 | Command renderableCommand; |
| 484 | renderableCommand.mask = 0; |
| 485 | |
| 486 | RendererRenderable* renderable = sceneInfo.renderables[i]; |
| 487 | renderableCommand.isElement = false; |
| 488 | renderableCommand.renderable = renderable; |
| 489 | |
| 490 | opt.prepare(renderableCommand, bounds); |
| 491 | |
| 492 | bool renderableBound[4]; |
| 493 | bs_zero_out(renderableBound); |
| 494 | |
| 495 | for (auto& element : renderable->elements) |
| 496 | { |
| 497 | UINT32 arrayIdx = (int)element.animType; |
| 498 | |
| 499 | if (!renderableBound[arrayIdx]) |
| 500 | { |
| 501 | commands[arrayIdx].push_back(renderableCommand); |
| 502 | renderableBound[arrayIdx] = true; |
| 503 | } |
| 504 | |
| 505 | commands[arrayIdx].push_back(Command(&element)); |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | static const ShaderVariation* VAR_LOOKUP[4]; |
| 510 | VAR_LOOKUP[0] = &getVertexInputVariation<false, false>(); |
| 511 | VAR_LOOKUP[1] = &getVertexInputVariation<true, false>(); |
| 512 | VAR_LOOKUP[2] = &getVertexInputVariation<false, true>(); |
| 513 | VAR_LOOKUP[3] = &getVertexInputVariation<true, true>(); |
| 514 | |
| 515 | for (UINT32 i = 0; i < (UINT32)RenderableAnimType::Count; i++) |
| 516 | { |
| 517 | opt.bindMaterial(*VAR_LOOKUP[i]); |
| 518 | |
| 519 | for (auto& command : commands[i]) |
| 520 | { |
| 521 | if (command.isElement) |
| 522 | { |
| 523 | const RenderableElement& element = *command.element; |
| 524 | |
| 525 | if (element.morphVertexDeclaration == nullptr) |
| 526 | gRendererUtility().draw(element.mesh, element.subMesh); |
| 527 | else |
| 528 | gRendererUtility().drawMorph(element.mesh, element.subMesh, element.morphShapeBuffer, |
| 529 | element.morphVertexDeclaration); |
| 530 | } |
| 531 | else |
| 532 | opt.bindRenderable(command); |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | bs_frame_clear(); |
| 537 | } |
| 538 | }; |
| 539 | |
| 540 | /** Specialization used for ShadowRenderQueue when rendering cube (omnidirectional) shadow maps (all faces at once). */ |
| 541 | struct ShadowRenderQueueCubeOptions |
| 542 | { |
| 543 | ShadowRenderQueueCubeOptions( |
| 544 | const ConvexVolume (&frustums)[6], |
| 545 | const ConvexVolume& boundingVolume, |
| 546 | const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer, |
| 547 | const SPtr<GpuParamBlockBuffer>& shadowCubeMatricesBuffer, |
| 548 | const SPtr<GpuParamBlockBuffer>& shadowCubeMasksBuffer) |
| 549 | : frustums(frustums), boundingVolume(boundingVolume), shadowParamsBuffer(shadowParamsBuffer) |
| 550 | , shadowCubeMatricesBuffer(shadowCubeMatricesBuffer), shadowCubeMasksBuffer(shadowCubeMasksBuffer) |
| 551 | { } |
| 552 | |
| 553 | bool intersects(const Sphere& bounds) const |
| 554 | { |
| 555 | return boundingVolume.intersects(bounds); |
| 556 | } |
| 557 | |
| 558 | void prepare(ShadowRenderQueue::Command& command, const Sphere& bounds) const |
| 559 | { |
| 560 | for (UINT32 j = 0; j < 6; j++) |
| 561 | command.mask |= (frustums[j].intersects(bounds) ? 1 : 0) << j; |
| 562 | } |
| 563 | |
| 564 | void bindMaterial(const ShaderVariation& variation) const |
| 565 | { |
| 566 | material = ShadowDepthCubeMat::get(variation); |
| 567 | material->bind(shadowParamsBuffer, shadowCubeMatricesBuffer); |
| 568 | } |
| 569 | |
| 570 | void bindRenderable(ShadowRenderQueue::Command& command) const |
| 571 | { |
| 572 | RendererRenderable* renderable = command.renderable; |
| 573 | |
| 574 | for (UINT32 j = 0; j < 6; j++) |
| 575 | gShadowCubeMasksDef.gFaceMasks.set(shadowCubeMasksBuffer, (command.mask & (1 << j)), j); |
| 576 | |
| 577 | material->setPerObjectBuffer(renderable->perObjectParamBuffer, shadowCubeMasksBuffer); |
| 578 | } |
| 579 | |
| 580 | const ConvexVolume (&frustums)[6]; |
| 581 | const ConvexVolume& boundingVolume; |
| 582 | const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer; |
| 583 | const SPtr<GpuParamBlockBuffer>& shadowCubeMatricesBuffer; |
| 584 | const SPtr<GpuParamBlockBuffer>& shadowCubeMasksBuffer; |
| 585 | |
| 586 | mutable ShadowDepthCubeMat* material = nullptr; |
| 587 | }; |
| 588 | |
| 589 | /** Specialization used for ShadowRenderQueue when rendering cube (omnidirectional) shadow maps (one face at a time). */ |
| 590 | struct ShadowRenderQueueCubeSingleOptions |
| 591 | { |
| 592 | ShadowRenderQueueCubeSingleOptions( |
| 593 | const ConvexVolume& boundingVolume, |
| 594 | const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer) |
| 595 | : boundingVolume(boundingVolume), shadowParamsBuffer(shadowParamsBuffer) |
| 596 | { } |
| 597 | |
| 598 | bool intersects(const Sphere& bounds) const |
| 599 | { |
| 600 | return boundingVolume.intersects(bounds); |
| 601 | } |
| 602 | |
| 603 | void prepare(ShadowRenderQueue::Command& command, const Sphere& bounds) const |
| 604 | { |
| 605 | } |
| 606 | |
| 607 | void bindMaterial(const ShaderVariation& variation) const |
| 608 | { |
| 609 | material = ShadowDepthNormalNoPSMat::get(variation); |
| 610 | material->bind(shadowParamsBuffer); |
| 611 | } |
| 612 | |
| 613 | void bindRenderable(ShadowRenderQueue::Command& command) const |
| 614 | { |
| 615 | RendererRenderable* renderable = command.renderable; |
| 616 | |
| 617 | material->setPerObjectBuffer(renderable->perObjectParamBuffer); |
| 618 | } |
| 619 | |
| 620 | const ConvexVolume& boundingVolume; |
| 621 | const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer; |
| 622 | |
| 623 | mutable ShadowDepthNormalNoPSMat* material = nullptr; |
| 624 | }; |
| 625 | |
| 626 | /** Specialization used for ShadowRenderQueue when rendering spot light shadow maps. */ |
| 627 | struct ShadowRenderQueueSpotOptions |
| 628 | { |
| 629 | ShadowRenderQueueSpotOptions( |
| 630 | const ConvexVolume& boundingVolume, |
| 631 | const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer) |
| 632 | : boundingVolume(boundingVolume), shadowParamsBuffer(shadowParamsBuffer) |
| 633 | { } |
| 634 | |
| 635 | bool intersects(const Sphere& bounds) const |
| 636 | { |
| 637 | return boundingVolume.intersects(bounds); |
| 638 | } |
| 639 | |
| 640 | void prepare(ShadowRenderQueue::Command& command, const Sphere& bounds) const |
| 641 | { |
| 642 | } |
| 643 | |
| 644 | void bindMaterial(const ShaderVariation& variation) const |
| 645 | { |
| 646 | material = ShadowDepthNormalMat::get(variation); |
| 647 | material->bind(shadowParamsBuffer); |
| 648 | } |
| 649 | |
| 650 | void bindRenderable(ShadowRenderQueue::Command& command) const |
| 651 | { |
| 652 | RendererRenderable* renderable = command.renderable; |
| 653 | |
| 654 | material->setPerObjectBuffer(renderable->perObjectParamBuffer); |
| 655 | } |
| 656 | |
| 657 | const ConvexVolume& boundingVolume; |
| 658 | const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer; |
| 659 | |
| 660 | mutable ShadowDepthNormalMat* material = nullptr; |
| 661 | }; |
| 662 | |
| 663 | /** Specialization used for ShadowRenderQueue when rendering directional light shadow maps. */ |
| 664 | struct ShadowRenderQueueDirOptions |
| 665 | { |
| 666 | ShadowRenderQueueDirOptions( |
| 667 | const ConvexVolume& boundingVolume, |
| 668 | const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer) |
| 669 | : boundingVolume(boundingVolume), shadowParamsBuffer(shadowParamsBuffer) |
| 670 | { } |
| 671 | |
| 672 | bool intersects(const Sphere& bounds) const |
| 673 | { |
| 674 | return boundingVolume.intersects(bounds); |
| 675 | } |
| 676 | |
| 677 | void prepare(ShadowRenderQueue::Command& command, const Sphere& bounds) const |
| 678 | { |
| 679 | } |
| 680 | |
| 681 | void bindMaterial(const ShaderVariation& variation) const |
| 682 | { |
| 683 | material = ShadowDepthDirectionalMat::get(variation); |
| 684 | material->bind(shadowParamsBuffer); |
| 685 | } |
| 686 | |
| 687 | void bindRenderable(ShadowRenderQueue::Command& command) const |
| 688 | { |
| 689 | RendererRenderable* renderable = command.renderable; |
| 690 | |
| 691 | material->setPerObjectBuffer(renderable->perObjectParamBuffer); |
| 692 | } |
| 693 | |
| 694 | const ConvexVolume& boundingVolume; |
| 695 | const SPtr<GpuParamBlockBuffer>& shadowParamsBuffer; |
| 696 | |
| 697 | mutable ShadowDepthDirectionalMat* material = nullptr; |
| 698 | }; |
| 699 | |
| 700 | const UINT32 ShadowRendering::MAX_ATLAS_SIZE = 4096; |
| 701 | const UINT32 ShadowRendering::MAX_UNUSED_FRAMES = 60; |
| 702 | const UINT32 ShadowRendering::MIN_SHADOW_MAP_SIZE = 32; |
| 703 | const UINT32 ShadowRendering::SHADOW_MAP_FADE_SIZE = 64; |
| 704 | const UINT32 ShadowRendering::SHADOW_MAP_BORDER = 4; |
| 705 | const float ShadowRendering::CASCADE_FRACTION_FADE = 0.1f; |
| 706 | |
| 707 | ShadowRendering::ShadowRendering(UINT32 shadowMapSize) |
| 708 | : mShadowMapSize(shadowMapSize) |
| 709 | { |
| 710 | SPtr<VertexDataDesc> vertexDesc = VertexDataDesc::create(); |
| 711 | vertexDesc->addVertElem(VET_FLOAT3, VES_POSITION); |
| 712 | |
| 713 | mPositionOnlyVD = VertexDeclaration::create(vertexDesc); |
| 714 | |
| 715 | // Create plane index and vertex buffers |
| 716 | { |
| 717 | VERTEX_BUFFER_DESC vbDesc; |
| 718 | vbDesc.numVerts = 8; |
| 719 | vbDesc.usage = GBU_DYNAMIC; |
| 720 | vbDesc.vertexSize = mPositionOnlyVD->getProperties().getVertexSize(0); |
| 721 | |
| 722 | mPlaneVB = VertexBuffer::create(vbDesc); |
| 723 | |
| 724 | INDEX_BUFFER_DESC ibDesc; |
| 725 | ibDesc.indexType = IT_32BIT; |
| 726 | ibDesc.numIndices = 12; |
| 727 | |
| 728 | mPlaneIB = IndexBuffer::create(ibDesc); |
| 729 | |
| 730 | UINT32 indices[] = |
| 731 | { |
| 732 | // Far plane, back facing |
| 733 | 4, 7, 6, |
| 734 | 4, 6, 5, |
| 735 | |
| 736 | // Near plane, front facing |
| 737 | 0, 1, 2, |
| 738 | 0, 2, 3 |
| 739 | }; |
| 740 | |
| 741 | mPlaneIB->writeData(0, sizeof(indices), indices); |
| 742 | } |
| 743 | |
| 744 | // Create frustum index and vertex buffers |
| 745 | { |
| 746 | VERTEX_BUFFER_DESC vbDesc; |
| 747 | vbDesc.numVerts = 8; |
| 748 | vbDesc.usage = GBU_DYNAMIC; |
| 749 | vbDesc.vertexSize = mPositionOnlyVD->getProperties().getVertexSize(0); |
| 750 | |
| 751 | mFrustumVB = VertexBuffer::create(vbDesc); |
| 752 | |
| 753 | INDEX_BUFFER_DESC ibDesc; |
| 754 | ibDesc.indexType = IT_32BIT; |
| 755 | ibDesc.numIndices = 36; |
| 756 | |
| 757 | mFrustumIB = IndexBuffer::create(ibDesc); |
| 758 | mFrustumIB->writeData(0, sizeof(AABox::CUBE_INDICES), AABox::CUBE_INDICES); |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | void ShadowRendering::setShadowMapSize(UINT32 size) |
| 763 | { |
| 764 | if (mShadowMapSize == size) |
| 765 | return; |
| 766 | |
| 767 | mCascadedShadowMaps.clear(); |
| 768 | mDynamicShadowMaps.clear(); |
| 769 | mShadowCubemaps.clear(); |
| 770 | |
| 771 | mShadowMapSize = size; |
| 772 | } |
| 773 | |
| 774 | void ShadowRendering::renderShadowMaps(RendererScene& scene, const RendererViewGroup& viewGroup, |
| 775 | const FrameInfo& frameInfo) |
| 776 | { |
| 777 | // Note: Currently all shadows are dynamic and are rebuilt every frame. I should later added support for static |
| 778 | // shadow maps which can be used for immovable lights. Such a light can then maintain a set of shadow maps, |
| 779 | // one of which is static and only effects the static geometry, while the rest are per-object shadow maps used |
| 780 | // for dynamic objects. Then only a small subset of geometry needs to be redrawn, instead of everything. |
| 781 | |
| 782 | // Note: Add support for per-object shadows and a way to force a renderable to use per-object shadows. This can be |
| 783 | // used for adding high quality shadows on specific objects (e.g. important characters during cinematics). |
| 784 | |
| 785 | const SceneInfo& sceneInfo = scene.getSceneInfo(); |
| 786 | const VisibilityInfo& visibility = viewGroup.getVisibilityInfo(); |
| 787 | |
| 788 | // Clear all transient data from last frame |
| 789 | mShadowInfos.clear(); |
| 790 | |
| 791 | mSpotLightShadows.resize(sceneInfo.spotLights.size()); |
| 792 | mRadialLightShadows.resize(sceneInfo.radialLights.size()); |
| 793 | mDirectionalLightShadows.resize(sceneInfo.directionalLights.size()); |
| 794 | |
| 795 | mSpotLightShadowOptions.clear(); |
| 796 | mRadialLightShadowOptions.clear(); |
| 797 | |
| 798 | // Clear all dynamic light atlases |
| 799 | for (auto& entry : mCascadedShadowMaps) |
| 800 | entry.clear(); |
| 801 | |
| 802 | for (auto& entry : mDynamicShadowMaps) |
| 803 | entry.clear(); |
| 804 | |
| 805 | for (auto& entry : mShadowCubemaps) |
| 806 | entry.clear(); |
| 807 | |
| 808 | // Determine shadow map sizes and sort them |
| 809 | UINT32 shadowInfoCount = 0; |
| 810 | for (UINT32 i = 0; i < (UINT32)sceneInfo.spotLights.size(); ++i) |
| 811 | { |
| 812 | const RendererLight& light = sceneInfo.spotLights[i]; |
| 813 | mSpotLightShadows[i].startIdx = shadowInfoCount; |
| 814 | mSpotLightShadows[i].numShadows = 0; |
| 815 | |
| 816 | // Note: I'm using visibility across all views, while I could be using visibility for every view individually, |
| 817 | // if I kept that information somewhere |
| 818 | if (!light.internal->getCastsShadow() || !visibility.spotLights[i]) |
| 819 | continue; |
| 820 | |
| 821 | ShadowMapOptions options; |
| 822 | options.lightIdx = i; |
| 823 | |
| 824 | float maxFadePercent; |
| 825 | calcShadowMapProperties(light, viewGroup, SHADOW_MAP_BORDER, options.mapSize, options.fadePercents, maxFadePercent); |
| 826 | |
| 827 | // Don't render shadow maps that will end up nearly completely faded out |
| 828 | if (maxFadePercent < 0.005f) |
| 829 | continue; |
| 830 | |
| 831 | mSpotLightShadowOptions.push_back(options); |
| 832 | shadowInfoCount++; // For now, always a single fully dynamic shadow for a single light, but that may change |
| 833 | } |
| 834 | |
| 835 | for (UINT32 i = 0; i < (UINT32)sceneInfo.radialLights.size(); ++i) |
| 836 | { |
| 837 | const RendererLight& light = sceneInfo.radialLights[i]; |
| 838 | mRadialLightShadows[i].startIdx = shadowInfoCount; |
| 839 | mRadialLightShadows[i].numShadows = 0; |
| 840 | |
| 841 | // Note: I'm using visibility across all views, while I could be using visibility for every view individually, |
| 842 | // if I kept that information somewhere |
| 843 | if (!light.internal->getCastsShadow() || !visibility.radialLights[i]) |
| 844 | continue; |
| 845 | |
| 846 | ShadowMapOptions options; |
| 847 | options.lightIdx = i; |
| 848 | |
| 849 | float maxFadePercent; |
| 850 | calcShadowMapProperties(light, viewGroup, 0, options.mapSize, options.fadePercents, maxFadePercent); |
| 851 | |
| 852 | // Don't render shadow maps that will end up nearly completely faded out |
| 853 | if (maxFadePercent < 0.005f) |
| 854 | continue; |
| 855 | |
| 856 | mRadialLightShadowOptions.push_back(options); |
| 857 | |
| 858 | shadowInfoCount++; // For now, always a single fully dynamic shadow for a single light, but that may change |
| 859 | } |
| 860 | |
| 861 | // Sort spot lights by size so they fit neatly in the texture atlas |
| 862 | std::sort(mSpotLightShadowOptions.begin(), mSpotLightShadowOptions.end(), |
| 863 | [](const ShadowMapOptions& a, const ShadowMapOptions& b) { return a.mapSize > b.mapSize; } ); |
| 864 | |
| 865 | // Reserve space for shadow infos |
| 866 | mShadowInfos.resize(shadowInfoCount); |
| 867 | |
| 868 | // Deallocate unused textures (must be done before rendering shadows, in order to ensure indices don't change) |
| 869 | for(auto iter = mDynamicShadowMaps.begin(); iter != mDynamicShadowMaps.end(); ++iter) |
| 870 | { |
| 871 | if(iter->getLastUsedCounter() >= MAX_UNUSED_FRAMES) |
| 872 | { |
| 873 | // These are always populated in order, so we can assume all following atlases are also empty |
| 874 | mDynamicShadowMaps.erase(iter, mDynamicShadowMaps.end()); |
| 875 | break; |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | for(auto iter = mCascadedShadowMaps.begin(); iter != mCascadedShadowMaps.end();) |
| 880 | { |
| 881 | if (iter->getLastUsedCounter() >= MAX_UNUSED_FRAMES) |
| 882 | iter = mCascadedShadowMaps.erase(iter); |
| 883 | else |
| 884 | ++iter; |
| 885 | } |
| 886 | |
| 887 | for(auto iter = mShadowCubemaps.begin(); iter != mShadowCubemaps.end();) |
| 888 | { |
| 889 | if (iter->getLastUsedCounter() >= MAX_UNUSED_FRAMES) |
| 890 | iter = mShadowCubemaps.erase(iter); |
| 891 | else |
| 892 | ++iter; |
| 893 | } |
| 894 | |
| 895 | // Render shadow maps |
| 896 | for (UINT32 i = 0; i < (UINT32)sceneInfo.directionalLights.size(); ++i) |
| 897 | { |
| 898 | const RendererLight& light = sceneInfo.directionalLights[i]; |
| 899 | |
| 900 | if (!light.internal->getCastsShadow()) |
| 901 | return; |
| 902 | |
| 903 | UINT32 numViews = viewGroup.getNumViews(); |
| 904 | mDirectionalLightShadows[i].viewShadows.resize(numViews); |
| 905 | |
| 906 | for (UINT32 j = 0; j < numViews; ++j) |
| 907 | renderCascadedShadowMaps(*viewGroup.getView(j), i, scene, frameInfo); |
| 908 | } |
| 909 | |
| 910 | for(auto& entry : mSpotLightShadowOptions) |
| 911 | { |
| 912 | UINT32 lightIdx = entry.lightIdx; |
| 913 | renderSpotShadowMap(sceneInfo.spotLights[lightIdx], entry, scene, frameInfo); |
| 914 | } |
| 915 | |
| 916 | for (auto& entry : mRadialLightShadowOptions) |
| 917 | { |
| 918 | UINT32 lightIdx = entry.lightIdx; |
| 919 | renderRadialShadowMap(sceneInfo.radialLights[lightIdx], entry, scene, frameInfo); |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | /** |
| 924 | * Generates a frustum from the provided view-projection matrix. |
| 925 | * |
| 926 | * @param[in] invVP Inverse of the view-projection matrix to use for generating the frustum. |
| 927 | * @param[out] worldFrustum Generated frustum planes, in world space. |
| 928 | * @return Individual vertices of the frustum corners, in world space. Ordered using the |
| 929 | * AABox::CornerEnum. |
| 930 | */ |
| 931 | std::array<Vector3, 8> getFrustum(const Matrix4& invVP, ConvexVolume& worldFrustum) |
| 932 | { |
| 933 | std::array<Vector3, 8> output; |
| 934 | |
| 935 | const RenderAPICapabilities& caps = gCaps(); |
| 936 | |
| 937 | float flipY = 1.0f; |
| 938 | if (caps.conventions.ndcYAxis == Conventions::Axis::Down) |
| 939 | flipY = -1.0f; |
| 940 | |
| 941 | AABox frustumCube( |
| 942 | Vector3(-1, -1 * flipY, caps.minDepth), |
| 943 | Vector3(1, 1 * flipY, caps.maxDepth) |
| 944 | ); |
| 945 | |
| 946 | for(size_t i = 0; i < output.size(); i++) |
| 947 | { |
| 948 | Vector3 corner = frustumCube.getCorner((AABox::Corner)i); |
| 949 | output[i] = invVP.multiply(corner); |
| 950 | } |
| 951 | |
| 952 | Vector<Plane> planes(6); |
| 953 | planes[FRUSTUM_PLANE_NEAR] = Plane(output[AABox::NEAR_LEFT_BOTTOM], output[AABox::NEAR_RIGHT_BOTTOM], output[AABox::NEAR_RIGHT_TOP]); |
| 954 | planes[FRUSTUM_PLANE_FAR] = Plane(output[AABox::FAR_LEFT_BOTTOM], output[AABox::FAR_LEFT_TOP], output[AABox::FAR_RIGHT_TOP]); |
| 955 | planes[FRUSTUM_PLANE_LEFT] = Plane(output[AABox::NEAR_LEFT_BOTTOM], output[AABox::NEAR_LEFT_TOP], output[AABox::FAR_LEFT_TOP]); |
| 956 | planes[FRUSTUM_PLANE_RIGHT] = Plane(output[AABox::FAR_RIGHT_TOP], output[AABox::NEAR_RIGHT_TOP], output[AABox::NEAR_RIGHT_BOTTOM]); |
| 957 | planes[FRUSTUM_PLANE_TOP] = Plane(output[AABox::NEAR_LEFT_TOP], output[AABox::NEAR_RIGHT_TOP], output[AABox::FAR_RIGHT_TOP]); |
| 958 | planes[FRUSTUM_PLANE_BOTTOM] = Plane(output[AABox::NEAR_LEFT_BOTTOM], output[AABox::FAR_LEFT_BOTTOM], output[AABox::FAR_RIGHT_BOTTOM]); |
| 959 | |
| 960 | worldFrustum = ConvexVolume(planes); |
| 961 | return output; |
| 962 | } |
| 963 | |
| 964 | /** |
| 965 | * Converts a point in mixed space (clip_x, clip_y, view_z, view_w) to UV coordinates on a shadow map (x, y), |
| 966 | * and normalized linear depth from the shadow caster's perspective (z). |
| 967 | */ |
| 968 | Matrix4 createMixedToShadowUVMatrix(const Matrix4& viewP, const Matrix4& viewInvVP, const Rect2& shadowMapArea, |
| 969 | float depthScale, float depthOffset, const Matrix4& shadowViewProj) |
| 970 | { |
| 971 | // Projects a point from (clip_x, clip_y, view_z, view_w) into clip space |
| 972 | Matrix4 mixedToShadow = Matrix4::IDENTITY; |
| 973 | mixedToShadow[2][2] = viewP[2][2]; |
| 974 | mixedToShadow[2][3] = viewP[2][3]; |
| 975 | mixedToShadow[3][2] = viewP[3][2]; |
| 976 | mixedToShadow[3][3] = 0.0f; |
| 977 | |
| 978 | // Projects a point in clip space back to homogeneus world space |
| 979 | mixedToShadow = viewInvVP * mixedToShadow; |
| 980 | |
| 981 | // Projects a point in world space to shadow clip space |
| 982 | mixedToShadow = shadowViewProj * mixedToShadow; |
| 983 | |
| 984 | // Convert shadow clip space coordinates to UV coordinates relative to the shadow map rectangle, and normalize |
| 985 | // depth |
| 986 | const Conventions& rapiConventions = gCaps().conventions; |
| 987 | |
| 988 | float flipY = -1.0f; |
| 989 | // Either of these flips the Y axis, but if they're both true they cancel out |
| 990 | if ((rapiConventions.uvYAxis == Conventions::Axis::Up) ^ (rapiConventions.ndcYAxis == Conventions::Axis::Down)) |
| 991 | flipY = -flipY; |
| 992 | |
| 993 | Matrix4 shadowMapTfrm |
| 994 | ( |
| 995 | shadowMapArea.width * 0.5f, 0, 0, shadowMapArea.x + 0.5f * shadowMapArea.width, |
| 996 | 0, flipY * shadowMapArea.height * 0.5f, 0, shadowMapArea.y + 0.5f * shadowMapArea.height, |
| 997 | 0, 0, depthScale, depthOffset, |
| 998 | 0, 0, 0, 1 |
| 999 | ); |
| 1000 | |
| 1001 | return shadowMapTfrm * mixedToShadow; |
| 1002 | } |
| 1003 | |
| 1004 | void ShadowRendering::renderShadowOcclusion(const RendererView& view, const RendererLight& rendererLight, |
| 1005 | GBufferTextures gbuffer) const |
| 1006 | { |
| 1007 | UINT32 shadowQuality = view.getRenderSettings().shadowSettings.shadowFilteringQuality; |
| 1008 | |
| 1009 | const Light* light = rendererLight.internal; |
| 1010 | UINT32 lightIdx = light->getRendererId(); |
| 1011 | |
| 1012 | auto viewProps = view.getProperties(); |
| 1013 | |
| 1014 | const Matrix4& viewP = viewProps.projTransform; |
| 1015 | Matrix4 viewInvVP = viewProps.viewProjTransform.inverse(); |
| 1016 | |
| 1017 | SPtr<GpuParamBlockBuffer> perViewBuffer = view.getPerViewBuffer(); |
| 1018 | |
| 1019 | ProfileGPUBlock sampleBlock("Render shadow occlusion" ); |
| 1020 | |
| 1021 | const RenderAPICapabilities& caps = gCaps(); |
| 1022 | // TODO - Calculate and set a scissor rectangle for the light |
| 1023 | |
| 1024 | SPtr<GpuParamBlockBuffer> shadowParamBuffer = gShadowProjectParamsDef.createBuffer(); |
| 1025 | SPtr<GpuParamBlockBuffer> shadowOmniParamBuffer = gShadowProjectOmniParamsDef.createBuffer(); |
| 1026 | |
| 1027 | UINT32 viewIdx = view.getViewIdx(); |
| 1028 | Vector<const ShadowInfo*> shadowInfos; |
| 1029 | |
| 1030 | if(light->getType() == LightType::Radial) |
| 1031 | { |
| 1032 | const LightShadows& shadows = mRadialLightShadows[lightIdx]; |
| 1033 | |
| 1034 | for(UINT32 i = 0; i < shadows.numShadows; ++i) |
| 1035 | { |
| 1036 | UINT32 shadowIdx = shadows.startIdx + i; |
| 1037 | const ShadowInfo& shadowInfo = mShadowInfos[shadowIdx]; |
| 1038 | |
| 1039 | if (shadowInfo.fadePerView[viewIdx] < 0.005f) |
| 1040 | continue; |
| 1041 | |
| 1042 | for(UINT32 j = 0; j < 6; j++) |
| 1043 | gShadowProjectOmniParamsDef.gFaceVPMatrices.set(shadowOmniParamBuffer, shadowInfo.shadowVPTransforms[j], j); |
| 1044 | |
| 1045 | gShadowProjectOmniParamsDef.gDepthBias.set(shadowOmniParamBuffer, shadowInfo.depthBias); |
| 1046 | gShadowProjectOmniParamsDef.gFadePercent.set(shadowOmniParamBuffer, shadowInfo.fadePerView[viewIdx]); |
| 1047 | gShadowProjectOmniParamsDef.gInvResolution.set(shadowOmniParamBuffer, 1.0f / shadowInfo.area.width); |
| 1048 | |
| 1049 | const Transform& tfrm = light->getTransform(); |
| 1050 | Vector4 lightPosAndRadius(tfrm.getPosition(), light->getAttenuationRadius()); |
| 1051 | gShadowProjectOmniParamsDef.gLightPosAndRadius.set(shadowOmniParamBuffer, lightPosAndRadius); |
| 1052 | |
| 1053 | // Reduce shadow quality based on shadow map resolution for spot lights |
| 1054 | UINT32 effectiveShadowQuality = getShadowQuality(shadowQuality, shadowInfo.area.width, 2); |
| 1055 | |
| 1056 | // Check if viewer is inside the light bounds |
| 1057 | //// Expand the light bounds slightly to handle the case when the near plane is intersecting the light volume |
| 1058 | float lightRadius = light->getAttenuationRadius() + viewProps.nearPlane * 3.0f; |
| 1059 | bool viewerInsideVolume = (tfrm.getPosition() - viewProps.viewOrigin).length() < lightRadius; |
| 1060 | |
| 1061 | SPtr<Texture> shadowMap = mShadowCubemaps[shadowInfo.textureIdx].getTexture(); |
| 1062 | ShadowProjectParams shadowParams(*light, shadowMap, shadowOmniParamBuffer, perViewBuffer, gbuffer); |
| 1063 | |
| 1064 | ShadowProjectOmniMat* mat = ShadowProjectOmniMat::getVariation(effectiveShadowQuality, viewerInsideVolume, |
| 1065 | viewProps.target.numSamples > 1); |
| 1066 | mat->bind(shadowParams); |
| 1067 | |
| 1068 | gRendererUtility().draw(gRendererUtility().getSphereStencil()); |
| 1069 | } |
| 1070 | } |
| 1071 | else // Directional & spot |
| 1072 | { |
| 1073 | shadowInfos.clear(); |
| 1074 | |
| 1075 | bool isCSM = light->getType() == LightType::Directional; |
| 1076 | if(!isCSM) |
| 1077 | { |
| 1078 | const LightShadows& shadows = mSpotLightShadows[lightIdx]; |
| 1079 | for (UINT32 i = 0; i < shadows.numShadows; ++i) |
| 1080 | { |
| 1081 | UINT32 shadowIdx = shadows.startIdx + i; |
| 1082 | const ShadowInfo& shadowInfo = mShadowInfos[shadowIdx]; |
| 1083 | |
| 1084 | if (shadowInfo.fadePerView[viewIdx] < 0.005f) |
| 1085 | continue; |
| 1086 | |
| 1087 | shadowInfos.push_back(&shadowInfo); |
| 1088 | } |
| 1089 | } |
| 1090 | else // Directional |
| 1091 | { |
| 1092 | const LightShadows& shadows = mDirectionalLightShadows[lightIdx].viewShadows[viewIdx]; |
| 1093 | if (shadows.numShadows > 0) |
| 1094 | { |
| 1095 | UINT32 mapIdx = shadows.startIdx; |
| 1096 | const ShadowCascadedMap& cascadedMap = mCascadedShadowMaps[mapIdx]; |
| 1097 | |
| 1098 | // Render cascades in far to near order. |
| 1099 | // Note: If rendering other non-cascade maps they should be rendered after cascades. |
| 1100 | for (INT32 i = cascadedMap.getNumCascades() - 1; i >= 0; i--) |
| 1101 | shadowInfos.push_back(&cascadedMap.getShadowInfo(i)); |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | for(auto& shadowInfo : shadowInfos) |
| 1106 | { |
| 1107 | float depthScale, depthOffset; |
| 1108 | |
| 1109 | // Depth range scale is already baked into the ortho projection matrix, so avoid doing it here |
| 1110 | if (isCSM) |
| 1111 | { |
| 1112 | // Need to map from API-specific clip space depth to [0, 1] range |
| 1113 | depthScale = 1.0f / (caps.maxDepth - caps.minDepth); |
| 1114 | depthOffset = -caps.minDepth * depthScale; |
| 1115 | } |
| 1116 | else |
| 1117 | { |
| 1118 | depthScale = 1.0f / shadowInfo->depthRange; |
| 1119 | depthOffset = 0.0f; |
| 1120 | } |
| 1121 | |
| 1122 | SPtr<Texture> shadowMap; |
| 1123 | UINT32 shadowMapFace = 0; |
| 1124 | if(!isCSM) |
| 1125 | shadowMap = mDynamicShadowMaps[shadowInfo->textureIdx].getTexture(); |
| 1126 | else |
| 1127 | { |
| 1128 | shadowMap = mCascadedShadowMaps[shadowInfo->textureIdx].getTexture(); |
| 1129 | shadowMapFace = shadowInfo->cascadeIdx; |
| 1130 | } |
| 1131 | |
| 1132 | Matrix4 mixedToShadowUV = createMixedToShadowUVMatrix(viewP, viewInvVP, shadowInfo->normArea, |
| 1133 | depthScale, depthOffset, shadowInfo->shadowVPTransform); |
| 1134 | |
| 1135 | auto shadowMapProps = shadowMap->getProperties(); |
| 1136 | |
| 1137 | Vector2 shadowMapSize((float)shadowMapProps.getWidth(), (float)shadowMapProps.getHeight()); |
| 1138 | float transitionScale = getFadeTransition(*light, shadowInfo->subjectBounds.getRadius(), |
| 1139 | shadowInfo->depthRange, shadowInfo->area.width); |
| 1140 | |
| 1141 | gShadowProjectParamsDef.gFadePlaneDepth.set(shadowParamBuffer, shadowInfo->depthFade); |
| 1142 | gShadowProjectParamsDef.gMixedToShadowSpace.set(shadowParamBuffer, mixedToShadowUV); |
| 1143 | gShadowProjectParamsDef.gShadowMapSize.set(shadowParamBuffer, shadowMapSize); |
| 1144 | gShadowProjectParamsDef.gShadowMapSizeInv.set(shadowParamBuffer, 1.0f / shadowMapSize); |
| 1145 | gShadowProjectParamsDef.gSoftTransitionScale.set(shadowParamBuffer, transitionScale); |
| 1146 | |
| 1147 | if(isCSM) |
| 1148 | gShadowProjectParamsDef.gFadePercent.set(shadowParamBuffer, 1.0f); |
| 1149 | else |
| 1150 | gShadowProjectParamsDef.gFadePercent.set(shadowParamBuffer, shadowInfo->fadePerView[viewIdx]); |
| 1151 | |
| 1152 | if(shadowInfo->fadeRange == 0.0f) |
| 1153 | gShadowProjectParamsDef.gInvFadePlaneRange.set(shadowParamBuffer, 0.0f); |
| 1154 | else |
| 1155 | gShadowProjectParamsDef.gInvFadePlaneRange.set(shadowParamBuffer, 1.0f / shadowInfo->fadeRange); |
| 1156 | |
| 1157 | // Generate a stencil buffer to avoid evaluating pixels without any receiver geometry in the shadow area |
| 1158 | std::array<Vector3, 8> frustumVertices; |
| 1159 | UINT32 effectiveShadowQuality = shadowQuality; |
| 1160 | if(!isCSM) |
| 1161 | { |
| 1162 | ConvexVolume shadowFrustum; |
| 1163 | frustumVertices = getFrustum(shadowInfo->shadowVPTransform.inverse(), shadowFrustum); |
| 1164 | |
| 1165 | // Check if viewer is inside the frustum. Frustum is slightly expanded so that if the near plane is |
| 1166 | // intersecting the shadow frustum, it is counted as inside. This needs to be conservative as the code |
| 1167 | // for handling viewer outside the frustum will not properly render intersections with the near plane. |
| 1168 | bool viewerInsideFrustum = shadowFrustum.contains(viewProps.viewOrigin, viewProps.nearPlane * 3.0f); |
| 1169 | |
| 1170 | ShadowProjectStencilMat* mat = ShadowProjectStencilMat::getVariation(false, viewerInsideFrustum); |
| 1171 | mat->bind(perViewBuffer); |
| 1172 | drawFrustum(frustumVertices); |
| 1173 | |
| 1174 | // Reduce shadow quality based on shadow map resolution for spot lights |
| 1175 | effectiveShadowQuality = getShadowQuality(shadowQuality, shadowInfo->area.width, 2); |
| 1176 | } |
| 1177 | else |
| 1178 | { |
| 1179 | // Need to generate near and far planes to clip the geometry within the current CSM slice. |
| 1180 | // Note: If the render API supports built-in depth bound tests that could be used instead. |
| 1181 | |
| 1182 | Vector3 near = viewProps.projTransform.multiply(Vector3(0, 0, -shadowInfo->depthNear)); |
| 1183 | Vector3 far = viewProps.projTransform.multiply(Vector3(0, 0, -shadowInfo->depthFar)); |
| 1184 | |
| 1185 | ShadowProjectStencilMat* mat = ShadowProjectStencilMat::getVariation(true, true); |
| 1186 | mat->bind(perViewBuffer); |
| 1187 | |
| 1188 | drawNearFarPlanes(near.z, far.z, shadowInfo->cascadeIdx != 0); |
| 1189 | } |
| 1190 | |
| 1191 | gShadowProjectParamsDef.gFace.set(shadowParamBuffer, (float)shadowMapFace); |
| 1192 | ShadowProjectParams shadowParams(*light, shadowMap, shadowParamBuffer, perViewBuffer, gbuffer); |
| 1193 | |
| 1194 | ShadowProjectMat* mat = ShadowProjectMat::getVariation(effectiveShadowQuality, isCSM, |
| 1195 | viewProps.target.numSamples > 1); |
| 1196 | mat->bind(shadowParams); |
| 1197 | |
| 1198 | if (!isCSM) |
| 1199 | drawFrustum(frustumVertices); |
| 1200 | else |
| 1201 | gRendererUtility().drawScreenQuad(); |
| 1202 | } |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | void ShadowRendering::renderCascadedShadowMaps(const RendererView& view, UINT32 lightIdx, RendererScene& scene, |
| 1207 | const FrameInfo& frameInfo) |
| 1208 | { |
| 1209 | UINT32 viewIdx = view.getViewIdx(); |
| 1210 | LightShadows& lightShadows = mDirectionalLightShadows[lightIdx].viewShadows[viewIdx]; |
| 1211 | |
| 1212 | if (!view.getRenderSettings().enableShadows) |
| 1213 | { |
| 1214 | lightShadows.startIdx = -1; |
| 1215 | lightShadows.numShadows = 0; |
| 1216 | return; |
| 1217 | } |
| 1218 | |
| 1219 | // Note: Currently I'm using spherical bounds for the cascaded frustum which might result in non-optimal usage |
| 1220 | // of the shadow map. A different approach would be to generate a bounding box and then both adjust the aspect |
| 1221 | // ratio (and therefore dimensions) of the shadow map, as well as rotate the camera so the visible area best fits |
| 1222 | // in the map. It remains to be seen if this is viable. |
| 1223 | // - Note2: Actually both of these will likely have serious negative impact on shadow stability. |
| 1224 | const SceneInfo& sceneInfo = scene.getSceneInfo(); |
| 1225 | |
| 1226 | const RendererLight& rendererLight = sceneInfo.directionalLights[lightIdx]; |
| 1227 | Light* light = rendererLight.internal; |
| 1228 | |
| 1229 | RenderAPI& rapi = RenderAPI::instance(); |
| 1230 | |
| 1231 | const Transform& tfrm = light->getTransform(); |
| 1232 | Vector3 lightDir = -tfrm.getRotation().zAxis(); |
| 1233 | SPtr<GpuParamBlockBuffer> shadowParamsBuffer = gShadowParamsDef.createBuffer(); |
| 1234 | |
| 1235 | ShadowInfo shadowInfo; |
| 1236 | shadowInfo.lightIdx = lightIdx; |
| 1237 | shadowInfo.textureIdx = -1; |
| 1238 | |
| 1239 | UINT32 mapSize = std::min(mShadowMapSize, MAX_ATLAS_SIZE); |
| 1240 | shadowInfo.area = Rect2I(0, 0, mapSize, mapSize); |
| 1241 | shadowInfo.updateNormArea(mapSize); |
| 1242 | |
| 1243 | UINT32 numCascades = view.getRenderSettings().shadowSettings.numCascades; |
| 1244 | for (UINT32 i = 0; i < (UINT32)mCascadedShadowMaps.size(); i++) |
| 1245 | { |
| 1246 | ShadowCascadedMap& shadowMap = mCascadedShadowMaps[i]; |
| 1247 | |
| 1248 | if (!shadowMap.isUsed() && shadowMap.getSize() == mapSize && shadowMap.getNumCascades() == numCascades) |
| 1249 | { |
| 1250 | shadowInfo.textureIdx = i; |
| 1251 | shadowMap.markAsUsed(); |
| 1252 | |
| 1253 | break; |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | if (shadowInfo.textureIdx == (UINT32)-1) |
| 1258 | { |
| 1259 | shadowInfo.textureIdx = (UINT32)mCascadedShadowMaps.size(); |
| 1260 | mCascadedShadowMaps.push_back(ShadowCascadedMap(mapSize, numCascades)); |
| 1261 | |
| 1262 | ShadowCascadedMap& shadowMap = mCascadedShadowMaps.back(); |
| 1263 | shadowMap.markAsUsed(); |
| 1264 | } |
| 1265 | |
| 1266 | ShadowCascadedMap& shadowMap = mCascadedShadowMaps[shadowInfo.textureIdx]; |
| 1267 | |
| 1268 | Quaternion lightRotation(BsIdentity); |
| 1269 | lightRotation.lookRotation(lightDir, Vector3::UNIT_Y); |
| 1270 | |
| 1271 | ProfileGPUBlock profileSample("Project directional light shadow" ); |
| 1272 | |
| 1273 | for (UINT32 i = 0; i < numCascades; ++i) |
| 1274 | { |
| 1275 | Sphere frustumBounds; |
| 1276 | ConvexVolume cascadeCullVolume = getCSMSplitFrustum(view, lightDir, i, numCascades, frustumBounds); |
| 1277 | |
| 1278 | // Make sure the size of the projected area is in multiples of shadow map pixel size (for stability) |
| 1279 | float worldUnitsPerTexel = frustumBounds.getRadius() * 2.0f / shadowMap.getSize(); |
| 1280 | |
| 1281 | float orthoSize = floor(frustumBounds.getRadius() * 2.0f / worldUnitsPerTexel) * worldUnitsPerTexel * 0.5f; |
| 1282 | worldUnitsPerTexel = orthoSize * 2.0f / shadowMap.getSize(); |
| 1283 | |
| 1284 | // Snap caster origin to the shadow map pixel grid, to ensure shadow map stability |
| 1285 | Vector3 casterOrigin = frustumBounds.getCenter(); |
| 1286 | Matrix4 shadowView = Matrix4::view(Vector3::ZERO, lightRotation); |
| 1287 | Vector3 shadowSpaceOrigin = shadowView.multiplyAffine(casterOrigin); |
| 1288 | |
| 1289 | Vector2 snapOffset(fmod(shadowSpaceOrigin.x, worldUnitsPerTexel), fmod(shadowSpaceOrigin.y, worldUnitsPerTexel)); |
| 1290 | shadowSpaceOrigin.x -= snapOffset.x; |
| 1291 | shadowSpaceOrigin.y -= snapOffset.y; |
| 1292 | |
| 1293 | Matrix4 shadowViewInv = shadowView.inverseAffine(); |
| 1294 | casterOrigin = shadowViewInv.multiplyAffine(shadowSpaceOrigin); |
| 1295 | |
| 1296 | // Move the light so it is centered at the subject frustum, with depth range covering the frustum bounds |
| 1297 | shadowInfo.depthRange = frustumBounds.getRadius() * 2.0f; |
| 1298 | |
| 1299 | Vector3 offsetLightPos = casterOrigin - lightDir * frustumBounds.getRadius(); |
| 1300 | Matrix4 offsetViewMat = Matrix4::view(offsetLightPos, lightRotation); |
| 1301 | |
| 1302 | Matrix4 proj = Matrix4::projectionOrthographic(-orthoSize, orthoSize, orthoSize, -orthoSize, 0.0f, |
| 1303 | shadowInfo.depthRange); |
| 1304 | |
| 1305 | RenderAPI::instance().convertProjectionMatrix(proj, proj); |
| 1306 | |
| 1307 | shadowInfo.cascadeIdx = i; |
| 1308 | shadowInfo.shadowVPTransform = proj * offsetViewMat; |
| 1309 | |
| 1310 | // Determine split range |
| 1311 | float splitNear = getCSMSplitDistance(view, i, numCascades); |
| 1312 | float splitFar = getCSMSplitDistance(view, i + 1, numCascades); |
| 1313 | |
| 1314 | shadowInfo.depthNear = splitNear; |
| 1315 | shadowInfo.depthFade = splitFar; |
| 1316 | shadowInfo.subjectBounds = frustumBounds; |
| 1317 | |
| 1318 | if ((UINT32)(i + 1) < numCascades) |
| 1319 | shadowInfo.fadeRange = CASCADE_FRACTION_FADE * (shadowInfo.depthFade - shadowInfo.depthNear); |
| 1320 | else |
| 1321 | shadowInfo.fadeRange = 0.0f; |
| 1322 | |
| 1323 | shadowInfo.depthFar = shadowInfo.depthFade + shadowInfo.fadeRange; |
| 1324 | shadowInfo.depthBias = getDepthBias(*light, frustumBounds.getRadius(), shadowInfo.depthRange, mapSize); |
| 1325 | |
| 1326 | gShadowParamsDef.gDepthBias.set(shadowParamsBuffer, shadowInfo.depthBias); |
| 1327 | gShadowParamsDef.gInvDepthRange.set(shadowParamsBuffer, 1.0f / shadowInfo.depthRange); |
| 1328 | gShadowParamsDef.gMatViewProj.set(shadowParamsBuffer, shadowInfo.shadowVPTransform); |
| 1329 | gShadowParamsDef.gNDCZToDeviceZ.set(shadowParamsBuffer, RendererView::getNDCZToDeviceZ()); |
| 1330 | |
| 1331 | rapi.setRenderTarget(shadowMap.getTarget(i)); |
| 1332 | rapi.clearRenderTarget(FBT_DEPTH); |
| 1333 | |
| 1334 | ShadowDepthDirectionalMat* depthDirMat = ShadowDepthDirectionalMat::get(); |
| 1335 | depthDirMat->bind(shadowParamsBuffer); |
| 1336 | |
| 1337 | // Render all renderables into the shadow map |
| 1338 | ShadowRenderQueueDirOptions dirOptions( |
| 1339 | cascadeCullVolume, |
| 1340 | shadowParamsBuffer); |
| 1341 | |
| 1342 | ShadowRenderQueue::execute(scene, frameInfo, dirOptions); |
| 1343 | |
| 1344 | shadowMap.setShadowInfo(i, shadowInfo); |
| 1345 | } |
| 1346 | |
| 1347 | lightShadows.startIdx = shadowInfo.textureIdx; |
| 1348 | lightShadows.numShadows = 1; |
| 1349 | } |
| 1350 | |
| 1351 | void ShadowRendering::renderSpotShadowMap(const RendererLight& rendererLight, const ShadowMapOptions& options, |
| 1352 | RendererScene& scene, const FrameInfo& frameInfo) |
| 1353 | { |
| 1354 | Light* light = rendererLight.internal; |
| 1355 | |
| 1356 | SPtr<GpuParamBlockBuffer> shadowParamsBuffer = gShadowParamsDef.createBuffer(); |
| 1357 | |
| 1358 | ShadowInfo mapInfo; |
| 1359 | mapInfo.fadePerView = options.fadePercents; |
| 1360 | mapInfo.lightIdx = options.lightIdx; |
| 1361 | mapInfo.cascadeIdx = -1; |
| 1362 | |
| 1363 | bool foundSpace = false; |
| 1364 | for (UINT32 i = 0; i < (UINT32)mDynamicShadowMaps.size(); i++) |
| 1365 | { |
| 1366 | ShadowMapAtlas& atlas = mDynamicShadowMaps[i]; |
| 1367 | |
| 1368 | if (atlas.addMap(options.mapSize, mapInfo.area, SHADOW_MAP_BORDER)) |
| 1369 | { |
| 1370 | mapInfo.textureIdx = i; |
| 1371 | |
| 1372 | foundSpace = true; |
| 1373 | break; |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | if (!foundSpace) |
| 1378 | { |
| 1379 | mapInfo.textureIdx = (UINT32)mDynamicShadowMaps.size(); |
| 1380 | mDynamicShadowMaps.push_back(ShadowMapAtlas(MAX_ATLAS_SIZE)); |
| 1381 | |
| 1382 | ShadowMapAtlas& atlas = mDynamicShadowMaps.back(); |
| 1383 | atlas.addMap(options.mapSize, mapInfo.area, SHADOW_MAP_BORDER); |
| 1384 | } |
| 1385 | |
| 1386 | mapInfo.updateNormArea(MAX_ATLAS_SIZE); |
| 1387 | ShadowMapAtlas& atlas = mDynamicShadowMaps[mapInfo.textureIdx]; |
| 1388 | |
| 1389 | ProfileGPUBlock profileSample("Project spot light shadows" ); |
| 1390 | |
| 1391 | RenderAPI& rapi = RenderAPI::instance(); |
| 1392 | rapi.setRenderTarget(atlas.getTarget()); |
| 1393 | rapi.setViewport(mapInfo.normArea); |
| 1394 | rapi.clearViewport(FBT_DEPTH); |
| 1395 | |
| 1396 | mapInfo.depthNear = 0.05f; |
| 1397 | mapInfo.depthFar = light->getAttenuationRadius(); |
| 1398 | mapInfo.depthFade = mapInfo.depthFar; |
| 1399 | mapInfo.fadeRange = 0.0f; |
| 1400 | mapInfo.depthRange = mapInfo.depthFar - mapInfo.depthNear; |
| 1401 | mapInfo.depthBias = getDepthBias(*light, light->getBounds().getRadius(), mapInfo.depthRange, options.mapSize); |
| 1402 | mapInfo.subjectBounds = light->getBounds(); |
| 1403 | |
| 1404 | Quaternion lightRotation = light->getTransform().getRotation(); |
| 1405 | |
| 1406 | Matrix4 view = Matrix4::view(rendererLight.getShiftedLightPosition(), lightRotation); |
| 1407 | Matrix4 proj = Matrix4::projectionPerspective(light->getSpotAngle(), 1.0f, 0.05f, light->getAttenuationRadius()); |
| 1408 | |
| 1409 | ConvexVolume localFrustum = ConvexVolume(proj); |
| 1410 | RenderAPI::instance().convertProjectionMatrix(proj, proj); |
| 1411 | |
| 1412 | mapInfo.shadowVPTransform = proj * view; |
| 1413 | |
| 1414 | gShadowParamsDef.gDepthBias.set(shadowParamsBuffer, mapInfo.depthBias); |
| 1415 | gShadowParamsDef.gInvDepthRange.set(shadowParamsBuffer, 1.0f / mapInfo.depthRange); |
| 1416 | gShadowParamsDef.gMatViewProj.set(shadowParamsBuffer, mapInfo.shadowVPTransform); |
| 1417 | gShadowParamsDef.gNDCZToDeviceZ.set(shadowParamsBuffer, RendererView::getNDCZToDeviceZ()); |
| 1418 | |
| 1419 | const Vector<Plane>& frustumPlanes = localFrustum.getPlanes(); |
| 1420 | Matrix4 worldMatrix = view.inverseAffine(); |
| 1421 | |
| 1422 | Vector<Plane> worldPlanes(frustumPlanes.size()); |
| 1423 | UINT32 j = 0; |
| 1424 | for (auto& plane : frustumPlanes) |
| 1425 | { |
| 1426 | worldPlanes[j] = worldMatrix.multiplyAffine(plane); |
| 1427 | j++; |
| 1428 | } |
| 1429 | |
| 1430 | ConvexVolume worldFrustum(worldPlanes); |
| 1431 | |
| 1432 | // Render all renderables into the shadow map |
| 1433 | ShadowRenderQueueSpotOptions spotOptions( |
| 1434 | worldFrustum, |
| 1435 | shadowParamsBuffer); |
| 1436 | |
| 1437 | ShadowRenderQueue::execute(scene, frameInfo, spotOptions); |
| 1438 | |
| 1439 | // Restore viewport |
| 1440 | rapi.setViewport(Rect2(0.0f, 0.0f, 1.0f, 1.0f)); |
| 1441 | |
| 1442 | LightShadows& lightShadows = mSpotLightShadows[options.lightIdx]; |
| 1443 | |
| 1444 | mShadowInfos[lightShadows.startIdx + lightShadows.numShadows] = mapInfo; |
| 1445 | lightShadows.numShadows++; |
| 1446 | } |
| 1447 | |
| 1448 | void ShadowRendering::renderRadialShadowMap(const RendererLight& rendererLight, |
| 1449 | const ShadowMapOptions& options, RendererScene& scene, const FrameInfo& frameInfo) |
| 1450 | { |
| 1451 | Light* light = rendererLight.internal; |
| 1452 | |
| 1453 | SPtr<GpuParamBlockBuffer> shadowParamsBuffer = gShadowParamsDef.createBuffer(); |
| 1454 | |
| 1455 | ShadowInfo mapInfo; |
| 1456 | mapInfo.lightIdx = options.lightIdx; |
| 1457 | mapInfo.textureIdx = -1; |
| 1458 | mapInfo.fadePerView = options.fadePercents; |
| 1459 | mapInfo.cascadeIdx = -1; |
| 1460 | mapInfo.area = Rect2I(0, 0, options.mapSize, options.mapSize); |
| 1461 | mapInfo.updateNormArea(options.mapSize); |
| 1462 | |
| 1463 | for (UINT32 i = 0; i < (UINT32)mShadowCubemaps.size(); i++) |
| 1464 | { |
| 1465 | ShadowCubemap& cubemap = mShadowCubemaps[i]; |
| 1466 | |
| 1467 | if (!cubemap.isUsed() && cubemap.getSize() == options.mapSize) |
| 1468 | { |
| 1469 | mapInfo.textureIdx = i; |
| 1470 | cubemap.markAsUsed(); |
| 1471 | |
| 1472 | break; |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | if (mapInfo.textureIdx == (UINT32)-1) |
| 1477 | { |
| 1478 | mapInfo.textureIdx = (UINT32)mShadowCubemaps.size(); |
| 1479 | mShadowCubemaps.push_back(ShadowCubemap(options.mapSize)); |
| 1480 | |
| 1481 | ShadowCubemap& cubemap = mShadowCubemaps.back(); |
| 1482 | cubemap.markAsUsed(); |
| 1483 | } |
| 1484 | |
| 1485 | ShadowCubemap& cubemap = mShadowCubemaps[mapInfo.textureIdx]; |
| 1486 | |
| 1487 | mapInfo.depthNear = 0.05f; |
| 1488 | mapInfo.depthFar = light->getAttenuationRadius(); |
| 1489 | mapInfo.depthFade = mapInfo.depthFar; |
| 1490 | mapInfo.fadeRange = 0.0f; |
| 1491 | mapInfo.depthRange = mapInfo.depthFar - mapInfo.depthNear; |
| 1492 | mapInfo.depthBias = getDepthBias(*light, light->getBounds().getRadius(), mapInfo.depthRange, options.mapSize); |
| 1493 | mapInfo.subjectBounds = light->getBounds(); |
| 1494 | |
| 1495 | // Note: Projecting on positive Z axis, because cubemaps use a left-handed coordinate system |
| 1496 | Matrix4 proj = Matrix4::projectionPerspective(Degree(90.0f), 1.0f, 0.05f, light->getAttenuationRadius(), true); |
| 1497 | ConvexVolume localFrustum(proj); |
| 1498 | |
| 1499 | ProfileGPUBlock profileSample("Project radial light shadows" ); |
| 1500 | |
| 1501 | const RenderAPICapabilities& caps = gCaps(); |
| 1502 | const Conventions& rapiConventions = gCaps().conventions; |
| 1503 | |
| 1504 | RenderAPI& rapi = RenderAPI::instance(); |
| 1505 | rapi.convertProjectionMatrix(proj, proj); |
| 1506 | |
| 1507 | // Render cubemaps upside down if necessary |
| 1508 | Matrix4 adjustedProj = proj; |
| 1509 | if(caps.conventions.uvYAxis == Conventions::Axis::Up) |
| 1510 | { |
| 1511 | // All big APIs use the same cubemap sampling coordinates, as well as the same face order. But APIs that |
| 1512 | // use bottom-up UV coordinates require the cubemap faces to be stored upside down in order to get the same |
| 1513 | // behaviour. APIs that use an upside-down NDC Y axis have the same problem as the rendered image will be |
| 1514 | // upside down, but this is handled by the projection matrix. If both of those are enabled, then the effect |
| 1515 | // cancels out. |
| 1516 | |
| 1517 | adjustedProj[1][1] = -proj[1][1]; |
| 1518 | } |
| 1519 | |
| 1520 | bool renderAllFacesAtOnce = caps.hasCapability(RSC_RENDER_TARGET_LAYERS); |
| 1521 | |
| 1522 | SPtr<GpuParamBlockBuffer> shadowCubeMatricesBuffer; |
| 1523 | SPtr<GpuParamBlockBuffer> shadowCubeMasksBuffer; |
| 1524 | if(renderAllFacesAtOnce) |
| 1525 | { |
| 1526 | shadowCubeMatricesBuffer = gShadowCubeMatricesDef.createBuffer(); |
| 1527 | shadowCubeMasksBuffer = gShadowCubeMasksDef.createBuffer(); |
| 1528 | } |
| 1529 | |
| 1530 | gShadowParamsDef.gDepthBias.set(shadowParamsBuffer, mapInfo.depthBias); |
| 1531 | gShadowParamsDef.gInvDepthRange.set(shadowParamsBuffer, 1.0f / mapInfo.depthRange); |
| 1532 | gShadowParamsDef.gMatViewProj.set(shadowParamsBuffer, Matrix4::IDENTITY); |
| 1533 | gShadowParamsDef.gNDCZToDeviceZ.set(shadowParamsBuffer, RendererView::getNDCZToDeviceZ()); |
| 1534 | |
| 1535 | ConvexVolume frustums[6]; |
| 1536 | Vector<Plane> boundingPlanes; |
| 1537 | for (UINT32 i = 0; i < 6; i++) |
| 1538 | { |
| 1539 | // Calculate view matrix |
| 1540 | Vector3 forward; |
| 1541 | Vector3 up = Vector3::UNIT_Y; |
| 1542 | |
| 1543 | switch (i) |
| 1544 | { |
| 1545 | case CF_PositiveX: |
| 1546 | forward = Vector3::UNIT_X; |
| 1547 | break; |
| 1548 | case CF_NegativeX: |
| 1549 | forward = -Vector3::UNIT_X; |
| 1550 | break; |
| 1551 | case CF_PositiveY: |
| 1552 | forward = Vector3::UNIT_Y; |
| 1553 | up = -Vector3::UNIT_Z; |
| 1554 | break; |
| 1555 | case CF_NegativeY: |
| 1556 | forward = -Vector3::UNIT_Y; |
| 1557 | up = Vector3::UNIT_Z; |
| 1558 | break; |
| 1559 | case CF_PositiveZ: |
| 1560 | forward = Vector3::UNIT_Z; |
| 1561 | break; |
| 1562 | case CF_NegativeZ: |
| 1563 | forward = -Vector3::UNIT_Z; |
| 1564 | break; |
| 1565 | } |
| 1566 | |
| 1567 | Vector3 right = Vector3::cross(up, forward); |
| 1568 | Matrix3 viewRotationMat = Matrix3(right, up, forward); |
| 1569 | |
| 1570 | Vector3 lightPos = light->getTransform().getPosition(); |
| 1571 | Matrix4 viewOffsetMat = Matrix4::translation(-lightPos); |
| 1572 | |
| 1573 | Matrix4 view = Matrix4(viewRotationMat.transpose()) * viewOffsetMat; |
| 1574 | mapInfo.shadowVPTransforms[i] = proj * view; |
| 1575 | |
| 1576 | Matrix4 shadowViewProj = adjustedProj * view; |
| 1577 | |
| 1578 | // Calculate world frustum for culling |
| 1579 | const Vector<Plane>& frustumPlanes = localFrustum.getPlanes(); |
| 1580 | |
| 1581 | Matrix4 worldMatrix = Matrix4::translation(lightPos) * Matrix4(viewRotationMat); |
| 1582 | |
| 1583 | Vector<Plane> worldPlanes(frustumPlanes.size()); |
| 1584 | UINT32 j = 0; |
| 1585 | for (auto& plane : frustumPlanes) |
| 1586 | { |
| 1587 | worldPlanes[j] = worldMatrix.multiplyAffine(plane); |
| 1588 | j++; |
| 1589 | } |
| 1590 | |
| 1591 | ConvexVolume frustum(worldPlanes); |
| 1592 | |
| 1593 | if(renderAllFacesAtOnce) |
| 1594 | { |
| 1595 | frustums[i] = frustum; |
| 1596 | |
| 1597 | // Register far plane of all frustums |
| 1598 | boundingPlanes.push_back(worldPlanes[FRUSTUM_PLANE_FAR]); |
| 1599 | gShadowCubeMatricesDef.gFaceVPMatrices.set(shadowCubeMatricesBuffer, shadowViewProj, i); |
| 1600 | } |
| 1601 | else |
| 1602 | { |
| 1603 | gShadowParamsDef.gMatViewProj.set(shadowParamsBuffer, shadowViewProj); |
| 1604 | |
| 1605 | RENDER_TEXTURE_DESC rtDesc; |
| 1606 | rtDesc.depthStencilSurface.texture = cubemap.getTexture(); |
| 1607 | rtDesc.depthStencilSurface.face = i; |
| 1608 | rtDesc.depthStencilSurface.numFaces = 1; |
| 1609 | |
| 1610 | SPtr<RenderTarget> faceRt = RenderTexture::create(rtDesc); |
| 1611 | |
| 1612 | rapi.setRenderTarget(faceRt); |
| 1613 | rapi.clearRenderTarget(FBT_DEPTH); |
| 1614 | |
| 1615 | // Render all renderables into the shadow map |
| 1616 | ConvexVolume boundingVolume(boundingPlanes); |
| 1617 | ShadowRenderQueueCubeSingleOptions cubeOptions( |
| 1618 | frustum, |
| 1619 | shadowParamsBuffer |
| 1620 | ); |
| 1621 | |
| 1622 | ShadowRenderQueue::execute(scene, frameInfo, cubeOptions); |
| 1623 | } |
| 1624 | } |
| 1625 | |
| 1626 | if(renderAllFacesAtOnce) |
| 1627 | { |
| 1628 | rapi.setRenderTarget(cubemap.getTarget()); |
| 1629 | rapi.clearRenderTarget(FBT_DEPTH); |
| 1630 | |
| 1631 | // Render all renderables into the shadow map |
| 1632 | ConvexVolume boundingVolume(boundingPlanes); |
| 1633 | ShadowRenderQueueCubeOptions cubeOptions( |
| 1634 | frustums, |
| 1635 | boundingVolume, |
| 1636 | shadowParamsBuffer, |
| 1637 | shadowCubeMatricesBuffer, |
| 1638 | shadowCubeMasksBuffer |
| 1639 | ); |
| 1640 | |
| 1641 | ShadowRenderQueue::execute(scene, frameInfo, cubeOptions); |
| 1642 | } |
| 1643 | |
| 1644 | LightShadows& lightShadows = mRadialLightShadows[options.lightIdx]; |
| 1645 | |
| 1646 | mShadowInfos[lightShadows.startIdx + lightShadows.numShadows] = mapInfo; |
| 1647 | lightShadows.numShadows++; |
| 1648 | } |
| 1649 | |
| 1650 | void ShadowRendering::calcShadowMapProperties(const RendererLight& light, const RendererViewGroup& viewGroup, |
| 1651 | UINT32 border, UINT32& size, SmallVector<float, 6>& fadePercents, float& maxFadePercent) const |
| 1652 | { |
| 1653 | const static float SHADOW_TEXELS_PER_PIXEL = 1.0f; |
| 1654 | |
| 1655 | // Find a view in which the light has the largest radius |
| 1656 | float maxMapSize = 0.0f; |
| 1657 | maxFadePercent = 0.0f; |
| 1658 | for (int i = 0; i < (int)viewGroup.getNumViews(); ++i) |
| 1659 | { |
| 1660 | const RendererView& view = *viewGroup.getView(i); |
| 1661 | const RendererViewProperties& viewProps = view.getProperties(); |
| 1662 | const RenderSettings& viewSettings = view.getRenderSettings(); |
| 1663 | |
| 1664 | if(!viewSettings.enableShadows) |
| 1665 | fadePercents.add(0.0f); |
| 1666 | else |
| 1667 | { |
| 1668 | // Approximation for screen space sphere radius: screenSize * 0.5 * cot(fov) * radius / Z, where FOV is the |
| 1669 | // largest one |
| 1670 | //// First get sphere depth |
| 1671 | const Matrix4& viewVP = viewProps.viewProjTransform; |
| 1672 | float depth = viewVP.multiply(Vector4(light.internal->getTransform().getPosition(), 1.0f)).w; |
| 1673 | |
| 1674 | // This is just 1/tan(fov), for both horz. and vert. FOV |
| 1675 | float viewScaleX = viewProps.projTransform[0][0]; |
| 1676 | float viewScaleY = viewProps.projTransform[1][1]; |
| 1677 | |
| 1678 | float screenScaleX = viewScaleX * viewProps.target.viewRect.width * 0.5f; |
| 1679 | float screenScaleY = viewScaleY * viewProps.target.viewRect.height * 0.5f; |
| 1680 | |
| 1681 | float screenScale = std::max(screenScaleX, screenScaleY); |
| 1682 | |
| 1683 | //// Calc radius (clamp if too close to avoid massive numbers) |
| 1684 | float radiusNDC = light.internal->getBounds().getRadius() / std::max(depth, 1.0f); |
| 1685 | |
| 1686 | //// Radius of light bounds in percent of the view surface, multiplied by screen size in pixels |
| 1687 | float radiusScreen = radiusNDC * screenScale; |
| 1688 | |
| 1689 | float optimalMapSize = SHADOW_TEXELS_PER_PIXEL * radiusScreen; |
| 1690 | maxMapSize = std::max(maxMapSize, optimalMapSize); |
| 1691 | |
| 1692 | // Determine if the shadow should fade out |
| 1693 | float fadePercent = Math::invLerp(optimalMapSize, (float)MIN_SHADOW_MAP_SIZE, (float)SHADOW_MAP_FADE_SIZE); |
| 1694 | fadePercents.add(fadePercent); |
| 1695 | maxFadePercent = std::max(maxFadePercent, fadePercent); |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | // If light fully (or nearly fully) covers the screen, use full shadow map resolution, otherwise |
| 1700 | // scale it down to smaller power of two, while clamping to minimal allowed resolution |
| 1701 | UINT32 effectiveMapSize = Bitwise::nextPow2((UINT32)maxMapSize); |
| 1702 | effectiveMapSize = Math::clamp(effectiveMapSize, MIN_SHADOW_MAP_SIZE, mShadowMapSize); |
| 1703 | |
| 1704 | // Leave room for border |
| 1705 | size = std::max(effectiveMapSize - 2 * border, 1u); |
| 1706 | } |
| 1707 | |
| 1708 | void ShadowRendering::drawNearFarPlanes(float near, float far, bool drawNear) const |
| 1709 | { |
| 1710 | const Conventions& rapiConventions = gCaps().conventions; |
| 1711 | float flipY = (rapiConventions.ndcYAxis == Conventions::Axis::Down) ? -1.0f : 1.0f; |
| 1712 | |
| 1713 | // Update VB with new vertices |
| 1714 | Vector3 vertices[8] = |
| 1715 | { |
| 1716 | // Near plane |
| 1717 | { -1.0f, -1.0f * flipY, near }, |
| 1718 | { 1.0f, -1.0f * flipY, near }, |
| 1719 | { 1.0f, 1.0f * flipY, near }, |
| 1720 | { -1.0f, 1.0f * flipY, near }, |
| 1721 | |
| 1722 | // Far plane |
| 1723 | { -1.0f, -1.0f * flipY, far }, |
| 1724 | { 1.0f, -1.0f * flipY, far }, |
| 1725 | { 1.0f, 1.0f * flipY, far }, |
| 1726 | { -1.0f, 1.0f * flipY, far }, |
| 1727 | }; |
| 1728 | |
| 1729 | mPlaneVB->writeData(0, sizeof(vertices), vertices, BWT_DISCARD); |
| 1730 | |
| 1731 | // Draw the mesh |
| 1732 | RenderAPI& rapi = RenderAPI::instance(); |
| 1733 | rapi.setVertexDeclaration(mPositionOnlyVD); |
| 1734 | rapi.setVertexBuffers(0, &mPlaneVB, 1); |
| 1735 | rapi.setIndexBuffer(mPlaneIB); |
| 1736 | rapi.setDrawOperation(DOT_TRIANGLE_LIST); |
| 1737 | |
| 1738 | rapi.drawIndexed(0, drawNear ? 12 : 6, 0, drawNear ? 8 : 4); |
| 1739 | } |
| 1740 | |
| 1741 | void ShadowRendering::drawFrustum(const std::array<Vector3, 8>& corners) const |
| 1742 | { |
| 1743 | RenderAPI& rapi = RenderAPI::instance(); |
| 1744 | |
| 1745 | // Update VB with new vertices |
| 1746 | mFrustumVB->writeData(0, sizeof(Vector3) * 8, corners.data(), BWT_DISCARD); |
| 1747 | |
| 1748 | // Draw the mesh |
| 1749 | rapi.setVertexDeclaration(mPositionOnlyVD); |
| 1750 | rapi.setVertexBuffers(0, &mFrustumVB, 1); |
| 1751 | rapi.setIndexBuffer(mFrustumIB); |
| 1752 | rapi.setDrawOperation(DOT_TRIANGLE_LIST); |
| 1753 | |
| 1754 | rapi.drawIndexed(0, 36, 0, 8); |
| 1755 | } |
| 1756 | |
| 1757 | UINT32 ShadowRendering::getShadowQuality(UINT32 requestedQuality, UINT32 shadowMapResolution, UINT32 minAllowedQuality) |
| 1758 | { |
| 1759 | static const UINT32 TARGET_RESOLUTION = 512; |
| 1760 | |
| 1761 | // If shadow map resolution is smaller than some target resolution drop the number of PCF samples (shadow quality) |
| 1762 | // so that the penumbra better matches with larger sized shadow maps. |
| 1763 | while(requestedQuality > minAllowedQuality && shadowMapResolution < TARGET_RESOLUTION) |
| 1764 | { |
| 1765 | shadowMapResolution *= 2; |
| 1766 | requestedQuality = std::max(requestedQuality - 1, 1U); |
| 1767 | } |
| 1768 | |
| 1769 | return requestedQuality; |
| 1770 | } |
| 1771 | |
| 1772 | ConvexVolume ShadowRendering::getCSMSplitFrustum(const RendererView& view, const Vector3& lightDir, UINT32 cascade, |
| 1773 | UINT32 numCascades, Sphere& outBounds) |
| 1774 | { |
| 1775 | // Determine split range |
| 1776 | float splitNear = getCSMSplitDistance(view, cascade, numCascades); |
| 1777 | float splitFar = getCSMSplitDistance(view, cascade + 1, numCascades); |
| 1778 | |
| 1779 | // Increase by fade range, unless last cascade |
| 1780 | if ((UINT32)(cascade + 1) < numCascades) |
| 1781 | splitFar += CASCADE_FRACTION_FADE * (splitFar - splitNear); |
| 1782 | |
| 1783 | // Calculate the eight vertices of the split frustum |
| 1784 | auto& viewProps = view.getProperties(); |
| 1785 | |
| 1786 | const Matrix4& projMat = viewProps.projTransform; |
| 1787 | |
| 1788 | float aspect; |
| 1789 | float nearHalfWidth, nearHalfHeight; |
| 1790 | float farHalfWidth, farHalfHeight; |
| 1791 | if(viewProps.projType == PT_PERSPECTIVE) |
| 1792 | { |
| 1793 | aspect = fabs(projMat[0][0] / projMat[1][1]); |
| 1794 | float tanHalfFOV = 1.0f / projMat[0][0]; |
| 1795 | |
| 1796 | nearHalfWidth = splitNear * tanHalfFOV; |
| 1797 | nearHalfHeight = nearHalfWidth * aspect; |
| 1798 | |
| 1799 | farHalfWidth = splitFar * tanHalfFOV; |
| 1800 | farHalfHeight = farHalfWidth * aspect; |
| 1801 | } |
| 1802 | else |
| 1803 | { |
| 1804 | aspect = projMat[0][0] / projMat[1][1]; |
| 1805 | |
| 1806 | nearHalfWidth = farHalfWidth = projMat[0][0] / 4.0f; |
| 1807 | nearHalfHeight = farHalfHeight = projMat[1][1] / 4.0f; |
| 1808 | } |
| 1809 | |
| 1810 | const Matrix4& viewMat = viewProps.viewTransform; |
| 1811 | Vector3 cameraRight = Vector3(viewMat[0]); |
| 1812 | Vector3 cameraUp = Vector3(viewMat[1]); |
| 1813 | |
| 1814 | const Vector3& viewOrigin = viewProps.viewOrigin; |
| 1815 | const Vector3& viewDir = viewProps.viewDirection; |
| 1816 | |
| 1817 | Vector3 frustumVerts[] = |
| 1818 | { |
| 1819 | viewOrigin + viewDir * splitNear - cameraRight * nearHalfWidth + cameraUp * nearHalfHeight, // Near, left, top |
| 1820 | viewOrigin + viewDir * splitNear + cameraRight * nearHalfWidth + cameraUp * nearHalfHeight, // Near, right, top |
| 1821 | viewOrigin + viewDir * splitNear + cameraRight * nearHalfWidth - cameraUp * nearHalfHeight, // Near, right, bottom |
| 1822 | viewOrigin + viewDir * splitNear - cameraRight * nearHalfWidth - cameraUp * nearHalfHeight, // Near, left, bottom |
| 1823 | viewOrigin + viewDir * splitFar - cameraRight * farHalfWidth + cameraUp * farHalfHeight, // Far, left, top |
| 1824 | viewOrigin + viewDir * splitFar + cameraRight * farHalfWidth + cameraUp * farHalfHeight, // Far, right, top |
| 1825 | viewOrigin + viewDir * splitFar + cameraRight * farHalfWidth - cameraUp * farHalfHeight, // Far, right, bottom |
| 1826 | viewOrigin + viewDir * splitFar - cameraRight * farHalfWidth - cameraUp * farHalfHeight, // Far, left, bottom |
| 1827 | }; |
| 1828 | |
| 1829 | // Calculate the bounding sphere of the frustum |
| 1830 | float diagonalNearSq = nearHalfWidth * nearHalfWidth + nearHalfHeight * nearHalfHeight; |
| 1831 | float diagonalFarSq = farHalfWidth * farHalfWidth + farHalfHeight * farHalfHeight; |
| 1832 | |
| 1833 | float length = splitFar - splitNear; |
| 1834 | float offset = (diagonalNearSq - diagonalFarSq) / (2 * length) + length * 0.5f; |
| 1835 | float distToCenter = Math::clamp(splitFar - offset, splitNear, splitFar); |
| 1836 | |
| 1837 | Vector3 center = viewOrigin + viewDir * distToCenter; |
| 1838 | |
| 1839 | float radius = 0.0f; |
| 1840 | for (auto& entry : frustumVerts) |
| 1841 | radius = std::max(radius, center.squaredDistance(entry)); |
| 1842 | |
| 1843 | radius = std::max((float)sqrt(radius), 1.0f); |
| 1844 | outBounds = Sphere(center, radius); |
| 1845 | |
| 1846 | // Generate light frustum planes |
| 1847 | Plane viewPlanes[6]; |
| 1848 | viewPlanes[FRUSTUM_PLANE_NEAR] = Plane(frustumVerts[0], frustumVerts[1], frustumVerts[2]); |
| 1849 | viewPlanes[FRUSTUM_PLANE_FAR] = Plane(frustumVerts[5], frustumVerts[4], frustumVerts[7]); |
| 1850 | viewPlanes[FRUSTUM_PLANE_LEFT] = Plane(frustumVerts[4], frustumVerts[0], frustumVerts[3]); |
| 1851 | viewPlanes[FRUSTUM_PLANE_RIGHT] = Plane(frustumVerts[1], frustumVerts[5], frustumVerts[6]); |
| 1852 | viewPlanes[FRUSTUM_PLANE_TOP] = Plane(frustumVerts[4], frustumVerts[5], frustumVerts[1]); |
| 1853 | viewPlanes[FRUSTUM_PLANE_BOTTOM] = Plane(frustumVerts[3], frustumVerts[2], frustumVerts[6]); |
| 1854 | |
| 1855 | //// Add camera's planes facing towards the lights (forming the back of the volume) |
| 1856 | Vector<Plane> lightVolume; |
| 1857 | for(auto& entry : viewPlanes) |
| 1858 | { |
| 1859 | if (entry.normal.dot(lightDir) < 0.0f) |
| 1860 | lightVolume.push_back(entry); |
| 1861 | } |
| 1862 | |
| 1863 | //// Determine edge planes by testing adjacent planes with different facing |
| 1864 | ////// Pairs of frustum planes that share an edge |
| 1865 | UINT32 adjacentPlanes[][2] = |
| 1866 | { |
| 1867 | { FRUSTUM_PLANE_NEAR, FRUSTUM_PLANE_LEFT }, |
| 1868 | { FRUSTUM_PLANE_NEAR, FRUSTUM_PLANE_RIGHT }, |
| 1869 | { FRUSTUM_PLANE_NEAR, FRUSTUM_PLANE_TOP }, |
| 1870 | { FRUSTUM_PLANE_NEAR, FRUSTUM_PLANE_BOTTOM }, |
| 1871 | |
| 1872 | { FRUSTUM_PLANE_FAR, FRUSTUM_PLANE_LEFT }, |
| 1873 | { FRUSTUM_PLANE_FAR, FRUSTUM_PLANE_RIGHT }, |
| 1874 | { FRUSTUM_PLANE_FAR, FRUSTUM_PLANE_TOP }, |
| 1875 | { FRUSTUM_PLANE_FAR, FRUSTUM_PLANE_BOTTOM }, |
| 1876 | |
| 1877 | { FRUSTUM_PLANE_LEFT, FRUSTUM_PLANE_TOP }, |
| 1878 | { FRUSTUM_PLANE_TOP, FRUSTUM_PLANE_RIGHT }, |
| 1879 | { FRUSTUM_PLANE_RIGHT, FRUSTUM_PLANE_BOTTOM }, |
| 1880 | { FRUSTUM_PLANE_BOTTOM, FRUSTUM_PLANE_LEFT }, |
| 1881 | }; |
| 1882 | |
| 1883 | ////// Vertex indices of edges on the boundary between two planes |
| 1884 | UINT32 sharedEdges[][2] = |
| 1885 | { |
| 1886 | { 3, 0 },{ 1, 2 },{ 0, 1 },{ 2, 3 }, |
| 1887 | { 4, 7 },{ 6, 5 },{ 5, 4 },{ 7, 6 }, |
| 1888 | { 4, 0 },{ 5, 1 },{ 6, 2 },{ 7, 3 } |
| 1889 | }; |
| 1890 | |
| 1891 | for(UINT32 i = 0; i < 12; i++) |
| 1892 | { |
| 1893 | const Plane& planeA = viewPlanes[adjacentPlanes[i][0]]; |
| 1894 | const Plane& planeB = viewPlanes[adjacentPlanes[i][1]]; |
| 1895 | |
| 1896 | float dotA = planeA.normal.dot(lightDir); |
| 1897 | float dotB = planeB.normal.dot(lightDir); |
| 1898 | |
| 1899 | if((dotA * dotB) < 0.0f) |
| 1900 | { |
| 1901 | const Vector3& vertA = frustumVerts[sharedEdges[i][0]]; |
| 1902 | const Vector3& vertB = frustumVerts[sharedEdges[i][1]]; |
| 1903 | Vector3 vertC = vertA + lightDir; |
| 1904 | |
| 1905 | if (dotA < 0.0f) |
| 1906 | lightVolume.push_back(Plane(vertA, vertB, vertC)); |
| 1907 | else |
| 1908 | lightVolume.push_back(Plane(vertB, vertA, vertC)); |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | return ConvexVolume(lightVolume); |
| 1913 | } |
| 1914 | |
| 1915 | float ShadowRendering::getCSMSplitDistance(const RendererView& view, UINT32 index, UINT32 numCascades) |
| 1916 | { |
| 1917 | auto& shadowSettings = view.getRenderSettings().shadowSettings; |
| 1918 | float distributionExponent = shadowSettings.cascadeDistributionExponent; |
| 1919 | |
| 1920 | // First determine the scale of the split, relative to the entire range |
| 1921 | float scaleModifier = 1.0f; |
| 1922 | float scale = 0.0f; |
| 1923 | float totalScale = 0.0f; |
| 1924 | |
| 1925 | //// Split 0 corresponds to near plane |
| 1926 | if (index > 0) |
| 1927 | { |
| 1928 | for (UINT32 i = 0; i < numCascades; i++) |
| 1929 | { |
| 1930 | if (i < index) |
| 1931 | scale += scaleModifier; |
| 1932 | |
| 1933 | totalScale += scaleModifier; |
| 1934 | scaleModifier *= distributionExponent; |
| 1935 | } |
| 1936 | |
| 1937 | scale = scale / totalScale; |
| 1938 | } |
| 1939 | |
| 1940 | // Calculate split distance in Z |
| 1941 | auto& viewProps = view.getProperties(); |
| 1942 | float near = viewProps.nearPlane; |
| 1943 | float far = Math::clamp(shadowSettings.directionalShadowDistance, viewProps.nearPlane, viewProps.farPlane); |
| 1944 | |
| 1945 | return near + (far - near) * scale; |
| 1946 | } |
| 1947 | |
| 1948 | float ShadowRendering::getDepthBias(const Light& light, float radius, float depthRange, UINT32 mapSize) |
| 1949 | { |
| 1950 | const static float RADIAL_LIGHT_BIAS = 0.005f; |
| 1951 | const static float SPOT_DEPTH_BIAS = 0.01f; |
| 1952 | const static float DIR_DEPTH_BIAS = 0.001f; // In clip space units |
| 1953 | const static float DEFAULT_RESOLUTION = 512.0f; |
| 1954 | |
| 1955 | // Increase bias if map size smaller than some resolution |
| 1956 | float resolutionScale = 1.0f; |
| 1957 | |
| 1958 | if (light.getType() != LightType::Directional) |
| 1959 | resolutionScale = DEFAULT_RESOLUTION / (float)mapSize; |
| 1960 | |
| 1961 | // Adjust range because in shader we compare vs. clip space depth |
| 1962 | float rangeScale = 1.0f; |
| 1963 | if (light.getType() == LightType::Spot) |
| 1964 | rangeScale = 1.0f / depthRange; |
| 1965 | |
| 1966 | const RenderAPICapabilities& caps = gCaps(); |
| 1967 | float deviceDepthRange = caps.maxDepth - caps.minDepth; |
| 1968 | |
| 1969 | float defaultBias = 1.0f; |
| 1970 | switch(light.getType()) |
| 1971 | { |
| 1972 | case LightType::Directional: |
| 1973 | defaultBias = DIR_DEPTH_BIAS * deviceDepthRange; |
| 1974 | |
| 1975 | // Use larger bias for further away cascades |
| 1976 | defaultBias *= depthRange * 0.01f; |
| 1977 | break; |
| 1978 | case LightType::Radial: |
| 1979 | defaultBias = RADIAL_LIGHT_BIAS; |
| 1980 | break; |
| 1981 | case LightType::Spot: |
| 1982 | defaultBias = SPOT_DEPTH_BIAS; |
| 1983 | break; |
| 1984 | default: |
| 1985 | break; |
| 1986 | } |
| 1987 | |
| 1988 | return defaultBias * light.getShadowBias() * resolutionScale * rangeScale; |
| 1989 | } |
| 1990 | |
| 1991 | float ShadowRendering::getFadeTransition(const Light& light, float radius, float depthRange, UINT32 mapSize) |
| 1992 | { |
| 1993 | const static float SPOT_LIGHT_SCALE = 1000.0f; |
| 1994 | const static float DIR_LIGHT_SCALE = 50000000.0f; |
| 1995 | |
| 1996 | // Note: Currently fade transitions are only used in spot & directional (non omni-directional) lights, so no need |
| 1997 | // to account for radial light type. |
| 1998 | if (light.getType() == LightType::Directional) |
| 1999 | { |
| 2000 | // Just use a large value, as we want a minimal transition region |
| 2001 | return DIR_LIGHT_SCALE; |
| 2002 | } |
| 2003 | else |
| 2004 | return fabs(light.getShadowBias()) * SPOT_LIGHT_SCALE; |
| 2005 | } |
| 2006 | }} |
| 2007 | |